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ABSTRACT

Facing a wide range of mission requirements and the in-
tegration of diverse payloads requires extreme flexibil-
ity in the on-board-computing infrastructure for scientific
missions. We show that scalability is principally diffi-
cult. We address this issue by proposing a base level
design and show how the adoption to different needs is
achieved. Inter-dependencies between scaling different
aspects and their impact on different levels in the design
are discussed.

1. INTRODUCTION

The On-Board Computer (OBC) of a space system is typ-
ically tailored to a specific mission. In particular, scien-
tific missions exhibit extreme variations in requirements,
ranging from small satellites for LEO [1], all the way to
extraterrestrial missions [2, 3]. These requirements ad-
dress functional specifications, interfaces, weight, vol-
ume, and energy, as well as many more issues. In particu-
lar the eco-system of available subsystems and payloads
is non-standardized and extremely volatile for scientific
missions. In the past, on-board computers for such mis-
sions have often been tailored to an extent that required
almost a complete redesign. This has a direct impact on
the length of the development cycle and the cost for these
missions.

More recently, efforts have been made to promote stan-
dardization to ensure reusability of components of the
avionics infrastructure. A European example for large
space systems is the Space Avionics Open Interface aR-
chitecture (SAVOIR) initiative. SAVOIR takes hardware
and software aspects into account to define an avion-
ics reference architecture [4]. However, this standard is
mainly a specification guideline, subsuming a wide range
of potential designs without the focus on a specific im-
plementation.

Space Plug-and-play Avionics (SPA) is an alternative
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concept [5], targeting small satellites and fast integra-
tion. The underlying idea is to use standardized inter-
faces to connect the subsystems. Adding noncompliant
subsystems requires to connect these through an interface
adapter. Intelligent subsystems as well as required inter-
face adapters induce significant overhead on the avionics
system in the context of small satellites.

In this paper, we analyze the scalability of an OBC de-
sign. First, the design space and problems with respect
to scalability are discussed. Next, we introduce a base-
level design and discuss how scalability can be achieved
with respect to different aspects. We discuss two pos-
sible implementations of the base level design facili-
tating flight qualification and rapid prototyping, respec-
tively. The base level design is then applied to illustrate
three different application scenarios as an instrument con-
troller, a central OBC, or an avionics system based on
SpaceWire[6] and Remote Terminal Units (RTUs).

2. DIMENSIONS OF SCALABILITY

This section first defines an abstract model for finding an
optimal OBC under given requirements. We will then dis-
cuss which dimensions are relevant to the resulting multi-
objective optimization problem. Finally, we will argue
how this justifies the practice of incremental design start-
ing from a base-level architecture.

2.1. Abstract Model

On an abstract level we consider the selection of the
“best” OBC as a multi-objective optimization problem.
This is similar to the view taken in concurrent engineer-
ing [7]. The multi-dimensional search space is config-
ured by all parameters and implementation options rele-
vant to the realization of the system. Each parameter or
option is considered as one dimension. Thus, each point
in this search space either represents a realizable OBC or
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Figure 1. Simple search space

an unrealizable OBC. Requirements defined by the mis-
sion are broken down into components where each com-
ponent relates to a single dimension. As a consequence,
a requirement defines a hyperplane in the search space
that separates those OBCs which are consistent with the
requirements from those OBCs which are not consistent
with the requirements.

The first question to be answered before implementing
the mission is whether there is a realizable OBC in the
subspace defined by the requirements — this is a permissi-
ble OBC. Second, in most cases an optimization problem
is solved to find, e.g., the cheapest permissible OBC. The
main difficulty in this design task is that the parameters
of an OBC cannot be scaled independently.

Example 1 Consider the simple search space shown in
Figure 1 with the two dimensions ‘redundancy’ and
‘hardware cost’. Realizable OBCs are denoted by ‘X’;
unrealizable OBCs are denoted by ‘O’. Obviously, the
two dimensions depend on each other. The system with-
out redundancy includes less than half of the hardware
compared to the double modular redundant system. Con-
sequently, hardware cost for the nonredundant OBC is
lower, roughly half of the cost. In the figure the OBC la-
beled S1 is the cheapest realizable nonredundant OBC.
The nonredundant OBC S0 at lower cost is not realiz-
able. Building a more expensive non-redundant OBC
S2 at a higher cost will typically be possible. The cost
variation would be due to the exchange of components
of the OBC, which is not represented in this simple two-
dimensional model. However, building a redundant OBC
S3 at the same cost as the cheapest non-redundant OBC
is not possible, i.e., S3 is unrealizable. When increas-
ing the cost, the double modular redundant OBC S4 is
realizable.

One requirement puts an upper limit for the cost of the
OBC denoted as a dashed vertical line. Each realizable
OBC left of this line is a permissible OBC. Thus, the
cheapest triple modular redundant OBC is still permissi-
ble, while the quadruple modular redundant OBC is not
permissible.

This example illustrates how unrealizability, realizability
and permissibility are handled in the abstract model. In
the simple example, the relation between hardware cost
and redundancy can even be modeled relatively accu-
rately. Once the hardware cost for the nonredundant OBC
are known, the n-times redundant version will require n
times the cost plus an overhead for connecting the redun-
dant parts properly. In other cases, relations may not be
as straightforward. This largely depends on the parame-
ters and design options to be handled.

2.2. Parameters and Options

Even the enumeration of all parameters and design op-
tions which have to be considered as dimensions in the
search space is difficult. The full search space if de-
fined by system level parameters, e.g., reliability, energy
consumption, architectural decisions, e.g., interfaces and
redundancy concept, functional aspects, e.g., computing
performance, memory sizes, and component parameters,
e.g., totals dose. Furthermore, development aspects, e.g.,
engineering cost, hardware cost, risk must be considered.

These dimensions are highly interdependent. Example 1
already illustrated this for the simple two-dimensional
case of redundancy versus hardware cost. However, other
parameters are much harder to relate to each other. Con-
sider reliability in Failures in Time (FIT), where 1 FIT
corresponds to one failure in 10° hours of operating time.
To assess the system level FIT rate where a failure is de-
fined by erroneous output of the system, component level
FIT rates must be known, then the full architecture has to
be taken into account. This includes hardware and soft-
ware analysis on how component level failures affect the
full system. This is difficult in practice and typically han-
dled by making assumption on the types of faults and the
fault propagation within the system [8].

As a consequence, we propose a base level design for an
OBC in the following. Considering two mission scenar-
ios, we explain how this base level design may be scaled
in several aspects and which parts can be reused.

3. BASE LEVEL DESIGN

Our base level design shown in Figure 2 consists of
a CPU, memory, peripherals, multiple communication
links and programmable logic. This unit is capable of
executing software, storing the software and data, and
communicating with outside systems. The programmable
logic is connected to the CPU and allows additional pe-
ripherals to be implemented. The periphery is presented
to the application software through a Hardware Abstrac-
tion Layer (HAL), which hides most details about the
type and configuration of the hardware. Internal power
conditioning, analog monitoring, and a watchdog allow
for autonomous operation and, consequently, fault isola-
tion properties in many configurations.
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Figure 2. Base Level Design

Table 1. Properties of the implementations

GR712RC with
ProASIC3 FPGA Boards
Cost high low
Reliability high not quantified

Functionality  flight model equiv. emulation

The base level design provides a functional unit that can
be used for further composition at the architectural level.
The instantiation of individual components depends on
the application requirements and directly impacts dimen-
sions like cost or reliability. The form-factor is also un-
defined at this stage as it depends on accommodation re-
quirements and choice of components.

In the following, we will show two implementations of
this design. Both implementations provide mostly the
same functionality, but for vastly different environmental
conditions and are designed for different purposes, but
still share the same properties of the base level design.
These two implementations are illustrated because they
show the flexibility of the design and bridge the gap be-
tween COTS and space-qualified systems. Table 1 gives
a coarse overview of some properties of the implementa-
tions.

3.1. Implementation: GR712RC + ProASIC3

This implementation is intended to be used inside a
spacecraft. High-reliability requirements and the radia-
tion environment are addressed by selecting appropriate
Electronic, Electrical and Electromechanical (EEE) parts
as well as local mitigation techniques.

This implementation takes the base level design, shown
in Figure 2, and implements it with the following compo-
nents:

A GR712RC as CPU

e SDRAM is used as volatile memory

Non-volatile memory connected to CPU is MRAM

Non-volatile memory connected to the FPGA is a
bank of NAND-Flash devices

e A single flash-based ProASIC3 FPGA as pro-
grammable logic

The GR712RC[9] is a System-on-Chip (SoC) that is spe-
cially designed and built for space applications and their
radiation environment. This SoC offers a wide vari-
ety of interfaces, ranging from general purpose 10s and
UARTS to CCSDS Telemetry/Telecommand (TM/TC) in-
terfaces and multiple high-speed SpaceWire ports. The
chip also provides decoder/encoder for Error Correct-
ing Code (ECC) on the SDRAM and the non-volatile
MRAM. Two Leon3FT CPUs provide sufficient comput-
ing performance for a wide variety of applications.

Using different memories is a consequence of the require-
ment for high capacity in volatile and non-volatile form.

A single Microsemi ProASIC3[10] flash-based FPGA is
used as programmable-logic. In contrast to anti-fuse
based FPGAs, a flash-based FPGA allows the unit to
be reconfigured after assembly. Peripheral interfaces are
typically implemented as Intellectual Property (IP)-cores
on the FPGA. Inside the FPGA, IP-cores are connected to
an internal bus which in turn is accessed over SpaceWire
from the software. In the smallest possible configuration
this FPGA only hosts the IP-core controlling the NAND-
flash.

The design decision about the interface between the
SoC and the FPGA was between SpaceWire and a di-
rect connection to the external memory interface of
the GR712RC. SpaceWire was chosen being the more
generic solution that allows for easier expansion. This
choice also converts the FPGA effectively into an em-
bedded Remote Terminal Unit (RTU) and eliminates the
dependency to the more specialized external memory in-
terface of the GR712RC.

3.2. Implementation: Two Commercial FPGA

Boards

This implementation is based on two commercial and
readily available FPGA-development boards. This im-
plementation is used for rapid prototyping intended for
early software and IP-core development. The underly-
ing hardware is easily accessable while behaving func-
tionally very close to the targeted system. The required
toolchains for software development and debugging are
almost identical to the GR712RC based implementation.

The structure is shown in Figure 3. The main building
blocks are:

o The first FPGA-board emulates the SoC with CPU,
memory controller and basic periphery.

e The second FPGA-board runs components that are
placed in the programmable logic device in the base
level design.
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Figure 3. Two Commercial FPGA Boards Implementa-
tion

e Both boards are connected by a SpaceWire connec-
tion.

e Additional hardware like NAND-flash memory can
be connected via standard pin headers to the second
FPGA-board.

4. APPLICATIONS

All requirements on accommodation, reliability, environ-
mental conditions etc. depend on the application, i.e.,
the specific mission and computing task to be performed.
The choice between different implementations of the base
level design as well as architectural considerations allow
for adaptation to very different requirements. We provide
three examples in the following. The main work items
in this adaptation are in the board layout, the mechanical
design, and test campaigns.

4.1. Application Scenario: Mini Instrument Con-
troller

In this scenario we target a hypothetical instrument, that
requires some computation and data storage, but only
few external interfaces in comparison. The controller is
not redundant and is supervised from a higher level con-
troller, e.g., the satellite’s central controller. The TM/TC
port is included for completeness, but might be left un-
used in this scenario.

The minimal configuration possible with the base level
design serves as a mini instrument controller shown in
Figure 4. Physically the unit is composed of three Printed
Circuit Boards (PCBs), marked by the dashed lines in the
figure. Most digital circuitry, including CPU and FPGA,
is placed on one PCB. Power conditioning and analog
monitoring reside on another board. Connectors to the
harness and line-drivers are placed onto a third board.
These PCBs can be built reasonably small. An extrap-
olated configuration showed a size of about 100mm x
90mm. If stacked closely, they form a compact stand-
alone box.

4.2. Application Scenario: Redundant On-Board
Data Handling

This design is tailored to the specific requirements of
the on-board data-handling systems of a small Lower
Earth Orbit (LEO) satellite for a scientific mission. Fig-
ure 5 provides a block level schematic. The distinguish-
ing characteristics are built-in redundancy and increased
number of interfaces. Each half of the system is function-
ally almost identical to the previous design. To support
the additional digital interfaces, a second FPGA has been
integrated. Each half contains three cards, one containing
the GR712RC base level design implementation. Power
conditioning and additional analog interfaces have been
added and are moved to a separate board, that carries all
the required multiplexers and front-end electronics.

The two independent halves are incorporated into one
housing using a backplane and daughtercard architecture.
The common backplane is shown by the T-shaped area in
Figure 5. The connections to the harness are concentrated
on another board. This board also allows cross-strapping
to be moved from the harness to the board, which al-
lows simplifying the harness and eases integration. The
board does not contain any active components. As a re-
sult, changes there can even be handled quite late in the
development process.

4.3. Application Scenario: SpaceWire based Avion-
ics

Using SpaceWire as an integral part of the base level
design also allows building systems like the one shown
in Figure 6. The unit previously described as the “mini
instrument controller” can basically be put in the posi-
tion of the on-board-data handling system of the satellite
bus if the required interfaces are provided by additional
RTUs. SpaceWire routers may be implemented in the
programmable logic of the base level design or as sep-
arate units to allow for simplified reliability analysis.

Connections to the power system and communication to
the ground station are separated from the SpaceWire net-
work. This simplifies FDIR. Using dedicated connec-
tions guarantees that no other systems can interfere with
fault-isolation and safe-mode operations, thereby remov-
ing some possible faults that are hard to analyze and ad-
dress in the design.

The router based design isolates external interfaces into
separate RTUs. This simplifies the development process,
in particular for complex specialized interfaces or new in-
terface requirements. The new hardware can be function-
ally and — to a certain extent — electrically isolated from
the core computing system. Besides fault isolation this
also provides the opportunity to handle the new aspects
in an independent development team or in a different or-
ganization which is a common scenario for scientific mis-
sions.
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Table 2. Dependency of scaling different dimensions on different levels in the design

Scaling Dimension

Level Reliability (w/o SEE) Reliability (w/ SEE) Redundancy Computing Perf. Cost
Part X X X
Base Level Design X

Architecture X X X
Software X

5. EVALUATION OF SCALABILITY

The two implementations and three application scenarios
highlight the flexibility of the base level design and im-
plicitly show the scalability provided by our approach.

The development effort spent on one design can effi-
ciently be reused, and reshaped into each of the other
systems, and other possible arrangements. Apart from
the base level design itself, the IP-cores in FPGAs share
a common framework and are often identical in differ-
ent applications and implementations. This also applies
to RTUs in the SpaceWire avionics scenario if an FPGA
based implementation is chosen.

Table 2 gives a rough overview which dimensions of scal-
ability depend on which level in the overall design. In the
following, we analyze the potential for scalability more
thoroughly starting with limitations, analyzing the archi-
tecture and, finally, the important reliability aspect that is
tightly coupled to other dimensions of scalability.

5.1. Limits of Scalability

The designs of the circuit boards and the mechanical de-
signs of the enclosures do not scale. They are tailored to
a specific application as accommodation space, weight,
and number of interfaces are driving the electrical and
mechanical design. Thus, finding a common form factor
does not work well. Assuming that a standard OBC is
designed with the most common interfaces, this unit may
be reused and RTUs may offer further interfaces.

5.2. Architectural Properties of Scalability

Scalability on the architectural level is achieved by vari-
ous means, the major ones are:

e Hiding the details of implementation and hardware
from the software through a HAL

e Platform independent and parameterized IP-cores

e Standardized and interoperable interfaces on IP-core
level, e.g. AMBA and Wishbone

e SpaceWire provides a flexible basis for many
topologies

These features allow for scalability in computing perfor-
mance, available interfaces, as well as concepts for FDIR.

5.3. Scaling Reliability

Reliability depends on three major aspects in the design:

e Reliability of individual EEE-parts
e Data integrity

e Architectural redundancy and fault mitigation

The following three sections show how these aspects
work and how they can be scaled.

5.3.1. Part Level Reliability

Increasing the reliability of a system by increasing
the reliability of the individual components is typically
achieved by testing and screening the components for
faults and defects or by using more robust components.
For example, environment influences due to vacuum and
radiation can be addressed by hermetically sealed pack-
ages and radiation-tolerant parts.

The base level design can be implemented with parts of
different screening and packaging options. This opens the
possibility to choose parts that are either less expensive or
offer higher performance, at the loss of screening/testing
or tolerance to stressful environments.

This allows the requirements of a mission drive the selec-
tion of parts and results in a design, which can be tailored
to the specific requirements.

We use the simplifying assumption that no component
in the base-level design must have a failure for the de-
sign to work properly. Moreover, failures on links be-
tween the components are considered as failures of the
respective components. Then, the reliability of the base
level design can be estimated. Assuming that com-
ponent ¢ € {CPU, programmable logic, volatile mem.,



non-volatile mem., ADC, watchdog, PWR, board} has a
reliability of r;, the reliability of the base-level design is
simply given by rpae = [, 74, Where r; is measured,
e.g., by the probability that the component is available
after a certain time.

Assuming that SEEs would have to be taken into account
in this estimation, reliability would always be very low
as, e.g., memories and flip-flops frequently suffer from
bit-flips. Thus, mechanisms to ensure data integrity are
discussed separately.

5.3.2. Data Integrity

Single Event Upsets (SEUs) in memories and digital cir-
cuits are a common phenomenon in space applications.
All implementations of the base level design use some
form of memory that is subject to bit-flips. Consequently,
SEU mitigation is required. Through modifications in
the software layer, the number of tolerable faults can be
adapted to different SEU rates and to different levels of
criticality of the data stored in the memories. Memories
and GR712RC use Error Correcting Codes (ECC). For
the NAND-flashes software-level redudancy is required
and latch-up protection is available.

5.3.3. Architectural Level Reliability

Depending on the application’s reliability and availability
requirements, redundant systems are necessary. This can
be implemented in different ways. In the on-board data
handling application, two independent warm-redundant
strings are used to provide redundancy, and almost con-
tinuous operation. This results in the reliability of a par-
allel system roppg = rgase — 2rpage if the reliability of
the mechanical separation onto daughtercard and back-
plane is neglected. Electrical effects are assumed to be
independent due to the spatial separation.

In the instrument controller application a cold-redundant
configuration is used, and FDIR is implemented in an-
other system on a a higher level.

The SpaceWire avionics application uses redundant
OBCs, and a massive amount of cross-strapped compo-
nents.

From the hardware point of view, cold-spare capable in-
terfaces are required if excessive wiring and interfaces
must be avoided.

Most of the system’s control over the FDIR process is
implemented in software, and can therefore be adjusted
to the specific needs.

In summary, we proposed a base level design for an
OBDH unit facilitating IP-reuse and scalability in vari-
ous dimensions. These aspects are thoroughly discussed

and interdependencies are high-lighted. Three applica-
tion scenarios show different instances of our architec-
ture.
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