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ABSTRACT

In many astronomical problems one often needs to determine the upper and/or lower boundary
of a given data set. An automatic and objective approach consists in fitting the data using a
generalized least-squares method, where the function to be minimized is defined to handle
asymmetrically the data at both sides of the boundary. In order to minimize the cost function,
a numerical approach, based on the popular powNHILL simplex method, is employed. The
procedure is valid for any numerically computable function. Simple polynomials provide
good boundaries in common situations. For data exhibiting a complex behaviour, the use of
adaptive splines gives excellent results. Since the described method is sensitive to extreme
data points, the simultaneous introduction of error weighting and the flexibility of allowing
some points to fall outside of the fitted frontier, supplies the parameters that help to tune the
boundary fitting depending on the nature of the considered problem. Two simple examples are
presented, namely the estimation of spectra pseudo-continuum and the segregation of scattered
data into ranges. The normalization of the data ranges prior to the fitting computation typically
reduces both the numerical errors and the number of iterations required during the iterative
minimization procedure.
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1 INTRODUCTION

Astronomers usually face, in their daily work, the need of determin-
ing the boundary of some data sets. Common examples are the com-
putation of frontiers segregating regions in diagrams (e.g. colour—
colour plots), or the estimation of reasonable pseudo-continua of
spectra. Using for illustration the latter example, several strategies
are initially feasible in order to get an analytical determination of
that boundary. One can, for example, fit a simple polynomial to
the general trend of the considered spectrum, masking previously
disturbing spectroscopic features, such as important emission lines
or deep absorption characteristics. Since this fit traverses the data, it
must be shifted upwards a reasonable amount in order to be placed
on top of the spectrum. However, since there is no reason to expect
the pseudo-continuum following exactly the same functional form
as the polynomial fitted through the spectrum, that shift does not
necessarily provide the expected answer. As an alternative, one can
also force the polynomial to pass over some special data points,
which are selected to guide (actually to force) the fit through the
apparent upper envelope of the spectrum. With this last method
the result can be too much dependent on the subjectively selected
points. In any case, the technique requires the additional effort of
determining those special points.

*E-mail: ncl @astrax.fis.ucm.es

With the aim of obtaining an objective determination of the
boundaries, an automatic approach, based on a generalization of
the popular least-squares method, is presented in this work. Sec-
tion 2 describes the procedure in the general case. As an example,
the boundary fitting using simple polynomials is included in this
section. Considering that these simple polynomials are not always
flexible enough, Section 3 presents the use of adaptive splines, a
variation of the typical fit to splines that allows the determination
of a boundary that smoothly adapts to the data in an iterative way.
Section 4 shows two practical uses of this technique: the compu-
tation of spectra pseudo-continuum and the determination of data
ranges. Since the scatter of the data due to the presence of data
uncertainties tends to bias the boundary determinations, Section 5
analyses the problem and presents a modification of the method that
allows to confront this situation. Finally, Section 6 summarizes the
main conclusions. In addition, Appendix A discusses the inclusion
of constraints in the fits, whilst Appendix B describes how the nor-
malization of the data ranges prior to the data fitting can help to
reduce the impact of numerical errors in some circumstances.

The method described in this work has been implemented into the
program BouNDFIT, a FORTRAN code written by the author and avail-
able (under the GNU General Public License,' version 3) at the
following URL http://www.ucm.es/info/Astrof/software/boundfit.

I'See licence details at http:/fsf.org
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All the fits presented in this paper have been computed with this
program.

2 A GENERALIZED LEAST-SQUARES
METHOD

2.1 Introducing the asymmetry

The basic idea behind the method that follows is to introduce,
in the fitting procedure, an asymmetric role for the data at both
sides of a given fit, so the points located outside relative to that
fit pull stronger toward themselves than the points at the opposite
side. This idea is graphically illustrated in Fig. 1. As it is going
to be shown, the problem is numerically treatable. In order to use
the data asymmetrically, it is necessary to start with some initial
guess fit, that in practice can be obtained employing the traditional
least-squares method (with a symmetric data treatment). Once this
initial fit is available, it is straightforward to continue using the data
asymmetrically and, in an iterative process, determine the sought
boundary.

Let us consider the case of a two-dimensional data set consisting
in N points of coordinates (x;, ¥;), where x; is an independent vari-
able, and y; a dependent variable, which value has an associated and
known uncertainty o;. An ordinary error-weighted least-squares fit
is obtained by minimizing the cost function f (also called objec-
tive function in the literature concerning optimization strategies),
defined as

e =y
f(ao,al,...,a,,)=; {T} , o)
where y(x;) is the fitted function evaluated at x = x;, and ay,
ai, ..., a, are the unknown (p+1) parameters that define

such function. Actually, one should write the fitted function as
y(ao, ai, ..., ap; x).

Y axis (arbitrary units)

X axis (arbitrary units)

Figure 1. Graphical illustration of the asymmetrical weighting scheme de-
scribed in Section 2.1 for the determination of the upper boundary of a par-
ticular data set. In this example a second-order polynomial is employed. The
continuous thick line is the traditional (symmetric) ordinary least-squares
fit for the whole set of data points, which is used as an initial guess for the
boundary determination. The filled red circles are data points above that fit
(i.e. outside), whereas the open blue circles are found below such frontier
(inside). Filled circles receive the extra weighting factor parametrized by the
asymmetry coefficient £ introduced in equation (3). Since this parameter is
chosen to be & 3> 1, the minimization process shifts the initial fit towards
the upper region. By iterating the procedure, the final boundary fit, shown
as the green dashed line, is obtained. The same method, but exchanging
symbols weights, could be employed to determine the lower boundary limit
(not shown).
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In order to introduce the asymmetric weighting scheme, the cost
function can be generalized introducing some new coefficients:

N
flag,ar, ... ap) =Y wily(x) — il 2)
i=1

where « is now a variable exponent (¢ = 2 in normal least squares).
For that reason the distance between the fitted function y(x;) and
the dependent variable y; is considered in absolute value. The new
overall weighting factors w; are defined differently depending on
whether one is fitting the upper or the lower boundary. More pre-
cisely

upper 1ol for y(x)) =y,
boundary {g/af’ for y(x;) < yi,

w; = (3)
lower glof  for y(x) >y,
boundary { 1/of  for y(x;) <y,

being B the exponent that determines how error weighting is in-
corporated into the fit (8 = 0 to ignore errors, § = 2 in normal
error-weighted least squares), and £ is defined as an asymmetry co-
efficient. Obviously, fora = f =2 and & = 1, equation (2) simplifies
to equation (1). As it is going to be shown later, the asymmetry co-
efficient must satisfy £ > 1 for the method to provide the required
boundary fit.

Leaving apart the particular weighting effect of the data uncer-
tainties o, the net outcome of introducing the factors w; is that
the points that are classified as being outside from a given frontier
simply have a higher weight that the points located at the inner side
(see Fig. 1), and this difference scales with the particular value of
the asymmetry coefficient &.

Thus, the boundary fitting problem reduces to finding the (p +
1) parameters ag, ay, . . . , a, that minimize equation (2), subject to
the weighting scheme defined in equation (3). In the next sections
several examples are provided, in which the functional form of y(x)
is considered to be simple polynomials and splines.

2.2 Relevant issues

The method just described is, as defined, very sensitive to extreme
data points. This fact that at first sight may be seen as a serious
problem, it is not necessarily so. For example, one may be interested
in constraining the scatter exhibited by some measurements due to
the presence error sources. In this case a good option would be to
derive the upper and lower frontiers that surround the data, and in
this scenario there is no need to employ an error-weighting scheme
(i.e. B =0 would be the appropriate choice). On the other hand, there
are situations in which the data sample contains some points that
have larger uncertainties than others, and one wants those points to
be ignored during the boundary estimation. Under this circumstance
the role of the 8 parameter in equation (3) is important. Given
the relevance of all these issues concerning the impact of data
uncertainties in the boundary computation, this topic is intentionally
delayed until Section 5. At this point it is better to keep the problem
in a more simplified version, which facilitates the examination of
the basic properties of the proposed fitting procedure.

An interesting generalization of the boundary fitting method
described above consists in the incorporation of additional con-
straints during the minimization procedure, like forcing the fit to
pass through some predefined fixed points, or imposing the deriva-
tives to have some useful values at particular points. A discussion
about this topic has been included in Appendix A.
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Another issue of great relevance is the appearance of numerical
errors during the minimization procedure. The use of data sets
exhibiting values with different orders of magnitude, or with a
very high number of data points, can be responsible for preventing
numerical methods to provide the expected answers. In some cases
a simple solution to these problems consists in normalizing the data
ranges prior to the numerical minimization. A detailed description
of this approach is presented in Appendix B.

2.3 Example: boundary fitting to simple polynomials

Returning to equation (2), let us consider now the particular case in
which the functional form of the fitted boundary y(x) is assumed to
be a simple polynomial of degree p, i.e.

yx) =ao+ax +ax’ + - +a,x’. )

In this case, the function to be minimized, f(ao, ai, ..., a,), is
also a simple function of the (p + 1) coefficients. In ordinary least
squares one simply takes the partial derivatives of the cost function
f with respect to each of these coefficients, obtaining a set of (p +
1) equations with (p + 1) unknowns, which can be easily solved,
as far as the number of independent points N is large enough, i.e.
N>p+1

However, considering the special definition of the weighting co-
efficients w; given in equation (3), it is clear that in the general case
an analytical solution cannot be derived without any kind of iterative
approach, since during the computation of the considered boundary
(either upper or lower), the classification of a particular data point
as being inside or outside relative to a given fit explicitly depends
on the function y(x) that one is trying to derive. Fortunately numer-
ical minimization procedures can provide the sought answer in an
easy way. For this purpose, the powNHILL simplex method (Nelder
& Mead 1965) is an excellent option. This numerical procedure per-
forms the minimization of a function in a multidimensional space.
For this method to be applied, an initial guess for the solution must
be available. This initial solution, together with a characteristic
length-scale for each parameter to be fitted, is employed to define a
simplex (i.e. a multidimensional analogue of a triangle) in the solu-
tion space. The algorithm works using only function evaluations (i.e.
not requiring the computation of derivatives), and in each iteration
the method improves the previously computed solution by modify-
ing one of the vertices of the simplex. The simplex adapts itself to
the local landscape, and contracts on to the final minimum. The nu-
merical procedure is halted once a pre-fixed numerical precision in
the sought coefficients is reached, or when the number of iterations
exceeds a pre-defined maximum value Npxier- A Well-known im-
plementation of the powNHILL simplex method is provided by Press
et al. (2002).2 For the particular case of minimizing equation (2)
while fitting a simple polynomial, a reasonable guess for the initial
solution is supplied by the coefficients of an ordinary least-squares
fit to a simple polynomial derived by minimizing equation (1).

It is important to highlight that whatever the numerical method
employed to perform the numerical minimization, the considered
cost function will probably exhibit a parameter-space landscape
with many peaks and valleys. The finding of a solution is never a

2 Since the Numerical Recipes license is too restrictive (the routines cannot
be distributed as source), the implementation of bownNHILL included in the
program BounpFir is a personal version created by the author to avoid any
legal issue, and as such it is distributed under the GNU General Public
License, version 3.

guarantee of having found the right answer, unless one has the re-
sources to employ brute force to perform a really exhaustive search
at sufficiently fine sampling of the cost function to find the global
minimum. In situations where this problem can be serious, more
robust methods, like those provided by genetic algorithms, must be
considered (see e.g. Haupt & Haupt 2004). Fortunately, for the par-
ticular problems treated in this paper, the simpler DowNHILL method
is a good alternative, considering that the ordinary least-squares
method will likely give a good initial guess for the expected solu-
tion in most of the cases.

For illustration, Fig. 2(a) displays an example of upper boundary
fitting to a given data set, using a simple fifth-order polynomial.

50
T

Y axis (arbitrary units)

50
T

Y axis (arbitrary units)

50

Y axis (arbitrary units)

X axis (arbitrary units)

Figure 2. Panel (a): example of upper boundary fitting using a fifth-order
polynomial. The initial data set correspond to 100 points randomly drawn
from the function y(x) = 1/x, assuming the uncertainty o = 10 for all
the points in the y-axis. The dashed blue line is the ordinary least-squares
fit to that data, used as the initial guess for the numerical determination
of the boundary. Since all the points have the same uncertainty, there is
no need for an error-weighted procedure. For that reason 8 = 0 has been
used in equation (3). In addition « = 2 and an asymmetry coefficient § =
1000 were employed. The grey lines indicate the boundary fits obtained for
Nmaxiter in the range from 5 to 2000 iterations, at arbitrary steps. The inset
displays a zoomed plot region where some particular values of Npaxiter are
annotated over the corresponding fits. The continuous red line is the final
boundary determination obtained using N maxiter = 2000. Panel (b): effect
of employing different asymmetry coefficients & for the upper boundary fit
shown in panel (a). In the four cases the same maximum number of iterations
(N maxiter = 2000) has been employed, with & = 2. Panel (c): effect of using
different values of the power o, with Nmaxiter = 2000 and & = 1000. See
discussion in Section 2.3.
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As initial guess for the numerical minimization, the ordinary least-
squares fit for the data (shown with a dashed blue line) has been
employed. The grey lines represent the corresponding boundary fits
obtained using the powNHILL method previously described. Each
line corresponds to a pre-defined maximum number of iterations
N axiter In DOWNHILL, as labelled over the lines in the plot inset. In
this particular example the fitting procedure has been carried out
without weighting with errors (i.e. assuming = 0), and using a
power o = 2 and an asymmetry coefficient £ = 1000. It is clear that
after a few iterations the intermediate fits move upwards from the
initial guess (dashed blue line), until reaching the location marked
with N uier = 31. Beyond this number of iterations, the fits move
downwards slightly, rapidly converging into the final fit displayed
with the continuous red line. Fig. 2(b) displays the effect of mod-
ifying the asymmetry coefficient £&. The ordinary least-squares fit
corresponds to & = 1 (dashed blue line). The asymmetric fits are
obtained for & > 1. The figure illustrates how for £ = 10 and 100
the resulting upper boundaries do still leave points in the wrong side
of the boundary. Only when & = 1000 (continuous red line) is the
boundary fit appropriate. Thus, a proper boundary fitting requires
the asymmetry coefficient to be large enough to compensate for the
pulling effect of the points that are in the inner side of the boundary.
On the other hand, Fig. 2(c) shows the impact of changing the power
« in equation (2). For the lowest value, « = 1 (dotted blue line),
the fit is practically identical to the one obtained with o« = 2 (con-
tinuous red line). For the largest values, « = 3 or 5 (dotted green
and dashed orange lines), the boundaries are below the expected
location, leaving some points outside (above) the fits. In these last
cases the power « is too high and, for that reason, the distance from
the boundary to the more distant points in the inner side have a too
high effect in the cost function given by equation (2).

Another important aspect to take into account when using a nu-
merical method is the convergence of the fitted coefficients. Fig. 3
displays, for the same example just described in Fig. 2(b), the val-
ues of the six fitted polynomial coefficients as a function of the
maximum number of iterations allowed. The figure includes
the results for £ = 10, 100 and 1000 (using @ =2 and § = 0 in
the three cases). In overall, the convergence is reached faster when
& =1000. Fig. 2(a) already showed that for this particular value of
the asymmetry coefficient a quite reasonable fit is already achieved
when N paxier = 31. Beyond this maximum number of iterations the
coefficients only change slightly, until they definitely settle around
N maxiter ~ 140.

Although simple polynomials can be excellent functional forms
for a boundary determination (as shown in the previous example),
when the data to be fitted exhibit rapidly changing values, a single
polynomial is not always able to reproduce the observed trend. A
powerful alternative in these situations consists in the use of splines.
The next section presents an improved method that using classic
cubic splines, but introducing additional degrees of freedom, offers
a much larger flexibility for boundary fitting.

3 ADAPTIVE SPLINES

3.1 Using splines with adaptable knot location

Splines are commonly employed for interpolation and modelling of
arbitrary functions. Many times they are preferred to simple poly-
nomials due to their flexibility. A spline is a piecewise polynomial
function that is locally very simple, typically third-order polynomi-
als (the so-called cubic splines). These local polynomials are forced
to pass through a prefixed number of points, Ny, Which we will

© 2009 The Author. Journal compilation © 2009 RAS, MNRAS 396, 680-695
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Figure 3. Variation in the fitted coefficients, as a function of the number
of iterations, for the upper boundary fit [fifth-order polynomial y(x) =
Z?:o a; x'] shown in Fig. 2(a). Each panel represents the coefficient value
at a given iteration (a;, withi =0, ..., 5, from bottom to top) divided by
aj, the final value derived after N paxiter = 2000 iterations. The same y-axis
range is employed in all the plots. Red lines correspond to an asymmetry
coefficient £ = 1000, whereas the blue and green grey lines indicate the
coefficients obtained with £ = 10 and 100, respectively (in all the cases o =
2 and B = 0 have been employed). Note that the plot x-scale is in logarithmic
units.

refer as knots. In this way, the functional form of a fit to splines can
be expressed as

Y(x) = 53(k)[x = Xinot ()] + $2(k)[xX — Xinor (k)]
+s100)[x = Xno (K] + s0(k), ®)

where [Xynot(k), Yknot(k)] are the (x, y) coordinates of the kth
knot, and s¢(k), s1(k), s2(k) and s3(k) are the corresponding spline
coefficients for x € [Xknot(k), Xknoe(k + 1)], with £k =1, ...,
Ninots —1. These coefficients are easily computable by imposing
the set of splines to define a continuous function and that, in addi-
tion, not only the function, but also the first and second derivatives
match at the knots (two additional conditions are required; typi-
cally they are provided by assuming the second derivatives at the
two endpoints to be zero, leading to what are normally referred as
natural splines). The computation of splines is widely described in
the literature (see e.g. Gerald & Wheatley 1989).

The final result of a fit to splines will strongly depend on both,
the number and the precise location of the knots. With the aim
of having more flexibility in the fits, Cardiel (1999) explored the
possibility of setting the location of the knots as free parameters,
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in order to determine the optimal coordinates of these knots that
improve the overall fit of the data. The solution to the problem can
be derived numerically using any minimization algorithm, as the
DOWNHILL simplex method previously described. In this way the set
of splines smoothly adapts to the data. The same approach can be
applied to the data boundary fitting, using as functional form for the
function y(x) in equation (2) the adaptive splines just described. It
is important to highlight that in this case the optimal boundary fit
requires not only to find the appropriate coefficients of the splines,
but also the optimal location of the knots.

3.2 The fitting procedure

In order to carry out the double optimization process (for the coef-
ficients and the knots location) required to compute a boundary fit
using adaptive splines, the following steps can be followed.

(1) Fix the initial number of knots to be employed, Nyyos. Using
a large value provides more flexibility, although the number of
parameters to be determined logically scales with this number, and
the numerical optimization demands a larger computational effort.

(ii) Obtain an initial solution with fixed knot locations. For this
purpose it is sufficient, for example, to start by dividing the full x-
range to be fitted by (Nyuos — 1). This leads to a regular distribution
of equidistant knots. The initial fit is then derived by minimizing the
cost function given in equation (2), leaving as free parameters the
y-coordinates of all the knots simultaneously, while keeping fixed
the corresponding x-coordinates. This numerical fit also requires
a preliminary guess solution, that can be easily obtained through
(Nios — 1) independent ordinary least-squares fits of the data
placed between each consecutive pair of knots, using for this pur-
pose simple polynomials of degree 1 or 2. In this guess solution the
y-coordinate for each knot is then evaluated as the average value for
the two neighbouring preliminary polynomial fits (only one for the
knots at the borders of the x-range). Obviously, if there is additional
information concerning a more suitable knot arrangement than the
equidistant pattern, it must be used to start the process with an even
better initial solution which will facilitate a faster convergence to
the final solution.

(iii) Refine the fit. Once some initial spline coefficients have been
determined, the fit is refined by setting as free parameters the loca-
tion of all the inner knots, both in the x- and y-directions. The outer
knots (the first and last in the ordered sequence) are only allowed
to be refined in the y-axis direction with the aim of preserving the
initial x-range coverage. The simultaneous minimization of the x
and y coordinates of all the knots at once will imply finding the
minimum of a multidimensional function with too many variables.
This is normally something very difficult, with no guarantee of a
fast convergence. The problem reveals to be treatable just by solv-
ing for the optimized coordinates of every single knot separately.
In practice, a refinement can be defined as the process of refining
the location of all the Ny, knots, one at a time, where the order
in which a given knot is optimized is randomly determined. Each
knot optimization requires, in turn, a value for the maximum num-
ber of iterations allowed Npaxier- Thus, at the end of every single
refinement process all the knots have been refined once. An extra
penalization can be introduced in the cost function with the idea
of avoiding that knots exchange their order in the list of ordered
sequence of knots. This inclusion typically implies that, if Nypes
is large, several knots end up colliding and having the same coor-
dinates. The whole process can be repeated by indicating the total
number of refinement processes, Nrefine-

(iv) Optimize the number of knots. If after N s, refinement pro-
cesses several knots have collided and exhibit the same coordinates,
this is an evidence that Ny,,s Was probably too large. In this case,
those colliding knots can be merged and the effective number of
knots be accordingly reduced. If, on the contrary, the knots being
used do not collide, it is interesting to check whether a higher Ny,ois
can be employed. With the new Ny, step (iii) is repeated again.

Although at first sight it may seem excessive to use a large num-
ber of knots when some of them are going to end up colliding,
these collisions will typically take place at optimized locations for
the considered fit. As far as the minimization algorithm is able to
handle such large Ny, it is not such a bad idea to start using an
overestimated number and merge the colliding knots as the refine-
ment processes take place.

The fitting algorithm can be halted once a satisfactory fit is found
at the end of step (iii). By satisfactory one can accept a fit which
coefficients do not significantly change by increasing either Niefine
or N axiter> and in which there are no colliding knots.

3.3 Example: boundary fitting to adaptive splines
and comparison with simple polynomials

To illustrate the flexibility of adaptive splines, Fig. 4(a) displays
the corresponding upper boundary fit employing the same example
data displayed in Fig. 2, for the case Nyys = 15. The prelimi-
nary fit (shown as a dotted blue line) was computed by placing the
Ninots €quidistantly spread in the x-axis range exhibited by the data,
and performing (Ny,ois — 1) independent ordinary least-squares fits
of the data placed between each consecutive pair of knots, using
second-order polynomials, as explained in step (ii). Although un-
avoidably this preliminary fit is far from the final result (due to the
fact that this is just the merging of several independent ordinary fits
through data exhibiting large scatter and that the x-range between
adjacent knots is not large), after N,y iterations without any re-
finement (i.e. without modifying the initial equidistant knot pattern)
the algorithm provides the fit shown as the dashed green line. The
light grey lines display the resulting fits obtained by allowing the
knot locations to vary, and after 40 refinements one gets the bound-
ary fit represented by the continuous red line. Since the knot location
has a large influence in the quality of the boundary determination,
very high values for Ny, are not required (typically values for
the number of iterations needed to obtain refined knot coordinates
are ~100). Analogously to what was done with the simple polyno-
mial fit, in Figs 4(b) and (c) the effects of varying the asymmetry
coefficient £ and the power « are also examined. In the case of &, it
is again clear that the highest value (§ = 1000) leads to a tighter fit.
Concerning the power «, the best result is obtained when distances
are considered quadratically, i.e. « = 2. For the largest values,
o = 3 and 5, the resulting boundaries leave points above the fits.
The case o = 1 is not very different to the quadratic fit, although
in some regions (e.g. x € [0.01, 0.04]) the boundary is probably
too high. In addition, Fig. 5 displays the variation in the location of
the knots as N s, increases, for the final fit displayed in Fig. 4(a).
The initial equidistant pattern (open blue circles; corresponding to
N refine = 0) is modified as each individual knot is allowed to change
its coordinates. It is clear that some of the knots approximate and
could be, in principle, merged into single knots, revealing that the
initial number of knots was overestimated.

Finally, Fig. 6 presents, for the same sample data employed in
Figs 2 and 4, the comparison between the boundary fits to simple
polynomials (continuous blue lines) and to adaptive splines (dotted

© 2009 The Author. Journal compilation © 2009 RAS, MNRAS 396, 680-695
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Figure 4. Example of the use of adaptive splines to compute the upper
boundary of the same sample data displayed in Fig. 2. In this case Nipots =
15 has been employed. Panel (a): the preliminary fit (dotted blue line) shows
the initial guess determined from (Nypors — 1) independent ordinary least-
squares fit of the data, as explained in Section 3.3. By imposing N maxiter =
1000 the fit improves, although in most cases the effective Npaxiter is much
lower since the algorithm computes spline coefficients that have converged
before the number of iterations reaches that maximum value. The dashed
green line shows the first fit obtained with still the knots at their initial
equidistant locations. Successive refinements (light grey) allow the knots
to change their positions, which lead to the final boundary determination
(continuous red line, corresponding to Niefine = 40). In all these fits & =
1000, « = 2 and B = 0 have been employed. Panel (b): effect of using
different asymmetry coefficients & for the upper boundary fit shown in the
previous panel. In the four cases Nmaxiter = 1000, Nrefine = 40, & = 2
and B = 0 were used. Panel (c): effect of employing different values of
the power «, with & = 1000, Nrefine = 40 and g = 0. See discussion in
Section 3.3.

red lines). The shaded area corresponds to the diagram region com-
prised between the two adaptive splines boundaries. In this figure
both the upper and the lower boundary limits, computed as described
previously, are represented. It is clear from this graphical compar-
ison that the larger number of degrees of freedom introduced with
adaptive splines allows a much tighter boundary determination. The
answer to the immediate question of which fit (simple polynomials
or splines) is more appropriate will obviously depend on the nature
of the considered problem.
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any refinement (Nrefine = 0), the 15 knots were regularly placed, as shown
with the open blue circles. In each refinement process the inner knots are
allowed to modify its location, one at a time. The first and last knots are
fixed in order to preserve the fitted x-range. The final knot locations after
N refine = 40 are shown with the filled red triangles.
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Figure 6. Comparison between different functional forms for the boundary
fitting. The sample data set corresponds to the same values employed in
Figs 2 and 4. The boundaries have been determined using simple polynomi-
als of degree 5 (continuous blue lines) and adaptive splines (dotted red lines;
Ninots = 15 and N efine = 40), following the steps given in Sections 2.3 and
3.3, respectively. The shaded area is simply the diagram region comprised
between both adaptive splines boundaries. As expected, adaptive splines are
more flexible, providing tighter boundaries than simple polynomials.

4 PRACTICAL APPLICATIONS

4.1 Estimation of spectra pseudo-continuum

As mention in Section 1, a typical situation in which the computation
of a boundary can be useful is in the estimation of spectra pseudo-
continuum. The strengths of spectral features have been measured
in different ways so far. However, although with slight differences
among them, most authors have employed line-strength indices with
definitions close to the classical expression for an equivalent width:
EW @A) = [ [1-50)/C()1dx, (6)
line

where S(}) is the observed spectrum and C(A) is the local contin-
uum, usually obtained by interpolation of S(1) between two adjacent
spectral regions (e.g. Faber 1973; Faber, Burstein & Dressler 1977,
Whitford & Rich 1983). In practice, as pointed out by Geisler (1984)
(see also Rich 1988), at low and intermediate spectral resolution the
local continuum is unavoidably lost, and a pseudo-continuum is
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Figure 7. Examples of pseudo-continuum fits derived using upper boundaries with different tunable parameters. Panels (a) and (b) correspond to simple fifth
order polynomials, whereas adaptive splines have been employed in panels (c) and (d). The stellar spectrum corresponds to the KOV star HD 003651 belonging
to the MILES library (Sanchez-Blazquez et al. 2006). In the four panels the dashed blue line indicates the ordinary least-squares fit of the data. See discussion

in Section 4.1.

measured instead of a true continuum. The upper boundary fitting,
by using either simple polynomials or adaptive splines, constitutes
an excellent option for the estimation of that pseudo-continuum.
To illustrate this statement, several examples are presented and dis-
cussed in this section. In all these examples, the boundary fits have
been computed ignoring data uncertainties, i.e. assuming 8 = 0
in equation (3). The impact of errors is this type of application is
discussed later, in Section 5.

Fig. 7 displays upper boundary fits for the particular stellar
spectrum of HD 003651 belonging to the Medium resolution INT
Library of Empirical Spectra (MILES; Séanchez-Blazquez et al.
2006).3 The results using simple polynomials and adaptive splines
with different tunable parameters are shown. Panels (a) and (b) show
the results derived using simple fifth-order polynomials, whereas
panels (c) and (d) display the fits obtained employing adaptive
splines with Ny, = 5. The impact of moditying the asymmetry
coefficient & is explored in panels (a) and (c) (in these fits, « = 2
and N naxier = 1000 have been used; the adaptive splines fits were
refined N e, = 10 times). The dashed blue lines indicate the ordi-
nary least-squares fits, i.e. those obtained when there is no effective
asymmetry (¢ = 1), which in each case was used as the initial guess
fit in the numerical minimization process. For relatively low values
of the asymmetry coefficient (§ = 10 or 100) the fits are not as
good as when using the largest value (§ = 1000). This is easy to
understand, since the relatively large number of points to be fitted
in this example (N = 3847), requires that the points that still fall in
the outer side of the boundary during the numerical minimization
of equation (2) overcome the pulling effect of the points in the inner
side of the boundary. On the other hand, panels (b) and (d) display
the effect of changing the power « in the fits. Again, the dashed blue
lines correspond to the ordinary least-squares fits (in the rest of the
cases £ = 1000 and N pxier = 1000 have been used; the adaptive

3 See http://www.ucm.es/info/ Astrof/miles/
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Figure 8. Examples of pseudo-continuum fits obtained using adaptive
splines with different number of knots. The same stellar spectrum displayed
in Fig. 7 is employed here. The dashed blue line indicates the ordinary least-
squares fit of the data (§ = 1, o« = 2). In the rest of the fits, £ = 1000, « =
1 and Nyefine = 20 have been used. The effect of using a different value of
Nxnots 1s clearly visible. See discussion in Section 4.1.

splines fits were refined N e, = 10 times). In these cases, the best
boundary fits are obtained for « = 1, whereas for the larger values
the fits depart from the expected result.

The above example illustrates that the optimal asymmetry coeffi-
cient £ and power « during the boundary procedure can (and must)
be tuned for the particular problem under study. Not surprisingly,
this fact also concerns the number of knots when using adaptive
splines. Fig. 8 shows the different results obtained when estimat-
ing the pseudo-continuum in the same stellar spectrum previously
considered, employing different values of Ny,s. As expected, the
fit adapts to the irregularities exhibited by the spectrum as the num-
ber of knots increases. This is something that for some purposes
may not be desired. For instance, the fits obtained with Ny,os =
12, and more notably with Ny, = 16, detect the absorption
around the Mg 1 feature at A ~ 5200 A, and for this reason these fits
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Figure 9. Comparison of different strategies in the computation of the pseudo-continuum for the measurement of line-strength indices. The same stellar
spectrum displayed in Fig. 7 is employed here. In this example three Balmer features are analysed, namely H8, Hy and HB (from left to right), showing the
commonly employed blue, central and red sidebands used in their measurement. Top panels correspond to the traditional method in stellar population studies,
in which the pseudo-continuum is computed as the straight line joining the mean fluxes in the blue and red sidebands, respectively. In the middle panels the
pseudo-continua have been computed as the straight line joining the values of the upper boundary fits (second-order polynomials fitted to the three bandpasses;
dotted lines), evaluated at the centres of the blue and red bandpasses. Finally, in the bottom panels the pseudo-continua are not computed as straight lines, but as
the upper boundary fits themselves. In each case the resulting line-strength value (area comprised between the pseudo-continuum fit and the stellar spectrum)

is shown. See discussion in Section 4.1.

underestimate the total absorption produced at this wavelength re-
gion. In situations like this the boundary obtained with a lower
number of knots may be more suitable. Obviously there is no gen-
eral rule to define the right Ny, since the most convenient value
will depend on the nature of the problem under study.

In order to obtain a quantitative determination of the impact
of using the upper boundary fit instead in the estimation of local
pseudo-continuum, Fig. 9 compares the actual line-strength indices
derived for three Balmer lines (HB, Hy and H$, from right to
left) using three different strategies. For this particular example the
same stellar spectrum displayed in Fig. 7 has been used. Over-
plotted on each spectrum are the bandpasses typically used for the
measurement of these spectroscopic features. In particular, band-
passes limits for HB are the revised values given by Trager (1997),
whereas for Hy and H$ the limits correspond to Hyr and Hép,
as defined by Worthey & Ottaviani (1997). For each feature, the
corresponding line strength has been computed by determining the
pseudo-continuum using (i) the straight line joining the mean fluxes
in the blue and red bandpasses (top panels) which is the traditional
method; (ii) the straight line joining the values of the upper bound-
ary fits evaluated at the centres of the same bandpasses (central
panels) and (iii) the upper boundary fits themselves (bottom pan-
els). For the cases (ii) and (iii) the upper boundary fits have been
derived using a second-order polynomial fitted to the three band-
passes. The resulting line-strength indices, numerically displayed
above each spectrum, have been computed as the area comprised
between the adopted pseudo-continuum fit and the stellar spectrum
within the central bandpass. For the three Balmer lines it is clear
that the use of the boundary fit provides larger indices. The tradi-
tional method provides very bad values for Hy and H$ (which are
even negative!), given that the pseudo-continuum is very seriously
affected by the absorption features in the continuum bandpasses.

© 2009 The Author. Journal compilation © 2009 RAS, MNRAS 396, 680-695

This is a well-known problem that has led many authors to seek
for alternative bandpass definitions (see e.g. Rose 1994; Vazdekis
& Arimoto 1999) which, on the other hand, are not immune to
other problems related to their sensitivity to spectral resolution and
their high signal-to-noise ratio (S/N) requirements. These are very
important issues that deserve a much careful analysis, that is be-
yond the aim of this paper, and they are going to be studied in a
forthcoming work (Cardiel, in preparation).

The results of Fig. 7 reveal that, for the wavelength interval
considered in that example, the boundary determinations obtained
by using polynomials and adaptive splines are not very different.
However, it is expected that as the wavelength range increases and
the expected pseudo-continuum becomes more complex, the larger
flexibility of adaptive splines in comparison with simple polyno-
mials should provide better fits. To explore this flexibility in more
detail, Fig. 10 shows the result of using adaptive splines to estimate
the pseudo-continuum of 12 different spectra corresponding to stars
exhibiting a wide range of spectral types (from B5SV to M5V), se-
lected from the empirical stellar library MILES (Sanchez-Bldzquez
et al. 2006) previously mentioned. Although in all the cases the fits
have been computed blindly without considering the use of an initial
knot arrangement appropriate for the particularities of each spectral
type, it is clear from the figure that adaptive splines are flexible
enough to give reasonable fits independently of the considered star.
More refined fits can be obtained using an initial knot pattern more
adjusted to the curvature of the pseudo-continuum exhibit by the
stellar spectra.

A good estimation of spectra pseudo-continuum is very useful,
for example, when correcting spectroscopic data from telluric ab-
sorptions using featureless (or almost featureless) calibration spec-
tra. This is a common strategy when performing observations in
the near-infrared windows. Fig. 11(a) illustrates a typical example,
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Figure 10. Examples of pseudo-continuum fits using adaptive splines. Several stars from the stellar library MILES (Sanchez-Blazquez et al. 2006), spanning
different spectral types, have been selected. The fitted pseudo-continua (continuous black line) have been automatically determined employing Npois = 19,

N maxiter = 1000, Nrefine = 20, S = 1000, « = 2 and ,B =0.

in which the observation of the hot star V986 Oph (HD 165174,
spectral type BOIII) is employed to determine the correction. This
star was observed in the J band as part of the calibration work
of the observations presented in Cardiel et al. (2003). The stellar
spectrum is shown in light grey, whereas the blue points indicate
a manual selection of spectrum regions employed to estimate the
overall pseudo-continuum. The dotted green line corresponds to
the ordinary least-squares fit of these points, whereas the red con-
tinuous line is the upper boundary obtained with adaptive splines
using Nyuos = 3 with an asymmetry coefficient & = 10000. In
Fig. 11(b) the ratio between both fits is represented, showing that
there are differences up to a few per cent between these fits. Two
kinds of errors are present here. In overall the ordinary least-squares
fit underestimates the pseudo-continuum level, which introduces a
systematic bias on the resulting depth of the telluric features (the
whole curve displayed in Fig. 11b is above 1.0). In addition, since
the selected blue points do include real (although small) spectro-
scopic features, there are variations as a function of wavelength of
the above discrepancy. These differences can be important when
trying to perform a high-quality spectrophotometric calibration. It
is important to highlight that an important additional advantage
of the boundary fitting is that this method does not require the
masking of any region of the problem spectrum, which avoids
the effort (and the subjectivity) of selecting special points to guide
the fit.

Another important aspect concerning the use of boundary fits for
the determination of the pseudo-continuum of spectra is that this
method can provide an alternative approach for the estimation of
the pseudo-continuum flux when measuring line-strength indices.
Instead of using the average fluxes in bandpasses located nearby
the (typically central) bandpass covering the relevant spectroscopic
feature, the mean flux on the upper boundary can be employed. In
this case it is important to take into account that flux uncertainties
will bias the fits towards higher values. Under these situations the
approach described later in Section 5 can be employed. Concerning

this problem is worth mentioning here the method presented by
Rogers et al. (2008), who employ a boosted median continuum
to derive equivalent widths more robustly than using the classic
side-band procedure.

4.2 Estimation of data ranges

A quite trivial but useful application of the boundary fits is the
empirical determination of data ranges. One can consider scenarios
in which it is needed to subdivide the region spanned by the data
in a particular grid. Fig. 12(a) illustrates this situation, making use
of the fifth-order polynomial boundaries corresponding to the data
previously used in Figs 2, 4 and 6. Once the lower and the upper
boundaries are available, it is trivial to generate a grid of lines
dividing the region comprised between the boundaries as needed.

A more complex scenario is that in which the data exhibit a clear
scatter around some tendency, and one needs to determine regions
including a given fraction of the points. A frequent case appears
when one needs to remove outliers, and then it is necessary to obtain
an estimation of the regions containing some relevant percentages
of the data. In Fig. 12(b) this situation is exemplified with the use
of a simulated data set consisting in 30 000 points, for which the
regions that include 68.27 and 95.44 per cent of the centred data
points, corresponding to 10 and +2¢ in a normal distribution,
have been determined by first selecting those data subsets, and then
fitting their corresponding boundaries using adaptive splines, as
explained with more detail in the figure caption.

5 THE IMPACT OF DATA UNCERTAINTIES

Although the method described in Section 2 already takes into
account data uncertainties through their inclusion as a weighting
parameter (governed by the exponent §), it is important to highlight
that this weighting scheme does not prevent the boundary fits to
be highly biased due to the presence of such uncertainties. For
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Figure 11. Comparison of the results of using an ordinary fit and adaptive
splines when deriving the telluric correction in a particular spectroscopic
calibration. Panel (a): the light grey line corresponds to the spectrum ob-
tained in the J band of the hot star HD 165174. Some special points of
this spectrum have been manually selected (small blue points) to determine
the approximate pseudo-continuum. The resulting ordinary fit to adaptive
splines (i.e. adopting & = 1) using exclusively these selected points is dis-
played with the dotted green line. A more suitable fit (continuous red line)
is obtained employing & = 10000, in which case the fit is performed over
the whole spectrum. The two fits have been carried out with Nypors = 3,
N maxiter = 1000, Niefine = 10, @ = 2 and g = 0. Panel (b): ratio between
the two fits displayed in the previous panel.

example, in the determination of the pseudo-continuum of a given
spectrum, even considering the same error bars for the fluxes at
all wavelengths, the presence of noise unavoidably produces some
scatter around the real data. When fitting the upper boundary to a
noisy spectrum the fit will be dominated by the points that randomly
exhibit the largest positive departures. Under these circumstances,
two different alternatives can be devised.

(1) To perform a previous rebinning or filtering of the data prior
to the boundary fitting, in order to eliminate, or at least minimize,
the impact of data uncertainties. After the filtering one assumes
that these uncertainties are not seriously biasing the boundary fit.
In this way one can employ the same technique described in Sec-
tion 2. This approach is illustrated in Fig. 13(a). In this case the
original spectrum of HD 00365 (also employed in Figs 7 and 8), as
extracted from the MILES library (Sanchez-Blazquez et al. 2006),
is considered as a noise-free spectrum (plotted in blue). Its corre-
sponding upper boundary fit using adaptive splines with Nypos =
5 is shown as the cyan line. This original spectrum has been artifi-
cially degraded by considering an arbitrary S/N per pixel, S/N = 10
(displayed in green), and the resulting upper boundary fit is shown
with a dashed green line. It is obvious that this last fit is highly bi-
ased, being dominated by the points with higher fluxes. Finally,
the noisy spectrum has been filtered by convolving it with a
Gaussian kernel (of standard deviation 100 kms™"), with the result
being overplotted in red. Note that this filtered spectrum overlaps
almost exactly with the original spectrum. The boundary fit plot-
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Figure 12. Examples of data boundary applications for the estimation of
data ranges. Panel (a): using the lower and upper boundary limits for the
data displayed in Figs 2, 4 and 6, and computed using simple fifth-order
polynomials, it is trivial to subdivide the range spanned by the data in the
y-axis by creating a regular grid (i.e. constant Ay at a fixed x) between
both boundary limits. In this example the region has been subdivided in
10 intervals. Panel (b): 30 000 points randomly drawn from the functional
form y = 1/x, with ¢ = 10 for all the points. Splitting the x-range in
100 intervals, sorting the data within each interval and keeping track of the
subsets containing 68.27 per cent (£1o; blue points) and 95.44 per cent
(£20; green points) of the data points around the median, it is possible to
compute the upper and lower boundaries for those two subsets (continuous
red and orange lines, respectively). The boundaries in this example have
been determined using adaptive splines with Nypots = 15, N maxiter = 1000,
Nrefine = 10,0 =2 and 8 = 0.

ted with the continuous orange line is the upper boundary for that
filtered spectrum. Although the result is not the same as the one
derived with the original spectrum, it is much better than the one
directly obtained over the noisy spectrum.

(ii) To allow a loose boundary fitting. Another possibility consists
in trying to leave a fraction of the points with extreme values to fall
outside (i.e. in the wrong side) of the boundary, especially those
with higher uncertainties. This option is easy to parametrize by
introducing a cut-off parameter t into the overall weighting factors
given in equation (3). The new factors can then be computed as

upper I/Uzﬂ for y(x;) > yi — 7oy,
boundary & /a,.ﬂ for y(x;) < y; — toi,

w; @)
lower { g/of  for y(x;) >y + t0;,

boundary 1 /aiﬂ for y(x;) < y; + o,

where o; is the uncertainty associated to the dependent variable y;.
The cut-off parameter assigns to a point that falls outside of the
boundary by distance that is less than or equal to to; the same low
weight during the fitting procedure than the weight that receive the
inner points. In other words, points like that do not receive the extra
weighting factor provided by the asymmetry coefficient &, even
though they are outside of the boundary. Note that T = 0 simplifies
the algorithm to the one described in Section 2. Fig. 13(b) illustrates
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Figure 13. Comparison of the two approaches described in Section 5 for
the boundary fitting with data uncertainties. Panel (a): original spectrum of
HD 003651 without noise (blue spectrum), spectrum with artificially added
noise (green spectrum) and noisy spectrum after a Gaussian filtering (red
spectrum). Note that the original (blue) and the filtered noisy (red) spectra
are almost coincident. The upper boundary displayed with a dashed green
line is the fit to the noisy spectrum using adaptive splines, whereas the upper
boundaries plotted with continuous orange and cyan lines are the fits to the
filtered noisy spectrum and to the original spectrum, respectively. Panel (b):
original and noisy spectra are plotted with blue and green lines, respectively
(the filtered spectrum is not plotted here). The cyan line is again the fit to
the original spectrum. The rest of the boundary lines indicate the fits to the
noisy spectrum using different values of the cut-off parameter (red t = 1,
orange T = 2 and green t = 3). In all the fits Npots = 5, Nmaxiter = 1000,
£=1000,a =1, B =0and N efine = 10 have been employed. See discussion
in Section 5.

the use of the cut-off parameter 7 in the upper boundary fitting of
the spectrum of HD 003651. The cyan boundary is again the upper
boundary determination using adaptive splines with the original
spectrum. The rest of the boundary fits correspond to the use of the
weighting scheme given in equation (7) for different values of 7, as
indicated in the legend. As t increases, a larger number of points
are left outside of the boundary during the minimization procedure.
In the example, the value T = 3 seems to give a reasonable fit in
the redder part of the spectrum, although in the bluer region the
corresponding fit is too low. It is clear from this example that to
define a correct value of T is not a trivial issue. Most of the times
the most suited v will be a compromise between a high value (in
order to avoid the bias introduced by highly deviant points) and a
low value (in order to avoid leaving outside of the boundary right
data points).

An additional complication arises when one combines in the
same data set points with different uncertainties. It is in these situa-
tions when the role of the power $ in equation (2) becomes impor-
tant. To illustrate the situation, Fig. 14 shows the different pseudo-
continuum estimations obtained again for the star HD 003651, but
now considering that the spectrum is much noisier below 4200 A
than above this wavelength. In panel (a) the fits are derived ignoring
the cut-off parameter previously discussed (i.e. assuming t = 0),
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Figure 14. Study of the impact of variable S/N in the upper boundary fitting
of the spectrum of the star HD 003651. In both panels the original spectrum
(blue) is plotted together with the same spectrum after artificially adding
noise (green) corresponding to a S/N per pixel, S/N = 3, for A < 4200 A,
and to S/N = 50 for A > 4200 A. The cyan line indicates the upper boundary
fit to the original spectrum. Panel (a): in these fits the cut-off parameter has
been ignored (r = 0), but different values of the power f, as indicated in
the legend, are employed. Note that the unweighted fit (8 = 0; dashed green
line) is highly biased. Panel (b): the same fits of the previous panel are
repeated here but using v = 2. In all the fits Nxpots = 5, Nmaxiter = 1000,
£ =1000, @ = 1 and Nyefine = 10 have been employed. See discussion in
Section 5.

but with different values of . In the unweighted case (8 = 0, dashed
green line) the resulting upper boundary is dramatically biased for
X < 4200 A due to the presence of highly deviant fluxes. The use of
non-null (and positive) values of B induces the fit to be less depen-
dent on the noisier values, being necessary a value as high as 8 =3
to obtain a fit similar to the one obtained in absence of noise (cyan
line). However, since the fitted spectrum (green) do still have noise
for A > 4200 A, all the fits in that region are still biased compared
to the fit for the original spectrum (cyan). In order to deal not only
with the variable noise, but with the noise itself independently of
its absolute value, it is possible to combine the effect of a tuned
B value with the introduction of a cut-off parameter 7. Fig. 14(b)
shows the results derived employing a fixed value v = 2 with the
same variable values of $ used in the previous panel. In this case,
the boundary corresponding to § = 2 (magenta) exhibits an excel-
lent agreement with the fit for the original spectrum (cyan) at all
wavelengths. Thus, the combined effect of an error-weighted fit and
the use of a cut-off parameter is providing a reasonable boundary
determination, even under the presence of wavelength-dependent
noise.

6 CONCLUSIONS

This work has confronted the problem of obtaining analytical ex-
pressions for the upper and lower boundaries of a given data set.
The task reveals treatable using a generalized version of the very
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well known ordinary least-squares fit method. The key ideas behind
the proposed method can be summarized as follows.

(i) The sought boundary is iteratively determined starting from an
initial guess fit. For the analysed cases an ordinary least-squares fit
provides a suitable starting point. At every iteration in the procedure
a particular fit is always available.

(i1) In each iteration the data to be fitted are segregated in two
subgroups depending on their position relative to the particular fit
at that iteration. In this sense, points are classified as being inside
or outside of the boundary.

(iii) Points located outside of the boundary are given an ex-
tra weight in the cost function to be minimized. This weight is
parametrized through the asymmetry coefficient £. The net effect of
this coefficient is to generate a stronger pulling effect of the outer
points over the fit, which in this way shifts towards the frontier
delineated by the outer points as the iterations proceed.

(iv) The distance from the points to a given fit are introduced in
the cost function with a variable power «, not necessarily in the
traditional squared way. This supplies an additional parameter to
play with when performing the boundary determination.

(v) Since data uncertainties are responsible for the existence of
highly deviant points in the considered data sets, their incorporation
in the boundary determination has been considered in two different
and complementary ways. Errors can readily be incorporated into
the cost function as weighting factors with a variable power B
(which does not have to be necessarily two). In addition, a cut-off
parameter t can also be tuned to exclude outer points from receiving
the extra factor given by the asymmetry coefficient depending on
the absolute value of their error bar. The use of both parameters
(B and t) provides enough flexibility to handle the role of the
data uncertainties in different ways depending on the nature of the
considered boundary problem.

(vi) The minimization of the cost function can be easily carried
out using the popular pownNHILL simplex method. This allows the
use of any computable function as the analytical expression for the
boundary fits.

The described fitting method has been illustrated with the use
of simple polynomials, which probably are enough for most com-
mon situations. For those scenarios where the data exhibit rapidly
changing values, a more powerful approach, using adaptive splines,
has also been described. Examples using both simple polynomials
and adaptive splines have been presented, showing that they are
good alternatives to estimate the pseudo-continuum of spectra and
to segregate data in ranges.

The analysed examples have shown that there is no magic rule to
a priori establish the most suitable values for the tunable parameters
(&, &, B, T, Nmaxiter> Nknots)- The most appropriate choices must be
accordingly tuned for the particular problem under study. In any
case, typical values for some of these parameters in the considered
examples are £ € [1000, 10000] and « € [1, 2]. Unweighted fits
require 8 = 0. To take into account data uncertainties one must play
around with the 8 and t parameters (which typical values range
from O to 3).

A new program called BounpFir (and available at the URL given
in Section 1) has been written by the author to help any person
interested in playing with the method described in this paper. It is
important to note that for some problems it is advisable to normalize
the data ranges prior to the fitting computation in order to prevent
(or at least reduce) numerical errors. BounpFIT incorporates this
option, and the users should verify the benefit of applying such
normalization for their particular needs.
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APPENDIX A: INTRODUCING ADDITIONAL
CONSTRAINTS IN THE FITS

Sometimes it is not only necessary to obtain a given functional fit
to a data set, but to do so while imposing restrictions on some of the
fitted parameters ao, ay, ..., a,. This can be done by introducing
either equality or inequality constraints, or both. These constraints
are normally expressed as

ciag,ay,...,a,) =0 j=1,...,n, (A1)

cjag,ay,...,a,) >0 j=ne+1,...,n.+n, (A2)

being n. and »; the number of equality and inequality constraints,
respectively. In the case of some boundary determinations it may
be useful to incorporate these type of constraints, for example when
one needs the boundary fit to pass through some pre-defined fixed
points, and/or to have definite derivatives at some points (allowing
for a smooth connection between functions).

Many techniques that allow to minimize cost functions while
taking into account supplementary constraints are described in the
literature (see e.g. Rao 1978; Gill, Murray & Wright 1989; Bazaraa,
Sherali & Shetty 1993; Nocedal & Wright 2006; Fletcher 2007),
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and to explore them here in detail are beyond the aim of this work.
However, this appendix outlines two basic approaches that can be
useful for some particular situations.

A1l Avoiding the constraints

Before facing the minimization of a constrained fit, it is advisable
to check whether some simple transformations can help to convert
the constrained optimization problem into an unconstrained one
by making change of variables. Rao (1978) presents some useful
examples. For instance, a frequently encountered constraint is that
in which a given parameter g, is restricted to lie within a given range,
€.2. aimin < d; < a; max. In this case the simple transformation

a; = Aaj min + (al,max - al,min) Sin2 bl (A3)

provides a new variable b; which can take any value. If the original
parameter is restricted to satisty a; > 0, the trivial transformations
a; = abs(by), a; = b? or a; = exp(b;) can be useful.

Unfortunately, when the constraints are not simple functions, it
is not easy to find the required transformations. As highlighted by
Fletcher (2007), the transformation procedure is not always free of
risk, and in the case where it is not possible to eliminate all the
constraints by making change of variable, it is better to avoid partial
transformation (Rao 1978).

An additional strategy that can be employed when handling equal-
ity constraints is trying to use the equations to eliminate some of
the variables. For example, if for a given equality constraint c; is
possible to re-arrange the expression to solve for one of the variables

¢;j=0—a,=gjlap,a,...,a_1,0541,...,0a,), (A4)

then the cost function simplifies from a function in (p + 1) variables
into a function in p variables

flao, ay, ..., a5 1, a5, a5¢1, ..., ap)

= flao, ai, ... S ap), (A5)

y As—15 8js s 415 - -

since the dependence on a; is removed. When the considered prob-
lem only has equality constraints and, in addition, for all of them
it is possible to apply the above elimination, the fitting procedure
transforms into a simpler unconstrained problem.

A2 Facing the constraints

The weighting scheme underlying the minimization of equation (2)
is actually an optimization process based on the penalization in
the cost function of the data points that falls in the wrong side
(i.e. outside) of the boundary to be fitted. For this reason it seems
appropriate to employ additional penalty functions (see e.g. Bazaraa
et al. 1993) to incorporate constraints into the fits.

In the case of constraining the range of some of the parameters
to be fitted, @ min < @ < dj max. it is trivial to adjust the value of the
cost function by introducing a large factor A that clearly penalizes
parameters beyond the required limits. In this sense, equation (2)
can be rewritten as

N

f=AhG@, ar,....a,)+ > wily(x) = yil* (A6)
i=1

where h(ag, ay, ..., a,) is a function that is null when the required

parameters are within the requested ranges (i.e. the fit is performed

in an unconstrained way), and some positive large value for the

contrary situation.

100
T

50

Y axis (arbitrary units)

X axis (arbitrary units)

Figure Al. Example of constrained boundary fit, using adaptive splines
with the same data employed in Figs 2, 4 and 6. The boundary (red line)
has been forced to pass through the points marked with open circles (green),
namely (0.05, 100) and (0.20, 100). To give an important weight to the two
constraints in equation (A7), the value of the penalization factor has been
setto A = 10°. The dotted blue line is the same fit, but introducing two new
additional constraints, in particular forcing the derivatives to be zero at the
same fixed points.

For the particular case of equality constraints of the form given in
equation (A1), it is possible to directly incorporate these constraints
into the cost functions as

ne N
F=A>lejlag,ar, ... a)l" + > wilyx) — yil”. (A7)
j=1 i=1
In this situation, for the constraints to have an impact in the cost
function, the value of the penalization factor A must be large enough
to guarantee that the first summation in equation (A7) dominates
over the second summation when a temporary solution implies a
large value for any |c;|.

As an example, Fig. A1 displays the upper boundary limit com-
puted using adaptive splines for the same data previously employed
in Figs 2, 4 and 6, but arbitrarily forcing the fit to pass through
the two fixed points (0.05, 100) and (0.20, 100), marked in the
figure with the green open circles. The constrained fit (thick contin-
uous red line) has been determined by introducing the two equality
constraints:

¢ y(x =0.05)—100 =0 and
¢y y(x =0.20) — 100 = 0. (A8)

The displayed fit was computed using a penalization factor A = 10°,
with an asymmetry coefficient & = 1000, Nyuors = 15, N maxiter =
1000 iterations, N e = 20 processes, « = 2 and B = 0. For
comparison, another fit (dotted blue line) has also been computed
by introducing two more constraints, namely forcing the derivatives
to be zero at the same points, i.e. ¥’ (x = 0.05) =0 and y' (x =
0.20) = 0. The resulting fit is clearly different, highlighting the
importance of the introduction of the constraints.

APPENDIX B: NORMALIZATION OF DATA
RANGES TO REDUCE NUMERICAL ERRORS

The appearance of numerical errors is one of the most important
sources of problems when fitting functions, in particular polynomi-
als, to any data set making use of a piece of software. The problems
can be especially serious when handling large data sets, using high
polynomial degrees and employing different and large data ranges.
Since the size of the data set is usually something that one does
not want to modify, and the polynomial degree is also fixed by the
nature of the data being modelled (furthermore in the case of cubic
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splines, where the polynomial degree is fixed), the easier way to re-
duce the impact of numerical errors is to normalize the data ranges
prior to the fitting procedure. However, although this normaliza-
tion is a straightforward operation, the fitted coefficients cannot be
directly employed to evaluate the sought function in the original
data ranges. Previously it is necessary to properly transform those
coefficients. This appendix provides the corresponding coefficient
transformations for the case of the fitting to simple one-dimensional
polynomials and to cubic splines.

B1 Simple polynomials
Simple polynomials are typically expressed as
y=a0+a1x+a2x2+--~—|—al,x1’. (B1)

Let us consider that the ranges exhibited by the data in the corre-
sponding coordinate axes are given by the intervals [X iy, X max ] and
[Vmin> ¥Ymax ], and assume that one wants to normalize the data within
these intervals into new ones given by [Xmin, Xmax] and [Vmin, Ymaxls
through a point-to-point mapping from the original intervals into
the new ones:

[xminv xmax] — [X'mina jzmax] and
[yminv ymax] I [Slmins S)max] .

For this purpose, linear transformations of the form
f=bx—c, and y=byy—c, (B2)

are appropriate, where b and ¢ are constants (b, and b, are scaling
factors, and ¢, and c, represent origin offsets in the normalized data
ranges). The inverse transformations will be given by

X 4+ ¢

y+oe
X = = .
by

by

and y

(B3)

Assuming that the original and final intervals are not null (i.e. xpi, 7#

Xmax Xmiu 7é Xmaxs Ymin 7é Ymax and ymin 7é ymax), it is trivial to show
that the transformation constants are given by
bx — jmax - Xmin ’ (B4)

Xmax — Xmin

¢ = )Ncmaxxmin - )Ncminxmax (BS)
Xmax — Xmin

and the analogue expressions for the coefficients of the y-axis trans-

formation. For example, to perform all the arithmetical manipula-

tions with small numbers, it is useful to choose Xnin = Vmin = —1
and Xmax = Ymax = +1, which leads to

2
by = ——, (B6)

Xmax — Xmin

_ Xmin + Xmax

B7)

CX
Xmax — Xmin
and the analogue expressions for b, and c,.

Once the data have been properly normalized in both axes follow-
ing the transformations given in equation (B2), it is possible to carry
out the fitting procedure, which provides the resulting polynomial
expressed in terms of the transformed data ranges as

§=do+a ¥ +ait+ -+ a,rr. (B8)

At this point, the relevant question is how to transform the fitted
coefficients ay, di, . .., a, into the coefficients ay, ai, ..., a, cor-
responding to the same polynomial defined over the original data
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ranges. By substituting the relations given in equation (B2) in the
previous expression one directly obtains

(b}y - Cy) = a0 + al(bx-x - Cx) + aZ(bx-x - Cx)z

+ o ay(bex —co)P. (B9)
Remembering that
(bex — )" = zm: ") (byx)" (—c,)" (B10)
X X 70 n X X 9

with the binomial coefficient computed as

m m!
() = T (BI1)

and comparing the substitution of equations (B10) and (B11) into
equation (B9) with the expression given in equation (B1), it is not
difficult to show that if one defines

14 .
h; = Z&j <j ]_ i) (bx)i(_cx)j_[a (B12)

Jj=i

the sought coefficients will be given by

h ,
ﬂ fori =0,
y
a; = (B13)
hi o
— withi =1,..., p.
b,

In the particular case in which ¢, = 0, the above expressions simplify
to

L to fori =0

y
a; = . (B14)
Zl,‘ ;

b.V

The normalization of the data ranges has several advantages.
Fig. B1 (similar to Fig. 3) shows the impact of data normalization
on the convergence properties of the fitted coefficients, as a function
of the number of iterations, for the upper boundary fit (fifth-order
polynomial) shown in Fig. 2(a). The red line, corresponding to the
results when the normalization is applied prior to the boundary
fitting, indicates that after N yxier ~ 140, the coefficients have con-
verged. The situation is much worse when the normalization is not
applied, as illustrated by the blue line. In this case the convergence
is only reached after N paier ~ 1450 iterations, 10 times more than
when using the normalization. In addition, the ranges spanned by the
coefficient values along the minimization procedure are narrower
when the data ranges have been previously normalized.

Fig. B2 exemplifies the appearance of numerical errors that takes
place when increasing the polynomial degree during the fitting of
a reasonably large data set. In this case 10000 points are fitted
employing upper and lower boundaries with simple polynomials of
degree 10 (red lines) after normalizing the data ranges using the
coefficients given in equations (B6) and (B7) (with the analogue
expressions for the y-axis coefficients) prior to the numerical min-
imization. When the data ranges are not normalized, the fitting to
polynomials of degree 10 gives non-sense results. Only polynomi-
als of degree less or equal to 9 are computable. Furthermore, for the
case of degree 9 the results are unsatisfactory (green lines), being
the polynomials of degree 8 (blue lines) the first reasonable bound-
aries while fitting the data preserving their original ranges. Thus in
this particular example the normalization of the data ranges allows
to extend the fitted polynomial degree in two units.

withi =1,..., p.
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Figure B1. Variation in the fitted coefficients, as a function of the number
of iterations, for the upper boundary fit (fifth-order polynomial) shown in
Fig. 2(a). This plot is same as Fig. 3, but in this case analysing the impact
of the normalization of the data ranges prior to the boundary determination.
Each panel represents the coefficient value at a given iteration (a;, with i =
0, ..., 5, from bottom to top) divided by a, the final value derived after
N maxiter = 2000 iterations. The same y-axis range is employed in all the
plots. The red line shows the results when applying the normalization, and
the blue line indicates the coefficient variations when this normalization is
not applied. In both cases £ = 1000, « = 2 and 8 = 0 were used. Note that
the plot x-scale is in logarithmic units.

B2 Cubic splines

Normalization of the data ranges is also important for the com-
putation of cubic splines, in particular for the boundary fitting to
adaptive splines described in Section 3. In that section the functional
form of a fit to set of Ny,ois Was expressed as

y= S3(k)[x - xknot(k)]3 + Sz(k)[x - -)Cknol(k)]2
+51(0)[x — Xknor(k)] + so(k), (B15)

where [Xinot(k)s Yknot(k)] are the (x, y) coordinates of the kth
knot, and s¢(k), s1(k), s,(k) and s3(k) are the corresponding spline
coefficients for x € [xkuoi(k), Xxot(k + 1)], with & = 1,...,
N knots — L.

Using the same nomenclature previously employed for the case
of simple polynomials, the result of a fit to cubic splines performed
over normalized data ranges should be written as

¥ = 5[ = Frnot () + 52(k)[E — Fnor (k)]
+ 510X — Zxnot ()] + 8o (k). (B16)
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Figure B2. Example of the appearance of numerical errors in the boundary
fitting with simple polynomials. The fitted data set consists in 10 000 points
randomly drawn from the function y = sin(1.5x)/(1 + x) for x € [0,
27t], assuming a Gaussian error o = 0.02 in the y-axis, and where prior
to the data fitting the (x, y) coordinates were transformed using xg; =
1000 + 500 X original and yge = 1000 yoriginal in order to artificially enlarge
the data ranges. Panel (a): bootstrapped data and fitted boundaries. Panel
(b): residuals relative to the original sinusoidal function. In both panels
the lines indicate the resulting fits for different polynomial degrees and
normalization strategies (in all the cases £ = 1000, « = 2 and g = 0 were
employed). The continuous red lines are the boundaries obtained using
polynomials of degree 10 and normalizing the data ranges prior to the fitting
procedure. The green and blue lines correspond to the fits obtained by fitting
polynomials of degrees 9 and 8, respectively, without normalizing the data
ranges. Using the original data ranges the boundary fits start to depart from
the expected location due to numerical errors for polynomials of degree 9.
However, polynomials of degree 10 are still an option when the data ranges
are previously normalized.

Following a similar reasoning to that used previously, it is straight-
forward to see that the sought transformations are

S (k )
Sk ter wizo
by
si(k) = (B17)
5:(k)b! .
Sl ihi=1,...3,
by
where k =1, ..., Nwos — 1. Note that these transformations are

identical to equation (B14). This is not surprising considering that
splines are polynomials and that the adopted functional form given
in equation (B15) is actually providing the y(x) coordinate as a
function of the distance between the considered x and corresponding
value xy,0(k) for the nearest knot placed at the left-hand side of x.
Thus, the ¢, coefficient is not relevant here.

B3 A word of caution

Although the method described in this appendix can help in some
circumstances to perform fits with larger data sets or higher polyno-
mial degrees than without any normalization of the data ranges, it is
important to keep in mind that such normalization does not always
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produce the expected results and that numerical errors appear in any
case sooner or later if one tries to use excessively large data sets or
very high values for the polynomial degrees.

Anyhow, the fact that the normalization of the data ranges can
facilitate the boundary determination of large data sets or to use
higher polynomial degrees justifies the effort of checking whether
such normalization is of any help. Sometimes, to extend the poly-
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nomial degrees by even just a few units can be enough to solve
the particular problem one is dealing with. The program BounpFir
incorporates the normalization of the data prior to the boundary
fitting as an option.

This paper has been typeset from a TEX/IATEX file prepared by the author.



