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Abstract.  Astronomy datasets can be challenging to use for high school astronomy
classes. Data science education pedagogy can be leveraged to create astronomy activ-
ities in which students interrogate data, create visuals, and use statistical thinking to
construct astronomy knowledge. This session describes how the NASA/IPAC Infrared
Science Archive (IRSA) can provide a web-based interface for students to use basic
data science techniques in astronomy to build data literacy while learning astronomical
concepts. The activities shared will be available for anyone but were designed to be
used in Astro 101 classes in high school or early college.

1. Introduction

Modern astronomy has become a “big data” discipline (Lundgren & Trainor 2023; Nor-
man et al. 2019; Rebull 2024; Taghizadeh-Popp et al. 2020). Bringing computing and
data science pedagogy to current students is one way to support the development of
the next generation of early-career scientists (Norman et al. 2019; Lundgren & Trainor
2023). This trend is already evident in undergraduate physics programs, where com-
puting is being integrated into the curriculum (Apple et al., 2021; Hutchins et al. 2020;
Lee et al. 2020; Orban & Teeling-Smith 2020; Weintrop et al. 2016; Weller et al. 2021).
Data science and computing skills can also be a part of astronomy at the high school
level. Work is already happening to incorporate modern data science (Bargagliotti et
al. 2020; Israel-Fishelson et al. 2024) and computational thinking (Orban & Teeling-
Smith 2020; Weintrop et al. 2016) into high school science courses such as astronomy
and physics (Norman et al. 2019; Newland 2020; Rebull 2024).

The NASA/IPAC Infrared Science Archive (IRSA) has become a sophisticated but
accessible interface for publicly available datasets (Rebull 2024). The development of
the Firefly framework by NASA/IPAC (Wu et al. 2019) allows large data tables, ren-
dered FITS images, and embedded plots to coexist in a single browser window. The
IRSA tools present data using a table interface, which uses filtering techniques, includ-
ing mathematical expressions. Data from the table can be immediately rendered as a
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plot, including visualization elements where variables can lead to color or size varia-
tions within a distribution. Visualizations can help the viewer interpret the meaning of
variability within a distribution by mapping a quantity onto size or color (Schloss et al.
2019).

The activity presented here is meant to be incorporated into a high school astron-
omy or physics course. Rather than having students work through an entire curriculum
related to data science, integrating data science pedagogy into data-driven courses, like
astronomy, means that students can construct knowledge about astronomy by using
computing in a specific context (Newland, 2020; Guzdial & Shreiner 2022). The goal
of the activity is for students to learn how stellar data from the Gaia spacecraft can be
used to answer questions about various Milky Way star clusters.

The publication of the Gaia Data Release 2 paper (Gaia Collaboration 2018) de-
scribing observational Herzsprung-Russell diagrams (HRD) using the newly released
data offered some excellent known targets to use in developing the activity presented
here. HRD creation using photometry from the Gaia pipeline often uses the calculated
color index as an analog for temperature on the horizontal axis, and absolute magnitude
on the vertical axis. The photometry and parallax values from the Gaia data pipeline
can be used to determine the absolute magnitude. Both open and globular clusters were
selected for the activity so that the stellar distributions were varied and the evolutionary
tracks of the clusters would stand out. The plots produced as a part of the activity are
color-magnitude diagrams (CMD), a subset of the HRD typically shown in Astro 101.

2. Data Science Pedagogy in Astronomy

Data has become a significant part of life, and the world is becoming data-driven. Giv-
ing K-12 students opportunities to learn foundational data science concepts is more
important now than ever (Israel-Fishelson et al. 2024). The Pre-K-12 Guidelines for
Assessment and Instruction in Statistics Education II (GAISE II) framework describes
a statistical problem-solving process (Bargagliotti et al. 2020) that can help guide the
design of data science activities in K-12 classrooms.

Data science is best described in this context as using computing and statistics
to tell a story using data. Data science pedagogy is part of the more extensive set of
computational thinking skills science students should develop. The activity has been
used in a high school “Astronomy 101" course over several iterations. These were
typical astronomy students, and their math expertise was mixed at best. Most students
completing this activity did not have extensive computing experience, including only
introductory skills with spreadsheets.

2.1. Statistical Problem-Solving Practice

Students start by formulating investigative questions using statistical thinking. For the
star cluster activity using the NASA/IPAC IRSA Gaia catalog, students want to know
the relative ages of the clusters, the distances of the clusters, and a sense of the size
of the cluster. The rigor level of the activity could be altered by having the students
determine research questions on their own. The presented activity uses a scaffolded
guided inquiry style where questions are suggested or given.

Next, students collect or consider existing data that helps them address the ques-
tions they asked. Students learn to query the catalog via the IRSA interface using
appropriate nomenclature for the clusters based on the SIMBAD service (Wenger et al.
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2000), which also serves as the source for proper angular sizes for the clusters to limit
the number of returned sources from the catalog.

Then, students analyze data, including reducing the data into a functional form.
The data from the catalogs to the IRSA tools uses the Firefly framework (Wu et al.
2019), producing interactive data tables with filtering capabilities. Students can use
simple mathematical statements to limit the parallaxes displayed and processed in the
browser window. Providing scaffolded feedback to students about appropriate filtering
techniques helps to lower the cognitive load on students new to using data science tools
on real datasets.

Finally, students interpret and communicate their results, sharing possible alterna-
tive explanations. Looking for alternative explanations for a given dataset is crucial in
applying statistical thinking in the classroom (Bargagliotti et al. 2020; Israel-Fishelson
et al. 2024). Students can learn to develop the needed critical view of the role of data
when interpreting research findings. Using a critical lens for research is a data science
skill that extends beyond the classroom into the wider world.

2.2. Task-Specific Computing for Data Science

Table 1 lists the clusters and the parameters students will use to find and filter the
data. The angular sizes and parallax ranges were retrieved from the SIMBAD service
(Wenger et al. 2000). The rigor level of the activity can be adjusted by having students
determine these values themselves using SIMBAD. The activity was designed for in-
troductory astronomy students to complete in a one-hour class session. Providing the
parameters as shown is another way the activity can be scaffolded for students.

The activity’s use of scaffolding means data science is task-specific, and thus,
students are only exposed to the computing knowledge required to achieve the given
goal. Using curricular tools to bring data science into a given discipline for a given task
can help bolster (Guzdial & Shreiner 2022) the addition of computational thinking to
astronomy courses.

When teachers see a given technology as beneficial to their teaching practice, they
are more likely to adopt it. Scaffolding in the activity is not only for the sake of time;
task-specific computing used in a data science context can help lower the cognitive load
on learners (Grover 2022), especially those new to using computing to answer statistical
questions in a science class.

Table 1.  Cluster Parameters for HRD Creation

Cluster Name Angular Size Parallax Range Cluster Type
(arcminutes) (mas)

Collinder 110 18 0.30 - 0.50 Open

NGC 4755 10 0.35 - 0.50 Open

Messier 13 20 0.10-0.20 Globular

Melotte 71 9 0.30 - 0.50 Open

Lastly, the Gaia holdings as a part of the NASA/IPAC IRSA database collection
could be considered Big Data. The IRSA Firefly (Wu et al. 2019) visualization tools are
designed to group data into bins when data tables contain more than 25,000 rows. In
order to produce the sort of CMD used in Astronomy 101, the tables need to be culled
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down using data filtering in the Firefly tables. Students will not produce valuable results
without scaffolding and guidance limiting the data, likely impacting their knowledge
construction.

3. Creating Color-Magnitude Diagrams using the IRSA Gaia Database

3.1. Helpful Prior Knowledge

The activity centers around students using statistical problem-solving to characterize
certain aspects of the star clusters being investigated. Some concepts would be helpful
for students to experience before trying to handle the activity. For example, students
must use right ascension, declination, and angular size in context. Understanding how
astronomical images are produced would also probably bolster students’ understanding
of the representations supplied by the IRSA tools of infrared image data.

The general goal of the activity is for students to use statistical thinking and data
science pedagogy to apply knowledge about how astronomers determine the ages of
clusters and how cluster stellar populations are characterized. The activity is meant
to apply students’ knowledge of the differences between globular clusters and open
clusters, how to use HRD and CMD to characterize stellar populations, how to use
apparent and absolute magnitude, and how to use the distance modulus relationship al-
gebraically. Experience interpreting HRD and CMD representations would be a helpful
skill to practice before trying the activity in class.

Lastly, this activity might be helpful as part of a series of data-driven astronomy
activities but probably not introduce the concept of working with tables of data. Data
science educators acknowledge that learning to work with data in tabular form is essen-
tial to applying statistical thinking (Dana Center at UT Austin 2024; Israel-Fishelson
et al. 2024; Bargagliotti et al. 2020). Considering that IRSA Firefly tables are designed
for scientific use rather than classroom use, students should likely have used tools like
spreadsheets to manipulate and plot data before completing this activity.

When this activity was used with high school astronomy students, the classes had
already done several activities using spreadsheets to manipulate and visualize data. The
activity was used during the expected scope and sequence of high school astronomy as
a part of a unit about stellar clusters in the Milky Way galaxy. Although the activity
was designed to be completed in a single hour-long class session, this kind of activity
often took two sessions for most students. Scaffolding for data science concepts was
also provided frequently. The takeaway was that students learning how data can help us
characterize clusters was more important than students learning data science pedagogy
deeply.

3.2. Using IRSA Tools to Create Color-Magnitude Diagrams

Before creating a CMD with Gaia photometry data, students will use the NASA/IPAC
IRSA Viewer interface (Wu et al. 2019) to search for targets. The IRSA Viewer in-
terface allows users to enter a target name that is resolved using a connection to the
SIMBAD astronomical database (Wenger et al. 2000). The nomenclature used to iden-
tify the targets given to the students was tested in the SIMBAD system before being
used in the classroom for the first time. SIMBAD was also used to confirm parallax
ranges for the clusters in the activity. Figure 1 shows the NASA/IPAC IRSA Viewer
interface for one of the targets from the activity.
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Figure 1. NASA/IPAC IRSA Viewer Search Interface for Collinder 110.

The sources returned from the Gaia catalog appear as a Firefly table (Wu et al.,
2019). An image of the sources overplotted on the sky is also returned and displayed.
Figure 2 shows the results for one of the targets from the activity. Imagery from the
2MASS survey is seen in this example. The IRSA Firefly JavaScript library allows large
datasets to be displayed in a browser window with a separate data table, accompanying
imagery with source locations overlayed, and a plot of the data using fields from the
catalog queried. Large datasets of thousands of rows are possible when using the IRSA
catalog offerings; therefore, a slower or older computer might take longer to display
results.
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Figure 2. NASA/IPAC IRSA Viewer Output for Collinder 110.
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The IRSA Firefly interface allows the user to make the plot pane the sole focus,
which makes the production of a CMD easier. The plot parameters dialog allows the
user to access any field from the catalog and some mathematical and logical func-
tions. The Gaia data pipeline provides the color index using the magnitudes in blue,
green, and red in a few combinations, making a good choice for the horizontal axis
for a CMD (Gaia Collaboration 2019). The absolute magnitude can be calculated and
used for the vertical axis. This formula comes from the distance modulus relationship:
phot_g_mean_mag — (5 — 5 x log,, (1000/ parallax)). The expression uses the syntax
that IRSA Firefly understands and the Gaia database’s proper field names.

Providing students with the exact syntax and field names acts as scaffolding so that
students can produce a CMD that they can interpret. The activity aims to have students
perform sense-making tasks rather than teach them how to use the IRSA Viewer tools
for professional astronomy. Field testing of the activity showed that focusing on the
learning outcomes related to clusters led to more success than concerns over the lack of
competence in using the NASA/IPAC IRSA interface for future work.

Figure 3 shows an example of a CMD with appropriate axes and plot labeling. The
bp_rp color index field from the Gaia database was used for the horizontal axis. The
colored points demonstrate one final potential application of data science pedagogy to
separate stars within the distribution by parallax. Visualizations within a data distri-
bution allow for an indirect “third axis,” allowing students to perform deeper sense-
making with the plots (Schloss et al., 2019).
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Figure 3.  Color Magnitude Diagram Produce using IRSA Viewer for Collinder 110.

The activity shared here uses open-ended questions for an overall inquiry-driven
approach, using CMDs to compare and contrast the clusters. Exploring cluster param-
eters such as relative age by inspecting the main sequence turn-off, distance by known
parallax values, cluster size through analysis of the parallax range, etc., is all possi-
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ble for an “Astronomy 101" class with a data-driven activity such as the one explored
here. The questions are meant to have students explore the application of HRDs and
knowledge about cluster evolution and stellar populations. Using authentic data and
well-researched data science pedagogy allows students to apply past learning about
clusters to knowledge construction through sense-making while using a professional
astronomical tool with the proper guardrails in place.

The complete activity and other resources are available at the author’s website
(JimmyNewland. com). All curricular activities are free for classroom use under the
provided Creative Commons license.
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