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ABSTRACT 

SAR tomography (TomoSAR) techniques allow a direct 
3D imaging by exploiting angular diversity with 
different passes of the sensor. One of the main 
drawbacks of SAR tomography is that the estimation of 
the vertical reflectivity profile has to be performed 
through a limited set of multibaseline acquisitions, 
which requires solving a highly underdetermined system 
of equations. In TomoSAR literature, the Capon and the 
Fourier beamforming spectral estimators are widely 
employed. As an alternative, the application of 
Compressive Sensing (CS) techniques to the estimation 
of forest profiles has been recently introduced. In this 
paper, a different algorithm based on CS is proposed. It 
performs a full rank polarimetric inversion, allowing 
thus an estimation of the 3D coherency matrices. To 
study the full rank polarimetric TomoSAR inversion, a 
temporal series of airborne data is used. The results of 
the 3D polarimetric inversion will be contrasted to in 
situ measurements and LIDAR data. 

 
1. INTRODUCTION 

 
SAR Tomography allows a 3D imaging of the forest 
body by exploiting angular diversity of a limited set of 
multibaseline acquisitions [1]. As shown in Fig.1, 
several passes of the sensor along the elevation axis are 
combined to estimate a 3D reflectivity of the 
illuminated area.   
 
Considering the geometry represented in Fig.1 a stack 
of M SAR complex coherences is obtained. Each 
coherence can be expressed as: 
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where x is the azimuth position, r is the slant range, ym is 
the coherence obtained by the sensor, > is the radar 
reflectivity and kz is the vertical wavenumber, which is 
a parameter that depends on the spatial baseline between 
the tracks orthogonal to the line of sight, the wavelength 
and the distance to the target. The cross-range resolution 
is determined by the largest distance between all the 
acquisitions (Ltom) while the non-ambiguous high 
interval is determined by the distance between two 
consecutive acquisitions (d). 

 
 
Eq. 1 shows that the vertical reflectivity profile at each 
slant range and azimuth positions can be derived from 
the stack of complex coherences, employing spectral 
estimation techniques. Since the number of acquisitions 
is limited, Eq. 1 is a highly underdetermined system. 
Currently, the most widely employed inversion 
techniques are the Capon and the Fourier beamforming 
spectral estimators, which can show a lower 
performance if the number of baselines is low and if 
they are not regularly distributed. 
 
In order to solve the underdetermined linear problem in 
Eq.1, this paper presents an approach based on 
Compressive Sensing (CS) theory. Essentially, the 
theory of CS assumes that in a highly underdetermined 
system of equations, the unknown signal can be 
recovered from a few measurements with a high 
probability by solving a minimization problem, 
provided that it is sparse or compressible in a certain 
projection space and that the sensing matrix satisfies the 
Restricted Isometry Property (RIP) [2][3]. 
 
The remainder of this paper is organized as follows. In 
section 2 the formulation is presented. A rearrangement 
of the multibaseline covariance and the steering 
matrices is presented. The concept of sparsity is briefly 
introduced, the need of employing a sparsifying basis is 
deduced and the choice of a wavelet basis is justified. 

 

 

Figure 1. Tomographic sensig operation using 
parallel passes 
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Afterwards, experimental results are presented in 
Section 3. Conclusions and discussions are drawn in 
Section 4. 
 
2. FULL RANK INVERSION BY MEANS OF CS 

Taking M measurements over the same area, we can 
define for one polarization, a vector y which contains 
the reflectivity for each measurement as: 
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In case of having a fully polarimetric acquisition, for 
each track we get four different components HH, 
HV,VH and VV, that we can represent, for example as a 
Pauli basis. Therefore the vector of Eq.2 is transformed 
to a vector of 3M elements as: 
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This parameter is the complex reflectivity of the scene 
and it is a stochastic process. To characterize this 
process we need several realizations but as it is 
explained before, we are not able to take so many 
realizations. Nevertheless, assuming ergodicity we can 
make a multi-look in space to achieve more realizations. 
 
To make this process, the second order statistics in the 
multibaseline covariance matrix is computed as: 
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where H denotes the hermitian vector and < > denotes a 
spatial multi-look. 
 
Following Eq.1 the information related to the baseline 
and the position of the scatterer can be collected in the 
so called steering vector as: 
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where z0 is the vertical position. Therefore if we want to 
invert n-heights, the steering vector is converted to a 
steering matrix where the N heights combined with M 
measurements are represented. 
 
Using the multibaseline covariance and the steering 
matrices, we can rewrite Eq. 1 as multiplication of 
matrices as follows [4][5]: 

 
TcscsR �)                                                   (6) 

 
wherH�¥cs, is the steering matrix that it will define later 
in Eq.9, and T is a stack of coherency matrices along the 
height, which contains the estimated reflectivity for the 
desired heights from z = 0 to z = n defined as: 
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where, for instance, T12 in z=0 is the coherency for 
channel HH+VV with HH-VV at the height z = 0. 
 
In order to be consistent with Eq. 6, the multibaseline 
covariance matrix (Eq. 4) is arranged in the following 
way: 
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Additionally, in the steering vector of Eq. 5, to form a 
matrix, the n-heights are included giving the following 
expression: 
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As mentioned before, the CS theory is based in the idea 
of sparse signals; therefore to accomplish a good 



 

estimation, the signal should be sparse. A priori, we 
cannot assume that the signal is sparse, but we can 
project it in a sparsifying basis. [6]. 
 
As it is explored in [7][8] wavelet bases can be used to 
tackle the tomographic problem. Therefore, we can 
project  the T matrix in a wavelet basis as: 
 

D �TW                                                           (10) 
 
where W is a matrix of N x N, which represents the 
wavelet transform DQG� .� DUH� WKH sparse wavelet 
coefficients. From Eq.10 we can obtain the coherency 
matrix as follows: 
 

D�� 1WT                                                       (11) 
 
where W-1 denotes the inverse wavelet transform. 
Assuming an orthonormal wavelet WT=W-1. 
 
The wavelet transform is defined by the mother wavelet 
employed and the number of scales or decomposition 
levels. Following the literature [9] in this paper we have 
chosen a Symmlet wavelet with 4 vanishing moments. 
Regarding the number of scales, we have empirically 
chosen 3 for the experimental part. 
 
Combining Eq.6 and Eq. 11, we obtain the following 
expression: 
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Eq. 12 represents an underdetermined problem with 
more unknowns than measurements (i.e with Ëcs·W

-1 
rectangular) that can be estimated using convex 
optimization, as: 
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where p,q is mixed norm. In this paper, in a first test a 
norm  2,1 has been used. For one side, we compute a L2 
norm for the rows, indicating that different channels are 
not completely independent. On the other, the L1 norm 
for the columns looking for sparsity in the height 
dimension has been computed. In a second test, a norm 
����enhancing the local maximum have been used. 
 
Once we have the estimated wavelet coefficients  of the 
optimization process, to retrieve the reflectivity we have 
to apply the inverse wavelet transform as follows: 
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where ~ denotes an estimation.   
 
3. EXPERIMENTAL RESULTS 

In order to study the Full rank PolTomoSar inversion, a 
dataset acquired in spring 2008 over the area of 
Traunstein, in the south-East of Germany, by the E-SAR 
system of the Microwave and Radar Institute of the 
DLR  is used. The data is fully polarimetric acquired at 
L-band using 5 non-uniform baselines from 5 to 25 
meters. The area under study is constituted by a highly 
heterogeneous managed forest (the highest height 
around 25 ~ 35 meters) in a temperate climate, with 
coniferous, deciduous and mixed stands at different 
growth stages. In Fig.2 the amplitude of  SLC for HH 
channel is shown. 
 
The SLC resolution is 2.12 m in range and 1.2 m in 
azimuth. Taking this into account we choose a spatial 
multilook of 5x11 applying a boxcar filter with an 
overlap window of 2 pixels in range and 5 pixels in 
azimuth. 
 

 
 

 

 
 

Figure 2. SLC SARAmplitude image of the test side in 
Traunstein, Germany. 

 



 

As auxiliary data, a LIDAR measurements are available 
over the same area. Moreover, a data in a known 
position, called also inventory plot, have been used. The 
data collected in a single inventory plot is composed by 
the number, height and position of the trees in a radius 
of 12.5 meters.  
 
As it has been explained before, Eq. 11 represents a 
convex optimization problem. Two options have been 
tested: The CVX Matlab interface with the SDPT3 
solver [10] and the Spams toolbox using the python 
interface [11]. 
 

3.1. Full rank tomograms 

In Fig.3 the results obtained for a  range slice are 
shown. The Fig.3a shows the LIDAR height of the same 
area, while in Fig. 3b, Fig. 3c and Fig. 3d the Pauli 
tomograms for 850 pixels in azimuth using the capon 
inversion are shown. 
 
Related to CS results in Fig.3c the norm 2,1 and in  Fig. 
3d WKH� QRP� ����are shown. Comparing the CS results 
with the lidar measurement presented in Fig.3a, it is 
possible to observe that the CS result is less affected by 
side-lobes. 
 
Analysing the polarimetric information of CS profiles, 
as we expected in the parts where there is only ground, 
we obtain single bounce (blue colour) while in the 
canopy the volume scattering (green) is predominant. 
Moreover, in some parts of the ground we also observe 
a green colour, which might be a contribution coming 

from the double bounce in the canopy layer that appear 
in the ground. 
  
Comparing now the Fig. 3c with Fig. 3d, it seems that 
we can distinguish better the different layers (ground 
and canopy) in the later.  
 

3.2. Inventory plots 

In this part of the results, the global idea is to take the 
inventory plots and use them as a reference. In a first 
step with LIDAR and after with the estimated 
reflectivity using the CS inversion. 
 
For validation purposes, during the study different kind 
of inventory plots have been used. To summarize the 
idea and the conclusions obtained with inventory plots, 
two examples have been included in this paper. For the 
first example, in Fig. 4, the representation of the 
inventory plot is shown. In that specific example, the 
inventory plot is composed by one layer of canopy of 
the same tree species. As a first comparation, in Fig. 4b 
the representation of LIDAR is shown. In this figure, 
each point represents a return and the colour code 
corresponds to height, red means high points and blue 
low points. Also, in Fig. 4c the power of reflectivity 
obtained by the CS inversion is shown. In that case, the 
width of the point indicates the power (wider means 
more power), and the colour represents again the height. 
 
As a second example, a different inventory plot 
composed by one tall tree and a small canopy layer with 
two species is shown in Fig. 5. It is important to take 

 
Figure 3. Tomograms in azimuth direction (850 pixels). Reference Lidar data (a),.pauli representation HH+VV in blue, HH-

VV in red and HV+VH in green for capon beam forming (b), using CS with norm 2,1 (c) and using CS ZLWK�QRUP���� (d)  
 



 

into account that there are sources of error and 
uncertainty. The geo-location for the inventory plots in 
the LIDAR and radar data can have some errors and of 
course this could affect the interpretation of the results 
using a small area with a radius of 12.5 meters for 
validation. 
 
Starting with the first example, in the results obtained, a 
clear similitude between LIDAR and Radar in the global 
structure is appreciated. In both cases the amount of 
trees are located in the left part of the figure, while in 
the right part only a few contribution, may be due to a 
single tree, is represented. With respect to the layer 
structure, in the radar example we can distinguish the 
two layers (ground and volume) that the inventory plot 
indicates 
 
Regarding to the second example, in this case again 
there is a similarity between the inventory and the 3D 
representation of radar and LIDAR. The position and 
the reflectivity of the single tree are represented. 
Moreover, as it is shown in Fig.5c the lower layer can 
be distinguished. 
 

 
 

 
4. CONCLUSIONS AND DISCUSSION 

In this paper, a full rank polarimetric inversion using CS 
has been presented, in order to estimate the 3D forest 
structure. As it has been exposed in section 2, the 
manipulation of the steering and covariance matrices in 
combination with the wavelet transformation, allows us 
to define the tomographic problem as a convex 
optimization problem. 
 
In the first analysis using Pauli representation, we found 
out a correspondence between the 3D structure observed 
in the inventory data, in the LIDAR and in the estimated 
radar backscattering using CS. 
 
The future work and studies will focus in a first step on 
the optimization and the further analysis of the CS 
implementation. The analysis of different norm to get 
different results, the study of the wavelet transformation 
to achieve a better performance and also the use of 
conditioned matrix to increase the goodness of the 
estimation process. As a second step, the idea is to 
extend the analysis to understand forest structure change 
signatures (dynamics due to weather, seasonal and/or 
disturbance and regrowth effects). Furthermore, the 
analysis of polarimetric information in order to retrieve 
physical information of the forest will be done. 
 

 
Figure 5 Example 2 of inventory plot data (a.1 and 
a.2), Lidar data (b.1 and b.2) and power obtained 

using CS with norm 2,1 (c.1 and c.2) 
 
 
 

 
Figure 4. Example 1 of inventory plot data (a.1 and 
a.2), Lidar data (b.1 and b.2) and power obtained 

using CS with norm 2,1 (c.1 and c.2) 
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