Meteor science

Four Meteor Showers from the SonotaCo Network Japan

John Greaves¹

The SonotaCo Network Japan meteor orbit database is examined using D-criterion methods to both cross match it against comet orbits and itself revealing four possible showers.

Received 2011 July 16

1 Introduction

The existence of the SonotaCo Network Simultaneously Observed Meteor Data Sets^a was first noted in Vereš and Tóth (2010). The dataset was obtained and orbital elements were analysed according to the Jopek (1993) modification of Southworth & Hawkins' (1963) D-criterion formulation.

The entirety of the orbital elements was tested against a database of comet orbits^b (for details see the example of Greaves (2000), when a similar analysis was conducted using the meteor orbits database of the Dutch Meteor Society for the period 1991 to 1999). A small subset was tested against themselves. In order to reduce confusion generated by the major meteor showers and also to reduce computational overhead, one to two week time periods centered upon the maxima of showers such as the Geminids, Perseids, Leonids and others were removed prior to the testing of the SonotaCo orbits against themselves. This substantially reduced the number of orbits to be checked against themselves and the number of radiants to be plotted. The number of orbits to be tested was greatly reduced from over 65000 to around 5000.

Instead of the typical D-criterion threshold of 0.15, a threshold of 0.10 was used for testing against the known comet orbits as a seed and 0.06 was used for the mutual meteor cross matching to ensure that only the best candidates were retained. Also only orbits identified as sporadic in the SonotaCo catalogues (SonotaCo, 2009) were used in the tested subset.

For the comets, each comet orbit was used as a seed against which the meteor orbits could be tested one by one. For the self-test of the meteor orbits against themselves, every orbit is tested against every other orbit. Multiple pairings can occur, such that if orbit amatched to orbit b and orbit b is matched to orbit c, not only will the match of orbits b to a and orbits c to boccur, but matches between orbits a to c and orbits c to a are also likely. However, in fact only orbits a, b and c(i.e., three individual results), were returned in the final data. This was achieved by importing the D-criterion matched orbital pairs into a relational database management package and indexing upon the local time log of each event, and then cross indexing this against a copy of itself such that only unique matches would be returned via the package's indexing function. This could then be linked back to all the data of interest for each resulting object and stored in a full database imported version of the SonotaCo dataset with the local time parameter as indices.

Objects had their observed Right Ascension and Declination, Solar Longitude, Geocentric Velocity, Perihelion Distance, Eccentricity, Inclination, Argument of Perihelion, Ascending Node, Magnitude and "localtime" logged. Some of these details were used to plot orbit diagrams whilst others were used for radiant chart plots. In the analysis each object's local time as per the SonotaCo catalogue was utilised as the object identifier.

It is reiterated that relatively more stringent criteria than usual were utilised in the analysis in order to reduce false alarms and coincidences as much as possible while still leaving a reasonable chance of not missing a weak shower. Thus it is possible that the objects listed here represent a subset of the total number of objects for each shower that can be found in the full SonotaCo database.

An attempt at assessing Zenithal Hourly Rates was initially made but abandoned since using the canonical figure of r = 2.5 when dealing with an unknown population index gave very large numbers. This was likely because the limiting magnitude for SonotaCo is around 2^c with many meteors being zero magnitude and brighter. The number of bright meteors for known weak showers as well as candidate showers within the database was something of a concern but there were no means with which to assess the data for magnitude calibration accuracy.

D-criterion analyses upon orbital elements enabled an objective assessment of meteor relationships. Plotting of orbits also added an extra dimension to the space and time plotting of radiant positions upon the sky, allowing comparative assessments.

2 Results

Four showers were sufficiently well defined to likely be real. These do not appear in the full list of the International Astronomical Union AU Meteor Data Centre^d (IAU MDC) and are summarised below. Of the many

¹Borrowdale Walk, Northampton, United Kingdom. Email: met_paper@yahoo.com

IMO bibcode WGN-401-greaves-newshowers

NASA-ADS bibcode 2012JIMO...40...16G

^ahttp://sonotaco.jp/doc/SNM/

 $^{^{\}rm b}{\rm GUIDE}$ 8.0 CDROM (www.projectpluto.com) from a public data file of Jost Jahn

^chttp://sonotaco.com/soft/U02/U021Manual_EN.pdf ^dhttp://www.astro.amu.edu.pl/~jopek/MDC2007/Roje/

roje_lista.php?corobic_roje=0&sort_roje=0

Figure 1 – For each of the years 2007, 2008, and 2009 the count per one degree bin of Solar Longitude is given with respect to the dataset of near 5000 objects analysed. In this way some idea can be gained as to whether showers absent some years yet not others were simply missed due to lack of observations.

successful cross matches against comet orbits only one appeared to be unknown previously as well as supported by a number of meteor orbits. Two further showers were of sufficient number to appear real and possessed candidates spanning more than one year. One final shower at first sight seemed real but as the number of objects was lower and only one of the three years (2007 to 2009) worth of data gave meteors it was a somewhat more tentative candidate shower.

There is also the possibility that some of the showers were only observed during a single year simply because there were no observations taken on that date for other years, whether due to no observing being done, clouds or equipment problems. Accordingly Figure 1 presents a plot for each of the individual years derived by doing a count per one degree bin of Solar Longitude. The actual count value is retained despite not being necessarily meaningful. The attempt is to demonstrate the times during each year that actually had some data and to allow some assessment of whether any of the candidate showers noted could merely have been absent just because no observations were being taken at those times.

One common feature of all four showers was their retrograde orbits, reflected in their geocentric velocities being around the 60 to 70 km/s region. Most orbits for the following showers also had aphelia extending into the outer Solar System.

The details for each particular shower are given below, complete with shower names, acronyms and number as provided by the International Astronomical Union Meteor Data Centre's Nomenclature Committee (Jenniskens, 2008). Orbit diagrams are given for each shower. The associated meteor radiants for the showers are also charted showing the local constellations, and in some cases the radiant position of any nearby IAU list meteor shower is also plotted, labelled with its IAU identity code and Solar Longitude value.

For each shower a table giving their "localtime" identifier listing the Japanese Local Time of the meteor in YYYYMMDD_hhmmss format, observed radiant Right Ascension (α) and Declination (δ) in degrees, Solar Longitude (λ_{\odot}) in degrees, Geocentric Velocity (Vg) in kilometres per second and magnitude (mag.) from SonotaCo is presented, with the D-criterion value (D₀) of the meteor shower relative to C/1846 J1 also included for the first noted shower (Table 2). Also given is a table showing their "localtime" identifier and orbital elements in the order of q (perihelion), e (eccentricity), i (inclination), ω (argument of perihelion) and Ω (ascending node) for each shower.

The mean Right Ascension, Declination and Solar Longitude are given for each shower, and the mean of each orbital element for the orbits (Tables 1 to 8). In the case of the σ -Virginids the value of D₀ given is that for the mean orbit of the meteors in comparison to that of the comet, and not a mean of the other D₀ values.

3 December σ -Virginids and C/1846 J1

The only comet orbit found to have a strong match to those of the meteor orbits while also being an unpublished association and unknown shower as far as the IAU MDC was concerned was C/1846 J1 (Brorsen) (1846 VII old style). SonotaCo also classified all the meteor orbits as being sporadic meteors. All three years of 2007 to 2009 provided several meteors in roughly equal amounts.

Their radiant generally drifts from the region of σ Virginis to τ Virginis and the main concentration of meteors appears to occur between December 20 to 22 between Solar Longitudes 267 to nearly 270 degrees (Figure 3 and Tables 1–2). The IAU MDC number is 428 and the code is DSV.

4 α-Coronae Borealids

Appearing in late January examples from all three years were found for this shower, however the predominant year by far was 2009. Examination of Figure 1 suggests that it was possible that the time period was underobserved in the previous years. A higher rate in 2009 could not be ruled out especially as roughly a quarter of the total meteors (four) appeared within two hours of each other on the 2009 January 29, with each being around zero magnitude or brighter (Table 3). The IAU MDC number is 429 and the IAU MDC code is ACB.

5 September π -Orionids

Appearing around the time of the Northern Autumnal Equinox this shower is reasonably well represented in all three years of data, despite Figure 1 suggesting that 2009 was the better observed year of the three around the time of Solar Longitude 177 to 178 degrees.

The radiants lie just east of the arc of π^1 to π^4 Orionis (Figure 7), which form part of the asterism of Orion's Bow. For simplicity the shower is name the π -Orionids. The IAU MDC number and code are 430 and

Figure 2 – Orbit Plots for the SonotaCo meteor orbits having D-criterion threshold of less than 0.10 relative to the orbit of C/1846 J1. The orbits of the planets out to that of Saturn are also shown.

Figure 3 – Radiant Plots for the SonotaCo meteor orbits having D-criterion threshold of less than 0.10 relative to the orbit of C/1846 J1. Plots for radiants from the IAU meteor database are also given labelled with their identifying acronyms. Numerical labels for all radiants are for their Solar Longitude in degrees.

 V
 CB
 TOB
 296.5
 Boo
 m
 m

 V
 CB
 50
 0
 m
 m

 V
 294.5
 0
 0
 0
 0

 V
 0
 7
 0
 0
 0

 V
 10
 7
 10
 0
 0

 V
 16
 10
 20
 0
 0

 V
 16
 10
 0
 0
 0

Figure 4 – Orbit Plots from SonotaCo for the $\alpha\text{-}{\rm Coronae}$ Borealid shower. Planetary orbits out to that of Neptune are also shown.

Figure 5 – Radiant Plots from SonotaCo for the $\alpha\text{-}\mathrm{Coronae}$ Borealid shower.

Table 1 – SonotaCo Radiant Particulars for the December $\sigma\textsc{-Virginids}.$

LOCALTIME	α	δ	λ_{\odot}	$rac{V_g}{(km/s)}$	mag.
20071215_043648	$200\degree8668$	+6.6662	$262 \stackrel{\circ}{.} 322$	65	+0.45
$20071216_{-}032750$	$201\overset{\circ}{.}2448$	$+7^{\circ}9325$	$263^{\circ}291$	66	+0.05
20071218_042126	$203 \overset{\circ}{.}0490$	$+6^{\circ}2146$	$265^\circ\!\!.364$	66	-3.08
20071218 045352	$202\stackrel{\circ}{.}7508$	$+6^{\circ}0379$	$265^{\circ}387$	67	-2.15
20071220_044915	$204\overset{\circ}{.}5392$	$+6^{\circ}.1428$	$267{}^{\circ}419$	67	-0.73
20071220_055029	$205 \stackrel{\circ}{.} 2622$	+4.24902	$267{}^{\circ}\!.462$	66	-0.45
20071221_031950	$205 \overset{\circ}{.} 3700$	$+5^{\circ}.1169$	$268^{\circ}.374$	67	-1.40
$20071225_{0}055049$	$209\overset{\circ}{.}4751$	$+3^{\circ}.7297$	$272\degree553$	67	-1.66
$20081218 _ 032735$	$203\overset{\circ}{.}6642$	$+5^{\circ}3570$	$266 \stackrel{\circ}{.} 076$	67	-2.17
20081219_050334	$205\overset{\circ}{.}2103$	+5.5762	$267{}^\circ.161$	66	+1.60
20081221_030959	$206\overset{\circ}{.}1672$	$+5^{\circ}3158$	$269^{\circ}.117$	67	-0.10
20081221_040655	$206 \overset{\circ}{.}0988$	$+4\degree5003$	$269^{\circ}158$	67	-0.10
20081221_060310	$207^{\circ}2677$	$+3{}^{\circ}9291$	$269\hat{\cdot}240$	67	+2.85
$20091212 _ 053613$	$198{}^\circ.1051$	$+7^{\circ}4794$	$259\degree804$	66	-1.45
20091219_031553	$204\overset{\circ}{.}1017$	$+6^{\circ}.3322$	$266\degree828$	67	-0.53
$20091220_{-}051934$	$205^{\circ}1753$	+5.5644	$267{}^\circ\!933$	66	-0.18
20091220_054225	$205^{\circ}.5557$	$+5^{\circ}2424$	$267{}^\circ\!949$	66	+0.11
20091220_055507	$205\degree8649$	$+4{}^{\circ}9221$	$267^{\circ}958$	67	+0.39
$20091222 _ 022025$	$209\mathring{\cdot}3800$	$+5^{\circ}8432$	$269\degree843$	65	+0.73
20091222 031839	$206\overset{\circ}{.}7428$	$+4^{\circ}2686$	$269\degree885$	66	+1.40
20091222_053907	$207\degree6411$	$+5^{\circ}1027$	269984	66	+0.23
$20091222 _ 060659$	$207\overset{\circ}{.}4771$	$+4\degree6865$	$270\overset{\circ}{.}004$	67	+0.70
Mean Position	$205^{\circ}0459$	+5.24750	$267^{\circ}414$	66	

Table 2 – SonotaCo Orbital Elements for the December σ -Virginids.

1000 2 201000000	orontar Brom	101100 101 0110	B coombor o	, in grinidasi		
LOCALTIME	$q (\mathrm{AU})$	e	i	ω	Ω	D_0
C/1846 J1	0.633760	0.990414	$150\degree6809$	$99^{\circ}7253$	$263\mathring{.}9889$	_
20071215_043648	0.569595	0.925616	$149{}^\circ\!8195$	$97{}^\circ\!0931$	$262\overset{\circ}{.}3219$	0.089
$20071216_{-}032750$	0.615408	0.959967	$147{}^\circ\!8727$	$103^{\circ}.5874$	$263 \stackrel{\circ}{.} 2906$	0.097
20071218_042126	0.603168	0.955856	$149\degree6777$	$102{}^\circ0085$	$265\overset{\circ}{.}3638$	0.051
20071218_045352	0.616221	0.975933	$150^{\circ}5729$	$104 \overset{\circ}{.}0784$	$265{}^\circ.3867$	0.059
20071220_044915	0.631587	0.984977	$149\stackrel{\circ}{.}3022$	$106^{\circ}1687$	$267{}^\circ\!4191$	0.071
20071220_055029	0.587831	0.964208	$151^{\circ}1529$	$100 \overset{\circ}{.} 3720$	$267{}^\circ\!4624$	0.069
20071221_031950	0.614889	0.985264	$150^{\circ}1863$	$104\overset{\circ}{.}1505$	$268\overset{\circ}{.}3738$	0.043
20071225_055049	0.616414	0.979218	$150 \stackrel{\circ}{.} 0181$	$104\widehat{\cdot}2168$	$272^{\circ}_{\cdot}5531$	0.092
$20081218 _ 032735$	0.591726	0.961941	$150{}^\circ\!6023$	$100\degree7763$	$266 \overset{\circ}{.}0755$	0.050
20081219_050334	0.598744	0.975734	$149\overset{\circ}{.}1823$	$101\degree9685$	$267^{\circ}.1611$	0.051
$20081221 _ 030959$	0.620437	0.992027	$149^{\circ}2860$	1049754	$269^{\circ}1171$	0.054
20081221_040655	0.617605	1.000196	1509822	$104\mathring{\cdot}8145$	$269^{\circ}1573$	0.048
20081221_060310	0.590461	1.000594	$150\degree7995$	$101^{\circ}.5765$	$269\overset{\circ}{.}2395$	0.075
$20091212 _ 053613$	0.588135	0.937879	1509218	$99\degree6682$	$259\mathring{\cdot}8037$	0.095
20091219_031553	0.624445	0.989298	$149\overset{\circ}{.}0031$	$105\stackrel{\circ}{.}3824$	$266\degree8276$	0.068
$20091220_{-}051934$	0.617171	0.964782	$149\degree6200$	1039418	$267{}^\circ\!9334$	0.050
20091220_054225	0.603088	0.959101	$149\overset{\circ}{.}7052$	$102\degree0878$	$267\degree9496$	0.058
20091220_055507	0.600122	0.985918	$150{}^\circ\!0675$	$102{}^\circ\!3753$	$267\degree9585$	0.047
20091222_022025	0.566372	0.979757	$144\overset{\circ}{.}4203$	$98\degree2028$	$269\overset{\circ}{.}8436$	0.079
20091222 031839	0.603187	0.963410	$150^{\circ}.5586$	$102\overset{\circ}{.}2162$	$269\mathring{\cdot}8848$	0.077
20091222_053907	0.611157	0.974057	$148^{\circ}5237$	$103{}^\circ\!4395$	$269\degree9841$	0.074
20091222_060659	0.621133	1.012775	$149\overset{\circ}{.}7951$	$105^{\circ}.5119$	$270\overset{\circ}{.}0039$	0.060
Mean Orbit	0.604950	0.974023	$149\degree6395$	$102\mathring{\cdot}6642$	$267{}^\circ\!4141$	0.045

LOCALTIME	α	δ	λ_{\odot}	$rac{V_g}{(km/s)}$	mag.
20070202_032122	$236\stackrel{\circ}{.}3113$	$+24\degree6946$	$312{}^{\circ}414$	58	-0.60
$20080128_{0}053145$	$232^{\circ}2706$	$+27^{\circ}3945$	$307^{\circ}169$	57	-0.70
20080201_042137	$236^{\circ}2217$	$+25^{\circ}3734$	$311^{\circ}183$	58	-0.22
20090128_023106	$231^{\circ}0367$	$+27\degree5904$	$307^{\circ}796$	58	+2.50
20090128_032120	$231^{\circ}4365$	$+26\degree7880$	$307{}^\circ\!831$	58	+2.25
20090128_041708	$232\degree 0668$	$+27^{\circ}3007$	$307\degree871$	60	+0.27
20090129_030621	$232^{\circ}1539$	$+25\degree9364$	$308\degree837$	60	-2.00
20090129_033629	$232\degree4114$	$+25^{\circ}8759$	$308\degree858$	59	-0.15
20090129_043731	$232\degree2919$	$+26\degree4847$	$308{}^\circ901$	59	-1.85
20090129_045857	$233\degree8488$	$+26^{\circ}2206$	$308{}^\circ917$	60	+0.10
20090129_054619	$233^{\circ}2042$	$+26\degree5809$	308°950	57	+1.40
20090201_031653	$237^{\circ}1444$	$+26\degree6725$	$311{}^\circ\!892$	57	+1.60
20090201_053410	$235^{\circ}1486$	$+25^{\circ}.7880$	$311\degree989$	59	+0.95
20090202_022615	$231^{\circ}5717$	$+30\degree3649$	$312{}^\circ\!871$	57	+0.45
20090202_022742	$232^{\circ}1111$	$+32{}^{\circ}0430$	$312\degree872$	57	+0.90
Mean Position	2332820	$+27^{\circ}0072$	309°890	58	

Table 3 – SonotaCo Radiant Particulars for the α -Coronae Borealids.

$Table \not \in$	4 - 3	SonotaC	оC	Drbital	Elements	for	$_{\rm the}$	α -C	Coronae	Borealids	5.
------------------	-------	---------	----	---------	----------	-----	--------------	-------------	---------	-----------	----

LOCALTIME	$q~(\mathrm{AU})$	e	i	ω	Ω
20070202_032122	0.978857	0.885206	$106^{\circ}.5682$	$170\degree{3874}$	$312{}^{\circ}4142$
20080128_053145	0.981480	0.900618	$104\degree6787$	$173^{\circ}2873$	$307{}^\circ\!1693$
20080201_042137	0.977128	0.924561	$105{}^\circ\!8402$	$169\stackrel{\circ}{.}3990$	$311^{\circ}.1830$
20090128_023106	0.983853	0.928833	$105{}^\circ\!0627$	$176^\circ.3786$	$307\degree7958$
20090128_032120	0.983096	0.939804	$106\overset{\circ}{.}2043$	$175^{\circ}1497$	$307{}^\circ\!8313$
20090128_041708	0.983023	1.096985	$106\overset{\circ}{.}4249$	$175^{\circ}2282$	$307\degree8707$
20090129_030621	0.982994	1.062162	$108^{\circ}.1207$	$175{}^\circ.0002$	$308\degree8371$
20090129_033629	0.982492	0.971101	$107^{\circ}3783$	$174^{\circ}2578$	$308\degree8584$
20090129_043731	0.983668	1.022560	$107\overset{\circ}{.}0764$	$175{}^\circ.9180$	3089015
20090129_045857	0.980414	1.083236	$107{}^\circ\!0651$	1723826	$308{}^\circ\!9166$
20090129_054619	0.982272	0.879612	$105^{\circ}3129$	$173{}^\circ\!8347$	$308\degree9500$
20090201_031653	0.977163	0.917551	$103\overset{\circ}{.}1936$	$169\overset{\circ}{.}3342$	$311\degree8919$
20090201_{053410}	0.983505	1.057291	$107^{\circ}1335$	$175^{\circ}1460$	$311\degree9887$
20090202_022615	0.981311	1.067447	$101^{\circ}.7078$	$187{}^\circ\!3032$	$312{}^\circ\!8713$
20090202_{022742}	0.981323	1.105569	992949	$187\overset{\circ}{.}2318$	$312\overset{\circ}{.}8724$
Mean Orbit	0.981505	0.989502	$105{}^{\circ}4041$	$175^{\circ}3493$	$309\degree8901$

Figure 6 – Orbit Plots from SonotaCo for the September π -Orionid shower. Planetary orbits out to that of Uranus are also shown.

Figure 8 – Orbit Plots from SonotaCo for the June ι -Pegasid shower. Planetary orbits out to that of Uranus are also shown.

Figure 7 – Radiant Plots from SonotaCo for the September $\pi\text{-}\mathrm{Orionid}$ shower.

Figure 9 – Radiant Plots from SonotaCo for the June ι -Pegasid shower. Nearby IAU shower radiants and their Solar Longitudes are also shown.

POR respectively. Given its location this is a shower for both Hemispheres, and an Equinoctial shower too, providing all observers a similar night length.

6 June ι -Pegasids

The radiants lie near 23 Pegasi and are concentrated around 2009 June 26, Solar Longitude 94.15 degrees, and barely lasted two hours in total at that time (Figure 9 and Tables 7–8). This shower was not present in the other years, nor much outside the roughly two hour window in 2009. However, Figure 1 shows that other meteors were detected around this time in 2007 and 2008 suggesting the lack of June ι -Pegasids is real. The IAU MDC number is 431 and the IAU MDC code given is JIP.

7 Conclusion

Multiple station meteor orbit observations allow the examination of Earth impacting objects and their orbital evolution from a ready supply of impinging objects, i.e. meteors. Despite the New Zealand AMOR radar experiment (Galligan & Baggaley, 2005) and the more recent Canadian CMOR orbit research (Brown et al., 2008), itself radar based, little recent work has occurred of this nature. SonotaCo is a welcome exception, and in tandem with D-criterion tests can be seen to give tangible results. In this analysis four new candidate showers, one with a previous unsuspected parent comet to a meteor shower, were presented based on that data. Other papers (e.g. Vereš and Tóth, 2010) have revealed that not only traditional showers can be examined with the data, but also new things can be revealed about those showers.

The D-criterion test upon meteoroids enables a somewhat independent test of relationship between groups of meteoroids, and although not totally independent (orbits are derived from radiant positions and time of event for instance) can give information on meteors which were only classified as being sporadic by radiant clustering techniques.

Future work that can be applied to this data includes examining the data around the times of major showers for showers contemporaneous yet independent of them, often lost in the flood of the major shower meteors. Also possible is the confirmation of IAU Working List showers (for instance, in the same D-criterion analysis, evidence of meteors associated with the γ -Ursae Minorids, the x-Herculids, possibly the β -Hydrids (or an adjacent new shower), and with less certainty the ζ -Serpentids exist, although still pending a refined anal-

LOCALTIME	α	δ	λ_{\odot}	$V_{ m g}$ $(m km/s)$	mag.
20070920_032502	$75^{\circ}_{\cdot}7316$	+9.27597	$176^{\circ}_{\cdot}335$	68	-0.15
20070921_024714	$75^{\circ}5239$	$+7{}^{\circ}9531$	$177^{\circ}286$	68	-0.40
20070921_032641	$73{}^\circ\!4067$	$+7^{\circ}3376$	$177^{\circ}313$	68	+0.85
20070921_035613	$75^\circ\!3657$	$+7\degree9869$	$177^{\circ}333$	67	+0.33
20080923_011605	$75^{\circ}3477$	$+9^{\circ}9596$	$179{}^{\circ}902$	68	-0.35
20080923_012837	$75^{\circ}4521$	$+8\degree8274$	$179^{\circ}911$	69	+2.50
20080923_023333	$75^{\circ}5113$	$+7\degree9363$	$179^{\circ}955$	67	+1.50
20090920_040504	$74^{\circ}7151$	$+8^{\circ}1846$	$176\degree841$	67	-0.57
20090921_015837	$74\degree6176$	$+7\degree8420$	$177^{\circ}732$	67	+0.77
20090921_030907	$76\degree2522$	+9.9570	$177^{\circ}.780$	68	+1.73
$20090921_{-}034052$	$75^{\circ}2998$	$+6\degree5990$	$177\degree805$	67	+1.05
20090921_034534	$70\degree 0620$	$+7^{\circ}8133$	$180^{\circ}599$	70	+0.45
20090924_031013	$76^{\circ}2157$	+9.5464	$180^\circ.717$	68	-0.40
Mean Position	$74\degree8847$	+8.24387	$178^{\circ}424$	68	

Table 5 – SonotaCo Radiant Particulars for the September $\pi\text{-}\mathrm{Orionids}.$

LOCALTIME	$q~(\mathrm{AU})$	e	i	ω	Ω
20070920_032502	0.895048	0.894718	$156^{\circ}4287$	$39 ho{7200}$	$356^{\circ}3349$
20070921_024714	0.877189	0.936818	$153{}^\circ.1094$	$42{}^{\circ}4054$	$357{}^\circ\!2860$
20070921_032641	0.841588	1.022539	$152{}^\circ\!2060$	$47^{\circ}1868$	$357^{\circ}3128$
20070921_035613	0.862318	0.862551	$152\degree8796$	$45\degree9879$	$357\degree3328$
20080923_011605	0.827017	0.962532	$156^{\circ}2198$	$50^{\circ}1052$	$359{}^\circ\!9014$
20080923_012837	0.836615	1.023459	$154{}^\circ\!3926$	$47{}^\circ\!8425$	$359{}^\circ9099$
20080923_023333	0.823756	0.944396	$152^{\circ}4241$	$50\degree8610$	$359\degree9541$
20090920_040504	0.855242	0.835985	$153^{\circ}1694$	$47\degree6363$	$356{}^\circ\!8408$
$20090921 _ 015837$	0.847250	0.893393	$152^{\circ}5250$	$48{}^\circ\!0225$	$357^{\circ}7325$
$20090921 _ 030907$	0.878830	0.901675	$156^{\circ}5474$	$42^{\circ}5407$	$357^{\circ}7803$
$20090921 _ 034052$	0.867757	0.896079	$157{}^\circ\!8022$	$44^{\circ}5522$	$357{}^\circ\!8019$
$20090921 \underline{0}34534$	0.861128	0.938155	$150^{\circ}4784$	$45^{\circ}1079$	$357{}^\circ\!8051$
20090924_{031013}	0.827247	0.995914	$155^{\circ}4485$	495835	$0{}^{\circ}7165$
Mean Orbit	0.853922	0.931401	$154^{\circ}1255$	462732	$358^{\circ}2084$

Table 6 – SonotaCo Orbital Elements for the September π -Orionids.

Table 7 – SonotaCo Radiant Particulars for the June ι -Pegasids.

LOCALTIME	α	δ	λ_{\odot}	V_{g} (km/s)	mag.
20090626_015125	$331^{\circ}2860$	$+29^{\circ}.1779$	$94^{\circ}128$	62	-0.70
20090626_023635	$333{}^\circ\!2110$	$+28\degree9767$	$94^{\circ}158$	60	+0.55
20090626_024721	$333^{\circ}1318$	$+27^{\circ}9278$	$94{}^{\circ}165$	60	+0.60
$20090626_{-}025341$	$332\overset{\circ}{.}3210$	$+29\degree2853$	$94^{\circ}.169$	59	-1.45
20090626_031852	$332\degree6257$	$+29\degree{3893}$	$94^{\circ}.186$	57	-0.85
20090626_034154	$332^{\circ}1428$	$+30^{\circ}.1221$	$94{}^{\circ}201$	59	-1.50
$20090626_{}234937$	$332\degree6141$	$+29\degree6467$	$95{}^\circ.001$	59	-2.17
20090627_005602	$333^\circ\!2585$	$+29\degree6033$	$95{}^\circ.045$	58	-0.44
20090627_010714	$333{}^\circ\!0444$	$+28\degree6408$	$95{}^\circ053$	60	+1.20
Mean Position	$332\degree6261$	$+29\degree1967$	$94^{\circ}456$	59	

Table 8 – SonotaCo Orbital Elements for the June $\iota\text{-}\mathrm{Pegasids}.$

			0		
LOCALTIME	$q (\mathrm{AU})$	e	i	ω	Ω
20090626_015125	0.908359	1.241787	$114^{\circ}1918$	$216^{\circ}.1069$	$94^{\circ}1281$
20090626_023635	0.909513	1.000905	$114^{\circ}4773$	$217\degree8550$	$94^{\circ}1580$
20090626_024721	0.894732	0.978189	$115^{\circ}4206$	$220^{\circ}.7365$	$94^{\circ}1651$
20090626_025341	0.899465	0.946350	$112\degree6234$	2202552	$94^{\circ}1693$
20090626_031852	0.889735	0.807746	$111^{\circ}3804$	$223{}^\circ\!8736$	$94^{\circ}1860$
20090626_034154	0.909202	1.007885	$111^{\circ}_{\cdot}9390$	$217\degree8442$	$94^{\circ}2013$
20090626_234937	0.903890	0.980183	$113^{\circ}0068$	219°0942	$95^{\circ}0014$
20090627_005602	0.899195	0.871049	$112^{\circ}4808$	$221^{\circ}2342$	$95^{\circ}0454$
20090627_010714	0.899458	1.058645	$114\overset{\circ}{.}9742$	$219\overset{\circ}{.}1034$	$95^\circ\!0528$
Mean Orbit	0.901505	0.988082	$113^{\circ}.3883$	$219^{\circ}5670$	$94^{\circ}4564$

ysis). In such cases, the finding of a shower via Dcriterion methods from SonotaCo that coincides with a shower found from an independent survey and one not necessarily using orbital data is strong evidence for the reality of such a shower, as it is repeatability via an independent team using independent equipment.

Whilst preparing this paper a new shower (the February η -Draconids) was found using the upcoming and developing CAMS system (Jenniskens & Gural, 2011), showing that something of an outburst in this area of observation may well be underway. Certainly confirmation of showers will be easier with a multil-ongitude approach, not just because weather may be better in one place than another, but also there is some suggestion from the SonotaCo data that some showers have very short lived and tight presences, making observer location even more crucial than usual in the detection of shower outbursts, or "mini-outbursts".

This does not necessarily mean the passing of more traditional or even other modern methods of meteor observing. Targets need confirming, and other methods may well be more suited to determination of shower display nature and Zenithal Hourly Rates and population indices, and more able to go down to fainter magnitudes. As well as also providing more showers spread around the year for visual observers to enjoy, because decent skies, suitable moon phase and predicted meteoric events rarely have the good grace to all three coincide.

There is also some circumstantial evidence, given the nature of these showers, and from data in SonotaCo for showers like the η -Lyrids (associated with comet IRAS-Araki-Alcock), that a number of discrete retrograde orbits of some inclination may mean a number of long lived Earth crossing showers where no necessarily recognisable parent may exist, and that they may be common. Examination of databases like SonotaCo and the future CAMS data will lead to an accumulation of information and nature of such showers should they be shown to be common. Such objects would have implications in terms of Earth impact studies, for if they exist in any number they will reveal that material on the orbits of retrograde comets are likely minimally affected by perturbations. As a result the material can take a very long time to be dispersed.

Taking this analysis as an example, the December σ -Virginids seem to repeat from year to year, as do the September π -Orionids, with the latter being a target for both Northern and Southern Hemispheres and presenting itself at a time of year when meteor showers are normally at a minimum.

All four showers had orbits inclined and retrograde which if not purely a selection effect (i.e., such showers may be the easiest to detect) is at least suggestive of some background of fossil orbit showers from comets long gone from our neighbourhood.

Acknowledgement

This paper would not have been possible if it was not for the SonotaCo Network Japan making their data available in the public domain, for which the author is greatly appreciative.

References

- Brown P., Weryk R. J., Wong D. K., and Jones J. (2008). "A meteoroid stream survey using the Canadian Meteor Orbit Radar. I. Methodology and radiant catalogue". *Icarus*, **195:1**, 317–339.
- Galligan D. P. and Baggaley W. J. (2005). "A meteoroid stream survey using the Canadian Meteor Orbit Radar. I. Methodology and radiant catalogue". *Monthly Notices of the Royal Astronomical Society*, 359:2, 551–560.
- Greaves J. (2000). "Comet-meteor associations: D' criterion assessment of the meteor orbits' databases of the DMS". *Radiant*, **22:2**, 27–32.
- Jenniskens P. (2008). "The IAU Meteor Shower Nomenclature Rules". Earth, Moon and Planets, 102:1-4, 5–9.
- Jenniskens P. and Gural P. S. (2011). "Discovery of the February Eta Draconids (FED, IAU#427): the dust trail of a potentially hazardous long-period comet". WGN, Journal of the IMO, 39:4, 93–97.
- Jopek T. J. (1993). "Remarks on the meteor orbital similarity D-criterion". *Icarus*, **106**, 603.
- SonotaCo (2009). "A meteor shower catalog based on video observations in 2007-2008". WGN, Journal of the IMO, 37:2, 55–62.
- Southworth R. B. and Hawkins G. S. (1963). "Statistics of meteor streams". Smithsonian Contributions on Astrophysics, 7, 261.
- Vereš P. and Tóth J. (2010). "Analysis of the SonotaCo video meteoroid orbits". WGN, Journal of the IMO, 38:2, 54–57.

Handling Editors: Wayne Hally and Javor Kac