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ABSTRACT

SAR tomography (TomoSAR) techniques allow a direct
3D imaging by exploiting angular diversity with

different passes of the sensor. One of the main
drawbacks of SAR tomography is that the estimation of
the vertical reflectivity profile has to be performed

through a limited set of multibaseline acquisitions,
which requires solving a highly underdetermined system
of equations. In TOomoSAR literature, the Capon and the
Fourier beamforming spectral estimators are widely
employed. As an alternative, the application of

Compressive Sensing (CS) techniques to the estimation

of forest profiles has been recently introduced. In this
paper, a different algorithm based on CS is proposed. It
performs a full rank polarimetric inversion, allowing
thus an estimation of the 3D coherency matrices. To
study the full rank polarimetric TOmoSAR inversion, a
temporal series of airborne data is used. The st
the 3D polarimetric inversion will be contrasted to in
situ measurements and LIDAR data.

1. INTRODUCTION

SAR Tomography allows a 3D imaging of the forest
body by exploiting angular diversity of a limited set of
multibaseline acquisitions [1]. As shown in Fig.1,
several passes of the sensor along the elevatioramxis

combined to estimate a 3D reflectivity of the
illuminated area.

Considering the geometry represented in Fig.1 a stack
of M SAR complex coherences is obtained. Each
coherence can be expressed as:

Y%, 1) = [ B(X, T, 2) exp(j k, 2)dz 6y
wherex is the azimuth position is the slant range is
the coherence obtained by the sengbis the radar
reflectivity and k is the vertical wavenumber, which is

Figure 1. Tomographic sensig operation using
parallel passes

Eqg. 1 shows that the vertical reflectivity profile atlea
slant range and azimuth positions can be derived from
the stack of complex coherences, employing spectral
estimation techniques. Since the number of acquisitions
is limited, Eg. 1 is a highly underdetermined system.
Currently, the most widely employed inversion
technigues are the Capon and the Fourier beamforming
spectral estimators, which can show a lower
performance if the number of baselines is low and if
they are not regularly distributed.

In order to solve the underdetermined linear problem in
Eq.1, this paper presents an approach based on
Compressive Sensing (CS) theory. Essentially, the
theory of CS assumes that in a highly underdetermined
system of equations, the unknown signal can be
recovered from a few measurements with a high
probability by solving a minimization problem,

provided that it is sparse or compressible in a certain
projection space and that the sensing matrix satisfies the

a parameter that depends on the spatial baseline betweerRestricted Isometry Property (RIP) [2][3].

the tracks orthogonal to the line of sight, the wavelengt

and the distance to the target. The cross-range resolution The remainder of this paper is organized as follows. In

is determined by the largest distance between all the
acquisitions I(;,) while the non-ambiguous high
interval is determined by the distance between two
consecutive acquisitionsl)
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section 2 the formulation is presented. A rearrangement
of the multibaseline covariance and the steering
matrices is presented. The concept of sparsity islyrief

introduced, the need of employing a sparsifying basis is
deduced and the choice of a wavelet basis is justified.



Afterwards, experimental results are presented in

Section 3. Conclusions and discussions are drawn in RCS:@CS.T (6)
Section 4.

wher ¢ is the steering matrix that it will define later
2. FULL RANKINVERSION BY MEANS OF CS in Eq.9, and T is a stack of coherency matrices aloag th
Taking M measurements over the same area, we can height, which contains the estimated reflectivity fa th
define for one polarization, a vectgrwhich contains desired heights frorn = Oto z = ndefined as:

the reflectivity for each measurement as:

T, T, U )
Y = Vs Yare Y ] @ Yze0 o0 Fieo
11
In case of having a fully polarimetric acquisition, for [T]ng =l z=1 , , ) (7)
each track we get four different components HH, : : ' :
HV,VH and VV, that we can represent, for example as a T. T, N
Pauli basis. Therefore the vector of Eq.2 is transfdrme L 112 =n 122 =n 332 =n|

to a vector of 3M elements as:

where, for instance, 13 in z=0 is the coherency for
VaM paui =[ Voo, Yo Yorng Yot -+ Yoy, | 3) channel HH+VV with HH-VV at the height z = 0.

) ) o In order to be consistent with Eq. 6, the multibaselin
This parameter is the complex reflectivity of the scen  covariance matrix (Eq. 4) is arranged in the following
and it is a stochastic process. To characterize this \yqy:

process we need several realizations but as it is
explained before, we are not able to take so many o q
realizations. Nevertheless, assuming ergodicity we can <YHH+wl'yHH+vv1*> <y2HV1'y2HV1 *>
make a multi-look in space to achieve more realizations. *

<yHH+vv1'yHH+W2 >

To make this process, the second order statistics in the

multibaseline covariance matrix is computed as: [R ] B <y y *> . . ®)
shzxg T |\ YHH+W, T THH AW, . : :
[Rlswam = <y3|v| *Yau > =[-]= <yHH+WZ "yHH+W1 *>
<yHH W, YHH W, *> <yHH W, Yahy, *> :
= o : o ’ lf (4) _<y|-n-|+vvm “Yiraw, *> <y2Hm “Youv, *>_
<Y2va “YHHwy, *> <y2va “Yonv, *>

Additionally, in the steering vector of Eqg. 5, to form a

N matrix, then-heights are included giving the following
where H denotes the hermitian vector and < > denotes a expression:

spatial multi-look.

Following Eg.1 the information related to the baseline r (kz) (-kz) (kz) (-jkz )-

and the position of the scatterer can be collectetian t el 00" ¢ Kok el 0n’ g Ko

so called steering vector as: i i
(g k)

¢(zo):[1exp(Jklzo),exlo(jk2 zo),...exp(jkmzo)} (5) ) : )
[‘DCSszN= kgt ) : (9)
where 3 is the vertical position. Therefore if we want to (jklzo) (—jkozo)
invert n-heights, the steering vector is converted to a € €

steering matrix where thl heights combined witiv
measurements are represented.

Ukz) k) (z) Gz

Using the multibaseline covariance and the steering
matrices, we can rewrite Eq. 1 as multiplication of

X As mentioned before, the CS theory is based in the idea
matrices as follows [4][5]:

of sparse signals; therefore to accomplish a good



estimation, the signal should be sparse. A priori, we
cannot assume that the signal is sparse, but we can T=wW'.a (12)
project it in a sparsifying basis. [6].
As it is explored in [7][8] wavelet bases can be used to where ~ denotes an estimation.
tacl_de the tomogrgphlc problem. _Ther.efore, we can 5 EyoenIMENTAL RESULTS
project theT matrix in a wavelet basis as:
In order to study the Full rank PolTomoSar inversion, a
W-T=« (10) dataset acquired in spring 2008 over the area of
Traunstein, in the south-East of Germany, by the E-SAR
where W is a matrix ofN x N, which represents the system of the Microwave and Radar Institute of the
wavelet transformand o are the sparse wavelet DLR is used. The data is fully polarimetric acquired at
coefficients. From Eqg.10 we can obtain the coherency L-band using 5 non-uniform baselines from 5 to 25
matrix as follows: meters. The area under study is constituted by a highly
heterogeneous managed forest (the highest height
1 around 25 ~ 35 meters) in a temperate climate, with
T=W "« (11) coniferous, deciduous and mixed stands at different

_ growth stages. In Fig.2 the amplitude of SLC for HH
where W' denotes the inverse wavelet transform. channel is shown.

Assuming an orthonormal wavelet™aw™.

_ ] The SLC resolution is 2.12 m in range and 1.2 m in
The wavelet transform is defined by the mother wavelet azimuth. Taking this into account we choose a spatial
employed and the number of scales or decomposition multilook of 5x11 applying a boxcar filter with an

levels. Following the literature [9] in this paper we have overlap window of 2 pixels in range and 5 pixels in
chosen a Symmlet wavelet with 4 vanishing moments. azimuth.

Regarding the number of scales, we have empirically
chosen 3 for the experimental part.

Combining Eg.6 and Eq. 11, we obtain the following
expression:

S}

(12)

Cs Cs

Eq. 12 represents an underdetermined problem with
more unknowns than measurements (i.e withW*
rectangular) that can be estimated using convex
optimization, as:

R =o_-Wlg
cs cs
T is semi— definitepositive

min||T|| b.q st. (23)

wherep,q is mixed norm. In this paper, in a first test a
norm 2,1 has been used. For one side, we compute a L2
norm for the rows, indicating that different channets ar
not completely independent. On the other, the L1 norm
for the columns looking for sparsity in the height
dimension has been computed. In a second test, a norm
0,00 enhancing the local maximum have been used.

Figure 2. SLC SARAmplitude image of the test side

Once we have the estimated wavelet coefficients of the Traunstein, Germany.

optimization process, to retrieve the reflectivity aeve
to apply the inverse wavelet transform as follows:



I e s e N

&:I}I“ '*I,!' LI

MR dewny

N ML LR ot Lt A

: N
¥ s J o M
»l_} \ m t“"‘ (R ety A

Figure 3. Tomograms in azimuth direction (850 pixels). Reference Lidar data (a),.paaBeamation HH+VV in blue, HH-
VV in red and HV+VH in green for capon beam forming (b), using CS with norm 2,1 (c)iagd&svith norm 0,00 (d)

As auxiliary data, a LIDAR measurements are available
over the same area. Moreover, a data in a known
position, called also inventory plot, have been used. Th
data collected in a single inventory plot is composed by
the number, height and position of the trees in ausadi
of 12.5 meters.

from the double bounce in the canopy layer that appear
in the ground.

Comparing now the Fig. 3c with Fig. 3d, it seems that
we can distinguish better the different layers (ground
and canopy) in the later.

As it has been explained before, Eq. 11 represents a3.2. Inventory plots

convex optimization problem. Two options have been
tested: The CVX Matlab interface with the SDPT3
solver [10] and the Spams toolbox using the python
interface [11].

3.1.Full rank tomograms

In Fig.3 the results obtained for a range slice are
shown. The Fig.3a shows the LIDAR height of the same
area, while in Fig. 3b, Fig. 3c and Fig. 3d the Pauli
tomograms for 850 pixels in azimuth using the capon
inversion are shown.

Related to CS results in Fig.3c the norm 2,1 and in Fig.
3d the nom 0,0 are shown. Comparing the CS results
with the lidar measurement presented in Fig.3a, it is
possible to observe that the CS result is less atfdnte
side-lobes.

Analysing the polarimetric information of CS profiles,
as we expected in the parts where there is only ground,
we obtain single bounce (blue colour) while in the
canopy the volume scattering (green) is predominant.
Moreover, in some parts of the ground we also observe
a green colour, which might be a contribution coming

In this part of the results, the global idea is to tdie t
inventory plots and use them as a reference. In a first
step with LIDAR and after with the estimated
reflectivity using the CS inversion.

For validation purposes, during the study different kind
of inventory plots have been used. To summarize the
idea and the conclusions obtained with inventory plots,
two examples have been included in this paper. For the
first example, in Fig. 4, the representation of the
inventory plot is shown. In that specific example, the
inventory plot is composed by one layer of canopy of
the same tree species. As a first comparation, in4Bg.
the representation of LIDAR is shown. In this figure,
each point represents a return and the colour code
corresponds to height, red means high points and blue
low points. Also, in Fig. 4c the power of reflectivity
obtained by the CS inversion is shown. In that case, the
width of the point indicates the power (wider means
more power), and the colour represents again the height.

As a second example, a different inventory plot
composed by one tall tree and a small canopy lajtér w
two species is shown in Fig. 5. It is important to take



into account that there are sources of error and
uncertainty. The geo-location for the inventory plots in
the LIDAR and radar data can have some errors and of
course this could affect the interpretation of the tesul
using a small area with a radius of 12.5 meters for
validation.

Starting with the first example, in the results ohed, a
clear similitude between LIDAR and Radar in the global
structure is appreciated. In both cases the amount of
trees are located in the left part of the figure, while in
the right part only a few contribution, may be due to a
single tree, is represented. With respect to the layer
structure, in the radar example we can distinguish the
two layers (ground and volume) that the inventory plot
indicates

Regarding to the second example, in this case again
there is a similarity between the inventory and the 3D

representation of radar and LIDAR. The position and

the reflectivity of the single tree are represented.

Moreover, as it is shown in Fig.5¢ the lower layer can

be distinguished.

Figure 4. Example 1 of inventory plot data (a.1 anc
a.2), Lidar data (b.1 and b.2) and power obtained
using CS with norm 2,1 (c.1 and c.2)

Figure 5 Example 2 of inventory plot data (a.1 anc
a.2), Lidar data (b.1 and b.2) and power obtained
using CS with norm 2,1 (c.1 and c.2)

4. CONCLUSIONS AND DISCUSSION

In this paper, a full rank polarimetric inversion using CS
has been presented, in order to estimate the 3D forest
structure. As it has been exposed in section 2, the
manipulation of the steering and covariance matrices in
combination with the wavelet transformation, allows us
to define the tomographic problem as a convex
optimization problem.

In the first analysis using Pauli representation, wedoun
out a correspondence between the 3D structure observed
in the inventory data, in the LIDAR and in the estimated
radar backscattering using CS.

The future work and studies will focus in a first step on
the optimization and the further analysis of the CS
implementation. The analysis of different norm to get
different results, the study of the wavelet transfoiomat

to achieve a better performance and also the use of
conditioned matrix to increase the goodness of the
estimation process. As a second step, the idea is to
extend the analysis to understand forest structure change
signatures (dynamics due to weather, seasonal and/or
disturbance and regrowth effects). Furthermore, the
analysis of polarimetric information in order to retrieve
physical information of the forest will be done.
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