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Abstract. The archives of multi-object spectral surveys such as SDSS
or LAMOST currently contain millions of pipeline-reduced spectra of ce-
lestial objects. Most ca be identified as stars of recognised spectral types,
according to quick comparisons with extensive lists of template spectra.
To date, the dominant application of spectral libraries is for statistic esti-
mates of similarity, measured in a sequential or simply parallel manner, by
comparing all the survey spectra and their PCA components with a grid of
templates.

In this paper we propose a new approach that uses modern machine-
learning techniques as semi-supervised training, deep learning, or outlier
detecting that helps to identify specific rare cases of unusual objects like
stars with strong emission lines or P-Cyg profiles, or blazars, as well as to
eliminate the instrumental and processing artefacts which cannot be han-
dled correctly by a normal streaming pipeline. The amount of data and
time-absorbing algorithms require a ‘Big Data’ approach, using massively
parallel processing in the cloud by applying modern technologies such as
GPGPUs, Hadoop and Spark.

An important stage towards verifying the results is an interactive
visualisation and cross-matching with other data such as photometric sur-
veys, spectra acquired by other surveys, space missions and multi-wavelength
data of similar coverage, as well as comparisons with alternative models.
All this can be easily achieved through correct exploitation of Virtual Ob-
servatory standards.

Keywords : stars: emission-line, Be; methods: data analysis; techniques:
spectroscopic; virtual observatory; machine learning

*email: skoda@sunstel.asu.cas.cz

© Astronomical Society of India * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2017ASInC..14...73S

74 P. Skoda

1. Introduction

Classifying the spectrum of a star is a basic procedure that assigns to it some likely
value of its physical parameters such as colour temperature, gravity (which represents
its size and density) and sometimes its metallicity (chemical composition). The usual
way to classify a spectrum is to compare it with a grid of template spectra, which
may be either synthetic or a library of carefully selected stellar spectra of known
types. Problems arise in interesting physical cases if the spectrum in question is not
known and the library is not rich enough to include the corresponding unusual type,
for instance a cataclysmic variable or a Be, B[e], symbiotic or T Tau early-type star.
To classify exotic types like those, machine learning to classify line profiles may be a
reasonable alternative.

2. ‘Big data’ in astronomy

Astronomy, as with many other scientific disciplines like biology, genetics or clima-
tology, is currently facing an avalanche of data that are too voluminous to be processed
and exploited in full. For example, the future sky survey LSST (Juri¢ et al. 2015)
will yield 15TB of raw data every night requiring the processing power of about 1.6
GFLOPS for the reduction of its data. The expected size of processed data after ten
years of observation is about 500 PB, including 50 PB database tables. The final
catalogue alone will be 15 PB.

Even bigger data volumes are produced by radio arrays. Currently the LO-
FAR long term archive infrastructure hosts 27 PB of data (Valentijn et al. 2016).
The biggest world astronomical archive already in preparation will be created by the
Square Kilometre Array (SKA). The archive is expected to grow by 3 PB per day, and
its total size will increase by 1.1 exabyte per year (Barbosa et al. 2016).

In summary, the current growth of archived astronomical data has been rising ex-
ponentially with the doubling constant less than 69 months; that is much steeper than
the famous Moore’s law of technology advances, which predicts the doubling of com-
puter resources every 18 month (Quinn, P., Lawrence, A., Hanisch, R. 2004). One
promising solution of handling this data deluge is the implementation of service ori-
ented architecture moving the burden of data processing, pre-analysis and searching
towards the high-performance, well-equipped data centres. That solution has already
identified by the astronomical community in 2002, and was a main driver for setting
up astronomy’s Virtual Observatory (VO), which has been under development of the
International Virtual Observatory Alliance (IVOA).
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3. Virtual Observatory

The important technology able to handle the astronomical ‘Big Data’ deluge is the
concept of Virtual Observatory. Its goal is to provide global standards describing
all astronomical resources worldwide and to enable the standardised discovery and
access to these collections as well as powerful tools for scientific analysis and visual-
isation (Hanisch & De Young 2007).

As the VO mostly provides access to science-ready data, the data provider needs
to make the calibrated data VO-compatible. That requires the creation of a set of
metadata (for curation, provenance and characterisation), the conversion of data into
a VOTable format (Ochsenbein et al. 2013), and the preparation of an access inter-
face in accordance with appropriate VO standard protocols (Arviset, Gaudet & IVOA
Technical Coordination Group 2012). In the case of spectra, the most important pro-
tocols are SSAP ( Tody et al. 2012) and Spectral Data Model (McDowell et al. 2011).

Most of the highly acknowledged astronomical services like Vizier' and Simbad?,
or tools like Aladin®, are practical examples of VO technology in everyday use. All
the complex infrastructure of big servers, database engines and various data retrieval
protocols is hidden under the hood of a simple web-based form and user-friendly
graphical interfaces delivering complex tables, images and graphs at the click of a but-
ton. The VO also allows simple collaboration between multiple applications, thanks
to the Simple Application Message Protocol — SAMP (Taylor, Boch & Taylor 2015).

For spectroscopic studies, it is important the collaboration among spectra analysis
and visualisation tools such as SPLAT-VO (§koda etal. 2014), TOPCAT* and Aladin,
allowing e.g the investigation of spectra of multi-object spectrographs like LAMOST
facilitated by the workflow consisting of (i) processing the metadata tables in TOP-
CAT, (ii) highlighting the individual object in Aladin sky image and (iii) sending the
link to its spectrum to SPLAT-VO. The VO has already proved its power in solving
problems too tedious for manual work, and in producing results that can hardly be
achieved by classical methods (Chilingarian et al. 2009).

However, it is outside the scope of the VO to generate new knowledge, new mod-
els, and new scientific understanding from data. The effective retrieval of new and
useful knowledge from these massive distributed databases requires automated and
increasingly more effective approaches. Those are being addressed by progressive
fields of knowledge discovery in databases (KDD) and by data mining (DM), based
on machine-learning methods. Astronomy and astrophysics are entering the data-

1http://vizier.u—strasbg.fr/viz—bin/VizieR
2http://simbad.u—strasbg.fr/simbad/
3http://aladin.u—strasbg.fr/aladin.gml
4http://www.Star.bris.ac.uk/~mbt/topcat/
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intensive research paradigm represented by the newly emerging scientific discipline
of Astroinformatics.

4. Astroinformatics

As it was mentioned earlier, the current science is commonly understood to be data-
intensive or data-driven. Research in almost all the natural sciences is facing the ‘data
avalanche’ represented by exponential growth of information. The effective retrieval
of a scientific knowledge from petabyte-sized astronomical databases requires the
qualitatively new kind of scientific discipline — Astroinformatics.

Astroinformatics is based on the systematic application of modern informatics
and advanced statistics to huge astronomical data sets. Approaches involving tech-
niques such as machine learning, classification, clustering and data mining yield new
discoveries and better understanding of the nature of astronomical objects. Astroin-
formatics is an example of a scientific methodology in which new discoveries often
result from searching for outliers in normal statistical patterns. It is sometimes pre-
sented as a new way of doing astronomy (Borne 2009; Ball & Brunner 2010).

Accomplishing an analysis in the VO infrastructure may benefit from the au-
tomatic aggregation of distributed archive resources (e.g. multi-spectral research),
seamless on-the-fly data conversions, common interoperability of all tools, and pow-
erful graphical visualisation of measured and derived quantities. Combining the VO’s
infrastructural power with easy and transparent high-performance computing will en-
able the use of advanced analysis of large spectral surveys to become feasible in a
reasonable time. The crucial role in understanding the results of such an analysis
plays the Astroinformatics as a methodology allowing the extraction of new physical
knowledge from astronomical observations.

5. Mega-spectra surveys

The largest current surveys, containing millions of spectra (called ‘mega-spectral sur-
veys’) have resulted from two long-term projects that use multi-object fibre spectro-
graphs:

The Sloan Digital Sky Survey (SDSS): In its 12" data release (DR12 Alam et al.
2015) there are 4.3 million spectra. Two spectrographs have been fed by 640 fi-
bres placed in pre-drilled holes in a focal plate, but recently a new spectrograph
(BOSS), having 1000 fibres, has been installed. The spectra span the range
3800-9200A (SDSS spectrograph) and 3650—10400A (BOSS) with a spectral
resolving power of about ~ 1800. In addition, there are also 0.6 million of
H-band infrared spectra from the APOGEE spectrograph
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LAMOST Spectral Survey: The LAMOST telescope (Cui et. al. 2012) has been
delivering one of the largest mega-collections of spectra to date. The sixteen
LAMOST spectrographs are fed by 4000 fibres positioned by micro-motors. Its
publicly accessible Data Release 1 (DR1), (Luo etal. 2015) contains altogether
2.2 million spectra, while the DR3 (He et al. 2016) provides already 5.7 million
spectra.

Processing the surveys data is carried out by automatic pipelines which classity indi-
vidual objects using a set of templates by best matching the global shape of spectra.
The local features (e.g. line profiles) are ignored. Strong narrow emissions may be
even rejected by pipeline as a possibly spoiled pixels.

Massive amounts of spectra (90,000 channels per exposure in one arcmin FOV)
are also produced by the integral field unit (IFU) spectrograph MUSE (Kelz et al.
2016). The planned HETDEX survey with the HET telescope is going to provide
33,600 individual spectra; it will have about 22 arcmin per exposure and will use an
IFU (called VIRUS) that has special fibre attached (Adams et al. 2011).

6. Machine Learning

Machine learning is the field of informatics, closely related to the advanced statistical
inference, which tries to (1) build models of data by learning from sample inputs,
and (2) make predictions based on such learned models. It is divided mainly into
supervised and unsupervised methods.

Supervised learning requires, in principle, manually assigned labels attached to
the training sample of data. The method then will try to identify the same labels (same
classes) in another sample of the data whose labels are unknown.

Unsupervised learning tries to identify similar classes automatically (based on
some similarity metrics) without human intervention ‘Outliers’ are entities which can-
not be assigned to any particular cluster, so they represent single-member clusters.

A special case of semi-supervised learning (Chapelle et al. 2006) combines both
approaches by using the labels on a few samples of data with the knowledge of the
local topology of the data set in order to label all the data automatically.

The yet unknown rare objects with strange features hidden in the spectral archive,
or even sources with yet undiscovered physical mechanism may be in principle found
using this method. In any case, numerous random instrumental artefacts will be found
as well, since every one is unique and thus very rare. The artefacts caused by system-
atic errors of the same nature, which repeats very often, may be collected by clustering

as well.
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As one of the important cases of interesting objects, which may be found by
Machine Learning, may be considered Be stars (Porter & Rivinius 2003; Rivinius,
Carciofi & Martayan 2013) showing in Balmer lines single or double peaked line
profiles or even more complicated profiles with emission components (Zickgraf 2003;
Silaj et al. 2010).

7. Use case example: finding emission-line objects with
unsupervised and semi-supervised machine learning

Using the machine learning technology described above, we tried to find objects look-
ing as Be stars in a sample of LAMOST DRI1 spectra. We used semi-supervised meth-
ods called Label Propagation and Label Spreading, which were trained on spectra of
Be stars that had been observed with the 2-m Perek Telescope of Ondfejov observa-
tory. Details are given in Palicka (2016) and Skoda et al. (2016a).

We also tried to apply an outlier searching method called Local Outlier Factor
(LOF) to find the most peculiar spectra in LAMOST DRI and also in the spectra
from the 2-m telescope. Details may be found in Shakurova (2016) and Skoda et al.
(2016Db).

As the amount of spectra investigated was of the order of 50,000, we needed to
use the massively parallel processing of the Spark engine in the Hadoop environment.
Apache Spark’ is a cluster computing technology that allows fast parallel computation
on a number of computing nodes. We used the academic cluster MetaCentrum, which
consists of 24 sixteen-core nodes (the number of nodes assigned by the system is
actually unknown, as it depends on availability and the load of the cluster). The data
were distributed across all nodes by the Hadoop Distributed File System HDFS®. The
search was run on more than 50,000 spectra that were randomly selected from those
labelled as ‘star by the LAMOST DRI pipeline.

Each trial returned the archive IDs of hundreds of candidates (for which a spec-
ified statistical measure was above the threshold), but not every candidate was a Be
star. Flexible visualisation of each spectrum with VO technology played an important
role in the final evaluation and identification of the nature of the candidates. It was
particularly helpful to use a combination of cross-matching of the list of candidates
with other catalogues and all-sky surveys in TOPCAT and Aladin, followed by dis-
plays of their spectra in SPLAT-VO (including the interactive zooming). All this was
interactively orchestrated thanks to the SAMP interoperability protocol. We finally
obtained a shortlist of very interesting-looking candidates for emission line stars that
deserve further investigation.

Shttp://spark.apache.org
®http://hadoop.apache.org
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Fig. 1 gives an example of a Be star that was found by semi-supervised training
(the whole spectrum is shown in the upper panel, and in the panel below it is zoomed
centred around H,, line). Fig. 2 shows another interesting object that has emission
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Figure 1. Example of a Be star identified in LAMOST DR1 by machine learning. It has strong
double-peaked emission.

both in hydrogen and helium 16678A lines. It was identified as the well-known
cataclysmic variable star AM Her, so called Polar, with a strong magnetic field and
X-ray activity (Terada et al. 2010). Fig. 3 gives an example of an outlier found by
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Figure 2. LAMOST spectrum of AM Her Polar

the LOF method. It was classified by the LAMOST pipeline as a late-type M7 star;
it presents clearly a combination of absorption and emission in O I, which is seen in
some Be stars. Even more interesting is the star found by the semi-supervised machine
learning and shown in Fig. 4: it shows emission line profiles in several Balmer lines
and even in other elements (probably nitrogen). The star could not be cross-matched
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Figure 3. LAMOST outlier, classified as an M7 star

with any known stars in SIMBAD with sufficient accuracy, and so it deserves further
investigation.

8. Conclusions

The massive amounts of spectra produced by current instrumentation may be analysed
using the methodology of astroinformatics, namely the machine learning of specific
spectral lines profiles, in order to identify candidates for interesting (e.g. emission
line) objects. It may be a viable alternative to classical spectral classification — which
uses the best fitting in a grid of stellar spectral libraries — focused on less common
cases. The massive parallelisation of machine learning run in Spark environment can
speed-up the task considerably. The environment of the Virtual Observatory and its
specific technology may be very helpful thanks to its powerful analytic and visualisa-
tion capabilities.
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Figure 4. Interesting LAMOST star showing emission in several Balmer lines
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