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ABSTRACT

The paper describes a sophisticated and realistic control
and prediction method for the magnetic cleanliness of
spacecraft, covering all phases of a project till the final
system test. From the first establishment of the so-called
magnetic moment allocation list the necessary boom
length can be determined. The list is then continuously
updated by real unit test results with the goal to ensure
that the magnetic cleanliness budget is not exceeded at a
given probability level. A complete example is
described. The synthetic spacecraft modeling which
predicts only quite late the final magnetic state of the
spacecraft is also described. Finally, the most important
cleanliness verification, the spacecraft system test, is
described shortly with an example. The emphasis of the
paper is put on the magnetic dipole moment allocation
method.

1. BOOM LENGTH DESIGN

A spacecraft has many magnetic parts. A minority of
these parts, like travelling wave tubes, batteries,
thrusters, experiments etc., called culprits, consume the
major part of the magnetic cleanliness budget. Therefore
booms are used to place the magnetometer sensor at
save distance from the spacecraft. Their length can vary
from 1 to about 11 m.

This length is a critical design element and it has to be
determined on the basis of globa moment estimations
of the magnetic parts.

The necessary boom length is found when the total field
of all units at the boom tip does not exceed the magnetic
cleanliness budget at a given probability level.

The field at the boom tip is given by (vectors in small
bold, matricesin capital bold):
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where rép istheinitial guess of the position of the boom
tip, r; are the centers of the units and t is the boom
length correction factor. R; are the random matrices of
the allocated unit moments |m|, e’=2[111] is the unit
vector and | is the unity matrix. The index ® stands for
specification point.

Through a Monte-Carlo simulation starting with t°=1
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and r¥9 as a suitable initial guess, the 3¢ field at the
boom tip is determined by random variations of the
unknown directions and moments. The end points of the
random vectors R;-e have to be distributed uniformly on
asphere.

At the start an error &° between the field module
[b*P°(z%)| and the cleanliness specification b™® will be
observed:
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By use of a one-dimensional search on the boom length
correction factor 7 its optimal value of is found when:

T=1%f g(1,r*%=0 (4
The optimal position of the boom tip is then:
rspopt:,ropt.rSP 0 (5)

Or if the boom root r™°t is chosen, the optimal boom
length L becomes:

L OPt=|p °P OPLp oot (6)

The DIMAL software, containing this algorithm, allows
to perform easily parametric scans by varying the
moment allocations and the probability levels, as will be
explained in §2.

2. MOMENT ALLOCATION METHOD

At the start of a project some units are quite well known
from previous projects, some major contributors have to
be identified by magnetic sniffing, and the rest has to be
estimated by the moment allocation method.

In the following phases of the project more and more
units become available for magnetic testing and for the
determination of their MDM (Multiple Dipole Model
[1]). In the budgeting process for unknown units only
the global dipole moment vectors are considered. Their
moment allocations are optimized in order to fit the
field budget.

A magnetic review board would analyze the list
frequently. In such a way early warnings arise when
some units exceed the budget. Thereupon corrective
actions can be defined, whether by changing critical
ferro-magnetic parts or electrical design (loops). When
the involved units cannot be corrected for instance a
magnetic compensation by magnets can be applied, as
has been done for the Ulysses Travelling Wave Tubes
and the Radioisotope Therma Power Generator (RTG).



In exceptional cases shielding with p-metal can be
applied. The allocation list is thus a budget household
tool and it evolves throughout the projects development.

The allocation method distinguishes between three
categories of units (Fig. 1):
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Figure 1. Concept of magnetic moment allocation

The Category I comprises all units or parts which are
quite well known from previous projects, like travelling
wave tubes or thrusters etc. Their moment vectors are
considered as fix.

The Category II comprises all units whose modules of
the moments are known from experience, but whose
directions are unknown. The directions are then subject
of the moment allocation by stochastic evaluation.

Finally the Category III comprises all those units whose
moment vectors are completely unknown and which are
thus the subject of the moment allocation by stochastic
evaluation of both module and direction.

The total Cat. I field is deterministic in both RjI and IijI:
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The total Cat. II field is deterministic in Iml;I and

random in R]-H:
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where A is the moment adjustment factor.

Its optimal value 1" is reached when the 3o budget

constraint is satisfied (see also Eqs. 3 and 4):
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The equal field repartition for Cat. III fields is:
m_ P !
b, = - (11)

Since the Cat. III units are of course located at different
positions 1! this translates into an unequal moment
repartition:

il 1 3
b I Ir%P-r |

Iy _
)= 7l

i
il (ry (12)
The result of this strategy is that units close to the
specification point have a lower moment allowance than
more remote units.

In the allocation process the end points of the vectors
R;-e are uniformly distributed on a sphere, whereas the
non-fixed moments are defined by the equal field
repartition (Eq. 12). The initial guess for the moments is
calculated from Eq.11 which implies the highly
improbable assumption that each Cat. III moment vector
points in the direction of the specification point (first
Gauss position). Thereupon the 3 different parts of the
total field (Eq. 7 to 9) are calculated. Whereas the Cat. |
field b' is deterministic, the Cat. Il and III 3o fields
b" and b" are determined by random variations of the
unknown directions and moments.

At the start an error £° will be observed: (see Fig. 1):
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The moment adjustment factor & appears in Eq. 9 and
13. By use of a one-dimensional search on the moment
adjustment factor A its optimal value of is found when
Eq. 10 1s satisfied. And so are the optimal allocated

Cat. III moments ImlgI P (see Fig. 2):

il =3P iml k=10 (14)

The Fig. 2 shows a shortened allocation list (output of
the DIMAL software) which can contain over 100 units
for a spacecraft. The total field budget is 25nT. The
number of Monte-Carlo runs is 20000. The probability
level is set to 3¢ and the associated total field module
turns out to be 25.1nT, thus very close to the budget.



Input:

Total allocated field at MAG-location [nT] = 25

MAG-location [cm] in §/C frame =-225.0 75.0 339

Number of trials = 20000

Number of classes = 200

Confidence level [%] =30

Legend of Qutput:

XYz = unit coordinates in $/C frame [cm]

r = distance between unit and MAG-location [cm]

b = field of unit at MAG [oT] (FGP)

m = unit moment [Gem® = 10-3Am? = mAm?] = max.allocation

CATI = lmown moment and unknown direction

Cat1l = unknown direction of known moment

CatIIT = unknown moment and unknown direction

FGP = First Gaussian Position

unit x ¥ z T b m 5
P00 B/L 25.1  -86.0 196.7  343. 0.0] 10. [[cat IL |
U 8/8 -68.7 -86.0 7.6  228. 0.2 10. [cat Ix
BOU 56,0 -91.0 4ar.0 326. 2.1 366, |cat IXIT
Battery 1 86.5 =91.2 45.5 353. 0.0 10. |cat IT
Battery 2 86.5 -91.2  83.0  356. 0.0 10. [cat I
Battery 3 61.0 -91.2 83,0 334, 0.1 10, [cat I
SADM 4y 0.0 91.1 132.0 246. 0.3 20. |cat IT
SADM -y 0.0 -91.1 132.0 296. 0.2 20. |cat II
SADR o -89.2 30.5 262 . 0.1} 10. |cat IT
Solar Array -y 1 0.0 -359.7 132.0  499. 0.2] 125, [cat r
Solar Array -y_2 0.0 -644.5 132.0  760. 0.1 125, [cat T
Sclar Array -y 3 0.0 -929.3 132.0 1034. 0.0 125. (|cat T
e 59.3 0.5 83.0 289, 01| 10, Jeat 1
RAl 5.0 20.0 130.0 320. 2.1 344. |cat IIT
RW2 5.0 20.0 %0.0 310. 2.1 314. |cat III
R 75.0 -20.0 130.0  329. 2.1| 375. |cat 1x
R 75.0 -20.0  %0.0 320, 2.1 314, |cat mmx
Gyro Unit 1 -20.0 -90.5 58.8 265 . 2.1 195. |cat IrT
Gyro Unit 2 =-20.0 -90.5 83.8 269. 2.1 203. |cat IIT
GyTo Unit 3 - tha 0.0 00 0.0 2, 21| 165, feat mx
Field from Cat I moments = 0.6nT

Field from Cat I4Cat Il moments (FGP) = 7.2nT

Field from Cat I+Cat [l moments (50%) = 18nT

Field from Cat IIl moments (FGP) =106.4 nT

Field from Cat II4+Cat Ill moments  (FGF) =113.3 nT

Worst case field from all moments  (FGP) =113.9nT

Total field allocation (Spec) = 250nT

Total field at 99.50% confidence level = 251nT

Figure 2. Typical moment allocation list (red items) for
satisfaction of the budget constraint at 3o

Dipole Moment Allacation
1d Allocation for Moments
ds accumulating to Bspec (25 nT) at 3 Sigma

© K.Mehlem

Figure. 3. Example of a compliant field vector
combination (30)

The Fig. 3 shows one possible 3¢ example of individual
field vectors (yellow) summing up to the budget (green
line).A surprising fact is that the worst case (all
moments pointing in the first Gauss position to the
specification point) is 113.9nT, thus 4.5 times higher
than the 30 case. This means that the present moment

allocation method avoids the disadvantages associated
with conventional, more penalizing budgeting.
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Figure. 4. Example of a compliant field vector
combination (30) and allocated moments

The Fig.4 shows the allocated moments bmyl (red
squares) and a possible 3¢ example of individual field
vectors b;. The module of the vector sum including all
units from 1 to 1 1s: |Z§=1 b; | This quantity (green, blue)
is growing from the ‘left’ and reaching the budget at the
‘right, top’.



The Fig. 4 represents an example. Also the allocated
moments are shown (red squares). As a consequence of
the equal-field repartition (Eq. 12) some units have a
large moment allocation due to their greater distance
from the specification point.

On the Fig. 3 an example drawn from the 20000 3o
solutions 1s visualized in 3D. The yellow field vectors
meet the spec (green line) (see also Fig.4). The
combination of the individual field vectors appears
remarkably crumpled compared to the severity of the
implied probability. They would stretch out by a factor
of more than 4 in the present case.

The allocation method presented is thus a powerful and
well controllable simulation tool which is of great value
for the engineers dealing with magnetic cleanliness,
whether it is the person doing unit tests, who can pull
the alarm, or the review board which derives corrective
actions.

3. SYNTHETIC SPACECRAFT MODEL

In a complementary activity the unit models after test
are integrated into the synthetic spacecraft model via
coordinate transformations. The equations of these
transformations of a dipole 1 from the test to the
spacecraft frame are (see Fig. 5):

Mi=[r; m}] (15)
with r=u+R"* ¢'+R>-R" 1 (16)
and with m}=R"*R{"m; (a7

R™ is the coordinate rotation matrix leading from frame
a to frame b. r'is the dipole position in test frame; t* is
the reference hole of the unit in the unit frame; v’ is the
reference hole of the unit in spacecraft frame; r® is
finally the dipole position in the spacecraft frame. Much
care has to be taken in determining correctly the
different rotation matrices R*.

The synthetic spacecraft model is defined as the
collection of all unit MDMSs in the array:

M
Mé=| M (18)
M

The field at the specification point (boom tip) is then:
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Figure 5. Concept of MDM coordinate transformations

Figure 6. shows an example of units transformed from
test frame to spacecraft frame. The different unit models
M could be visualized as vectors inside each unit box.
(Cluster) [3]. The ensemble of these vectors form the
synthetic spacecraft model (Eq. 18).
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Figure 6. Units assembled in a synthetic spacecraft
model (color indicates moment strength) (H.Kuegler)

As already mentioned above the eventual induced
magnetic moments in some soft-magnetic materials by
neighboring magnetic units on board the spacecraft,
together with some possible coordinate transformations
errors, can be accountable for large differences (>30%)
between the synthetic and the tested MDM, as has been
observed in the case of Cluster.

In this respect the manpower-intensive generation of a
synthetic spacecraft model versus achievable precision
should be subject of a careful trade-off.



4. SPACECRAFT SYSTEM TEST

The ultimate verification of the magnetic cleanliness of
a spacecraft is the so-called magnetic system test. As
mentioned already, some units on board a spacecraft
containing soft-magnetic material, can change their
magnetic properties by induced moments from other
units. By the magnetic mapping of the fully integrated
spacecraft these effects are then included in the
spacecraft model.

First the spacecraft model M® is determined by use of a
NLP solver as described in [1], and thereupon the field
at the specification point is calculated (Eq. 19). If the
cleanliness specification is violated one possible
technique which has been extensively practiced in the
past, could be the compensation of the spacecraft by use
of compensation magnets. The magnets are calculated
by the following formulas [1]:

(D™" being the pseudo inverse of D™¢)
Jmmag opt— -Dmag+'Dto' o opt (20)

D™ contains the matrices D;’ﬁg:
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Figure 7. Field compensation at the FGMI and FGMO
locations by use of 1 magnet only (photo: ESA/IABG)

An example of wusing additional magnets for
compensation of a spacecraft (Cluster) [2] is shown on
the Fig. 7. The white insert shows the fall-off fields
along the spacecraft boom, both for the uncompensated

and for the compensated state of the spacecraft. In the
present case the compensation (red line) was done with
only one magnet which means that according to Eq. 20
only a least square fit solution could be obtained. Still,
the fields at both magnetometers (FGMI and FGMO)
were reduced by about one order of magnitude. The
cleanliness specification of 0.25nT was therefore
verified with a comfortable margin.

5. CONCLUSION

The magnetic dipole allocation method is a powerful
and sophisticated magnetic field budget control tool
which allows a justified, tailored magnetic moment
allocation also for magnetically unknown units and
equipment already in an early stage of a project.

The synthetic spacecraft model is also a possible control
tool, however with limited accuracy due to mutual
induction effects which cannot be included in the
numerical superposition of dipoles.

The ultimate verification of the cleanliness state of a
spacecraft is undoubtedly the system test. It delivers the
most precise information about the magnetic state of the
spacecraft and it allows last-minute corrective action if
required, for instance in form of additional hard-
magnetic compensation magnets.
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