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Times of inspiralling for interplanetary dust grains
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ABSTRACT

There are uncharged spherical dust particles interacting with solar electromagnetic radiation

moving in the gravitational fields of the Sun and the Earth. The Earth is supposed to be moving

in a circular orbit, and the effect of solar electromagnetic radiation is given by the Poynting–

Robertson effect. The time of particle inspiralling toward the Sun is analysed for the pure

Poynting–Robertson effect and in order to include the gravitational effect of the Earth. It is

shown that the exterior mean-motion orbital resonances with the Earth may increase the time

of spiralling into the Sun by 50 per cent, compared with the case of neglecting the gravitational

effect of the Earth, for eccentricities smaller than 0.8. The result holds for particles from 1 µm

to tens of µm in radii.

Key words: scattering – methods: numerical – celestial mechanics – interplanetary medium –

meteors, meteoroids.

1 IN T RO D U C T I O N

The action of electromagnetic radiation on spherical dust parti-

cles is known as the Poynting–Robertson effect (Robertson 1937;

Klačka 2004). When the Poynting–Robertson effect acts on an inter-

planetary dust particle orbiting the Sun, the particle is decelerated

and spirals in toward the Sun; a systematic decrease in the sec-

ular changes of particle’s semimajor axis and eccentricity exists

(Robertson 1937; Wyatt & Whipple 1950; Klačka 2004; Sec-

tions 6.1 and 6.2.2) if the optical properties of the particle are

constant.

If a planet is also taken into consideration, then the spi-

ralling particle can be captured in mean-motion orbital resonances

with the planet, for some time interval (Jackson & Zook 1989;

Weidenschilling & Jackson 1993; Beaugé & Ferraz-Mello 1994;

Marzari & Vanzani 1994; Šidlichovský & Nesvorný 1994; Liou &

Zook 1995, 1997; Liou, Zook & Jackson 1995). As a consequence,

there should be dust rings around planetary orbits. This has been

found, and the observational situation is described and commented

on by Dermott et al. (1994), Brownlee (1994) and Reach et al.

(1995).

The effect of mean-motion orbital resonances can increase the

particle’s time of inspiralling toward the Sun. We are interested

in finding whether this increase is because of the presence of the

Earth.

2 EQUAT I O N O F M OT I O N

We are interested in the orbital evolution of spherical dust particles

under the action of solar electromagnetic radiation, solar gravity

⋆E-mail: klacka@fmph.uniba.sk (JK); kocifaj@savba.sk (MK)

and gravity of the Earth. The presence of the Earth can cause a

prolonging of the time of spiralling toward the Sun. The equation of

motion of the particle is
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= −

G M⊙
r3

r + β
G M⊙

r2

[(

1 −
v · eR

c

)

eR −
v

c

]

−GmP

(

r − rP

|r − rP|3
+

rP

|rP|3

)

,

eR ≡ r/|r|,

β ≡
L⊙πR2

4πG M⊙m

Q̄′
pr

c
= 7.6 × 10−4Q̄′

pr

πR2(m2)

m(kg)
. (1)

Here G is the gravitational constant, M⊙ is the mass of the Sun, r is

the position vector of the particle with respect to the Sun, r = |r|, rP

is the position vector of the planet with respect to the Sun, mP is mass

of the planet, m is mass of the particle and R is its effective radius.

Q̄′
pr is the efficiency factor for the radiation pressure integrated over

the solar spectrum (averaged over all wavelengths and weighted

by the solar spectrum) and calculated for the radial direction (as for

the dimensionless factor of the effectiveness of radiation pressure;

see also, for example, section 4.5 in Bohren & Huffman 1983 and

equations (2)–(5) in Klačka & Kocifaj 2006a). We have also used

the flux density of radiative energy L⊙/(4πr2), where L⊙ is the

solar luminosity. We consider the effect of the electromagnetic force

to the first order in v/c, where v is the heliocentric velocity of the

particle and c is the speed of light. The radiation term in equation (1)

corresponds to the Poynting–Robertson effect. As for the effect of

the gravity, the term GmPrP/|rP|3 comes from the fact that we

describe the motions of the particle and the planet with respect to

the Sun (equations of motion hold in an inertial frame of reference

and the Sun also moves in such a frame of reference because of the

gravity force of the planet; this corresponds to the term rP/|rP|3,
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which is often ignored). We suppose that the planet moves in a

circular orbit around the Sun.

3 T I M E O F SP I R A L L I N G – A NA LY T I C A L
A P P ROAC H : TH E P OY N T I N G – RO B E RT S O N
EFFECT

If the planet were not present, then equation (1) reduces to the ac-

tion of solar radiation and solar gravity alone. We suppose that

the optical properties of the particle do not change. To anal-

yse the inspiralling of the spherical particle from an initial value

of the semimajor axis ain to a final semimajor axis a we can intro-

duce the integral quantity F (e, ein):

F (e, ein) =
(

1 − e2
in

)2

e
8/5
in

∫ ein

e

x3/5

(1 − x2)3/2
dx, (2)

Here, ein is the initial eccentricity of the particle based on the idea

that central Keplerian acceleration is −G M⊙(1−β)r/r3. The final

eccentricity e is given by the initial values of the semimajor axis and

eccentricity ain and ein, and also by the value of the final semimajor

axis a:

1 − e2
in

1 − e2

(

e

ein

)4/5

=
a

ain

. (3)

Equations (2) and (3) are obtained on the basis of considera-

tions presented in Robertson (1937) and Wyatt & Whipple (1950).

Equation (2) comes from the differential equation dp/dt =
−2β(G M⊙/c)(1 − e2)3/2/p (see p. 19 in Klačka 2004) and p =
pin(e/ein)4/5 (Wyatt & Whipple 1950).

As a consequence of equation (3), we easily find that the value

e = 0 corresponds to the value a = 0.

3.1 Semimajor axis: ain → 0

If the final semimajor axis equals 0, then the secular orbital evolution

yields for the time of inspiralling toward the Sun

τ0 =
2

5

(

β
G M⊙

c

)−1

a2
inF (0, ein), (4)

where the function F is defined by equation (2). Frequently, the

approximate time to spiral into the Sun is presented (e.g. Leinert &

Grün 1990, p. 226):

τcirc 0 =
1

4

(

β
G M⊙

c

)−1

a2
in. (5)

The result in equation (5) can be obtained from equation (4) in the

limit ein → 0; it is supposed that the particle moves in a ‘circular’

orbit.

If the time is measured in years and the semimajor axis in astro-

nomical units (au), then G M⊙ = 4π
2 au3 yr−2 and the speed of

light is c = 6.31×104 au yr−1. Equations (4) and (5) can be written

as

τ0(yr) =
2

5

1.6 × 103

β
[ain(au)]2 F (0, ein), (6)

τcirc 0(yr) =
4.0 × 102

β
[ain(au)]2 . (7)

3.2 Semimajor axis: ain → a

A more general case corresponds to the situation when the spherical

particle spirals from the initial value of the semimajor axis ain to the

final semimajor axis equal to a. The secular orbital evolution yields

for the time of inspiralling from ain to a

τa =
2

5

(

β
G M⊙

c

)−1

a2
inF (e, ein), (8)

where the value of a is given by equation (3) and equation (2) is

also important.

Again, the results are based on the idea that central Keplerian

acceleration is −G M⊙(1 − β)r/r3.

If we want to use the approximation of a ‘circular’ orbit repre-

sented by equation (5), then we would obtain the following result

instead of equation (8):

τcirc a =
1

4

(

β
G M⊙

c

)−1
(

a2
in − a2

)

. (9)

Equations (8) and (9) can also be written in the forms:

τa(yr) =
2

5

1.6 × 103

β
[ain(au)]2 F (e, ein), (10)

τcirc a(yr) =
4.0 × 102

β

{

[ain(au)]2 − [a(au)]2
}

. (11)

Also, equation (3) has to be used in equation (10).

4 N U M E R I C A L R E S U LT S

The numerical study concentrates on the evolution of dust particles

with β equal to 0.01 and 0.10, and with the following initial values

of orbital elements: (i) 1–2.5 au in the semimajor axis; (ii) 0–0.8

in eccentricity. We suppose that distributions in ain and ein are

uniform. These considerations can be taken as an approximation

for near-Earth asteroids.

4.1 Semimajor axis: ain → 0

The average time of spiralling toward the Sun 〈τp 0〉 is analysed in

this section, where the index indicates that the Earth is taken into

account. The result is compared with the average time of spiralling

without the gravity of the Earth; that is, with the average times 〈τ0〉
and 〈τcirc 0〉 corresponding to equations (4) and (5), or equations (6)

and (7), for the same initial values of orbital elements. The obtained

results are presented in Table 1 for the case when the ecliptic plane

is identical to the plane of the particle’s motion.

Table 1. Comparison of the average times of spiralling to-

ward the Sun for particles with the given values of β and

various initial conditions in orbital elements. τcirc 0 and τ0

are given by equations (2), (6) and (7) and τp 0 denotes the

time taken to spiral into the Sun when the Earth is also in-

cluded. Averaging is calculated over all initial values of the

semimajor axis ain and eccentricity ein and various initial

positions of the particle with respect to the Earth.

β 〈τcirc 0〉 (yr) 〈τ0〉 (yr) 〈τp 0〉/〈τ0〉

0.01 1.37 × 105 1.27 × 105 1.50

0.10 1.37 × 104 1.27 × 104 1.42
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Table 2. Comparison of the average times of spiralling toward the Sun for

particles with the given values of β and various initial conditions in orbital

elements. τcirc 1 and τ1 are given by equations (2), (3), (10) and (11) and

τp 1 denotes the time taken to spiral toward the Sun when the Earth is also

included. Averaging is calculated over all initial values of the semimajor

axis ain and eccentricity ein and various initial positions of the particle with

respect to the Earth.

β 〈τcirc 1〉 (yr) 〈τ1〉 (yr) 〈τp 1〉/〈τ1〉

0.01 9.7 × 104 9.0 × 104 1.71

0.10 9.7 × 103 9.0 × 103 1.59

4.2 Semimajor axis: ain → a = 1 au

The time of spiralling toward the Sun 〈τp 1〉 is calculated for particles

with semimajor axes decreasing from various initial values ain to the

final value a = 1 au. The Earth is taken into account. This reflects

the fact that only exterior mean-motion orbital resonances with the

Earth are significant in determining the time of inspiralling of in-

terplanetary dust grains toward the Sun (capture times in interior

mean-motion orbital resonances are negligibly small). The result is

compared with the average time of spiralling without the gravity

of the Earth; that is, with the average times 〈τ1〉 and 〈τcirc 1〉 corre-

sponding to equations (8), (3) and (9), or equations (3), (10) and

(11), for the same initial values of orbital elements. The obtained

results are presented in Table 2 for the case when the plane of the

Earth’s motion is identical to the plane of the particle’s motion.

4.3 Resonant captures

Captures into mean-motion orbital resonances increase the parti-

cle’s time of spiralling toward the Sun. The increase is about 60–

70 per cent of the Poynting–Robertson spiralling times before the

particles reach the orbit of the Earth (see Table 2). The result is

practically independent of the size of the particles. In reality, any

particle may be captured into several different resonances (charac-

terized by the ratio nP/n, where nP is the mean motion of the Earth

and n is the (‘instantaneous’) mean motion of the particle during

its spiralling toward the Sun. Fig. 1 depicts the mean times that

particles spend in various resonances; the two values of β and the

initial conditions defined above are taken into account. In accor-
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Figure 1. Relative occurrence (in per cent) of the ratios of capture times

Tβ=0.01 and Tβ=0.1 for exterior mean-motion orbital resonances with the

Earth. On average, particles with β = 0.01 exhibit larger capture times than

particles with β = 0.1.
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Figure 2. Probability of the resonance occurrence among all the cases when

particles are captured in resonance. The most probable are captures into the

resonances 2 : 1, 3 : 2, 3 : 1 and 5 : 2 with the Earth.
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Figure 3. Mean resonance time as a function of the type of exterior mean-

motion orbital resonance with the Earth. Spherical particles with β = 0.01

exhibit longer captures than particles with β = 0.1, on average.

dance with the results of Table 2, the capture times are larger, in

general, for smaller β. Fig. 2 presents a summary of all exterior

mean-motion orbital resonances with the Earth. Because the pro-

cess of the Poynting–Robertson spiralling toward the Sun is slower

for smaller β, we expect that the possibility of being captured into a

resonance is higher for smaller β. The real situation is different, and

the result can be obtained from Fig. 3, if the values on the vertical

axis are multiplied by the numerical factors 2.94 for β = 0.01 and

by 7.61 for β = 0.1 (if we want to obtain the results in per cent,

then multiplication by 100 also has to be carried out).

4.4 Eccentricities greater than 0.8

We have also performed numerical calculations for the set of initial

eccentricities lying in the interval 0.8–0.99; the initial values of

the semimajor axes were unchanged. The mean spiralling times,

calculated according to equations (2) and (6), are 6.97 × 103 yr for

β = 0.1, and 6.97 × 104 yr for β = 0.01. The speed of inspiralling
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is more rapid than for more circular orbits (compare the values with

the values of 〈τ0〉 presented in Table 1), and thus we expect a lower

possibility of being captured in a mean-motion orbital resonance

with the Earth. The numerical results show that this situation really

occurs and the values of the increase of the time of spiralling toward

the Sun, because of the capture in the resonances, are very small,

less than 1 per cent for both values of β: 〈τp 0〉/〈τ0〉 = 1.009 for

β = 0.01 and 〈τp 0〉/〈τ0〉 = 1.003 for β = 0.1.

5 D ISCUSSION

Tables 1 and 2 present the important ratios 〈τp 0〉/〈τ0〉 and 〈τp 1〉/〈τ1〉
for the two values of β. It can immediately be seen that the ratios

are not very sensitive to the value of β. The smaller β is, the greater

the ratios discussed above.

Why does the ratio [〈τp 0〉/〈τ0〉(β = 0.01)] : [〈τp 0〉/〈τ0〉(β =
0.1)] practically equal the ratio [〈τp 1〉/〈τ1〉(β = 0.01)] :

[〈τp 1〉/〈τ1〉(β = 0.1)], and why is the value 1.066 ± 0.010?

In order to be able to understand the obtained results, we have

to use some ideas from orbital evolution in mean-motion orbital

resonances. According to equations (73) and (83) in Klačka &

Kocifaj (2006a) – compare also Klačka & Kocifaj (2006b) and

Liou & Zook (1997) – the secular change of eccentricity of the

particle is

de

dt
=

β

(1 − β)2/3

(

1 +
η

Q̄′
pr,1

)

G M⊙
c

(nP

n

)−4/3

×
√

1 − e2

a2
Pe

[

1 −
n

nP

1 + 3e2/2
(

1 − e2
)3/2

]

. (12)

Here, aP is the semimajor axis of the planet, nP and n are mean

motions of the planet and the particle and the constant η = 1/3 con-

siders the effect of the solar wind. Although we have not considered

the solar wind in our simulations, we have kept it in equation (12)

in order to show that it does not influence the result pointed out in

the questions presented above.

Equation (12) yields that the secular evolution of eccentricity

in mean-motion orbital resonance, defined by the ratio nP/n, is a

monotonous function of time. The evolution of e tends to a limiting

value, which is never reached, and thus we are not able to find

the real capture time. However, we can obtain information on the

capture time dependence on β, on the basis of equation (12). We

expect that

Tcapture ∝
(1 − β)2/3

β
. (13)

If we are interested in the ratio (Tspiral + Tcapture)/Tspiral, we immedi-

ately obtain, on the basis of equations (4) and (13) (or equations 8

and 13):

Tspiral + Tcapture

Tspiral

= 1 +
Tcapture

Tspiral

= 1

+
(1 − β)2/3

β

(

1

β

)−1

Z. (14)

Here, Z represents all quantities except for β. We can assume that

the value of Z is practically constant for an averaging in calculating

Tcapture for a large set of initial conditions, as used in our simulations.

Equation (14) then yields:

Tcapture

Tspiral

(β1)

[

Tcapture

Tspiral

(β2)

]−1

=
(

1 − β1

1 − β2

)2/3

. (15)

On the basis of the results presented in Tables 1 and 2, and

equation (15), we can summarize:

Tcapture

Tspiral

(β1)

[

Tcapture

Tspiral

(β2)

]−1

≡
[(

〈τp 0〉
〈τ0〉

− 1

)

(β1)

] [(

〈τp 0〉
〈τ0〉

− 1

)

(β2)

]−1

=
50

42
= 1.19,

Tcapture

Tspiral

(β1)

[

Tcapture

Tspiral

(β2)

]−1

≡
[(

〈τp 1〉
〈τ1〉

− 1

)

(β1)

] [(

〈τp 1〉
〈τ1〉

− 1

)

(β2)

]−1

=
71

59
= 1.20,

(

1 − β1

1 − β2

)2/3

= 1.07,

β1 = 0.01 β2 = 0.1. (16)

The physical considerations presented in this section show that

they are not very different from reality, as the obtained values 1.19,

1.20 and 1.07 are of the same order, and moreover they do not

significantly differ from each other.

6 SU M M A RY A N D C O N C L U S I O N S

The motion of spherical interplanetary dust grains with radii be-

tween 1 µm and several tens of µm is driven by the gravity of the

Sun, and its electromagnetic radiation in the form of the Poynting–

Robertson effect. These two forces are the dominant forces. The

other non-negligible force is produced by the gravity of planets.

If we consider dust grains in the inner part of the Solar system,

the gravitational effect of the Earth may play a significant role. In

our model, the Earth is supposed to be moving in a circular or-

bit. The times of inspiralling toward the Sun are compared for the

Poynting–Robertson inspiralling and for the case of inclusion of

the gravitational effect of the Earth. The exterior mean-motion or-

bital resonances with the Earth may increase the time of spiralling

into the Sun by 50 per cent, compared with the case of neglect-

ing the gravitational effect of the Earth, if a uniform distribution

for the particles’ semimajor axes and eccentricities are supposed:

1 ≤ ain ≤ 2.5 au and 0 ≤ ein ≤ 0.8. The real time taken to spiral

into the orbit of the Earth is increased by 60–70 per cent, compared

with the case of neglecting the gravitational effect of the Earth.

These results hold for particles from 1 µm to tens of µm in radii.
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