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Abstract: The number N of detectable (i.e. communicating) extraterrestrial civilizations in the Milky Way

galaxy is usually calculated by using the Drake equation. This equation was established in 1961 by Frank

Drake and was the first step to quantifying the Search for ExtraTerrestrial Intelligence (SETI) field.

Practically, this equation is rather a simple algebraic expression and its simplistic nature leaves it open to

frequent re-expression. An additional problem of the Drake equation is the time-independence of its terms,

which for example excludes the effects of the physico-chemical history of the galaxy. Recently, it has

been demonstrated that the main shortcoming of the Drake equation is its lack of temporal structure,

i.e., it fails to take into account various evolutionary processes. In particular, the Drake equation does not

provides any error estimation about the measured quantity. Here, we propose a first treatment of these

evolutionary aspects by constructing a simple stochastic process that will be able to provide both a temporal

structure to the Drake equation (i.e. introduce time in the Drake formula in order to obtain something

like N(t)) and a first standard error measure.
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Introduction

The number of detectable (i.e. communicating) extraterrestrial

civilizations in the Milky Way galaxy is usually calculated by

using the Drake equation (Burchell 2006). This equation was

established in 1961 by Frank Drake and was the first step to

quantifying the Search for ExtraTerrestrial Intelligence (SETI)

field (Drake 1965). This formula is broadly used in the fields of

exobiology and the SETI. Practically, this equation is rather a

simple algebraic expression and its simplistic nature leaves it

open to frequent re-expression (Walters et al. 1980; Shermer

2002; Burchell 2006; Forgan 2009).While keeping in mind that

other equivalent forms exist, we investigate the following form:

N∗ = R∗fpne fl fi fcL. (1)

In this expression, the symbols have the following meanings:

N is the number of Galactic civilizations that can communicate

with Earth; R* is the average rate of star formation per year in

our galaxy; fp is the fraction of stars that host planetary

systems; ne is the number of planets in each system which are

potentially habitable; fl is the fraction of habitable planets

where life originates and becomes complex; fi is the fraction of

life-bearing planets that bear intelligence; fc is the fraction of

intelligence bearing planets where technology can develop; and

L is the mean lifetime of a technological civilization within the

detection window.

An additional problem of the Drake equation is the time-

independence of its terms (Cirkovic 2004a, b), which for

example excludes the effects of the physico-chemical history of

the galaxy (Forgan 2009). Indeed, Cirkovic (2004a, b) shows

that the main shortcoming of the Drake equation is its lack of

temporal structure, i.e., it fails to take into account various

evolutionary processes that form a prerequisite for anything

quantified by f parameters and ne. This Drake equation’s

drawback was mentioned earlier by Franck Drake but the

discussion of systematic biases following such simplification

was avoided (Drake & Sobel 1991).

In particular, not only some difficulties arise from changing

one or more parameters values in equation (1) with time, but

also the Drake equation does not provide any error estimation

about the measured quantity. To be short, a estimation of

N=5 with a standard deviation (SD) SD(N )<<1 is radically

different from an estimation of N=10 with a standard error of

SD(N )=10. Recently, Maccone (2010) derived the first

statistical Drake equation by associating each parameter with

a random variable and then, given some assumptions, applying

the Theorem Central Limit. However, this important new

result does not take into account the temporal aspect of the

processes of civilizations appearance. Here, we propose a first

treatment for these evolutionary aspects by constructing a

simple stochastic process that will be able to provide both a

temporal structure to theDrake equation (i.e. introduce time in
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the Drake formula in order to obtain something like

N(t)= (R*fpne fl fi fcL)(t)) and a first standard error on N(t).

A stochastic process approach of the Drake equation

Grouping the Drake parameters

When looking at the Drake equation given by equation (1), it is

obvious that a kind of Bayesian structure underlying its

construction (Shklovsky & Sagan 1966). While the Bayesian

structure of the SETI equation has been extensively described

byWilson (1984), the Drake equation has not been analysed in

this way. To begin with a heuristics approach, let us consider

the three terms of the product fl fi fc. For instance, fc is the

estimate (because it is a frequency) of the probability that a

technology arise on a planet, knowing the fact that intelligence

has appeared. Without worrying about formalism, it is some-

thing like fc=P(technology|intelligence), where P(A|B) is the

conditional probability measure of the event A given B

(Capiński & Kopp 2002). In a similar way, fi is the estimate

of the probability that intelligence arise on a planet, knowing

the fact that life has appeared ( fi=P(intelligence|life)) and fl is

the estimate of the probability that life arise on a planet,

knowing the fact that we considered only potentially habitable

planet ( fl=P(life|potentially habitable planet)). More rigor-

ously, if we consider the three set of events (i) ET (planet bears

technology), (ii) EI (planet bears intelligence) and (iii) EL

(planet bears life), all are subsets of the sample space of all

potentially habitable planet, and then it is straightforward that

we have ET,EI,EL. As a consequence of this underlying

conditional structure, the product of these three previous terms

is simply:

fc fi fl =P(technology intelligence
∣

∣ )P(intelligence life| )
× P(life potentially habitable planet

∣

∣ )
=P(technology potentially habitable planet

∣

∣ ).

This expression is an estimate of the probability that a technol-

ogical civilization develops on a potentially habitable planet.

All these preliminary remarks and heuristics approaches

suggest that equation (1) parameters can be grouped together

into two new parameters for which the meaning is straightfor-

ward:

1. A=R*fp is the number of new planetary systems produced

in the galaxy per year.

2. B=ne fl fi fc is the number of advanced intelligent civiliz-

ations (AIC) that are able to communicate (and for which

we can detect their communication) per planetary systems.

AIC can be interpreted as instantiations of the sixth Dick’s

mega trajectory (Dick 2003), in the same way Cirkovic’s

ATC (i.e. advanced technological civilizations), are instan-

tiations of the seventh one (Cirkovic & Bradbury 2006).

In other words, AB is the number of new AIC produced per

year. L is the average AIC lifetime. Historically, the Drake

equation was rather written N*=RfsL, where R is the average

rate of life-supportable star production, fs is the number of

civilizations per suitable star and L is still the average lifetime

of an AIC. Equation (1) was established by Shklovsky & Sagan

(1966) by expanding fs.

AIC appearance occurs in a space that is by definition the

galactic habitable zone (GHZ). The concept of GHZ was

introduced a few years ago as an extension of the much older

concept of Circumstellar Habitable Zone (Lineweaver et al.

2004). This location is usually considered to be an annulus,

with an inner radius of 7 kpc and an outer radius of 9 kpc

(1 kpc=1000 pc&3000 light years) (Lineweaver et al. 2004;

Forgan 2011). However, other authors are pointing out that

the physical processes underlying the former concept are hard

to identify and that the entire Milky Way disk may well be

suitable for complex life (Prantzos 2008; Gowanlock et al.

2011). In this paper, wewill consider the entireMilkyWay disk

to be suitable for the complex life, i.e. to be the GHZ. This will

also allow us to use estimation of R* for the entire galaxy

(Diehl et al. 2006).

This above new parameter grouping, the need for a temporal

structure to theDrake equation and the reasonable assumption

that AIC appearance should be roughly random in time and in

space (this assumptions are discussed in the following part),

strongly suggest that an AIC appearance mathematical model

could be made by using a stochastic process like a Poisson

process {N(t):t50} with rate parameter λ=AB.

Poisson process

A Poisson process is a continuous-time stochastic process in

which events occur continuously and independently of each

others. Examples that are well-modelled as Poisson processes

include the radioactive decay of atoms (Foata & Fuchs 2002),

Turing machine rules mutations (Glade et al. 2009), the arrival

of customers in a queue n telephone calls arriving at a

switchboard and proteins evolution (Bastien 2008; Ortet &

Bastien 2010). The Poisson process is a collection {N(t):t50}

of random variables, where N(t) is the number of events, often

called “top”, that have occurred up to time t (starting from

time 0). The number of events between time a and time b is

given as N(b)−N(a) and has a Poisson distribution. Each

realization of the process {N(t):t50} is a non-negative

integer-valued step function that is non-decreasing in time. In

our case, each “top” could be an AIC appearance. Hence,N(t)

would be the number of AIC that has appeared up to time t.

Definition of a homogeneous Poisson process

The homogeneous Poisson process is one of the most well-

known Lévy processes (Itô 2004). A continuous-time counting

process {N(t):t50} will be called a Poisson process if it

possesses the following properties:

1. N(0)=0.

2. Independent increments (the numbers of occurrences

counted in disjoint intervals are independent from each

other).

3. Stationary increments (the probability distribution of the

number of occurrences counted in any time interval only

depends on the length of the interval).

4. No counted occurrences are simultaneous. More precisely,

the process is locally continuous in probability, i.e., for all

t50, lim
h�0

P(N(t+ h) −N(t){ } = 0.
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In our model, condition 1 means that we must begin the AIC

count at a time when no previous AIC exists. Condition 2

means that each AIC evolves independently from each others.

Condition 3 means that the number of AIC in a time interval

does not depend on the date at which we sample this interval,

that is to say invariance of physical law and global homo-

geneity of the space–time in the considered galaxy region, i.e.

the GHZ (Gonzales et al. 2001; Cirkovic 2004a, b; Lineweaver

et al. 2004; Vukotic & Cirkovic 2007; Prantzos 2008;

Gowanlock et al. 2011). If these conditions are satisfied, then

we can deduce the following results.

1. Consequences of this definition include: The probability

distribution of N(t) is a Poisson distribution. That is

to say P(N(t+ τ) −N(t) = k) = (λτ)ke−λτ/k! where

N(t+ τ)−N(t) is the number of events between the time

interval [t, t+ τ] and λ is the stochastic process rate

parameter also called density or intensity. The product λτ

is called the parameter of the Poisson distribution.

2. The probability distribution of the waiting time until the

next event occurs is an exponential distribution.

3. The occurrences are distributed uniformly on any interval

of time. (Note that N(t), the total number of occurrences,

has a Poisson distribution over [0, t], whereas the location of

an individual occurrence on t in [a, b] is uniform.)

Homogeneous and non-homogeneous Poisson process

As recalled above, a homogeneous Poisson process is charac-

terized by its rate parameter λ, which is the expected number

of events (also called arrivals) that occur per unit time.

Nevertheless, in general, the rate parameter may change over

time; such a process is called a non-homogeneous Poisson

process or inhomogeneous Poisson process. In this case, the

generalized rate function is given as λ(t), where λ(t) is a real

continuous function of time (and hence, defined on the positive

part of the real axis). In this case, the above definition of a

Poisson process remains unchanged except for the third

condition (stationary increments). Then, the three Poisson

process conditions are:

1. N(0)=0.

2. Independent increments (the numbers of occurrences

counted in disjoint intervals are independent from each

other).

3. Let ρ(t) =
�t

0
λ(u)du; then for all pair (s,t) with

04 s<t< +∞, the number N(t)−N(s) of events occurring

in [s, t] is a Poisson random variable with parameter

μ( s, t] ]) = ρ(t) − ρ(s) =
�t

s
λ(u)du.

This last condition implies the fourth of the definition of the

homogeneous processes, that is to say: the process is locally

continuous in probability. Moreover, it can be demonstrate

(Foata & Fuchs 2002) that this condition is similar to the

following:

Condition 3bis. For h�0, we have P(N(t+h)−N(t)=1)=

λ(t)+o(h) and P(N(t+h)−N(t)52)=o(h).

Usually,m(t) is called the renewable function. A remarkable

result is that all non-homogeneous Poisson process can be

transformed into a homogeneous Poisson process by a time

transformation (Foata & Fuchs 2002). Of course, a homo-

geneous Poisson process may be viewed as a special case when

λ(t)=λ, a constant rate.

AIC birth and death process

Here, we construct a simple stochastic process that will

represent the stochastic appearance of AIC in the Milky

Way as a function of time. More exactly, we will construct

a model that will give us the number C(t) of existing AIC

for a given time t. A first reasonable hypothesis for this model

is that there exist a time t0 for which no AIC is present in

the galaxy, i.e. C(t0)=0. So, without loss of generality, we

can consider a stochastic process for which the first condition,

C(0)=0, for the process to be a Poisson process is true. A

second hypothesis for this model is that AIC appearances

(i.e. births) are independent from each other (communication

between them does not influence their birth or their lifetime).

As a consequence, a possible limitation of the present

model could come from the fact that there is a legitimate

case to be made that AIC numbers may violate this con-

dition of the Poisson distribution: the longevity, may be

significantly affected by the discovery of a long-lived intelligent

community, possibly leading to clustering in time. A third

hypothesis is that the number of AIC in a time interval does not

depend (at least locally) on the date at which we sample this

interval.

With these three hypotheses, we can consider the stationary

increments Poisson stochastic process {N(t):t50} with den-

sity λ>0 (Itô 2004) where each “top” of the Poisson process is

an AIC birth event. As the rate parameter λ represents the

expected number of events that occur per unit time, it is clear

that it is equal to the number of new AIC produced per year,

that is to say the product AB of the upper new Drake equation

parameter grouping. We also suppose that each AIC lifetime is

a random variable X, i.e. all AIC during time are independent,

identically distributed and are independent of the process

{N(t):t50}. Let Sk be the birth date of the kth AIC and Xk its

lifetime. Then, its death date is Sk+Xk. Let S0:=X0:=0 and

C(t) be the number of AIC present at the time t. The question

is to evaluate the probability law of C(t), with the hypothesis

N(0)=0 (and hence C(0)=0). The following theorem for the

current AIC number can then be formulated (for the proof, see

the Appendix):

Theorem 1. Theorem for the current AIC number: with the

previous hypotheses and notations, the number C(t) of AIC

present at the time t is a Poisson distributed random variable

with parameter m(t) = λ
�t

0
r(u) du, where λ is the rate parameter

of the AIC appearance Poisson stochastic process and r(u) is the

survival function of AIC lifetime random variable X.

To resume, the Poisson stochastic process {N(t):t50},

which represents the appearance of new AIC in the Milky

Way is combined with a random variable X, which represents

the lifetime of these new civilizations. The main result is that

the number C(t) of AIC present at time t is a Poisson

distributed random variable with parameter m(t). This general

result can be link to the classical Drake equation by the

following. As t tends to infinity and using a classical theorem
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of probability about survival function (which stated that
�+1

0
r(u)du = E X[ ]; Skorokhod & Prokhorov 2004), we ob-

serve that lim
t�+1

m(t) = λ
�+1

0
r(u)du = λE X[ ]. As a conse-

quence, C(t) is going towards a Poisson random variable V

with parameter λE [X ]. This result is exactly the Drake

equation with E V[ ] = lim
t�+1

m(t), E [X ]=L and λ=AB.

Interestingly, if one assumes that the lifetime of any galactic

civilization is finite, that is to say has an upper bound. Then,

their exists a number tM for which r(tM)=0 and so the limit

value ofm(t) will be reached at finite time, that is to say we will

have
�tM
0

r(u)du = E X[ ].

Discussion

Mean and variance of the number of AIC

As stated above, as t becomes larger than the AIC maximum

lifetime, the previous approximation becomes exact. So we

have E[V(t)]=VAR[V(t)]=λE[X ] (the mean and the variance

of a Poisson distributed random variable are equal; Skorokhod

& Prokhorov 2004) and the three terms of the equality are time

independent. As a consequence, we can study the coefficient of

variation ε of the C(t) (also named fluctuation around the

mean) which is the ratio between the SD and the mean of the

stochastic process. Here, we have

ε =
1

�������

λE[X]
√ =

1
���������������������

R∗fpne fl fi fcE[X ]
√ .

With the 1961’s Drake parameters estimation (see Table 1),

λ=0.001 and hence, depending on the AIC lifetime, we can

have

1. with E [X ]=200, we obtain E[V(t)]=0.2 and ε=2.23,

2. with E [X ]=10 000, we obtain E[V(t)]=10 and ε=0.31.

An error of magnitude one order in any parameter can lead to a

estimation of E[V(t)] and ε equal to 1. For example, a lower

bound can be estimated for E[X ], while considering the span

time between now and the invention of the parabolic telescope,

i.e. radioastronomy (Reber & Conklin 1938). This gives

E [X ]=73, and so E[V(t)]=0.072 and ε=3.9.

The dramatic effect of parameter evolution estimations on a

possible value ofN(t) can be seen in the following. Indeed, with

more recent estimations (Diehl et al. 2006; Maccone 2010), we

obtain λ=0.07 and hence, we can have

1. with E[X ]=200, we obtain E[V(t)]=14 and ε=0.27,

2. with E[X ]=10 000, we obtain E[V(t)]=700 and ε=0.04,

3. with E[X ]=73, we obtain E[V(t)]=5 and ε=0.45.

All these considerations give a large probability for detection

of another AIC, depending on the reliability of the new esti-

mations. Starting fromV(t0)=0, the Poisson stochastic process

theory allow us to estimate the average mean time for the

occurrence of a new AIC appearance, which is given by the

inverse of λ (Foata & Fuchs 2002). With the 1961’s Drake

parameters estimation (respectively, recent estimation), this

average time is equal to 1000 years (respectively, 14 years).

Apply to the SETI research programme, if we suppose that we

are alone in our universe, the average mean time for the

occurrence of another AIC should be roughly 14 years with

recent parameter estimations (respectively, 1000 years for the

1961’s Drake estimation), with a standard error of the same

order error.

Conclusion

The proposedmodel allows a first analytic estimation of the SD

of the number of Galactic civilization estimate. In addition, it

provides a temporal structure of the Drake equation which can

help study the influence of several effects on the number of

Galactic civilization estimate. An important case is the notion

of global regulation mechanism (i.e. a dynamical process

preventing uniform emergence and development of life all over

the Galaxy; Annis 1999; Vukotic & Cirkovic 2008). Vukotic &

Cirkovic (2007) investigated the effects of a particular global

regulation mechanism, the Galactic gamma-ray bursts (GRBs)

(colossal explosions caused either by terminal collapse of

supermassive objects or mergers of binary neutron stars), on

the temporal distribution of hypothetical inhabited planets,

using simple Monte Carlo numerical experiments. Here, GRB

is clearly just one of the possible physical processes for resetting

astrobiological clocks. They obtain that the times required for

biological evolution on habitable planets of theMilkyWay are

highly correlated. More precisely, using simulations cosmolo-

gical observations (Bromm & Loeb 2002), they demonstrated

that the correlation (and so the covariance cov(tb, t*)) between

Table 1. Drake equation parameter estimations

Parameters Significations

1961’s estimation

(Drake and Sobel 1991) Recent estimations

N The number of Galactic civilizations that can communicate with Earth

R* The average rate of star formation per year in our galaxy 10 per year Seven per year

(Diehl et al. 2006)

fp The fraction of stars that host planetary systems 0.5 0.5 (Maccone 2010)

ne The number of planets in each system that are potentially habitable 2 1 (Maccone 2010)

fl The fraction of habitable planets where life originates and becomes complex 1 0.5 (Maccone 2010)

fi The fraction of life-bearing planets that bear intelligence 0.01 0.2 (Maccone 2010)

fc The fraction of intelligence bearing planets where technology can develop 0.01 0.2 (Maccone 2010)

L The mean lifetime of a technological civilization within the detection window 10000 See text
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the biological timescale tb and the astrophysical timescale t* is

non-zero. Using the distribution of GRB over the time, an

analytic approach would be to compute the random time T

since the last GRB event. Assuming thatT is independent from

both N(t):t50, the Poisson stochastic process that represents

the appearance of new AIC, and X which represents the

lifetime of these new civilizations, Theorem 1 can be replaced

by a more general form:

Theorem 2. Theorem for the current AIC number under

global regulation mechanisms: with the previous hypotheses

and notations, the number C(T) of AIC present at the time

T is a Poisson distributed random variable with parameter

m(t) = λ
�t

0
r(u) du, where λ is the rate parameter of the AIC ap-

pearance Poisson stochastic process, r(u) is the survival function

of AIC lifetime random variable X and T is the random variable

‘time elapsed since the last major global regulation event’.

This result follows from the above fact that

E [C(t)] = m(t) = λ
�t

0
r(u)du, which can be rewritten as

E [C(T )|T= t]=m(t), where E [.|.] is the conditional expec-

tation operator. This last formula is called the conditional

expectation of C given T= t. Since we do not know the true

value of t since the last GRB event, we must consider the new

random variable mWT=m(T )=E [C|T]. Future works will

explore this result. Especially, it would be suitable to obtain a

formula E [C(T)] = λE[
�T

0
r(u)du] where the expectation is

computed using the global regulation event (in particular GRB

events) distribution over the time. This analytic approach

could provide an accurate analysis of classical Monte-Carlo

simulations (Vukotic & Cirkovic 2008; Forgan 2009, 2011;

Hair 2011). For instance, Hair (2011) and Forgan (2011) had

proposed in their twomodels that the distribution of the civiliz-

ation arrival times is Gaussian-distributed. In principle, this is

equivalent to allowing theAIC appearance rate parameter λ, to

varying in time. More precisely, the rate parameter λ(t)

corresponding to the Forgan model (Forgan 2011) should be

an increasing function of [0, μ], where μ is the mean of the Hair

(2011) and Forgan (2011) arrival time Gaussian distribution

(μ has the same order of magnitude than the Hubble time,

tH=13700Myr), and a decreasing function of [μ, +∞].

Nevertheless, this work is mainly the first approach to model

AIC appearance, but future studies would have to address the

fact that AIC appearance in habitable planets should be

correlated with the Galaxy’s star formation history (Heavens

et al. 2004; Juneau et al. 2005; Vukotic & Cirkovic 2007) and

the location of the GHZ (Gonzalez et al. 2001; Lineweaver

et al. 2004; Prantzos 2008; Gowanlock et al. 2011). For

instance, Planet formation and star formation could be

included in the first AIC appearance model by extracting the

original Drake parametersR*, fp and ne from λ and let them to

vary in time.

Appendix: Demonstration of the theorem

The proof of the theorem can be divided into three parts

(Foata & Fuchs 2002).

Lemma 1. Let r(u):=P{X5u} be the survival function of X

and r(t) :=
1

t

∫t

0

r(u)du. If U is a uniform random variable on

[0, t], independent of X, the survival function of U+X is given

by P U + X 5 t{ } = r(t).
Proof. Following the fact that the density of U is 1

t
I[0,t[,

where I[0,t[(x) is 0 outside the interval [0,t[, we have

P U + X 5 t{ } =
1

t

∫

t

0

P U + X 5 t U = s|{ } ds

=
1

t

∫

t

0

P X 5 t− s U = s|{ } ds

=
1

t

∫

t

0

P X 5 t− s{ } ds,

P U + X 5 t{ } =
1

t

∫

t

0

r(t− s)ds =
1

t

∫

t

0

r(u) du,

which are equal to r̄(t) by definition.

Lemma 2. The generating function h(u):=E [uC(t)] of C(t) is

given by e−λtr̄(t)(1−u).

Proof. For k50, let Yk := I Sk+Xk5t{ }. Obviously we have

C(t) =
∑N(t)

k=0 Yk, and so

h(u) =E uC(t)[ ]

=
∑

n50

E uC(t) N(t) = n|
[ ]

P N(t) = n{ }

=
∑

n50

E uY0+Y1+...+Yn N(t) = n|
[ ]

P N(t) = n{ },

h(u) =
∑

n50

E
∏

n

k=0

uYk N(t) = n|
[ ]

P N(t) = n{ }.

Conditionally to the event {N(t)=n} (n51), the system

(S1,S2, . . . ,Sn) has the same distribution than the system

(U1,U2, . . . ,Un) of independent and uniformly distributed on

[0, t] random variables.

For 14k4n, let Zk:= I{Uk+Xk5 t}. We have

h(u)=
∑

n50

E
∏

n

k=0

uZk

[ ]

P N(t) = n{ } =
∑

n50

(E uZ1
[ ]

)nP N(t)=n{ }.

But Z1 is a Bernoulli random variable with parameter

P U1 + X1 5 t{ } = r̄(t). Hence, E uZ1
[ ]

is the generating

function of the Z1 random variable and is given by

E uZ1
[ ]

=
∑

1

k=0

P(z = k)zk1 =1− r̄(t) + u.r̄(t) (Koroliouk 1978).

Finally, we obtain

h(u) =
∑

n50

e−λt(λt)n

n!
(1− r̄(t) + u.r̄(t))n = e−λtr̄(t)(1−u).

Proof of the theorem. We can write h(u) = e−m(t)(1−u) which is

the generating function of a composed Poisson distribution

(Koroliouk 1978) and so, is a Poisson distributed random

variable with parameter m(t) = λ
�t

0
r(u)du.
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