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Abstract 

The phase curve of an asteroid shows how its brightness changes as a function of solar phase angle. The pro-
ject of determining an asteroid’s phase curve is challenging because it combines four photometric objectives:  
determination of the asteroid’s rotational lightcurve, monitoring the asteroid over a wide range of solar phase 
angles, high photometric accuracy, and FOV bridging or “all-sky” photometry to link the asteroid’s brightness 
from night to night. All of these are important because the different shapes of phase curves (caused by different 
surface characteristics) have a subtle effect. The typical phase curve project requires photometric accuracy of 
about ±0.03 mag or better; commits the observatory to a dozen nights, spread over about 2 months; and com-
mits the astronomer to a set of data analyses that is significantly more extensive than is required for a typical 
“differential photometry rotational lightcurve” project. In this paper I will describe how I have gathered the neces-
sary data, the procedures for data reduction, and some challenges in determining the slope parameter G. 

1. Introduction 

An asteroid’s phase curve contains valuable in-

formation related to the surface characteristics of the 

asteroid. Amateur efforts to determine asteroid phase 

curves are a much-needed addition to our knowledge, 

because not many asteroids have well-determined 

phase curves, and few professional astronomers are 

doing such studies. 

The purpose of this paper is to explore a few 

practical aspects of the asteroid phase curve project: 

x What does a “good” phase curve look like? 

x What range of solar phase angles must be cov-

ered, and how long is this likely to take? 

x What photometric accuracy is required? 

x Should magnitudes be transformed to the stan-

dard V-band, or left in instrumental v-band? 

x Should the phase curve plot mean magnitude or 

peak magnitude of the lightcurve vs. solar phase 

angle? 

x Does the lightcurve change as the solar phase 

angle changes? 

x What procedure do the pro’s use to determine 

phase curves from photometric data? 

x For what level of accuracy should you strive 

when determining H and G? 

I’ll describe these topics in the context of two 

phase curve projects that I did in the past year. One 

of these, 1130 Skuld, was immediately successful 

(Buchheim, 2010). The other, 535 Montague, was 

more troublesome, but was a useful learning experi-

ence. The result for it will be submitted to the Minor 

Planet Bulletin shortly. 

 

2. Phase Curve Background 

The geometry of the observation of an asteroid is 

illustrated in Figure 1. The solar phase angle (.) is 

analogous to the moon’s phase; when . = 0°, the as-

teroid is “full” (i.e. fully illuminated). When . § 90°, 

the asteroid is in quadrature and is illuminated in the 

same way that a first- or third-quarter Moon is in that 

half of it its visible surface is in light and half is in 

darkness. Because of where they orbit, outside 

Earth’s orbit, main belt asteroids don’t reach solar 

phase angles much greater than about 20-30°. For 

example, think of Mars. It shows a “phase defect” but 

you never see a crescent Mars. The farther an object 

orbits from the Sun, the smaller the maximum ob-

servable solar phase angle. More distant objects (e.g. 

Jupiter Trojan asteroids) display a smaller range of 

solar phase angles and Kuiper-belt objects are so far 

away that Earth-bound observatories can observe 

them at solar phase angles of only . § 0° ± 2°. 

On the other hand, near-Earth asteroids during 

their close approaches to Earth can be observed at 

quite large phase angles and, of course, spacecraft 

can arrange to observe their targets at large phase 

angles (Newburn et al., 2003). 

The motion of Earth and the asteroid in their re-

spective orbits around the Sun gradually alters the 

solar phase angle. For a typical main-belt asteroid, 
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the solar phase angle will go from about -20° to 

nearly 0° (at opposition) over an interval of 2 to 3 

months and then increase to about 20° over another 2 

to 3 months. 
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Figure 1:  Geometry of orbits:  Earth distance, Sun dis-
tance, and solar phase angle 

2.1 Characteristics of Bi-directional 

Reflectivity 

Imagine a narrow beam of collimated light aimed 

at a flat surface. Perhaps the surface is covered with 

snow, or with dirt, or with rocks. The surface isn’t 

smooth, so it won’t reflect the light like a mirror. In 

most real surfaces, there is a “forward gloss” (a no-

ticeable amount of the incident light comes off in the 

direction that a mirror would have sent it), a “back-

scatter” (a fair amount may be reflected back toward 

the light source), and a general diffuse reflection that 

goes off in all directions. The smoother the surface, 

the more light is likely to be directed into the forward 

gloss. In a perfectly smooth (glassy ice) surface, quite 

a bit of the reflected light is directed into the forward 

gloss, giving a nearly specular reflection from the 

mirror-like surface. If the incoming beam is directed 

exactly perpendicular to the surface, then the “for-

ward gloss” is directed back toward the source. This 

is the geometric situation that you have at solar phase 

angle = 0°. The forward and reverse glosses are both 

directed toward the observer. There can be a pro-

nounced increase in brightness near zero solar phase 

angle as a result of this phenomenon, which is the so-

called “opposition effect”. 

There are at least three physical effects that give 

rise to the opposition effect:  “shadow hiding”, “mul-

tiple scattering”, and “coherent backscatter” (see 

Lumme & Bowell, 1981). 

 

2.2 Reduced Magnitude 

Throughout an apparition, the solar phase angle 

isn’t the only thing that changes. The Earth-asteroid 

and Sun-asteroid distance also change continuously. 

These changing distances naturally affect the aster-

oid’s observed brightness and work in combination, 

not independently. This leads to the concept of “re-

duced magnitude” to account for the changing dis-

tances, which is defined by  

 

VR = V - 5log(RD)   Eq. 1 

 

Where 

V observed V magnitude 

R distance Sun to Asteroid (in AU) 

D distance Earth to Asteroid (in AU) 

 

VR is the brightness that the asteroid would have 

had if it were placed at 1AU from the Sun, and ob-

served from a distance of 1AU from the observer. By 

placing it at a standard distance, VR “backs out” the 

effect of changing distance. Reduced magnitude is 

also sometimes written “VR(.)” to show that it is a 

function of solar phase angle (.). Another standard 

nomenclature, used in the standard phase curve 

model, is that reduced magnitude is called “H(.)”, 

and the special value H(0) when solar phase angle is 

zero is called simply “H” (the absolute magnitude of 

the asteroid). 

For main belt asteroids, these distances change 

slowly, so that they can be treated as if they are in-

variant over a few nights. However, over the couple-

month time duration of a phase curve project, they 

probably change noticeably. Plotting VR vs. . shows 

how the brightness is changing solely due to the 

phase effect. That is the essence of the phase-curve 

project. 

Add to above the fact that the asteroid is also ro-

tating, meaning that its brightness changes on a time 

scale of a few hours as it spins. If the asteroid’s 

brightness is measured many times as the apparition 

progresses, its brightness changes due to all three 

effects. 

 

2.3 Standard Phase Curve Model   

As described in Bowell et al. (1989), the two-

parameter “H-G” model uses the following equation 

to describe the brightness (in reduced magnitude) of 

an asteroid as the solar phase angle changes: 

 

)]()()1log[(5.2)( 21 DDD )�)�� GGHH    Eq. 2 
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Where: 

H The “reduced magnitude” at zero phase 

angle. It is sometimes written H0 to ex-

plicitly denote that it is D = 0°, or H(1,1,0) 

to denote that it is based on sun earth dis-

tances being 1 AU and D = 0°. These all 

mean the same thing. 

1) , 
2)   These are functions that describe the sin-

gle and multiple scattering of the aster-

oid’s surface. These functions are given in 

Appendix A, but if you are studying a 

main-belt asteroid and using MPO 

Canopus, you don’t need to deal with 

these equations because MPO Canopus’ 

H/G Calculator handles them.  

G  The “slope parameter” that describes the 

shape of the phase curve. The fundamen-

tal goal of the phase curve project is to de-

termine G by plotting the data points (H 

vs. .) and finding the value of G that is 

the best fit to the data. 

 

2.4 What Does a “Good” Phase Curve Look 

Like? 

I searched the NASA ADS abstract service for 

“asteroid phase curves” and spent a few days at the 

local university library skimming through Icarus and 

the Astronomical Journal to find several papers de-

scribing asteroid phase curves that were developed by 

professional astronomers. Figure 2 is an example 

from Harris et al. (1989) of a “good” phase curve. 

Note several features: 

x The phase coverage is broad, from very low 

(near-zero) phase to phases greater than 20°.  

x The phase coverage is dense, giving confidence 

that the data have captured the essential shape of 

the curve. 

x The photometric accuracy is excellent. In this 

particular case, the error bars are barely larger 

than the plotted symbols. 

That is a challenging quality level for which to 

strive, but one that seems to be important. There are 

strong indications that the phase curve, specifically 

the slope parameter (G), is telling us something about 

the albedo and surface texture of the asteroid. How-

ever, G only changes by a few tenths, so the pho-

tometry and data analysis need to be quite accurate if 

the phase curve is to be reliable at this level. A few 

years ago, in my first attempt at a phase curve, the 

curve looked nice, but a combination of insufficient 

photometric accuracy (“only” about ±0.05 mag) and 

insufficient phase coverage (. § 2- 12°) left me un-

able to distinguish between two competing values (G 

= 0.15 vs. G = 0.25) that had been previously pub-

lished. 

It is also worthwhile noting that the data in Fig-

ure 21 deviates somewhat from the H-G model curve, 

particularly in that the data show a larger and sharper 

opposition effect than does the H-G model. This is 

not a unique example. Belskaya and Schevchenko 

(2000) show several phase curves where the data 

deviates from the H-G model. Getting more and bet-

ter data provides a better understanding of the oppo-

sition effect and of asteroid surface properties. 

 

44 Nysa phase curve
(replotted from data in Harris et al (1989)
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Figure 2:  Example of a “professional” phase curve. 
Replotted from data in Harris et al. (1989). 

2.5 What is the “Typical” Expected Range of 

G for Different Asteroid Types? 

Both Harris (1989) and Lagerkvist and Magnus-

son (1990) determined slope parameters G for a 

goodly number of asteroids and correlated G to the 

asteroid taxonomic type. They found values ranging 

from G § 0.04 ±0.06 for low albedo (e.g. C-type) 

asteroids to G § 0.45 ± 0.04 for high-albedo (e.g. E-

type) asteroids. They showed a definite correlation 

that low-albedo objects had low G values and high-

albedo objects had high G values. 

These results mean that we don’t expect to see a 

very wide range of G values. In order to provide a 

meaningful G value that can distinguish between 

different asteroid types or other asteroid properties, 

the accuracy of our determination must be pretty 

good, say within a formal error of ± 0.05 or better. 

Before going on, it’s important to say that find-

ing a value for G is not sufficient on its own to de-

termine taxonomic class. Without other supporting 

evidence, the best being spectral data, the most one 

can say is that value of G that is found is consistent 
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with a particular taxonomic class or, more generally, 

objects of low or high albedo. 

  

2.6 Can My Phase Curve Distinguish 

Between Different Values of G? 

The nature of the need for quite good accuracy 

can be illustrated by Figure 3. Here, two phase curves 

are plotted, one with G = 0.1 and the other with G = 

0.3. How difficult is it to distinguish between these 

curves? If we have noise-free data ranging from . § 

0° to . § 30°, it’s easy to tell the two curves apart. 

For example, the brightness difference between the 

curves at . § 25° is about 0.25 mag. If we only had 

data going to, say, . § 10°, it would be harder to tell 

the two curves apart, since at . § 10° the two curves 

differ by only about 0.15 mag. So you can see that 

it’s important to follow the asteroid out to fairly large 

solar phase angles. 
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Figure 3:  Theoretical phase curves, illustrating shape 
effect of “G” value and importance of reaching large 
solar phase angle. 

Now suppose that we missed the nights near 

minimum solar phase angle and started observing the 

asteroid at . § 3°. We don’t know what its brightness 

was at . § 0°, so can we tell the difference between 

the G = 0.1 curve and the G = 0.3 curve just by their 

shapes and slopes? That is the situation shown in 

Figure 4. The curves are virtually identical, differing 

by only 0.05 mag over the range . = 3-12°. Without 

those critical “near-zero solar phase” data points, it is 

very difficult to distinguish between different values 

of G. The H/G calculator utility in MPO Canopus 

will give you an answer, but the uncertainty will be 

large enough that the result can’t be used to reliably 

distinguish between different taxonomic classes. 

It is important to get those critical “minimum 

phase angle” data points, because the G calculated 

from observations only at . > 5° can be misleading. 

Hasegawa et al. (2009) noted this problem in their 

study of 4 Vesta. Using data from . § 1.5° to 24°, the 

inferred value was G = 0.32 ± 0.04, but when the 

additional data points down to . = 0.12° were in-

cluded, they determined the (presumably “correct”) 

significantly smaller value G = 0.23 ± 0.02.  
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Figure 4:  Reaching very low solar phase angle (.§ 1

o
) is 

important, to distinguish G values and observe the “op-
position effect”. 

2.7 Minimum, Maximum, or Average 

Magnitude? 

Asteroids change brightness as the rotate, so the 

long-term change in brightness caused by the chang-

ing solar phase angle is superimposed on a (usually) 

much more rapid cyclic variation in brightness due to 

the rotational lightcurve. 

Should the phase curve use the average, maxi-

mum, or minimum magnitude of the asteroid’s rota-

tional lightcurve?  There seems to be no single an-

swer to that question in the literature. The initial for-

mal recommendation of the H-G system, reported in 

Marsden (1985), is silent on the subject. The seminal 

description of the H-G system (Bowell et al., 1989), 

explicitly relates it to the mean (average) V-band 

magnitude. Yet, some other examples of phase curves 

reported in the literature are based on maximum light, 

such as Harris (1989). 

There are theoretical and mathematical reasons 

to expect that the slope parameter of the phase curve 
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may be slightly different depending on which points 

of the lightcurve are used. For example, Helfenstein 

and Veverka (1989) report calculations for the ideal-

ized cases of spheres and ellipsoids whose surfaces 

follow a standard reflectivity law. The phase curves 

for maximum, mean, and minimum magnitude have 

slightly different slope parameters. The difference 

isn’t great, but it neither is it trivial. The difference 

between their “max light” vs. “min light” phase 

curves amounts to about 0.3 mag at a solar phase 

angle of 30° (after the rotational lightcurve effects are 

removed). 

I also note that there is a subtle risk in the termi-

nology regarding “mean” or “average” magnitude. 

First, the average magnitude is not the same as aver-

age brightness (or average light) – that logarithmic 

function in the definition of magnitude is important!  

Most published phase curves that use the mean mag-

nitude state explicitly that it is ‘mean magnitude’, not 

‘mean light’ that is being calculated. If the rotational 

lightcurve is complex, then the determination of the 

mean (average) magnitude may not be obvious. The 

formal definition of “mean magnitude” is that the 

rotational lightcurve encloses an equal area above 

and below the mean-magnitude line (Gehrels, 1956). 

That is, the mean magnitude is not necessarily the 

midpoint between the brightest peak and the faintest 

valley of the rotational lightcurve. 

Considering that defining and identifying the 

“maximum” and “minimum” brightness of a real as-

teroid lightcurve is pretty unambiguous, and figuring 

that the possible difference between the phase func-

tions based on “max” versus “min” brightness might 

be interesting, I’ve chosen to determine both the 

“max” and “min” brightness phase curves for my 

targets. As it worked out, in the case of 1130 Skuld 

there was almost no difference in G as determined by 

max vs. min brightness. For 535 Montague, the “max 

brightness” phase curve appears to have a signifi-

cantly different slope than does the “min brightness” 

phase curve. 

 

3. Phase Curve Error Analysis 

If you are mathematically inclined, you can un-

derstand the importance of these features by refer-

ence to the linear error analysis given in Asteroids II.  

Suppose that we have measurements of H(.) at 

many different solar phase angles. Call the phase 

angles where we have measurements .i, with i = 1, 2, 

3, ..., N. 

The phase curve is just the graph of H(.) vs. . 

and so the graph will have N data points. We will fit 

the data points to the curve of Eq.2 to get the best-fit 

value of G. The H/G Calculator utility in MPO 

Canopus is a particularly convenient to do this curve 

fitting. 

If we make a simplifying assumption that the 

photometric accuracy is the same for all data points, 

then the expected error in the estimated (best-fit) 

value of G is: 

� �22

0

2 0615.01132.00673.0
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2 GGNN
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G

i

i
��

�
�

�
�
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¦ DD

V
 Eq. 3 

In this equation 

1 is the RMS photometric error in magnitudes 

(approximately 1/SNR). Obviously, smaller 1 is bet-

ter, achieved by higher SNR in the photometry. 

N is the number of solar phase angles at which 

we have data points. The square root term with “N-2” 

in the denominator demands that we make N (the 

number of data points) greater than 2. If N = 2, then 

we have no knowledge about the uncertainty in the 

slope parameter, G. This isn’t so mysterious if you 

remember that the phase curve has 2 parameters (H 

and G), hence with any two data points we can find a 

curve that is a perfect fit to the data, but there is no 

information about the probable error in the fit that 

might be caused by noise in the data. As long as N � 

5, the square-root term is not much larger than 1. 

.i are the solar phase angles at which we have 

data (with i= 1, 2, 3, ..., N), and 

.0 is the average phase angle,  

 

� �¦ 
i

iN DD 10  

The term involving the sum of the squares of the 

phase angles at which data points are given (¦ 2

iD ), 

and the average phase angle 
0D  is a very important 

contributor to the error in G. A couple of observa-

tions about this term help to understand its signifi-

cance. First, if we have data at only a single phase 

angle, then 
0DD  

i

, and, therefore, the denominator 

of this term equals 0. In this case, the uncertainty in 

G becomes indeterminate. That is, if we have only a 

single data point, then we know nothing about the 

shape of the curve and, hence, nothing about G. Sec-

ond, the greater the range of solar phase angles cov-

ered by the data set, then the larger this denominator 

becomes and so the more accurately we’ll know G. 

For example, suppose that we have data at phase 

angles 0, 2, 4, and 6 degrees. The number of data 

points is N = 4, the sum-square is 5612  ¦ iD , and 

the mean phase is 30  D . The resulting value of this 

term is  and 1/[ ... ] = 0.22. Now, suppose we get two 

more data points, at . =8 and 10 degrees phase angle. 

Then we have N = 6 data points, the sum-square 
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phase is 2202  ¦ iD , the average phase angle is 

now 50  D , and 1/[ ... ] = 0.12. So, getting those 

two more data points at larger phase angles provided 

a nearly two-fold improvement in the accuracy of our 

determination of G. 

There is a tricky point here: it isn’t just the fact 

that we had additional data points, but also that they 

were spread over a wider range of phase angles. The 

dispersion is described by the term > @ 2/12

0

2 DD Ni �¦ , 

and it is the dispersion that is  important. Having data 

points spread over a wide range of solar phase angles 

makes this term larger and so improves our estimate 

of G. This is reasonable, since in order to determine 

G we are looking at the shape of the magnitude vs. 

phase graph, but at the curvature in the graph, and 

this requires both many data points (to get the benefit 

of averaging) and a wide spread in the phase angle 

(to better display the curvature). 

Now, let’s look at “typical” values of these 

terms. 

1 is the photometric accuracy. If we have SNR = 

100 on both target and comp star, then we expect to 

be able to get 1 § 0.014 magnitude (assuming no sys-

tematic errors...) 

The term 
2�N

N  ranges between about § 1.73 to 

1.12 (for N= 3 to 10 data points). 

 

The term 

¦ � 2

0

2

1

DD Ni

 ranged from 0.22 to 

0.12 in the example above. If we had equally-spaced 

data points at 0, 2, 4 ... 20 degrees, then this term 

would be 0.048, and it would get as small as 0.030 if 

we could go all the way to phase angle 28 degrees. 

The term involving G, 

 

� �20615.1132.0673.

1

GG ��

  

varies between 14.9 (for G = 0) to 42.3 (for G = 

0.55), over the reasonable range of expected values. 

Of course, you can’t do anything to affect this factor. 

Only 1, N, and the range of . values are under 

the observer’s control, so by far the most significant 

things you can do to improve the accuracy of your 

estimate of G are: 

x Get high signal-to-noise ratio, and properly cali-

brate your fields, to achieve good photometric 

accuracy. Shoot for 1 � 0.02 mag or better. 

x Get data at as many phase angles as possible, 

over as wide a range as possible. Take advantage 

of opportunities when an asteroid is at very low 

phase angle (. < 1°), and follow the asteroid as 

long as practical to get up to high solar phase an-

gle (. > 15°). 

 

If our goal is to get ûG § 0.05 or better, then we 

need SNR > 100 and the dispersion term < 0.14. A 

little playing around with the numbers demonstrates 

that this implies a requirement for at least 5 data 

points, spread out between . § 0° to at least . § 15°, 

and photometric accuracy better than ± 0.03 mag. 

 

4. Determining the Phase Curve 

The procedure I use for measuring the phase 

curve has the following steps. 

 

Observations 

Planning and scheduling 

CCD photometry of the asteroid lightcurve 

Calibration of each night’s comp stars at my ob-

servatory, or at a remote internet observatory 

Data reduction 

CCD image reductions 

Differential photometry: Lightcurve reduction 

and Fourier curve model 

Data Analysis 

Put differential lightcurves onto a single baseline 

and determine asteroid color index 

Download Asteroid dynamical parameters:  solar 

phase angle, Earth distance, and Sun distance 

Translate lightcurves from V-mag to reduced 

magnitude VR 

Determining brightness at selected rotational 

phase points (max and min brightness) by using 

“actual” data points or “extrapolation” to 

min/max brightness using Fourier fit curve 

Plot the phase curve (VR vs. .) 

This is a project for which you need to enjoy the 

time at your desk and computer as much as you enjoy 

your time in the observatory under the stars. Con-

vince yourself that the data reduction and data analy-

sis is really interesting!  Constructing a phase curve 

will stretch your CCD photometry skill compared to 

differential photometry for rotational lightcurves. The 

project of determining an asteroid’s phase curve is 

challenging, because it combines four photometric 

objectives: determination of the asteroid’s rotational 

lightcurve, following the asteroid over a wide range 

of solar phase angles, doing either FOV bridging or 

“all-sky” photometry to link the asteroid’s brightness 

from night to night, and achieving quite high photo-

metric accuracy. 
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4.1 Observations 

4.1.1. Planning and scheduling 

There are two big differences between planning a 

“phase curve” project and planning a “lightcurve pro-

ject”. The first difference is the number of nights 

involved. Whereas you can often make a fine light-

curve determination with a few nights’ data, the 

phase curve project requires that you follow the as-

teroid over a wide range of solar phase angles,  which 

usually means devoting about a dozen nights over a 

couple of months. The second difference is the im-

portance of getting lightcurve data on the nights of 

minimum phase angle. For a “lightcurve” project, it 

isn’t particularly important which night(s) you ob-

serve, but if you are going to create a good phase 

curve that captures the “opposition effect”, it is criti-

cal to get data on the nights near . § 0° ± 2°.  

The most attractive targets are those few aster-

oids that reach a very low solar phase angle (. � 1°) 

each year, since they offer the opportunity to measure 

the “opposition effect” that is a distinguishing feature 

of the phase curve. Each issue of the Minor Planet 

Bulletin contains a list of “low phase angle” candi-

dates. You’ll need to sort through that list to identify 

targets that are appropriate for your location and 

equipment. I look for objects whose maximum 

brightness is at least 14 mag (for good SNR) and 

whose declination is higher than about 10 degrees 

(because from my 33 degree latitude and not-so-good 

southern horizon I don’t have many hours per night 

available for targets at low declinations). Because of 

the orientation of the ecliptic (where most of the 

main-belt asteroids are concentrated), this declination 

filter means that autumn and winter are the phase-

curve season at my observatory. 

I begin following my target a few nights before 

minimum phase angle. There is value in getting good 

data both “pre-opposition” and “post-opposition”, but 

there is a risk that the “pre-opposition” data may be 

orphaned if it’s cloudy on the few nights of minimum 

phase angle. From my backyard observatory on the 

coastal plain of southern California, it’s not unusual 

to lose a string of nights to clouds. I haven’t done a 

statistical analysis, but there does seem to be a sur-

prising correlation between an asteroid reaching low 

phase angle and clouds settling over my neighbor-

hood.  

 

4.1.2. CCD photometry of the Asteroid 

Lightcurve 

The project begins with fairly routine imaging 

for asteroid lightcurve observations. I usually use a 

two-color (photometric filters) imaging sequence (R-

R-V-V-... etc) near opposition, when the asteroid is 

brightest and I can get a good SNR with modest ex-

posure duration. Far from opposition I turn to “clear” 

(unfiltered) images to maintain high SNR as the as-

teroid fades. If I’m imaging in the “clear” filter, I still 

scatter a few V- and R-band images into the sequence 

to help link to nights where the images are primarily 

V- or R-band. 

Making several nights with two-color image sets 

enables me to determine the asteroid’s color (V-R). 

Color index is useful for two reasons. First, it is nec-

essary to know the color index during data analysis in 

order to transform the C-band images to V-

magnitudes. Second, it confirms that the asteroid’s 

color does not change as it rotates. (Yes, I know that 

the conventional wisdom, and all published data says 

that the full-disk color is essentially invariant at the 

±0.05 mag level, but who knows?  There might be a 

surprise waiting to be discovered!) 

I noted in the error analysis above that getting a 

good phase curve demands quite good photometric 

accuracy. Harris and Young (1989) is a strong exam-

ple of this. They strove for photometric accuracy of 

“a few thousandths of a magnitude”. They also ad-

vised staying on the instrumental (b, v, r) system to 

maintain this level of differential photometric accu-

racy because once transformations are done (to get 

onto the standard B, V, R system), it is very difficult 

to achieve much better than 0.02 mag accuracy. Un-

fortunately, I wasn’t able to follow this advice fully 

(see the next section), and their guesstimate of 0.02-

mag accuracy is about what I got overall. 

 

4.1.3. Calibration of Each Night’s Comp Stars 

Because the essence of the phase curve project is 

the determination of how the asteroid’s brightness 

changes, it is necessary to know the comp star 

brightness. There are two approaches that can be 

used:  “linking” of comp stars from night to night (on 

the instrumental system), or “all sky photometry” to 

determine the B-V-R magnitudes of comp stars from 

all nights. 

From a good observing site, the easiest way to do 

this is to link each nights comp stars to the preceding 

night. The idea is to take a short break near culmina-

tion, move the scope to the FOV of a “reference 

night”, take a few images (in all colors, if you’re do-

ing two- or three-color series), and then return to the 

current night’s asteroid lightcurve series. Having im-

ages of “tonight’s comp stars” and the “reference 

night’s” comp stars, both at the same (low) air mass 

enables you to link the comp star brightness for all 

nights, relative to the reference night. It’s usually 

most convenient to make the first night of the project 
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the “reference night”, but it doesn’t really matter 

which night is chosen as the reference night. 

For example, suppose that on night 1 we used 

star X as the comp star and on night 2 star Y was the 

comp star (and that the asteroid has moved fast 

enough that we can’t fit both into a single FOV). On 

night 2, near culmination, we took a few images of 

the FOV from night 1 (that contains star X). Make a 

table such as shown in Table 1. 

Assume that we have a reasonable (catalog) 

value of the V-mag of star X = 12.65. This doesn’t 

have to be particularly precise value because we’re 

going to use it as an “anchor point” – all nights and 

all comp stars will refer back to it. If its assigned 

magnitude is off a bit, it will only affect the resulting 

calculation of H; it won’t affect the value of G, which 

is a function of the shape of the phase curve. Further, 

we’ll stay on the instrumental system and not try to 

bring each comp star into the standard BVR photo-

metric system. 

Now on night 2, we measured the instrumental 

magnitude (IM) of both star X and star Y at essen-

tially the same air mass, and at nearly the same time, 

so that we can (hopefully) assume that the atmos-

pheric conditions are the same on all images. 

Since we are assuming that our sensor is linear, 

we can write: 

 

[mag of star Y] - [mag of star X] = [Y2-X2] 

 

The V-mag of star Y is then calculated by: 

 

[mag of star Y] = [mag of star X] + [Y2-X2] 

where 

Y2 the instrumental magnitude of star Y, as 

measured on night 2 

X2  the instrumental magnitude of star X, as 

measured on night 2 

MagX  the “assigned V-mag” that we are using 

to anchor the calculations 

By doing this for each night, and staying on our 

instrumental system, our determination of the phase 

curve won’t be infected by any problems doing trans-

forms. 

Any error in the assignment of a V-mag to the 

anchor star (star X) will result in a comparable error 

in the calculated asteroid absolute magnitude (H). In 

this example, if the “true” magnitude of star X were 

12.50 instead of 12.65, then our calculated value of H 

would be high (faint) by 0.15 mag. However, our 

determination of the phase curve parameter (G) 

would not be affected at all. Remember that G de-

scribes the shape of the curve and not its absolute 

brightness. 

The good news about this is that you can stay on 

your instrumental system and that modest error in 

determining (or estimating) the V-mag of your refer-

ence night’s comp stars won’t upset the shape of the 

phase curve. The drawbacks are:  (1) this method 

requires that each night that you do “linking” must be 

clear and stable so that changing sky conditions dur-

ing the interval when you’re doing the linking don’t 

confuse the results, and (2) near opposition, the low-

est-air-mass will occur at around midnight. The thing 

about that is that I have to be at work early the next 

morning. My preferred operating mode is to set the 

observatory to take a series of images of the target 

field all night – while I’m asleep – which means that 

doing the “linking” isn’t convenient. 

Unfortunately, really clear and stable (“sort of 

photometric”) nights are infrequent at my backyard 

observatory, so I can’t be confident that this “linking” 

procedure will be satisfactory. It isn’t unusual to see 

atmospheric transparency change by a tenth of a 

magnitude or so over less than an hour on a “typical” 

night. So, I have used two different approaches to 

linking the comp stars by “all sky” photometry. 

When a nice clear and stable (“sort of photometric”) 

night arrives, I devote that night to calibrating all 

comp stars from all of the nights used for asteroid 

monitoring. This entails imaging of: 

x a Landolt field near the horizon (air mass § 2) 

x a Landolt field near culmination 

x each FOV used for asteroid photometry 

x one or more additional Landolt fields 

The first two Landolt fields enable me to deter-

mine the atmospheric extinction coefficient (using 

the “Hardie method”). Capturing one or two addi-

tional Landolt fields after the FOV imaging provides 

confirmation that the atmosphere was stable while the 

imaging sessions were being linked. The set of Lan-

dolt fields also enables determination of the system’s 

transforms. The imaging of the asteroid fields should 

be timed to put the FOV images as high in the sky as 

Table 1:  “Linking” comp stars from different nights and FOVs 

 

Night 

 

Star 

IM (near culmination, 

at air mass = 1+0) 

Assigned 

V- mag 

 

Calculation of “Linked” V-magnitude 

1 X -10.50 12.65  

Y -10.650 2 

X -10.40 

 Y2= X1 + [Y2-X2] 

Y2= 12.65 + [(-10.65)- (-10.40)] 
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practical (i.e. at low air mass), to minimize the effect 

of any errors arising from the atmospheric extinction. 

This can entail a fairly long night of imaging. 

For example, I usually do a R-V-V-R image sequence 

of each field of view, using 2 minute exposure in R 

and 3 minute exposure in V. Getting two Landolt 

fields to start, then 8 target FOVs, and wrapping up 

with two more Landolt fields adds up to 2 hours of 

“shutter open” time. Adding in the time required for 

centering on the target field, focus checks, image 

downloading, and occasional autoguiding errors that 

necessitate repeat of a field, this can add up to 3 to 4 

hours of telescope time. (Those of you with fully-

automated systems with high-quality mounts will 

have better efficiency; my system isn’t so fully auto-

mated). 

This is a nice way to spend time under the stars, 

but I’ve found that even on nights that appear to be 

stable at my backyard observatory, there is a risk that 

the data ultimately shows that atmosphere conditions 

changed in the course of the observing session. That 

adds error and uncertainty to the resulting comp star 

calibrations, and sometimes it is painfully obvious 

that the data is wholly unreliable. 

A modern alternative to this is use of a remote 

internet-accessible observatory. There are increasing 

numbers of these facilities located in high-altitude 

sites where very good conditions are routine. Most of 

them have telescopes that are outfitted with photo-

metric filters, and hence are perfect solutions to the 

calibration of comp stars. I have used the Tzec Maun 

Foundation’s “Big Mak” telescope for this purpose, 

and it has been a delight!  From high in the New 

Mexico mountains, the sky is frequently clear, dark, 

and stable (far better and more reliable than my home 

location). The field of the “Big Mak” (a 14-inch f/3.8 

Maksutov-Newtonian with an ST-10 XME and 

photometric BVRI filters) is a good match to my 

home setup of 1 arc-sec pixels and 26 X 38 arc-min 

FOV. Its fast optics give good SNR with 1 to 2 min-

ute exposures. The Tzec Maun observatory provides 

master flats, dark, and bias frames so the observer 

need not use telescope time to gather those. 

This has turned out to be a fine solution to the 

challenge of calibrating comp stars. 

The only drawback that I’ve found is that the 

overall efficiency (“shutter open” time vs. total clock 

time) is worse than at my home observatory. In a two 

hour session I typically get 1 hour of shutter-open 

time. Some of that efficiency loss is due to my own 

weak (but slowly-improving) skill at manipulating 

the remote telescope interface software. 

 

4.2 Data Reduction 

4.2.1. CCD image reductions 

Regardless of where and how the images were 

gathered, they must be reduced in the normal way – 

bias, dark, and flat-field correction. Since we’re striv-

ing for the best possible photometry, don’t skimp on 

this step! 

 

4.2.2. Differential Photometry for Lightcurve 

reduction and Fourier Curve model 

The asteroid’s lightcurve is determined by dif-

ferential photometry in the usual way using MPO 

Canopus. Canopus’ v.10’s “comp star selector” is a 

real aid because it helps record the catalog photome-

try of the comp stars (which is good, but not perfect) 

in the database 

Merge all nights and determine a good lightcurve 

and rotation period for the asteroid in the usual way. 

Then, do two or three things: 

1) Examine the lightcurve carefully to see if there 

are any systematic changes in the shape of the 

lightcurve as the solar phase curve changes. If 

there are, then divide the sessions into two 

groups (or more, if necessary) – one for “low 

phase angle” and another for “high phase angle” 

sessions. Asteroid 535 Montague is an example 

of an object whose lightcurve changes noticeably 

as the solar phase angle grows. Presumably this 

is a manifestation of shadowing effects from to-

pography on the asteroid.  

2) Run a Fourier fit of the lightcurve, at the deter-

mined lightcurve period, and record the Fourier 

coefficients (do this separately for the “low 

phase angle” and “high phase angle” groups if 

you have a case like 535 Montague, where the 

lightcurve changes noticeably). 

3) Export the entire MPO Canopus database to a 

text file, from which it can be imported to Excel 

for further analysis. 

 

4.2.3. Export MPO Canopus Observations File to 

Excel 

With the lightcurve analysis done, I export all of 

the MPO Canopus observations to a text file, which 

can be opened in Excel for further analysis. The 

analysis includes: 

x Replacing MPO Canopus’ estimates of comp-star 

magnitudes with “calibrated” magnitudes of the 

comp stars. The MPO Canopus star catalog is 
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pretty good, and the estimated comp star magni-

tudes are pretty good, but using “calibrated” mag-

nitudes as described above improves the overall 

accuracy of V and R (and C) to about ±0.02 mag 

(full range) 

x Determination of the asteroid’s observed V-

magnitude (at each data point for which a v-band 

image was taken), and R-magnitude (for each 

point at which an r-band image was taken). In the 

case of C-band images, they are converted to V- 

band using the procedure described above. 

x Determination of the asteroid’s color index. For 

the projects reported here I used (V-R), although 

the same methods will work with any other color 

index. 

x Conversion of C and R magnitudes to “V”, to cre-

ate a master table of JD vs. Vobserved. 

The net result of this is a table of JD, Vobserved 

that includes all data observed points. 

The information on the asteroid’s orbital parame-

ters from JPL Horizons is interpolated into this table, 

so that I can calculate the Sun distance (R), Earth 

distance (D), solar phase angle (.) at each observa-

tion time.  

 

5. Getting the Asteroid’s Orbital 

Parameters 

The data reduction demands that we translate the 

lightcurves into VR using Eq.1. In order to do that we 

need to know the asteroid’s Sun distance (R) and 

Earth distance (D). Most planetarium programs will 

give you this information, but it is often more accu-

rate and more convenient to download the data from 

the “Horizons” system of the NASA Jet Propulsion 

Laboratory (available on the internet at 

http://ssd.jpl.nasa.gov/?horizons). There, you can set 

your location, your target, a time interval, and receive 

a table of all the parameters you request for all the 

time ticks that you request. This table is easily im-

ported into Excel to support your lightcurve analysis. 

I downloaded the orbital information at 4 hour 

increments, selecting a time near the beginning of the 

night as a “reference time”. I then used a linear inter-

polation (d./dt and d[5log(RD)]/dt) to determine the 

parameters at the time of each observation. 

 

6. Example:  1130 Skuld 

This asteroid turned out to be a nice project. Its 

lightcurve is shown in Figure 5. Skuld’s lightcurve 

didn’t change noticeably during the time that I ob-

served it (from . = 0.3° to . = 17.6°), and its color 

was also quite stable over the entire observed appari-

tion. The period (P = 4.807 hr) is short, so that I 

could get at least one maximum and one minimum 

each night, and for many all-night runs my lightcurve 

captured both the primary and secondary maxima and 

primary and secondary minima. The primary and 

secondary minima are virtually identical magnitude; 

the primary and secondary minima differ by only a 

small amount. This meant that I could get at least 

one, and sometimes two, “maxima” data points, and 

one or two “minima” data points each night that I 

observed the object. 

 

 
Figure 5:  Lightcurve of 1130 Skuld. 

The data analysis procedure was relatively 

straightforward. Each night’s lightcurve data was 

analyzed in MPO Canopus using several comp stars 

in the usual way. Then I used one particularly clear 

and stable night to do “all sky” photometry to deter-

mine the standard V and R band magnitudes of the 

comp stars for each lightcurve night. That enabled me 

to put each lightcurve on a common V-mag baseline. 

Overall, the photometric accuracy was about 0.04 

mag, considering the inherent SNR of asteroid and 

star images, and the consistency across comp stars 

and nights. 

For each night’s lightcurve, I could select the 

lightcurve “max brightness” data point, note the time, 

determined the V-mag, translate that into reduced 

magnitude VR, and look up the solar phase angle at 

the time of “max brightness”. An example of all this 

is shown in Figure 6. 
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Figure 6:  Translating observed V-mag to reduced mag-
nitude. 

I wanted to try to “average out” the inevitable 

photometric noise (which was about ±0.02 mag), so I 

made a little quadratic fit to the half-dozen or so data 

points nearest the max/min of the lightcurve in order 

to get an “averaged” estimate of the lightcurve max 

and min. This worked nicely. In almost all cases the 

“averaged” estimate didn’t differ from the single 

brightest (or faintest) data point by more than a few 

hundredths of a magnitude, so the “averaging” pro-

cedure may not have been necessary at all since with 

or without it gave virtually identical phase curves. 

 
Figure 7:  Phase curve of 1130 Skuld, showing “max” 
and “min” brightness curves. 

By repeating that process for each “max” and 

“min” on each night of lightcurve data, I plotted the 

phase curve, shown in Figure 7 (from Buchheim, 

2010). 

Note that the slope parameter G derived from the 

“max” light is essentially the same as that derived 

from the “min” light. This G = 0.25 is reasonable for 

Skuld’s reported classification as an S-class asteroid 

(NASA, 2008). 

 

7. Example:  535 Montague 

This project proved to be a bit trickier, but it 

forced me to learn about some considerations that 

weren’t needed in the case of 1130 Skuld. The period 

was long, so any single night might not have captured 

a lightcurve max or min, yet I still wanted to take 

advantage of the data gathered on every night. The 

shape of the lightcurve changed as the solar phase 

angle increased, so I had to account for that. The 

southern California weather didn’t provide any good 

(clear and stable) nights for linking the comp stars 

from the lightcurve nights, so I relied on all-sky pho-

tometry done at a remote observatory (the Tzec Maun 

Foundation) to calibrate the comp stars. 

 

7.1 Using the Fourier fit to Interpolate and 

Extrapolate the Rotational Lightcurve 

535 Montague has a rotational lightcurve period 

of P § 10.248 h, and its primary and secondary 

maxima are significantly different in brightness, as 

are its primary and secondary minima. This means 

that on many nights, an all-night lightcurve might be 

missing either the maximum brightness or the mini-

mum brightness, or both. How can we take good ad-

vantage of a night that gives only a “partial” light-

curve so that it contributes useful data points to the 

phase curve? 

Harris et al. (1989) dealt with this problem, and I 

followed their procedure. The idea is to use the Fou-

rier fit model of the lightcurve as a way of extrapolat-

ing to data points that weren’t actually measured on a 

given night. The concept goes like this:  using several 

nights’ differential photometry data, construct a com-

plete rotational lightcurve, with full coverage of the 

rotation. This is the standard “lightcurve” project and 

MPO Canopus makes it relatively easy. Once the full 

lightcurve and period are determined, create a Fourier 

fit to the lightcurve. MPO Canopus does this also, 

providing the Fourier coefficients for the model 

lightcurve. This Fourier model should use sufficient 

“orders” to capture all of the essential features of the 

lightcurve. For the fairly complicated shape of the 

lightcurve of 535 Montague, I found that 6 orders 
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were barely sufficient while using 8 orders gave a 

nice fit to the measured lightcurve. 

I exported the Fourier coefficients into an Excel 

file (“fourier.xls”). The Fourier model is a nice 

“smoothed and averaged” mathematical representa-

tion of the lightcurve, given by: 
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Where 

VR(t) V-mag reduced magnitude of the aster-

oid at time t and phase angle D. 

t Time (hours or days)  

P Period (same units as t) 

an, bn Fourier coefficients from Canopus 

H(.) Average V-mag of the asteroid at phase 

angle D. 

This may look a bit complicated but it isn’t too 

hard to program an Excel spreadsheet that will calcu-

late V(t) and plot a graph (see Figure 8). 

 
 

Figure 8:  Excel spreadsheet can calculate Fourier-
model curves. 

How do you find H(.), which is, after all, the 

value being sought?  In the same Excel spreadsheet I 

make two columns containing the table of measure-

ments for the night:  JD and measured data (in V re-

duced magnitudes). The spreadsheet calculates the 

“Fourier fit” at each data point. This allows me to do 

two things. I plot the data (D) on the same graph as 

the Fourier curve [VR(t)], and manually iterate the 

value of H(D) until I find the value of H(.) that gives 

the best fit. “Best fit” is judged by minimizing the 

squared error between the Fourier fit and the actual 

data, summed over all of the data points on a single 

night. The equation is: 
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is the squared error between data (D) and model 

(V). The summation extends over all data points 

(where the jth data point was taken at time tj). 

This Fourier fit has two uses. First, in a case like 

1130 Skuld (where each night offers a max and min 

brightness), the Fourier fit is a convenient way to 

“average” the lightcurve shape, to smooth out 

photometric errors. 

Second, the Fourier fit is used to deal with nights 

(such as 535 Montague) where neither the max nor 

the min brightness is available. The Fourier fit, 

matched to the night’s data, can be extrapolated to 

the next convenient lightcurve max or min. The con-

cept is illustrated in Figure 9. 
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Figure 9:  Using the Fourier model to extrapolate to un-
observable lightcurve maximum or minimum. 

The lightcurve extrapolated to the nearest maxi-

mum/minimum provides extremum magnitudes to 

use as data points on the phase curve. That way, each 

night for which you have data makes a contribution 

to the phase curve. Even if the asteroid would have 

set, or the Sun would have risen by the time of light-

curve maximum, the Fourier extrapolation tells you 

what the asteroid’s magnitude would have been if 

you could have observed its maximum. Look up the 
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solar phase angle at this time of maximum, and add 

the data point to your phase curve plot. 

There is one important caveat to the extrapola-

tion: it is based on the assumption that the average 

magnitude, H(D), doesn’t change over the course of 

the night up to the “extrapolated” data point. 

 

7.2 What if H(.) isn’t Constant During a 

Night’s Session? 

For main-belt asteroids (and more distant ob-

jects), it is usually safe to assume that H(D) § con-

stant over any night’s observations because the solar 

phase angle changes only very little over a single 

night. For example, in the case of 535 Montague, 

solar phase angle never changed by more than 0.02 

deg/hr, which is less than 0.2 degrees over a night’s 

observation period. If you assume a typical G = 0.15, 

the fastest that you expect VR to change in this case is 

about |dVR/dt| � 0.002 mag/hr. That is, the changing 

phase during a single night won’t alter the VR by 

more than a few of hundredths of a magnitude, or 

roughly equal to my photometric accuracy. So, it is 

reasonable (barely) to assume that H(.) is constant 

over any night, and the procedure described in Sec-

tion 7.1 will work fine. 

However, we know that in actuality . is not con-

stant;  if it were, then there wouldn’t be any phase 

curve to measure!  Since . changes from night to 

night, then it must also be a little different at dawn 

than it was at dusk. For the case of 535 Montague the 

effect wasn’t clearly detectible compared with 

photometric noise. However, if you’re chasing a 

near-Earth asteroid (NEA), whose solar phase angle 

might change very rapidly even over the course of a 

single night, then that fact needs to be accommodated 

in your analysis. 

This is done by making an iterative calculation 

that Harris et al. (1989) described, and which is a 

little tricky. The equation given for the Fourier fit of 

the lightcurve (Eq. 4) can accommodate a non-

constant H(.)t with no trouble. We just need to know 

how to calculate H(.), but we only know that after 

we’ve determined the phase curve parameter G! 

So what Harris et al. (1989) did was to select a 

“provisional” value of the slope parameter (say, 

Gprov= 0.15), and use that provisional value to calcu-

late H(.) over the range of .’s on each night (indi-

vidually), for use in the Fourier fit of Eq. 4. This was 

a simple calculation to add to my Excel spreadsheet. 

The Fourier fit is matched to the night’s lightcurve 

data points in the same way as described in Section 

7.1, with the only difference being that the Fourier fit 

now includes the H(.) that is appropriate to the phase 

angle of each data point. 

The plot of the overall phase curve is then used 

to determine a “revised/improved” value of G. That 

revised/improved estimate is plugged in place of the 

provisional value and the whole set of calculations 

are run again. The procedure is iterated until things 

converge on a stable value for G, which usually 

doesn’t require more than a couple of iterations. 

What I found – not surprisingly – was that this 

iteration wasn’t really needed for my main-belt ob-

jects. The effect of . varying in the course of a night 

and the resulting non-constant H(.) amounted to less 

than a hundredth of a magnitude. 

However, in the case of a near-Earth asteroid 

whose solar phase angle and distances may change 

significantly in the course of each night, this iterative 

adjustment is likely to be necessary to achieve the 

maximum possible accuracy. 

 

7.3 Does the Rotational Lightcurve Change 

as Solar Phase Angle Increases? 

Most of us select nights that are near an aster-

oid’s opposition when measuring the rotational light-

curve to determine its synodic period. This makes 

sense because that is when the asteroid is brightest 

and you get the maximum rotational coverage (be-

cause the asteroid is visible most of the night). 

However, does the lightcurve change its shape as 

the solar phase angle changes? One might expect that 

shadow effects from topography (hills or craters) on 

the asteroid would alter the lightcurve since their 

shadows become longer and cover greater areas on 

the surface of the asteroid at increasing phase angles. 

After all, you don’t see shadows on the full Moon, 

when . § 0°, but at other phases the shadows of lunar 

mountains are distinct.  Indeed this effect is reported 

in the professional literature. For example Gehrels 

(1956) noted that the rotational lightcurve of 20 Mas-

salia at . § 3° was measurably different from that at . 

§ 0.5°, and that it had changed character again by . § 

20°. The differences manifested themselves as 

changes in the peak and valley brightness of about 

0.03 mag and also changed the “sharpness” of the 

peak and valley – not huge differences but definitely 

measurable. Similarly, Groeneveld and Kuiper (1954) 

found a similar effect for 7 Iris and 39 Lutetia. 

The photometric accuracy for which we’re striv-

ing in order to determine the phase curve is quite 

sufficient to identify changes in lightcurve shape as 

the solar phase angle increases; therefore, the data 

analysis routine for determining the phase curve 

should be able to accommodate these changes. 

I have followed the approach suggested by Har-

ris and Young (1979). I determine a Fourier fit to the 

lightcurve using a few nights of data near opposition 
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(. § 0°) and use this to represent the lightcurve at low 

solar phase angle. Then I look for obvious visual 

changes in the lightcurve from nights at increasing 

solar phase angle. If a definite change is visually ap-

parent, I create a second Fourier fit to use at high 

solar phase angles. 

As it worked out, this was needed in the case of 

535 Montague, where the shape and peak-to-peak 

amplitude of the lightcurve changed noticeably at . > 

9° (Figure 10). 

 

7.4 Does the Asteroid’s Color Change as 

Solar Phase Angle Increases? 

There have been occasional hints in the literature 

that the color of some asteroids might change a bit as 

the solar phase angle changes. All of these purported 

color changes are very subtle and uncertain. For ex-

ample, Belskaya et al. (2010) report that the (B-V) 

and (V-R) color of 21 Lutetia may increase very 

slightly (§0.001 mag/deg) with solar phase angle, and 

Tupieva (2003) reports that the (U-B) color of 44 

Nysa decreases (§ –0.011 mag/deg) with increasing 

solar phase angle. I plotted my inferred color of 535 

Montague versus solar phase angle (Figure 11). Fit-

ting a simple linear trend line to the data does show a 

slight increase in (V-R) color with ., but all the data 

points are consistent with (V-R) = 0.37 ± 0.02, which 

is the indicated accuracy of my photometry. Hence, I 

conclude that I haven’t seen evidence of a change in 

color during the course of this apparition. 

 

. § zero to 7 

deg

. § 18 to 20 

deg

. § zero to 7 

deg

. § 18 to 20 

deg

 
Figure 10:  535 Montague’s Lightcurve shape changes 
as solar phase angle increases. 

No evidence for (V-R) color change vs. solar phase angle

within accuracy of my photometry (+/- 0.02 mag)

formal linear fit:

y = 0.0018x + 0.3641

R2 = 0.8448
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Figure 11:  A hint, but no compelling evidence, for (V-R) 
color change with solar phase angle. 

8. Appendix A:  Equations for -1 and 

-2 

For the record, I give here the equations to calcu-

late Eq 2, taken from Bowell et al (1989). All angles 

are to be interpreted as radians in these equations: 
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A2 = 1.862 

B2 = 1.218 

C2 = 0.238 
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