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A polytrope with index n = 1.5 is a good model for fully convective star cores like
red giants, brown dwarfs, giant gaseous planets (like Jupiter), while a polytrope with
index n = 3.0 is usually also used to model main-sequence stars like our Sun, at least
in the radiation zone, corresponding to the Eddington standard model of stellar struc-
ture (for instance, see Eddington, A. S., 1926, The Internal Constitution of the Stars,
Cambridge University Press, Cambridge). Eigen-frequencies (natural frequencies) of
radial pulsations of differentially rotating and tidally distorted (DRTD) polytropic stel-
lar models of polytropic indices 1.5 and 3.0 have been computed taking into account
the effect of non-uniform densities inside the stellar interiors. The method utilizes
an averaging technique of Kippenhahn and Thomas in conjunction with the concepts
of Roche-equipotentials. The study compliments earlier studies of radial oscillations
of DRTD stellar structures. The utility of the work comes from the necessity to in-
clude the effects of non-uniform densities that involve the Lane–Emden equation on
eigen-frequencies of oscillation up to second order perturbations.

Keywords: Differential rotation, tidal distortion, polytropic models, oscillations, pulsations,
equipotential surface

1 Introduction

Observations exhibit that certain stars undergo different types of periodic deforma-
tions due to radial and non-radial oscillations, rotation, glitches in their life time
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in order to reproduce radio, X-rays, gamma-rays and other electromagnetic pertur-
bations (Glendenning, 2000; Shapiro & Teukolsky, 1983). Such observations have
importance as per their astrophysical significance. The present work is concerned
with the computation of pulsation periods of some polytropes having perturbations
due to radial oscillations occurring at certain stages of stars lifetime. These may pos-
sibly happen due to several reasons such as tidal distortions on the primary star by
the secondary star of a binary system, influence of interstellar medium, etc. (Glen-
denning, 2000; Shapiro & Teukolsky, 1983). The general pulsations analysis of stellar
models was designed long ago by Chandrasekhar (1964). It was initially applied only
to the polytropic equation of state, and some years later to more realistic models
(Glass & Lindblom, 1983). Some radial oscillations frequencies were approximated
for modern sets of equations of states of neutron stars by Kokkotas & Ruoff (2001).
Radial pulsations for quark stars were generally analyzed using the bag model to build
the equation of state for cold quark matter (Flores & Lugones, 2010). Their results
suggest that the zero mode periods have been detected very low (Benvenuto, Vucetich
& Horvath, 1991; Horvath, Benvenuto & Vucetich, 1991), which motivates the search
for higher periods of oscillations (Flores & Lugones, 2014, 2018). In astrophysics,
a polytrope refers to a solution of the Lane–Emden equation in which the pressure
depends upon the density in the form P = Kρ((n+1)/n), where P is pressure, ρ is den-
sity and K is a constant of proportionality (Horedt, 2004). The constant n is known
as the polytropic index. The polytropic index has an alternative definition with n
as the exponent. According to this, P is a function of both ρ and T (the tempera-
ture), however, in the particular case described by the polytrope equation, there are
other additional relations between these three quantities, which together determine
the equation. Thus, this is simply a relation that expresses an assumption about the
change of pressure with radius in terms of the change of density with radius, yielding
a solution to the Lane–Emden equation. However, studies as above mentioned were
carried out with an assumption that stars have uniform stellar structures, while for
realistic stars, densities vary in the interior.

The pulsational properties of a star generally depend on the density distribution
of the star and the ratio of specific heat of stellar material. The polytropic model for
different polytropic indices n affords a convenient series of models for the study of pul-
sational properties. However, for most of the models, a better approximation to the
density distribution of a star can be achieved by assuming a mass variation from the
centre to the surface of the star. Therefore, it may be possible to obtain some conclu-
sions regarding the effects of density distribution on the pulsation properties of DRTD
polytropic models of different polytropic indices as well as composite polytropic mod-
els with interfaces of different radii. Singh (1969) has done some work on the radial
oscillations of composite polytropes. However, this basic study was focused on non-
rotating composite polytropes. Kumar et al. (2021) analysed oscillations of DRTD
polytropes, but the study was mainly focused on the pressure and gravity modes of
oscillations. This paper is concerned with the computation of stellar pulsations of
DRTD polytropic stellar structures of stars of non-uniform densities. It is assumed
that radial pulsations are excited for slowly rotating stars, and eigen-frequencies are
influenced by the rotational effects.

With this object in view a number of DRTD polytropic stellar models have been
taken for study from Lal, Mohan & Singh (2001). For study so that effects of non-

©2021 Astronomical and Astrophysical Transactions (AApTr), Vol. 32, Issue 4



RADIAL PULSATIONS OF DISTORTED POLYTROPES 373

uniform densities can be analyzed on their pulsation properties investigated. In order
to analyse the effects of non-uniform densities on stellar radial pulsations as well as for
drawing significant conclusions the results obtained in this study have been compared
with the results earlier obtained by Lal, Mohan & Singh (2001) for the same stellar
models but without incorporating the effect of mass variation.

2 Radial oscillations of DRTD polytropic stellar models of non-uniform

densities

The mathematical problem of computing the eigen-frequencies of pulsations of a ro-
tating star is quite complex. Mohan, Saxena & Agarwal (1991) determined radial
and non-radial oscillations of distorted gaseous spheres adopting the approach used
by Mohan & Agarwal (1987) to analyze the effect of rotation as well as tidal dis-
tortion on the configuration and periods of small adiabatic pulsations of composite
models. The method utilizes the Kippenhahn & Thomas (1970) averaging approach
to formulate the eigen-value problem of rotationally and tidally distorted stars in a
manner that it can be used to determine the eigen-frequencies of various adiabatic
modes of radial and non-radial oscillations. Authors such as Mohan, Lal & Singh
(1998) and Saini, Kumar & Lal (2015) used this approach to formulate the eigen-
value boundary valued problem for determining the periods of oscillations of radial
modes of rotationally and tidally distorted stellar models.

Following Mohan, Lal & Singh (1998), adiabatic radial modes of oscillations of
stellar models having solid body rotation, differentially rotating models rotating ac-
cording to the law ω2 = b1 + b2s

2 + b3s
4 (ω2 is a nondimensional angular velocity

of a fluid particle at distance s from the axis of rotation and bi are suitably chosen
constants, for i = 1, 2, 3) are obtained using their topological equivalent models devel-
oped considering the averaging concept of Kippenhahn & Thomas (1970). Following
Mohan, Saxena & Agarwal (1991) and using the generalized approach of Kippen-
hahn & Thomas (1970), the Sturm–Liouville type differential equation determining
the eigen-value problems of pulsations of rotating polytropic models of a star can be
expressed as

τ1
d2η

dr20
+ τ2

dη

dr0
+ (τ3ν ∗
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Here q = M1/M0. M0 and M1 are the masses of primary and secondary compo-
nents of the binary system, respectively, such that primary is supposed to be much
larger than secondary (M0 >> M1). t = M0(r)/M0. The term M0(r) represents the
mass in the interior of the sphere of radius r inside the primary component, D the
distance separation between the centres of these stars, η the amplitude of pulsation
that depends on variable r0 (distance of an arbitrary point within the star from its
centre). Also ν∗2 is the dimensionless form of eigen-frequency σ, N the polytropic
index and ros is the value of r0 at the free surface. In the above expressions values
of the parameters ξu (dimensionless variable) are 3.65375, 6.89685 for polytropes of
indices N = 1.5, 3.0 respectively), ρc (central density), ρ (average density) and k are
the parameters for the original undistorted polytropic stellar model, let γ be the ratio
of specific heats, θψ is the parameter depending upon the distance of the point un-
der consideration from the centre of stellar model and G the universal gravitational
constant. Differential equation (1) in non-dimensional form determines the eigen-
frequencies of adiabatic radial oscillations of some differentially rotating polytropes,
in which terms up to second-order of smallness in parameters b1, b2, b3 are retained.
For numerical computation of the eigen-frequencies, the second-order linear differen-
tial equation (1) is to be solved numerically, which require η = finite, corresponding
r0 = 0 i.e. at the centre and r0 = ros i.e. at the free surface.

3 Numerical evaluation of eigen-frequencies of pseudo radial modes of

oscillations

Eigen-frequencies ν∗2 of radial pulsations of differentially rotating polytropic gaseous
spherical models can be determined by integrating equation (1), subjecting the condi-
tion requiring η to be finite at the centre as well as at the free surface. As the centre
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and the surfaces are both singularities, numerical computation was carried out using
trial values of ν∗2 to determine the eigen-frequencies for radial oscillations.

To start integrations from a point near the centre and another point near the
surface, two series solutions have been developed at x = 0.001 and x = 0.999. Inward
and outward integrations were performed using the Runge–Kutta method with a step
length 0.0001. Few trails with different values of ν∗2 were carried out till the absolute
difference in the value of ratio η/ (dη/dx) at a pre-selected point in the interior of the
model from the outward and inward integrations was found to be less than 0.0001.
The series solution was developed to initiate integration from a point close to the
centre outwards and from a point close to the surface inwards. Evaluations were
made with the different trails until disparity between outward and inward values of η
were less than 0.0001. Computations were performed to determine the fundamental
and the first modes of pulsations of DRTD polytropic models of indices 1.5 and 3.0.

4 Analysis of results

The obtained eigen-frequencies of radial pulsations of DRTD stellar models of non-
uniform densities are given in Table 1. The eigen-frequencies of radial modes of
pulsations for polytropes of index 1.5 are found to be smaller in comparison to cor-
responding eigen-frequencies for polytropes of index 3.0. Effects of mass variation
on the eigen-frequencies of tidally distorted polytropic models are shown with the
help of Figure 1 to Figure 4. Excepting fundamental modes nonrotating model with
polytropic index 1.5, eigen-frequencies of DRTD models of a star decrease, if it is
considered as a spherical structure of non-uniform mass. The effect of mass variation
is largest for model 9 (see Table 1) and is minimum for a nonrotating polytrope i.e.
model 1. The effect of density variation causes the reduction in eigen-frequencies
of the first mode of oscillations of DRTD model of polytropic star, comparing than
fundamental mode. As the angular velocity increases from model 4 to model 6 with
the same tidal effect, reductions in eigen-frequencies increase.

The results obtained are in good agreement with the results obtained by Lal,
Mohan & Singh (2001). The eigen-frequencies have been compared in Figure 1 to
Figure 4 to show the effect of density variation in stallers’ interiors on the radial
pulsations.
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Figure 1 Eigen-frequencies of fundamental radial modes of oscillation for index 1.5.

Figure 2 Eigen-frequencies of fundamental radial modes of oscillation for index 3.0.

Figure 3 Eigen-frequencies of first radial modes of oscillations of stellar models of index
1.5.

Figure 4 Eigen-frequencies of first radial modes of oscillation of stellar models of index
3.0.
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5 Conclusion

In this study it is concluded that eigen-frequencies of the radial modes of pulsa-
tions of a star decrease with increase in angular velocity. Similar effects have also
been observed on eigen-frequencies of a stellar model influenced by tidal effect and
differential rotation as well. However, increment in tidal effect decreases the radial
eigen-frequencies. Model 9 for which tidal effect is large and angular velocity rises
rapidly towards surface, has lowest radial modes of oscillations for both indices. As
the angular velocity of a star is increased, eigen-frequencies of radial modes of oscil-
lations of stellar models are found to be decreased. On comparing of the results, it
can be concluded that effect of non-uniform densities decrease the eigen-frequencies
of pulsations for DRTD polytropes.

6 Appendix

Eigen-frequencies of radial modes of pulsations of DRTD stellar structures

of non-uniform density

To determine the periods of radial modes of pulsations of rotationally and tidally
distorted Roche model, Mohan, Lal & Singh (1998) formulated an eigen-value problem
which was further used by Mohan, Saxena & Agarwal (1991) to formulate for some
eigen-value problem to calculate the eigen-frequencies of radial and non-radial modes
of oscillations of DRTD gaseous spheres and also by Saini, Kumar & Lal (2015), to
make the eigen-value problem of determining radial modes of oscillations.

It is supposed that fluid elements oscillate in the unisons on an equipotential
surface. Adopting the approach of Mohan, Lal & Singh (1998), equation (1) has
been used to calculate eigen-frequencies of radial pulsations of DRTD stars related
to eigen-value problem deciding eigen-frequencies of radial pulsations of equivalent
model, and hence can be represented as:

d2η

dr2oψ
+

4− µ

roψ

dη

droψ
+
{ρoψν

2

γPoψ
−

(

3−
4

γ

)

µ

r2oψ

}

η = 0, where µ = −
roψ
Poψ

dPoψ
droψ

. (A-1)

In the above mentioned equation, roψ, ρoψ and Poψ represents the values of radius rψ,
density ρψ and pressure Pψ, respectively on surface ψ = constant. In the equanimity
condition on surface ψ = constant, if, rψ, ρψ and Pψ, are used in lieu of roψ, ρoψ
and Poψ and respectively, as well as to represent the equanimity of the surface ψ =
constant and using r0 = t/(ψ − q) in lieu of r and considering ω2 = b1 + b2s

2 + b3s
4,

equation (A-1) is reduced as:

κ

d2η

dr2o
+
{4− µ

ro
̺− ς

} dη

dro
+
{R2ν2ρψ

γPψ
−

(

3−
4

γ

)

µ

r2ψ
ϑ
}

η = 0. (A-2)
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where

κ =1− 8P1r
3
0 − 12P2r

5
0 − 2

(

7P3 − 24P2
1

)

r60 − 16P4r
7
0 − 18 (P5 − 8P1P2) r

8
0

+ 8
(

21P1P3 − 32P3
1

)

r90 −
(

12P6 − 78P1P4 − 43P2
2

)

r100 + ...,

̺ =1− 5P1r
3
0 − 7P2r

5
0 −

(

8P3 − 21P2
1

)

r60 − 9P4r
7
0 − 10 (P5 − 6P1P2) r

8
0

+
(

69P1P3 − 85P3
1

)

r90 −
(

12P6 − 78P1P4 − 43P2
2

)

r100 + ...,

ς =
1

r0

{

12P1r
3
0 + 30P2r

5
0 + 4

(

13P3 − 36P2
1

)

r60 + 56P4r
7
0 + 4 (18P5 − 144P1P2) r

8
0

− 36
(

21P1P3 − 32P3
1

)

r90 + 10
(

11P6 − 96P1P4 − 54P2
2

)

r100 + ...
}

,

ϑ =1− 2P1r
3
0 + 2P2r

5
0 −

(

2P3 − 3P2
1

)

r60 − 2P4r
7
0 − 2 (P5 − 3P1P2) r

8
0

− 2
(

3P1P3 − 2P3
1

)

r90 −
(

2P6 − 6P1P4 − 3P2
2

)

r100 + ...,

µ =−
rψ
Pψ

dPψ
drψ

= −φ
r0
Pψ

dPψ
dr0

, such that

φ =1− 3P1r
3
0 − 5P2r

5
0 − 6

(

P3 − 2P2
1

)

r60 − 7P4r
7
0 − 2 (4P5 − 19P1P2) r

8
0

− 3
(

15P1P3 − 16P3
1

)

r90 − 2
(

5P6 − 26P1P4 − 15P2
2

)

r100 + ... .

If there is no distortion i.e. (b1 = b2 = b3 = q = 0, D = R,Pψ = P, ρψ and r0 = x),
(A-2) will be reduced as:

d2η

dx2
+

4− µ

x

dη

dx
+
{R2ν2ρ

γP
−

(

3−
4

γ

)

µ

x2

}

η = 0 where µ = −
x

P

dP

dx
. (A-3)

It determines eigen-frequencies of small adiabatic radial oscillations of gaseous sphere
(for instance, see Roseland (1949)). Pψ is the pressure on an equipotential surface,
P is the pressure at an arbitrary point. Other symbols have their usual meanings as
defined earlier.

Equation (A-2) have been used to analyse impacts of differential rotation with
tidal distortion on periods of radial pulsations. The effect of differential rotation and
tidal distortion on the stellar models have been incorporated through inclusion of the
terms κ, ̺, ς, ϑ, φ and dependence of Pψ and ρψ on ψ. The eigen-value problem using
equation (A-2), subject to initial conditions, η = finite at centre and at free surface,
has been solved. For computation, it is convenient to use

η =
ζ

r0
and r0 = xros (A-4)

(ros is value of r0 at outer surface and x is taken as an independent variable, however,
ζ is a dependent variable). The value of x will be zero at the centre while it will be
one at outer surface. Initial condition η = finite at the centre, and equation (A-2)
will be reduced as:

τ∗1
d2ζ

dx2
+ τ∗2

dζ

dx
+ τ∗3 ζ = 0, (A-5)
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where

τ∗1 (b1, b2, b3, q, x, t) = τ1(b1, b2, b3, q, x, ros, t),

τ∗2 (b1, b2, b3, q, x, t) =
4− µ

x
̺(b1, b2, b3, q, x, ros, t)−

2

x
τ1(b1, b2, b3, q, x, ros, t)

− rosς(b1, b2, b3, q, x, ros, t),

τ∗3 (b1, b2, b3, q, x, t) =
R2ν2ρψr

2
os

γPψ
−

(

3−
4

γ

)

µ

x2
ϑ(b1, b2, b3, q, x, ros, t)

−
1

x
τ∗2 (b1, b2, b3, q, x, ros, t).

Now the boundary conditions become:

ζ = 0, at the centre x = 0

and

ζ =finite, at the surface x = 1.

(A-6)

To compute eigen-values, equation (A-5) is to be solved with the above boundary
conditions. It is to be noted that centre and free surface both are the singularities for
equation (A-5), therefore, it would be better to write two series solutions near these
points to perform the integrations.

Series solution of ζ at the centre may be assumed as:

ζ =

∞
∑

j=0

ajx
j+λ. (A-7)

Series solution of ζ near the centre may be assumed as:

ζ = 1 +

∞
∑

j=0

cj(1− x)j+λ. (A-8)

Integrating equation (A-5) numerically for some trial values of ν until a value of
ν is obtained for which boundary conditions (A-6) to be satisfied and hence give
eigenfrequency of radial modes of pulsations. It can be achieved by solving equation
(A-5). Series solution (A-7) will provide the initial values near the centre. The
optimization process will be continued with different values of ν until the value of
ζ/(dζ/dx) achieved desired accuracy.

It should be noted that the eigen-value problem determines eigen-frequencies
of pulsations of a DRTD polytropic gaseous sphere, rotating according to ω2 =
b1 + b2s

2 + b3s
4. On using b1 = 2n, b2 = b3 = 0, t = 1, this mathematical model

will be reduced to the model for radial modes of the frequencies of oscillations of
solid body rotating stars. Although arbitrary precision on eigen-frequencies cannot
be achieved, this would make no sense as resultant accuracy could not to be limited
by machine precision, one therefore has to interpolate between the given points to
construct staller background model. Different interpolation scheme can be applied to
interpolate different modes of eigen-frequencies. Even though the parameters used to
determine stellar structures are not very sensitive to actual interpolation scheme, the
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adiabatic index which is used into the oscillation, this quantity is sensitive to inter-
polation, especially if the equation of state changes quite abruptly. Using different
interpolation schemes, such as spline interpolation or as linear logarithmic interpo-
lation, it is noticed that the eigen-frequencies may vary up to about 0.5 per cent
only.
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