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Abstract. Brown dwarfs represent astrophysical laboratories capable of yielding
fundamental insights about planetary atmospheres and the process of star formation
at low masses. Although observational and theoretical studies of brown dwarfs have
progressed over the past ∼25 years, the solar neighborhood census of such objects re-
mains incomplete, especially for populations with the very lowest luminosities. The
archival data set furnished by NASA’s Wide-field Infrared Survey Explorer (WISE)
has unrivaled potential to pinpoint the lowest luminosity brown dwarfs, but this vast
archive has not yet been exhaustively explored. The existing Backyard Worlds: Planet
9 citizen science project has discovered hundreds of brown dwarfs through extensive
visual inspection of WISE sky maps. However, the Backyard Worlds: Planet 9 inter-
face is primarily optimized for discovery of hypothesized outer solar system planets
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rather than brown dwarfs. We describe the design and launch of Backyard Worlds:
Cool Neighbors, which is optimized for discovery of extremely low luminosity brown
dwarfs. Whereas Backyard Worlds: Planet 9 shows participants randomly selected sky
patches, Backyard Worlds: Cool Neighbors is a targeted survey. Our candidate brown
dwarf targets are selected from the CatWISE2020 catalog using a machine learning
technique, then visually inspected by citizen scientists to reliably confirm or reject each
candidate’s motion, a telltale proxy for solar neighborhood membership. Discovering
extreme brown dwarfs will enable the most exceptional and diverse set of isolated exo-
planet analogs to be characterized spectroscopically during JWST’s lifetime.

1. Introduction

What are the properties of giant exoplanet atmospheres, such as their water and cloud
content? Is there a low-mass cutoff to the star formation process, and if so what is
its value? How do the answers to these questions depend on variables such as age and
metallicity? Brown dwarfs of extremely low luminosity play a central role in answering
these important questions.

Y dwarfs, the coolest and least luminous known class of brown dwarfs, overlap
in mass and temperature with giant exoplanets, but are free of contaminating glare
from a much brighter host star. This makes Y dwarfs ideal laboratories for learning
about giant exoplanet atmospheres, especially in the new era of JWST mid-infrared
spectroscopy. Y dwarfs are predicted to harbor water ice clouds at temperatures below
450 K (Morley et al. 2014), and the local space density of Y dwarfs is a sensitive
probe of star formation’s cutoff (or lack thereof) at planetary masses (M . 13 MJup;
e.g., Burgasser 2004; Kirkpatrick et al. 2019, 2021).

Late-type subdwarfs — ancient substellar objects of low metallicity — repre-
sent a second class of extremely low luminosity brown dwarfs. In the Sun’s local
Galactic neighborhood, L and T type subdwarfs are rarer than solar metallicity ob-
jects of the same spectral classes, making them difficult to detect. Identifying very
cold (Teff . 1, 400 K) T type subdwarfs inhabiting the solar neighborhood can tell us
how commonly substellar objects formed during the early periods of the Milky Way’s
formation history.

Finding examples of Y dwarfs and late-type subdwarfs has posed a major bot-
tleneck for all of these lines of inquiry. Such brown dwarfs are sufficiently faint that
we can only hope to detect them very nearby (within ∼20 pc for Y dwarfs and ∼100
pc for T type subdwarfs). Thankfully, modern wide-area surveys like WISE (Wright
et al. 2010) and its extension, NEOWISE (Mainzer et al. 2011), are sufficiently sen-
sitive to detect these objects in the ∼4-5 micron wavelength range where they emit
most strongly. However, pinpointing extremely low luminosity brown dwarfs in the
vast WISE/NEOWISE data stream, which contains billions of detections and trillions
of pixels, represents an enormous technical challenge. These brown dwarfs are much
rarer than common artifacts like detector noise and bright star diffraction spikes. Visual
inspection campaigns to validate WISE brown dwarf candidates have required indi-
vidual Ph.D. astronomers to scrutinize up to of order 1 million candidates each (e.g.,
Kirkpatrick et al. 2014; Schneider et al. 2016; Kirkpatrick et al. 2016). Citizen sci-
ence and machine learning represent promising avenues to overcome this burdensome
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vetting bottleneck, by crowdsourcing the effort of visually approving/rejecting brown
dwarf candidates and generalizing from labeled training samples to massive data sets.

2. The Existing Backyard Worlds: Planet 9 Project

The Backyard Worlds: Planet 9 citizen science project (https://backyardworlds.
org; Kuchner et al. 2017) was launched in 2017 February with the goal of crowdsourc-
ing an all-sky visual search for moving objects within the full WISE/NEOWISE data
set. To push fainter than prior WISE-based motion surveys, this project employed novel
unWISE coadds (Lang 2014; Meisner et al. 2018b,c, 2019) that are stacked together
in each six-monthly sky pass of WISE exposures. Searching for a theorized “Planet 9”
in the outer solar system is a primary goal of Backyard Worlds: Planet 9, and Planet
9 would move by many arcminutes between successive WISE sky passes (Trujillo &
Sheppard 2014; Batygin & Brown 2016). Backyard Worlds: Planet 9 therefore shows
citizen scientists time series animated “flipbooks” (movies) covering large sky patches
10′ × 10′ in extent. These sky regions are randomly selected, and are rendered as dif-
ference images that null out static sources, as Planet 9 moves fast enough to avoid
self-subtraction (Meisner et al. 2017, 2018a). Users are asked to click the locations of
potential moving objects they see within these difference images.

Motion selection is also a common technique used to discover nearby brown
dwarfs, which appear to shift position relative to much more distant stars and galaxies.
However, the Backyard Worlds: Planet 9 visual inspection workflow may not be ideal
for brown dwarf discovery. Brown dwarfs in the solar neighborhood generally move at
rates of only ∼0.1′′/year to a few arcseconds per year. At the WISE angular resolution
(∼6′′ FWHM), brown dwarfs are severely self-subtracted in Backyard Worlds: Planet
9 flipbooks, appearing merely as faint “dipoles”, often with amplitudes smaller than
background noise.

Nevertheless, Backyard Worlds: Planet 9 citizen scientists have discovered several
hundred previously unrecognized moving objects that our team has spectroscopically
confirmed to be cold brown dwarfs (e.g., Meisner et al. 2020a; Faherty et al. 2020;
Schapera et al. 2022b). Backyard Worlds: Planet 9 has therefore demonstrated the
efficacy of citizen science for brown dwarf discovery, and suggests that a new crowd-
sourced search optimized for brown dwarf discovery should uncover hundreds or thou-
sands more substellar objects. Backyard Worlds: Planet 9 has also amassed over 74,000
registered users, including ∼300+ advanced “super users”, a sizable community which
can be leveraged to beta test and participate in future Backyard Worlds spin-off projects.

3. The Backyard Worlds: Cool Neighbors Project

Backyard Worlds: Planet 9 has already discovered several of the most extreme brown
dwarfs yet known, including five Y dwarfs (among only a few dozen known; Meisner
et al. 2020a; Bardalez Gagliuffi et al. 2020; Schneider et al. 2021) and the first extreme
T type subdwarfs — T type subdwarfs with very low metallicity, [Fe/H] ≤ −1 (esdTs;
Schneider et al. 2020; Meisner et al. 2021; Brooks et al. 2022). To build on these initial
successes, we have created a spin-off citizen science project called Backyard Worlds:
Cool Neighbors, which is optimized for discovery of extremely low luminosity brown
dwarfs.
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dwarf discovery space newly accessible with CatWISE2020, we use this novel cata-
log to pre-select Y dwarf and subdwarf targets for Backyard Worlds: Cool Neighbors
citizen scientists to visually inspect.

3.2. Machine Learning Brown Dwarf Candidate Selection

Conventional WISE brown dwarf searches have relied on all-sky queries that implement
hard cuts on catalog quantities such as color (with red W1−W2 color indicating cold
temperature), total proper motion, and artifact flags. Recently, astronomers have turned
to machine learning techniques when performing brown dwarf selections with cata-
logs such as AllWISE and CatWISE (Marocco et al. 2019; Meisner et al. 2020b; Gong
et al. 2022). The Backyard Worlds: Cool Neighbors project uses a custom machine
learning algorithm to select its targets (Kota et al. 2022). In brief, decision-tree-based,
supervised classifiers are constructed using the XGBoost machine learning software
package (Chen & Guestrin 2016) in order to rank the probability that each catalog ob-
ject is a brown dwarf. The method uses samples of known brown dwarfs as “training
data”, and customized classifier variants can be produced by training on different sub-
samples of known objects, such as Y dwarfs or T-type subdwarfs. These XGBoost
classifiers have shown a remarkable capacity for selecting extreme objects missed by
prior searches (e.g., Marocco et al. 2019; Meisner et al. 2020b). The XGBoost machine
learning framework incorporates information from numerous catalog columns simulta-
neously, whereas conventional searches only examine a few specific columns related to
color/motion/flags.

We have trained one customized XGBoost classifier to select promising Y dwarf
candidates, and a second to select promising T subdwarf candidates. We then select the
15,000 highest-ranking CatWISE2020 candidates from each classifier for visual inspec-
tion vetting by Backyard Worlds: Cool Neighbors citizen scientists, to check for motion
and weed out artifacts. Based on initial tests, we estimate that ∼0.5% of the XGBoost
classifier candidates will be real, previously undiscovered brown dwarfs, suggesting a
total yield of ∼150 new Backyard Worlds: Cool Neighbors brown dwarf discoveries.
While most of these discoveries will be “field” T dwarfs, we expect to nearly double the
number of known T type subdwarfs (see Figure 2). At present, our subject sets retain
previously discovered moving objects, as these can be useful in assessing the accuracy
of participant responses. In future iterations of Backyard Worlds: Cool Neighbors, we
will consider removing previously discovered moving objects flagged by our machine
learning classifiers.

3.3. Crowdsourcing via Zooniverse Project Builder

For each of our 30,000 brown dwarf candidates, we produce a 2′ × 2′ time series image
blink centered on the target. Each frame in the image blink represents one coadded
sky pass worth of WISE imaging, and the typical image blink contains 18 such frames1

displayed in chronological order. Time-ordering allows linear motion, such as that
signifying a brown dwarf in the solar neighborhood, to be readily perceived by the
human eye.

1One frame for each WISE sky coverage during the 2010-2021 time interval, with a gap between early
2011 and late 2013 due to the WISE hibernation period.
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unWISE images to Zooniverse as subject sets using the Panoptes Client. unWISE-verse
has a convenient graphical user interface (GUI) frontend built with Tkinter, pictured in
Figures 3 and 4.

Figure 3. unWISE-verse data pipeline interface example.

Figure 4. unWISE-verse data pipeline metadata window.

4. Backyard Worlds: Cool Neighbors Beta Test

All citizen science projects formally endorsed by Zooniverse are required to undergo a
“beta testing” phase, to receive and incorporate initial feedback from early users. We
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have designed a custom Zooniverse subject set for the Cool Neighbors beta test. The
breakdown of target classes is listed in Table 1.

Table 1. Beta Test Target Class Breakdown

Target Class Number of Beta Test Subjects

Machine Learning Selected Brown Dwarf Candidates 175
Known Brown Dwarfs 30
Random Sky Locations 35
Known Quasars 35

Total 275

The 175 machine learning selected brown dwarf candidates are representative of
the (much larger) sample of brown dwarf candidates that will be incorporated into the
final version of Cool Neighbors. The known brown dwarfs are a ‘truth’ sample meant
to understand the rates of true positives and false negatives among Zooniverse partici-
pant classifications. The random sky locations are intended to assess the rates of false
positives and true negatives. The known quasars are meant to asses the rate of false pos-
itives that arise when participants encounter sources that are relatively red (in W1-W2)
but are stationary extragalactic objects.

5. Outlook and Future Work

We have built the Zooniverse interface for a new citizen science project called Back-
yard Worlds: Cool Neighbors. The Cool Neighbors beta test recently took place from
2022 August 23-30, and analysis of the associated classifications remains ongoing. We
will incorporate user feedback received through our beta test, make any necessary up-
dates to our methodology/interface, and then proceed to formal launch of the Backyard
Worlds: Cool Neighbors project. We expect the project will reveal hundreds of previ-
ously undiscovered brown dwarfs in the solar neighborhood.
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