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ABSTRACT

Galaxies with stellar bulges are generically observed to host supermassive black holes

(SMBHs). The hierarchical merging of galaxies should therefore lead to the formation of

SMBH binaries. Merging of old massive galaxies with little gas promotes the formation of

low-density nuclei where SMBH binaries are expected to survive over long times. If the binary

lifetime exceeds the typical time between mergers, then triple black hole (BH) systems may

form. We study the statistics of close triple SMBH encounters in galactic nuclei by computing a

series of three-body orbits with physically motivated initial conditions appropriate for giant el-

liptical galaxies. Our simulations include a smooth background potential consisting of a stellar

bulge plus a dark matter halo, drag forces due to gravitational radiation and dynamical friction

on the stars and dark matter, and a simple model of the time evolution of the inner density

profile under heating and mass ejection by the SMBHs. We find that the binary pair coalesces

as a result of repeated close encounters in ∼85 per cent of our runs, and in ∼15 per cent of

cases a new eccentric binary forms from the third SMBH and binary remnant and coalesces

during the run time. In about 40 per cent of the runs the lightest BH is left wandering through

the galactic halo or escapes the galaxy altogether, but escape of all three SMBHs is exceedingly

rare. The triple systems typically scour out cores with mass deficits ∼one–two times their total

mass, which can help to account for the large cores observed in some massive elliptical galax-

ies, such as M87. The high coalescence rate, prevalence of very high-eccentricity orbits, and

gravitational radiation ‘spikes’ during close encounters in our runs, may provide interesting

signals for the future Laser Interferometer Space Antenna (LISA).

Key words: black hole physics – methods: numerical – galaxies: elliptical and lenticular,

cD – galaxies: interactions – galaxies: nuclei – cosmology: theory.

1 I N T RO D U C T I O N

In the favoured cold dark matter (CDM) cosmology, present-day

galaxies were assembled hierarchically from smaller building blocks

at earlier cosmic times. Since all nearby galaxies with stellar

spheroids are observed to host nuclear supermassive black holes

(SMBHs) (Kormendy & Gebhardt 2001), hierarchical merging leads

inevitably to the formation of SMBH binaries (Begelman et al.

1980). If the binary lifetime exceeds the typical time between merg-

ers, then some galactic nuclei should contain systems of three or

more SMBHs. These systems are particularly interesting as they

often lead to the ejection of one of the black holes (BHs) at a speed

comparable to the galactic escape velocity (Hoffman & Loeb 2006).

In massive elliptical galaxies the typical speeds are ∼103 km s−1, far
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greater than attainable through gravitational radiation recoil for non-

spinning BHs (Favata, Hughes & Holz 2004; Blanchet, Qusailah &

Will 2005; Centrella 2006).

Spatially resolved pairs of nuclei have been observed in a few ac-

tive galaxies. The most famous example is NGC 6240, an ultralumi-

nous infrared galaxy (ULIRG) in which two distinct active galactic

nuclei (AGN) are clearly seen in hard X-rays at a projected sepa-

ration of ∼1 kpc (Komossa et al. 2003). Maoz et al. (1995, 2005)

observed a variable ultraviolet (UV) source, possibly a second active

nucleus, at a projected separation of ∼60 pc from the primary nu-

cleus in the spiral galaxy NGC 4736, which shows signs of a recent

merger. Rodriguez et al. (2006) have detected what is thought to be

an SMBH binary at a projected separation of just 7.3 pc in the radio

galaxy 0402+379, through multifrequency radio observations using

the Very Long Baseline Array (VLBA). We begin by discussing the

theory of how such systems evolve, and the conditions under which

they might acquire a third BH.
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1.1 Black hole binaries

When two galaxies merge, their dense nuclei sink to the centre of

the merger product by dynamical friction. As the nuclei spiral in,

tidal forces gradually strip the two SMBHs of their surrounding stars

and dark matter. In mergers between galaxies of comparable mass,

the BHs are able to come together and form a bound SMBH binary

on a time-scale of order 109 yr. The binary continues to harden by

dynamical friction until it reaches a separation of order

ahard ≡
Gµ

4σ 2
≈ 0.80

4q

(1 + q)2

(

mbin

108 M⊙

)1/2

pc, (1)

known as the ‘hardening radius’ (e.g. Quinlan 1996). Here µ = m1

m2/(m1 + m2) is the reduced mass of the two BHs with masses

m1 and m2, σ is the velocity dispersion of the stars beyond the

binary’s sphere of gravitational influence, q is the binary mass ratio

m2/m1 � 1 and mbin = m1 + m2 is the total mass of the binary. For

smaller separations the binary looks like a point mass to the distant

stars contributing to dynamical friction, but close stellar encounters

preferentially harden the binary and so dominate further energy loss.

Only stars on nearly radial orbits, with periapsis distances of order

the binary separation, can extract energy from (‘harden’) the binary

in this stage. These stars undergo strong three-body interactions

with the binary and escape its vicinity with speeds comparable to

the BHs’ orbital speed. In the low-density nuclei of large elliptical

galaxies, the total mass in stars on such ‘loss cone’ orbits is small

compared to the mass of the binary. Furthermore, the two-body

stellar relaxation time is long compared to a Hubble time, so once

the stars initially on loss cone orbits are cleared out, the loss cone

remains empty (Frank & Rees 1976; Lightman & Shapiro 1977;

Cohn & Kulsrud 1978). Since the binary must eject of order its own

mass per e folding in its semimajor axis, the system stops hardening

around ahard unless some other mechanism causes sufficient mass

flux through the binary.

If the binary reaches a separation around

agw = 4.5 × 10−2

(

mbin

108 M⊙

)3/4[

4q

(1 + q)2

]1/4

×
(

τgw

1010 yr

)1/4

f −1/4(e) pc, (2)

where e is the orbital eccentricity of the binary and f (e) = (1 −
e2)7/2/(1 + 73e2/24 + 37e4/96), then it can coalesce on a time-

scale τ gw through gravitational radiation (Begelman et al. 1980). To

get from ahard to agw it must bridge a gap

ahard

agw

≈ 17

(

mbin

108 M⊙

)−1/4[

4q

(1 + q)2

]3/4

(3)

by some mechanism other than stellar-dynamical friction or gravi-

tational radiation. The question of whether and how it crosses this

gap has become known as the ‘final parsec problem’ (Merritt &

Milosavljević 2005).

In many galaxies there probably are alternative mechanisms for

crossing the gap. When gas-rich galaxies merge, tidal torques chan-

nel large amounts of gas into the central ∼100 pc (Byrd, Sundelius &

Valtonen 1987; Hernquist 1989). The gas may lose energy through

radiation and angular momentum through viscous torques, and is

therefore not subject to a loss cone problem. Using smoothed parti-

cle hydrodynamics simulations, Escala et al. (2004, 2005) compute

a merger time of order 107 yr in an environment typical of the central

regions of ULIRGs, which are thought to be gas-rich galaxies caught

in the act of merging (Sanders et al. 1988). The nuclei of galaxies

are also observed to contain numerous massive perturbers (MPs)

such as star clusters, molecular clouds and possibly intermediate-

mass black holes (IMBHs). These objects scatter stars into the loss

cone much more efficiently than other stellar mass objects, since

the relaxation rate scales as the perturber mass for a fixed mass den-

sity of perturbers. Perets, Hopman & Alexander (2007) extended the

Fokker–Planck loss cone formalism (Frank & Rees 1976; Lightman

& Shapiro 1977; Cohn & Kulsrud 1978) to accommodate a spec-

trum of perturber masses and account for relaxation by rare close

encounters with MPs. They show that the population of known

MPs in the nucleus of the Milky Way is sufficient to bring a 4

× 106 M⊙ BH binary to agw in ∼6 × 108 yr, and it is reasonable

to expect similar perturber populations in other star-forming spiral

galaxies.

The final parsec problem is often mentioned as a caveat when

predicting the SMBH coalescence signal in low-frequency gravi-

tational wave detectors such as the upcoming Laser Interferome-

ter Space Antenna (LISA). However, the LISA event rate is ex-

pected to be dominated by small galaxies at high redshift (Wyithe

& Loeb 2003a; Rhook & Wyithe 2005; Sesana et al. 2005), where

the gas content and central densities tend to be high and the relax-

ation times short. For this reason the stalling problem is probably

not a significant concern for the LISA SMBH coalescence signal.

On the other hand BH ejections by gravitational radiation recoil

(Haiman 2004; Merritt et al. 2004) may play an important role in

the high-redshift coalescence rate. The long-term survival of SMBH

binaries is likewise unlikely in the gas-rich cores of quasars and

ULIRGs.

However, none of the gap-crossing mechanisms discussed so far

are likely to reduce the coalescence time below a Hubble time in

mergers between giant, gas-poor elliptical galaxies. Merritt & Poon

(2004) show that a significant fraction of stars on ‘centrophilic’ or-

bits in a triaxial potential can greatly increase the mass flux into the

loss cone. Some non-axisymmetric potentials can also excite bar

instabilities that cause rapid mass flow through the binary and effi-

cient coalescence (Berczik et al. 2006). However, a central SMBH

can disrupt box orbits and induce axisymmetry in the inner regions

of a triaxial galaxy (Merritt & Quinlan 1998; Holley-Bockelmann

et al. 2002), and it is uncertain how often these geometry-

specific mechanisms bring the coalescence time below a Hubble

time.

One can naively assess the likelihood of coalescence by consid-

ering the ‘full’ and ‘empty’ loss cone hardening times, τ full and

τ empty, in the nuclei of various galaxies assuming a spherical and

isotropic distribution function. τ full is the hardening time assuming

every star kicked out of the loss cone is instantly replaced, while

τ empty is the time assuming stellar two-body relaxation to be the only

replenishing mechanism. In small, dense galaxies τfull ∼ 105–6 yr

and τempty ∼ 109–10 yr while in the lowest density cores of giant

ellipticals and cD galaxies τ full ∼ 108 yr and τ empty ∼ 1014 yr (Yu

2002). While the empty loss cone rate is difficult to believe in any

galaxy given at least some clustering on scales larger than 1 M⊙, it

also seems difficult to approach the full loss cone rate if there is no

gas around and no strong radial bias in the stellar distribution. From

this point of view the stalling of binaries seems unlikely in small

galaxies but probable in low-density, gas-poor ellipticals. If some

binaries do survive for around a Hubble time, then the hierarchical

build-up of galaxies will inevitably place three or more SMBHs in

some merging systems.
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1.2 Merger-induced binary evolution before three-body

interactions: back-of-the-envelope calculations

An inspiralling satellite affects the evolution of a binary SMBH

even long before it sinks to the centre, by perturbing the large-scale

potential and scattering stars into the loss cone. We may estimate the

extent of this effect as a function of satellite mass and distance from

the centre of the host galaxy using a rough but simple argument due

to Roos (1981). The change in velocity necessary to deflect a star at

radius q into the loss cone is �V ∼ hlc/q, where hlc ∼ σ
√

rinfrbin is

the characteristic specific angular momentum of stars on loss cone

orbits (Frank & Rees 1976), rinf = Gmbin/σ
2 is the SMBHs’ radius

of influence and rbin is the binary separation. The dynamical time at

this radius is tdyn ∼ q/σ , so the acceleration required to scatter a star

into the loss cone is roughly alc(q) ∼ �V /tdyn ∼ σ 2√rinfrbin/q2.

Equating this with the tidal acceleration caused by the satellite,

atid = 2GMsat(r)q/r3, where r is the satellite’s radius, yields q3 =
σ 2√rinfrbinr 3/2G Msat(r ), or with rbin = ahard = Gµ/4σ 2,

q =
[ √

mbinµ

4Msat(r )

]1/3

r . (4)

The r dependence of Msat reflects the tidal stripping of the satellite

as it spirals inward. Equation (4) defines a critical radius q, outside

of which the satellite can deflect stars into (and out of) the loss cone

in one dynamical time. The mass flux through the binary induced

by the satellite is then approximately

dMstars

dt
(q) = 2πρ(q)q2σθ2

lc, (5)

where ρ(q) is the density of the host galaxy at radius q and θ2
lc ≈ rinf

rbin/r2 is the geometrical factor accounting for the fraction of stars

on loss cone orbits as a function of radius r, assuming an isotropic

distribution function (Frank & Rees 1976). For a fixed satellite

mass and distance, we can then define a ‘binary feeding’ time-scale

by

τfeed =
mbin

dMstars/dt
=

mbin

2πρ(q)q2σθ2
lc(q)

. (6)

To determine whether the scattering of stars into the loss cone by

the satellite is sufficient to harden the binary enough to prevent a

close three-body encounter before the intruder arrives at the galactic

centre, we must compare τ feed with the time-scale on which the satel-

lite spirals in by dynamical friction. In the approximation of slow

inspiral we may write the dynamical friction time-scale as τdf ≡
|r/ṙ | ≈ |v/(dv/dt)df|. Substituting (dv/dt)df from Chandrasekhar’s

formula (equation 28 in Section 2.4.1; Chandrasekhar 1943)

yields

τdf(r ) =
v3

sat(r )

4πG2ρ(r )Msat(r )
[

erf(X ) − (2X/
√

π)e−X2
] , (7)

where X ≡ vsat/
√

2σ . vsat(r) in equation (7) is computed from

vsat(r ) =
√

G Mhost(r )/r , where Mhost(r) = Mstars(r) + Mhalo(r)

+ mbin is the mass of the host galaxy enclosed within radius r.

Msat(r) is the satellite mass contained within the tidal truncation

radius obtained from a simple point mass approximation, rtid =
[Msat/Mhost]

1/3r (this slightly underestimates rtid as the satellite ap-

proaches the centre of the host). In Fig. 1 we plot τ df and τ feed as

a function of r for a satellite with one-third the stellar mass of the

host, which contains a binary with (m1, m2) = (1.2, 3.7) × 108 M⊙.

Both host and satellite are modelled as Hernquist profiles (Hernquist

1990), with their masses and effective radii set by observed scaling

relations. The details of the galactic model are described further in

Sections 2.1 and 2.2.
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Figure 1. Comparison of the ‘feeding time-scale’, τ feed, on which an in-

spiralling satellite scatters mass into the loss cone of an SMBH binary, with

the dynamical friction time-scale, τ df, on which the satellite spirals in. Up-

per (red dashed) line: τ feed computed from equation (6). Lower curve: τ df

computed from equation (7). Both time-scales are plotted as a function of

the satellite’s distance from the centre of the host galaxy. For this plot we

chose a binary mass of 4.5 × 108 M⊙ and merger mass ratio of 3:1 in the

stars. The galactic model is discussed in the text.

Since τ feed remains about an order of magnitude above τ df

throughout the inspiral, this simple calculation makes it plausible

that the binary survives the merger process and undergoes close

triple interactions with the infalling SMBH. The tidal approxima-

tion (as well as our treatment of dynamical friction) breaks down

as the satellite approaches rinf, so the plot is cut off at a separation

of ∼100 pc, when the satellite still has ∼4 e-foldings to go to reach

ahard. However, this final stage of the inspiral is found to proceed

very rapidly in N-body simulations (Quinlan & Hernquist 1997;

Milosavljevic & Merritt 2001; Merritt 2006). The merger’s effect

on the binary may be dominated by violent relaxation or collective

effects such as a bar instability (Berczik et al. 2006), in which case

our two-body approach does not capture its essence. The evolu-

tion of the core distribution function under the influence of a major

merger is an intriguing open problem for simulators.

After the third BH becomes bound to the binary (but still before

the onset of close three-body interactions) another hardening mech-

anism may become important. If the angle of inclination i of the outer

binary [formed by the intruder and the inner binary centre-of-mass

(COM)] exceeds a critical angle θ crit ≈ 39◦, then the quadrupo-

lar perturbation from the intruder induces eccentricity oscillations

through a maximum (Kozai 1962),

emax ≈

√

1 −
5

3
cos2 i . (8)

Since the gravitational radiation rate increases sharply toward high

eccentricities, these ‘Kozai oscillations’ can greatly enhance the

radiation, possibly causing the binary to coalesce before it can un-

dergo strong three-body interactions with the intruder (Blaes, Lee &

Socrates 2002). General relativistic precession can destroy the Kozai

resonance (e.g. Holman, Touma & Tremaine 1997), but Blaes et al.

(2002) find that this does not happen for

aout

ain

� 43

[

2qout

(

ain

1 pc

)(

108 M⊙
mbin

)]1/3
√

1 − e2
in

1 − e2
out

, (9)
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Figure 2. Upper limit on the importance of Kozai oscillations in enhancing

gravitational radiation by the inner binary (m1 = m2 = 3 × 108 M⊙). The

cosine of the initial inclination angle is plotted on the horizontal axis, and

the inner binary semimajor axis is plotted on the vertical axis. Contours are

plotted for gravitational radiation time-scales of τ gw = 1012, 1010, 108 and

106 yr, if the binary were to stay at maximum eccentricity throughout the

whole oscillation cycle. The horizontal lines indicate the hardening radius

and the separation such that a circular binary would coalesce on a 1012-yr

time-scale.

where ain and aout are the semimajor axes of the inner and outer

binaries, qout is the outer binary mass ratio and ein and eout are the

inner and outer eccentricities. This leaves a window of about a factor

of 10 in aout/ain in which the Kozai mechanism can operate before

unstable three-body interactions begin.

The actual enhancement of the gravitational radiation rate of

course depends on the amount of time spent at high eccentricity,

but one may place an upper limit on the importance of Kozai os-

cillations by computing the radiation time-scale if the inner binary

spends all of its time at emax. The orbit-averaged power radiated by

gravitational radiation is given by
∣

∣

∣

∣

dE

dt

∣

∣

∣

∣

gw

=
32G4m2

1m2
2(m1 + m2)

5c5a5

1 + (73/24)e2 + (37/96)e4

(1 − e2)7/2

(10)

(Peters 1964), where a is the semimajor axis and e is the eccentricity.

In Fig. 2 we plot contours of the gravitational radiation time τ gw =
|E/(dE/dt)gw | in the a–i plane by putting emax into equation (10),

for an equal-mass 6 × 108 M⊙ binary. This may seem like a gross

overestimate of the gravitational radiation rate, especially since the

shape of the Kozai oscillations is in fact such that the binary spends

more time near emin than near emax. However, since τ gw is so strongly

dominated by periapsis passages at e ≈ emax, the shift in the contours

for a realistic high-e duty cycle is only modest. See Blaes et al. (2002)

for comparison with a detailed study of radiation enhancement by

Kozai oscillations in binaries with initial τ gw ∼ 1012 yr. For a binary

at ahard, Kozai oscillations can induce coalescence within 1010 yr in

�20 per cent of cases assuming cos i is uniformly distributed. In

the remainder of cases the inner binary may survive until the outer

binary shrinks to the point of unstable three-body interactions.

1.3 Close three-body encounters

If the intruder comes close enough before it causes sufficient hard-

ening of the (inner) binary, then a strong three-body encounter takes

place. Strong encounters are characterized by a significant trans-

fer of energy between the binary’s internal degrees of freedom and

the COM motion of the binary and third body. When the intruder is

slow relative to the binary’s orbital speed vbin, energy typically flows

from the inner binary to the outer components, so that the binary

is more strongly bound after the encounter. This is one manifes-

tation of the negative specific heat characteristic of gravitationally

bound systems. The encounter ends in the escape of one of the three

bodies, usually the lightest, from the system at a speed comparable

to vbin.

When the lightest body m3 escapes, momentum conservation re-

quires that the binary COM recoil in the opposite direction with a

speed smaller by a factor m3/(m1 + m2). It is instructive to com-

pare the expected ejection velocities of the binary and m3 with

the typical galactic escape velocity. For a circular binary with

m1 = m2 = mbin/2, the binding energy at the hardening radius

is EB,hard = Gm2
bin/8ahard ≈ 6.8 × 1055[mbin/(108 M⊙)]3/2 erg.

The binding energy at the radius where τ gw = 108 yr is EB,gw =
Gm2

bin/8agw ≈ 6.2 × 1057[mbin/(108 M⊙)]5/4 erg. The mean en-

ergy � E harvested from the binary in close encounters with slow

intruders is about 0.4EB, though the median � E is somewhat lower

(Hills & Fullerton 1980). Energy conservation implies that the es-

caper leaves the system with kinetic energy KE sing = �E/[1 +
m3/(m1 + m2)] while the binary leaves with KE bin,cm = �E/[1 +
(m1 + m2)/m3] in the system COM frame. For an equal-mass binary

with mbin = 5 × 108 M⊙, this gives ejection velocities of vsing ∼
290 km s−1 and vbin ∼ 140 km s−1 for the binary at ahard, and vsing ∼
4000 km s−1 and vbin ∼ 2000 km s−1 for the binary at agw.

Any non-zero eccentricity of the binary will increase the semi-

major axis corresponding to a fixed τ gw, lowering the ejection ve-

locities for the binary at agw. Also any deviation from equal masses

will result in a smaller fraction of the extracted energy being ap-

portioned to the binary and a smaller binary recoil velocity. The

typical escape velocity for galaxies hosting 5 × 108 M⊙ BHs is

around 1500 km s−1, accounting for both the stars and the dark mat-

ter. From these numbers, it appears that single escapes will be fairly

common as repeated encounters harden the binary to ∼agw. How-

ever, accounting for realistic mass ratios and eccentricities (the first

three-body encounter tends to thermalize the eccentricity even if it

starts off circular), binary escapes should be rare. Since the binary

must come near the escape velocity to remain outside the nucleus

for a significant amount of time, we do not expect triple interactions

to empty many nuclei of BHs. We will quantify these statements

with our triple BH simulations.

The formation of triple SMBH systems through inspiral of a merg-

ing satellite leads to a rather specific initial configuration. The three

BHs start off as a bound ‘hierarchical triple’, consisting of an inner

binary with ain ∼ ahard and a more widely separated outer binary

with semimajor axis aout. For very large aout/ain we expect hier-

archical triples to exhibit very regular behaviour; in this case the

third body sees the inner binary as a point mass and the system

essentially consists of two independent (inner and outer) binaries.

However, as aout/ain approaches unity, secular evolution gives way

to chaotic three-body interactions in which the orbits diverge and the

system becomes subject to escape of one its components. Mardling

& Aarseth (2001) derive a criterion for the stability of three-body

systems based on an analogue with the problem of binary tides. The

most distant intruder orbit at which unstable interactions can begin

is reliably estimated by

Rout
p

ain

≈ 2.8

[

(1 + qout)(1 + eout)√
1 − eout

]2/5

, (11)
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where Rout
p is the periapsis separation of the outer binary, ain is the

semimajor axis of the inner binary, qout = m3/(m1 + m2) is the outer

binary mass ratio and eout is its eccentricity. This criterion has great

practical importance due to the high numerical cost of unnecessarily

following weak hierarchical systems. It specifies an optimal starting

point for our simulations, which aim to study strong interactions in

three-body systems starting off as hierarchical triples.

Naively one might expect a strong three-body encounter follow-

ing a merger with a galaxy hosting a binary, so long as the intruder

does not induce coalescence of the binary before it reaches the cen-

tre. However, the stability criterion implies a condition for close

interactions much more stringent than this. To undergo a chaotic

encounter with the inner binary, the intruder must reach the stability

boundary before the outer binary hardens and stalls. A triple sys-

tem covers somewhat more stellar phase space than a binary of the

same size, but not by much for a stable hierarchical system. This

means that the merger process cannot cause the binary to harden

by more than around an e-folding for a nearly circular, equal-mass

system before the intruder arrives at the centre. Though the order-

of-magnitude estimates in the previous section make this plausible,

further study is needed to determine the likelihood of unstable triple

interactions in realistic merger situations. An eccentric outer binary

relaxes the criterion somewhat, but dynamical friction tends to cir-

cularize the orbits of satellites with moderate initial eccentricities

before they reach the nucleus (Milosavljevic & Merritt 2001). We

therefore assume near-circular initial orbits and begin each simula-

tion from a weakly hierarchical configuration.

1.4 Previous work and goals of this study

Triple SMBH systems in galactic nuclei were first considered by

Saslaw, Valtonen & Aarseth (1974), who computed an extensive

series of Newtonian three- and four-body orbits, and compared the

slingshot ejection statistics to the observed structure of extragalac-

tic radio sources. Valtonen (1976) included a gravitational radiation

drag force in the three-body dynamics. He showed that this perturb-

ing force could in some cases yield much higher ejection velocities

than would be possible in Newtonian gravity, with associated bursts

of gravitational waves.

The more complex problem of three or four SMBHs coming

together in the hierarchical merging process and interacting in a

galactic potential was first addressed by Mikkola & Valtonen (1990)

and Valtonen et al. (1994), who experimented with a variety of ini-

tial BH configurations. Heinämäki (2001) studied binary–binary

scattering in galactic nuclei using initial conditions (ICs) based

on extended Press–Schechter (EPS) theory (Lacey & Cole 1993).

Volonteri, Haardt & Madau (2003a) followed the formation of triple

BH systems in halo merger trees tracking the hierarchical build-up

of SMBHs from ∼150 M⊙ seeds in high-σ peaks at z ≈ 20. Us-

ing a simple analytic prescription for the ejection velocities, they

inferred the presence of a large population of SMBHs and IMBHs

wandering through the haloes of galaxies and intergalactic space.

Iwasawa, Funato & Makino (2006) performed the first full N-body

simulations of equal-mass triple BH systems embedded in stellar

bulges, an important contribution to our understanding of galactic

nuclei. Because of the large computation time required for each run,

they could not statistically sample the highly varied outcomes of the

three-body encounters as the previous authors did.

In this paper we study the dynamics of repeated triple SMBH in-

teractions in galactic nuclei. Between close encounters we follow the

wandering BHs through the galaxy as their orbits decay by dynam-

ical friction. We use physically motivated initial BH configurations

and mass distributions, and updated galactic models characteristic

of the low-density, massive elliptical galaxies in which SMBH bina-

ries are most likely stall. We include both a stellar and a dark matter

component, with the stellar spheroid fixed to lie on the observed

mbh–σ and mbh–Mbulge relations (Magorrian et al. 1998; Ferrarese &

Merritt 2000; Tremaine et al. 2002; Marconi & Hunt 2003). The

close encounters are treated using a KS-regularized Bulirsch–Stoer

(BS) integrator provided by Sverre Aarseth (Mikkola & Aarseth

1990, 1993). The inner density profile is updated throughout the sim-

ulations to roughly account for core heating by dynamical friction

and stellar mass ejection. Gravitational radiation losses are mod-

elled as a drag force determined by the relative coordinates and

velocities of each pair. Each simulation takes only a few minutes

to run, so we can try a variety of distributions of ICs and statisti-

cally sample the outcomes for each. We use this algorithm to study

a variety of consequences of the ongoing encounters, such as the

merging efficiency of BH pairs, the time spent wandering at various

distances from the galactic centre, the distribution of final sizes and

eccentricities of the binaries remaining in the galaxy after a steady

state has been reached and the extent of the core scouring caused by

the triple SMBH systems.

Aside from the motivating order-of-magnitude calculations in

previous sections, this paper does not address the question of

whether close triple SMBH systems form in galactic nuclei. We

start our simulations from a state that the system must reach shortly

before the onset of unstable three-body interactions assuming that

they occur, and proceed to derive the subsequent evolution. Our re-

sults may be used to argue for or against the occurrence of triple

systems in real galaxies, as observations support or disfavour the

signatures that we derive.

In Section 2 we describe our model and code methods. In Section 3

we present the results of our study, and in Section 4 we discuss these

results and conclude.

2 M O D E L A N D M E T H O D S

2.1 BH mass distribution and halo model

To get a physically motivated distribution of BH mass ratios, we

associate the formation of the inner and outer binaries with the last

two major mergers in the history of the galactic halo hosting the

triple system. We use EPS theory (Lacey & Cole 1993) to calculate

the probability distributions of the halo formation times and pro-

genitor masses, and randomly select the parameters of the previous

two mergers from these distributions. We then assign a BH to each

progenitor halo using a simple prescription based on the assumption

of a flat galactic rotation curve.

Lacey & Cole (1993) derive the instantaneous halo merger rate,

rLC(M1, Mf, t) =
d2 p

dM2dt
=

√

2

π

δc

D(z)

∣

∣

∣

∣

δ̇c

δc

−
Ḋ

D

∣

∣

∣

∣

|dσ/dM |Mf

σ 2(Mf)

×
exp

{

−
(

δ2
c /2D2(z)

) [(

1/σ 2(Mf)
)

−
(

1/σ 2(M1)
)]}

[

1 − σ 2(Mf)/σ 2(M1)
]3/2

. (12)

This equation gives the probability, per unit time per unit mass of

M2, of a given halo of mass M1 merging with another halo of mass

M2 to form a product of mass Mf = M1 + M2 at time t. Here σ 2(M)

is the present-day variance of the linear density field on mass scale

M,

σ 2(M) =
1

(2π)3

∫ ∞

0

P(k)W 2(kr )4πk2 dk, (13)

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 377, 957–976



962 L. Hoffman and A. Loeb

where P(k) is the power spectrum of density fluctuations today,

W is a tophat window function and r is related to M through

M = (4/3)π r3ρm, the volume times the present-day matter den-

sity. P(k) is related to the primordial power spectrum through the

transfer function T(k), which encapsulates the suppression of pertur-

bations on small scales due to radiation pressure and damping over

the history of the Universe. For T(k) we adopt the standard fitting

formulae of Eisenstein & Hu (1998). For the linear growth function

D(z) we use the approximation

D(z) ≈
(5/2) 	m(z)D0(z)

	
4/7
m (z) − 	
(z) + [1 + (	m(z)/2)][1 + (	
(z)/70)]

,

(14)

good to within a few per cent for all plausible values of 	m and 	


(Carroll, Press & Turner 1992). D0(z) = 1/(1 + z) is the growth func-

tion for an Einstein–de Sitter universe, 	m(z) = 	m(1 + z)3/[	m(1

+ z)3 + 	
] is the matter density (normalized to the critical density)

as a function of redshift, and we take 	
(z) = 1 − 	m(z) assuming

the rest of the density is in the form of a cosmological constant. δc

has the weak redshift dependence (Kitayama & Suto 1996),

δc ≈
3(12π)2/3

20
[1 + 0.0123 log10 	m(z)]. (15)

We adopt the cosmological parameters obtained from 3 yr of data

collection by the Wilkinson Microwave Anisotropy Probe (WMAP),

	mh2 = 0.127, 	bh2 = 0.0223, h = 0.73, σ 8 = 0.74 and ns = 0.951

(Spergel et al. 2006).

Since the merger rate (12) diverges as M2/M1 → 0, applications

of the formula that track individual merging haloes must employ

a cut-off mass ratio M2/M1 ≡ �m, such that all mergers below

�m are treated as smooth accretion rather than as discrete mergers

(see Manrique & Salavador-Sole 1996, for further discussion). The

instantaneous rate of accretion on to a halo of mass M at redshift

z is

ra(M, t) =
∫ M(1+�m)

M

(M ′ − M)rLC(M, M ′, t) dM ′. (16)

To get the growth history (‘accretion track’) of a halo of mass M0 at

time t0 due to accretion since the last merger, one need only solve the

differential equation dM/dt = ra[M(t), t], subject to the IC M(t0) =
M0. We integrate this equation backward in time using a fourth-order

Runge–Kutta (RK4) method to get the accretion tracks of the haloes

in our simulations. Since we are interested in BH binary formation,

we loosely associate �m with the halo mass ratio such that tidal

stripping of the satellite would prevent the eventual merging of the

two nuclei. N-body simulations of galaxy mergers place this mass

ratio in the range �m ∼ 0.1–0.3, depending on the density and

orbital parameters of the satellite (Colpi, Mayer & Governato 1999;

Taffoni et al. 2003). Hence our canonical choice is �m = 0.3, and

we also try values of �m = 0.1 (runs D1) and 0.5 (runs D5), the

latter being the halo mass that corresponds to a stellar mass ratio of

∼3:1 in our prescription.

Following Salvador-Sole, Solanes & Manrique (1998), we write

the probability, per unit time, of a halo with mass Mf at time t arising

from a merger with a smaller halo of mass between M and M + dM

(the ‘capture rate’) as

rc(M, Mf, t) dM

= rLC(M, Mf, t)θ [Mf − M(1 + �m)]
N (M, t)

N (Mf, t)
dM, (17)

the EPS merger rate excluding haloes below the threshold �m, and

weighted by the number of mass M haloes per unit halo of mass

Mf.

The rate at which haloes of mass Mf form through all mergers at

time t is

rf(Mf, t) ≈
1

2

∫ Mf

Mf�m/(1+�m)

rc(M, Mf, t) dM . (18)

The probability distribution function (PDF) of formation times of

haloes with mass M0 at time t0 is

�f(M0, t) = rf[M(t), t] e
−
∫ t0

t
rf[M(t ′),t ′] dt ′

. (19)

Given a formation time tf and corresponding mass M(tf) along the

past accretion track of M0, the mass of the larger progenitor M1 is

distributed according to

�p[M(tf), M1] =
2G(M1, M)

∫ M/(1+�m)

M�m/(1+�m)
G(M ′, M) dM ′

, (20)

where

G(M ′, M) =
|dσ (M ′)/dM ′|

M ′σ 2(M ′)

[

1 −
σ 2(M)

σ 2(M ′)

]−3/2

. (21)

By choosing formation times and progenitor masses randomly ac-

cording to (19) and (20), we capture the stochasticity of the intervals

between mergers above �m, but treat merging below this threshold

only in the mean. See Manrique & Salavador-Sole (1996), Salvador-

Sole et al. (1998) and Raig, Gonzalez-Casado & Salvador-Sole

(2001) for further details and derivations of (19) and (20). Fig. 3

shows the distribution of formation times, progenitor masses and

accretion tracks for a present-day 5 × 1013 M⊙ halo for �m = 0.1,

0.3 and 0.5, and the accretion tracks for 1, 2.3 and 5 × 1013 M⊙
haloes with �m fixed at 0.3. All accretion tracks are normalized to

the present-day mass M0. Note the insensitivity of the shape of these

tracks to M0, as expected for masses above the critical mass M∗ ≈
2 × 1012 M⊙.

Our algorithm for generating the BH masses is illustrated

schematically in Fig. 4. For each run we begin with a halo of mass

M0 = 5 × 1013 M⊙ at time t0 ≡ t(z = 0), choose its formation

time tf0 randomly according to equation (19) and find the mass
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Figure 3. Upper left: PDF of formation redshifts given by equation (19)

for a 5 × 1013 M⊙ halo at z = 0. Upper right: PDF of masses of the larger

progenitor of the same halo given by equation (20), normalized to the mass

of the merger product, Mf = 5 × 1013 M⊙. Lower left: past accretion tracks

of a present-day 5 × 1013 M⊙ halo back to z = 3, normalized to the mass

at z = 0. Lower right: normalized accretion tracks for three different halo

masses.
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Figure 4. Schematic diagram of our algorithm for generating the BH mass

distribution. First, we select a formation time zf0 for the halo M0 hosting the

BH triple system randomly from equation (19). Given zf0 and M(zf0), we

select two progenitor masses M1 and M2 according to equation (20), assign

the binary to the larger one and the third BH to the smaller one. We repeat

this process going back one step further in the ‘merger tree’ to get the masses

of the binary constituents.

Mf0 = M(tf0) along its accretion track at that time. The mass Mf0 is

assigned to the dark matter halo hosting the triple BH system, and

the physical time for the run to end if other termination conditions

are not met first is set to t0 − tf0. To explore the dependence of the

results on the absolute mass scale, we also try beginning with a 1 ×
1013 M⊙ halo (runs H1).

We model the halo as a Hernquist profile (Hernquist 1990),

which is identical to a Navarro, Frenk and White (NFW) pro-

file (Navarro, Frenk & White 1997) in its inner regions if the

scale radius aH is related to the NFW scale radius by aH =
aNFW

√
2[log(1 + c) − c/(1 + c)], where c is the halo concentration

defined by aNFW = rvir/c. The Hernquist model falls off as r−4 in-

stead of r−3 far outside aH (Springel, Di Matteo & Hernquist 2005).

The virial radius rvir(M, z) is given by

rvir(M, z)

=
364

1 + z

[

Mhalo

1013 h−1 M⊙
	m(z)

	m

18π
2

�c

]1/3

h−1 kpc, (22)

where �c = 18 π
2 + 82[	m(z) − 1] − 39[	m(z) − 1]2 (Barkana

& Loeb 2001), and c roughly follows the median relation from

the 
CDM simulations of Bullock et al. (2001), c ≈ 9.0 [(2.1 ×
1013 M⊙)/Mhalo]0.13/(1 + z). The z dependence of rvir and c nearly

cancel to make aH depend only weakly on redshift, so we simply

use the z = 0 relation between Mhalo and aH in our simulations.

We choose the mass M1 of the larger progenitor of Mf0 randomly

according to equation (20), and assign a mass M2 = Mf0 − M1

to the smaller progenitor. Before the merger the larger progeni-

tor is assumed to have hosted a BH binary, while the smaller one

hosted a single BH. Repeating the procedure used for M0, we as-

sign formation times tf1 and tf2 to M1 and M2 using equation (19),

and choose progenitor masses M11, M12, M21 and M22 according to

equation (20).

Having constructed a set of progenitor haloes, we now need a

BH–halo relation mbh(Mhalo, z) to complete our algorithm. We obtain

such a relation by equating the halo virial velocity vvir to the circular

velocity vc of the stellar spheroid, and using empirical vc–σ and

σ–mbh correlations to connect vc to mbh, similar to the approaches

in Wyithe & Loeb (2005) and Erickcek, Kamionkowski & Benson

(2006). Combining

vvir = 343
√

1 + z

×
(

Mhalo

1013 h−1 M⊙

)1/3[

	m

	m(z)

�c

18π
2

]1/6

km s−1
(23)

(Barkana & Loeb 2001) with vc ≈ 314 [σ/(208 km s−1)]0.84 km s−1

(Ferrarese 2002) and σ/(208 km s−1) ≈ [mbh/(1.56 ×
108 M⊙)]1/4.02 (Tremaine et al. 2002), we arrive at the rela-

tion
(

Mhalo

1012 M⊙

)

= 8.28

(

Mbh

108 M⊙

)0.626

γ (z), (24)

where γ (z) ≡ (1 + z)−3/2 [(	m/	m(z))(�c/18π
2)]−1/2.

In our canonical (CN) runs we set the masses of the inner binary

members to mbh(M11, zf1) and mbh(M12, zf1), and that of the intruding

BH to mbh(M21 + M22, zf2). Note that in this prescription the intruder

is usually lighter than the heavier binary member, so that most of

the three-body interactions result in an exchange. To examine the

effect of more interactions without exchange, we try choosing mbh

[max (M21, M22), zf2] for the intruder mass in runs (MX). As there is

neither a direct causal relationship between mbh and Mhalo predicted

by theory (Wyithe & Loeb 2005) nor a tight correlation directly

observed between these two variables, and we know that identical

haloes may host galaxies of different morphologies and occupation

numbers, mbh(Mhalo, z) should be taken with something of a grain of

salt. Nevertheless, it is a useful way to generate simple but physically

motivated BH mass distributions when no information other than the

halo mass is available.

We make one final modification to the set of BH masses used in

our simulations. If the outer binary’s hardening radius lies outside

the stability boundary given by equation (11) with ain = ahard, then

the decay of the outer orbit is expected to stall before a strong

encounter can begin. To roughly account for this we exclude all

ICs where µout > 3µin. The final distribution of BH mass ratios is

shown in Fig. 5 for �m = 0.1, 0.3 and 0.5. In the upper panel we

plot the inner binary mass ratios, while the lower panel shows the

distribution of mbin/mesc, where mesc is the mass of the lightest BH

and mbin is the sum of the masses of the other two BHs. This ratio

determines the binary recoil speed when the lightest BH is ejected

from the system. The total BH mass is typically ∼6 × 108 M⊙ in

our CN runs.

2.2 Stellar spheroid model

To complete the galactic model we surround the BH system by a

smooth stellar potential superimposed on the dark matter halo. The

stars are modelled using the ‘η models’ of Tremaine et al. (1994),

with a sharp break to shallower slope −γ added at rb ≪ a:

ρ(r ) =







η

4π

Ma

r 3−η(r + a)1+η
≡ ρη(r ) if r > rb;

ρη(rb)(r/rb)−γ if r < rb.

(25)

Our canonical model is the η = 2 (Hernquist) profile, and we also try

η = 1.5 (runs SC) to explore the effect of a steeper inner profile and

higher central density (ρ ∼ 800 M⊙ pc−3 for η = 1.5 versus ρ ∼
180 M⊙ pc−3 for the Hernquist profile at the BH radius of influence).

rb and γ were initialized to reflect the cusp destruction caused by
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Figure 5. Distribution of BH binary mass ratios. Upper panel: inner binary

mass ratio m1/m2 > 1. Lower panel: mbin/mesc, where mesc is the mass of

the lightest BH and mbin is the sum of the masses of the other two BHs.

the inspiralling BHs in reaching their initial configuration, and were

updated throughout the simulation to account for the continued core

heating and mass ejection. Our algorithm for updating the core is

described further in Section 3.5.

The parameters M and a in the η models were set based on the tight

correlations observed between SMBH mass mbh and stellar bulge

mass (Magorrian et al. 1998; Marconi & Hunt 2003; Peng et al.

2005) and velocity dispersion (Ferrarese & Merritt 2000; Gebhardt

et al. 2000; Tremaine et al. 2002). Marconi & Hunt (2003) found the

relation MMH03 = (4.06 × 1010 M⊙)(mbh/108 M⊙)1.04 between mbh

and the virial mass Mvir = kReσ
2
e/G of the stellar bulge, where Re is

the half-light radius and σ e is the effective bulge velocity dispersion.

They set k = 3 (k would be 8/3 for an isothermal sphere) to get an

average ratio of unity between Mvir and the dynamically measured

masses Mdyn of galaxies with more direct stellar-dynamical mass de-

terminations (Gebhardt et al. 2003). σ e is typically measured over

either a circular aperture of radius Re/8 (Ferrarese & Merritt 2000)

or a linear aperture out to Re (Gebhardt et al. 2000) – Tremaine

et al. (2002) discuss the essential agreement between the veloc-

ity dispersions measured in these two ways. Thus for each model

(η = 2, 1.5) we compute the projected radius Re ≡ κ1a containing

half the integrated surface brightness (assuming a constant mass-

to-light ratio), and velocity dispersion σ 2
e ≡ κ2GM/a at radius

Re/8. Here κ1 and κ2 are constants depending on the density profile

(see Tremaine et al. 1994 for relevant formulae). The parameter M

is then chosen to satisfy 3Reσ
2
e/G = 3κ1κ2M = MMH03(mbh) ⇒

M = MMH03/(3κ1κ2). For the Hernquist model with κ1 =
1.815 and κ2 = 0.104, MH = 1.76MMH03 = (7.15 ×
1010 M⊙)(mbh/108 M⊙)1.04. The scale radius is then obtained from

a = GMMH03/3κ1σ
2
bh(mbh), where σ bh(mbh) is the velocity disper-

sion computed from the mbh–σ relation of Tremaine et al. (2002).

In each of these relations mbh is set to the total mass of the triple BH

system.

In a perfectly smooth, spherically symmetric galactic potential,

BHs ejected on distant radial orbits return directly to the centre to

interact strongly with any other nuclear BHs. Since real galaxies are

clumpy and triaxial, the interaction will more realistically be delayed

until the orbit of the ejected BH decays by dynamical friction. To

mitigate this problem we flattened the η models by adding two low-

order spherical harmonic terms to the spherical potential (de Zeeuw

& Carollo 1996):

V (r ) = u(r ) − v(r )Y 0
2 (θ ) + w(r )Y 2

2 (θ, φ), (26)

where u(r) is the potential of the spherical η model, v(r) =
−GMr1rη−1/(r + r2)η+1 and w(r) = −GMr3rη−1/(r + r4)η+1. Since

near-sphericity in the inner regions is probably a necessary prereq-

uisite for the survival of the inner binary for of order a Hubble time

until the next merger (Merritt & Poon 2004; Berczik et al. 2006),

the parameters r1, . . . , r4 were chosen to give a spherical profile

near the galactic centre, and axis ratios approaching 1.3 and 1.5 for

r ≫ a. A similar triaxial modification was applied to the dark matter

halo, and the relative orientation of the stellar and halo potentials

was chosen randomly. By misaligning their axes we eliminate any

artificial stable orbits (e.g. along the long axis of an ellipsoid) near

which ejected BHs tend to return on a perfectly radial orbit to the

centre. This triaxial modification had the desired effect of prevent-

ing frequent strong encounters at periapsis on distant orbits, but had

little influence on the global outcome statistics.

2.3 Initial BH configuration

We assume that the three BH system starts off as a hierarchical

triple on the verge of unstable three-body interactions. In our CN

runs we initialize the inner binary semimajor axis ain to ahard. To

study the effect of varying ain we also try runs with ain = 3rh (runs

BA) and ain = rh/3 (runs SA). The outer binary semimajor axis

aout is set by the stability criterion of Mardling & Aarseth (2001),

equation (11). The initial eccentricity of the inner (outer) binary was

chosen uniformly between 0.0 and 0.2 (0.3), in accordance with

the low eccentricities found in galaxy merger simulations where

dynamical friction tends to circularize the orbits of satellites as they

spiral inward (Milosavljevic & Merritt 2001). The three Euler angles

of the intruder’s orbital plane were chosen randomly relative to the

reference plane of the binary orbit, as was the phase of the initial

periapsis of the binary. Both orbits were always started at periapsis;

since many orbital periods elapse before unstable interactions begin,

the relative phase is effectively randomized in any case. Having

defined an initial configuration of three BHs embedded in a stellar

+ dark matter potential, we next describe how we evolve the system

forward in time.

2.4 Code method

We treat the close three-body encounters using Sverre Aarseth’s

CHAIN code, an implementation of the N-body regularization tech-

nique of Mikkola and Aarseth (Mikkola & Aarseth 1990, 1993).

The masses are first ordered so that neighbours in the chain are

the dominant two-body interactions, then the KS transformation

(Kustaanheimo & Stiefel 1965) is applied to neighbouring pairs.

This transformation eliminates the singularity at r → 0 in Newto-

nian gravity and transforms the equations of Keplerian motion to

the simple harmonic oscillator equation (Stiefel & Scheifele 1971).

External perturbing forces of arbitrary strength depending on the co-

ordinates, velocities and/or time are simply incorporated into the for-

mulation (though of course singularities in these perturbing forces

need not be eliminated by the change of variables). We use this to

add a galactic potential (Sections 2.1 and 2.2), a gravitational radia-

tion back-reaction force and a stellar-dynamical friction force on the

intruding BH. The regularized equations of motion are integrated

using the BS method (Bulirsch & Stoer 1966) based on Romberg
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extrapolation. For unperturbed sinusoidal motion, the BS integrator

requires only two or three time-steps per orbital period!

When the binary and third body are far apart we switch to two-

body motion (of the single BH and binary COM) using a fourth-

order Runge–Kutta (RK4) method. We simultaneously evolve the

binary semimajor axis and eccentricity using orbit averaged equa-

tions, da = [(da/dt)st + (da/dt)gw] dt and de = [(de/dt)gw] dt, where

(d/dt)st and (d/dt)gw are the contributions from stellar interactions

and gravitational radiation. The time-steps are adaptively controlled

with a simple step-doubling scheme: at each step the 14 numbers

{x1, . . . , x6; v1, . . . , v6 ; a, e} are all required to remain the same to

within an error ǫ = 10−n under doubling of the step size. To avoid

wasting computation time when any of these values approach zero,

we accept agreement to n decimal places as an alternative criterion

for convergence. For the calculations reported in this paper we set

n = 12.

The relative perturbation to the binary from the third body at

apoapsis,

δF =
2r 3

apm3

min(m1, m2)d3
, (27)

is used to decide which integration method to use at any given

time. Here rap is the apoapsis distance between m1 and m2, m3 is

the intruder mass and d is the distance of the intruder from the

binary COM. We switch to two-body RK4 integration each time

δF falls below 5 × 10−5 and call the CHAIN code again when δF

reaches 5 × 10−4. We choose different δF thresholds for beginning

and ending close encounters to prevent overly frequent toggling

between the two methods. When <3 BHs remain in the simulation

(after coalescence of the inner binary or escape of one or more

BHs from the galaxy), we primarily use the RK4 integrator, but call

the CHAIN code to treat very close two-body encounters. Since chain

regularization is defined only for three or more bodies, we add a light

and distant ‘dummy’ particle when using this method for two-body

motion.

During the two-body motion we declare the single BH or binary

(remnant) to have escaped if its distance from the galactic centre

exceeds 500 kpc and its specific energy E = �(r, θ , φ) + (1/2)v2

exceeds Eesc, the energy needed to escape from r = 0 to infinity. We

declare the binary to have coalesced during a close encounter when

(i) r12 < 3rsb, where rsb is the Schwarzchild radius of the larger

member of the pair or (ii) |a/ȧ|gr < 0.1tdyn and |a/ȧ|gr < 50 yr

while δF < 10−3, where tdyn is the current outer binary dynamical

time. During the RK4 integration we require that |a/ȧ|gr < 50 yr or

r12 < 1.1(rs1 + rs2) at periapsis, where rs1,2 are the Schwarzchild

radii of the two binary members. Upon coalescence we replace the

pair with a single body of mass mbin and the COM position and

velocity. A run ends when (a) only one SMBH remains in the galaxy

and it has settled to the centre of the potential by dynamical friction;

(b) two BHs remain and have formed a hard binary at the galactic

centre; (c) the physical time exceeds tmax = t0 − tf0, the current

age of the universe minus the halo formation time; (d) all BHs have

escaped the galaxy or (e) the physical time spent in a call to CHAIN

exceeds a maximum allowed time tchn. The last condition is added

to avoid spending too much computation time on very long close

encounters.

2.4.1 Treatment of stellar-dynamical friction

During the two-body evolution we apply a dynamical friction force

given by Chandrasekhar’s formula (Chandrasekhar 1943; Binney &

Tremaine 1987),
(

dv

dt

)

d f

= −
4πG2ρm ln 
[erf(X ) − 2Xe−X2

/
√

π]

v2
v̂, (28)

where X ≡ v/(
√

2σ ), to the single BH and binary COM. The factor

in square brackets ≈1 for v ≫ σ and ≈0.75X3 for v ≪ σ . We take

ln 
 = max

{

ln

[

r (σ 2 + v2)

Gm

]

, 1

}

(29)

for the Coulomb logarithm, where r is the BH’s distance from the

galactic centre. For ρ in equation (28) we use min [ρ(r), ρ(rinf)],

effectively capping the density at its value at the BH radius of influ-

ence, rinf = Gm/σ 2, when the BHs pass through the core.

The semimajor axis a of the binary also evolves under stellar-

dynamical friction as it wanders through the galaxy. However, Chan-

drasekhar’s formula applied separately to the binary constituents

does not give a good description of this evolution, since the hard

binary loses energy through close three-body encounters with stars,

while equation (28) relies on the assumption that the energy loss is

dominated by weak two-body encounters. We approximate the evo-

lution of a using a formulation for the decay rate of a hard, massive

binary in a uniform and isotropic sea of stars developed in Mikkola

& Valtonen (1992) and Quinlan (1996). The formulation was cali-

brated with an extensive series of three-body scattering experiments

in Quinlan (1996) and tested against N-body simulations in Mikkola

& Valtonen (1992). The binary decay rate is given by
(

da

dt

)

st

= −
ρHa2

σ
, (30)

where the hardening rate H can be approximated by the empirical

fitting function (Quinlan 1996)

H ≈
16

[

1 + (σ/w)4
]1/2

. (31)

Here w = 0.85
√

G min(m1, m2)/a is the characteristic velocity

distinguishing the hard binary regime – stars with v � w cannot

be easily captured into bound orbits and preferentially harden the

binary in close encounters. In our simulations the binary COM is

often speeding through the stellar medium at vcm � σ after an en-

ergetic ejection, so the stellar medium looks ‘hotter’ in its frame of

reference. To account for this we replace σ in equations (30) and

(31) with σ ∗ ≡
√

v2
cm + σ 2, a good approximation since H is not

very sensitive to the shape of the distribution function (e.g. H ≈
16 for a Maxwellian versus H ≈ 18 for a uniform velocity distribu-

tion). For ρ in equation (30) we took min [ρ(r), ρ(rinf)] as we did for

the drag on the COM. We ignored the mild eccentricity evolution

(de/dt)st, which is shown in Quinlan (1996) to be far weaker than

that predicted by Chandrasekhar’s formula for hard eccentric bina-

ries.

When the amplitude of oscillation of one of the two masses falls

below Gm/2σ 2, we stop integrating its motion and place it at rest at

the galactic centre until the second body returns to within a distance

of twice the break radius, 2rb. If the settled mass is the binary, then we

also stop updating its semimajor axis for stellar hardening, assuming

that it clears out its loss cone and stalls once it stops moving about

the nucleus and encountering new stars. Since the total mass in loss

cone stars is small compared to the BH mass in the low-density

galaxies that we consider, to good approximation the binary stalls

as soon as the replenishing mechanism (motion) shuts off.

During close encounters between the three BHs an orbit-averaged

prescription for stellar-dynamical friction is not feasible. However,
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the triples are still marginally stable at the boundary given by equa-

tion (11), so we apply a drag force given by Chandrasekhar’s formula

with ln 
 = 1 to the intruder at the beginning of each run. At the

onset of chaotic interactions in the first encounter (defined loosely

by the first time the closest pair is not formed by the original bi-

nary members) this perturbation is shut off, and it remains off in all

later close encounters. Fortunately the chaotic interactions occur on

time-scales very short compared to a dynamical friction time, so it

is valid to neglect stellar dissipation during close encounters.

2.4.2 Treatment of gravitational radiation

Gravitational radiation is modelled using the O[(v/c)5] post-

Newtonian (2.5PN) back-reaction acceleration computed by

Damour & Deruelle (1981), evaluated in the two-body COM frame

(e.g. Gultekin, Miller & Hamilton 2006),

dv1

dt
=

4G2

5c5

m2

m1 + m2

m1m2

r 3

{

r̂ (r̂ · v)

[

34G(m1 + m2)

3r

+6v2

]

+ v

[

−
6G(m1 + m2)

r
− 2v2

]}

. (32)

r = r 1 − r 2 and v= v1 − v2 are the relative positions and velocities

of the two masses. We sum the force linearly over all pairs, a valid

approximation provided the perturbations from the third body and

other external tidal forces are instantaneously small at periapsis.

When averaged over a complete orbit, equation (32) is equivalent

to the Peters (1964) equations for the binary semimajor axis and

eccentricity:

da

dt
= −

64

5

G3m1m2(m1 + m2)

c5a3

1 + (73/24)e2 + (37/96)e4

(1 − e2)7/2
, (33)

de

dt
= −

304

15

G3m1m2(m1 + m2)

c5a4

e + (121/304)e3

(1 − e2)5/2
. (34)

However, when |v̂ · r̂ | comes close to one on hyperbolic orbits, so

that (r̂ · v)2 → v2, Ė = F1 · v1 + F2 · v2 = m1a1 · v as given

by equation (32) becomes positive, though we know physically that

gravitational waves can only carry energy away from the system. To

give the correct answer averaged over an orbit, this positive contri-

bution must be cancelled by extra energy loss near periapsis, making

the equation potentially sensitive to numerical error. This effect is

much less pronounced in the Damour & Deruelle (1981) form than

in other expressions derived for the radiation back-reaction accel-

eration – they derived the formula specifically for practical use on

the problem of two point masses (see the appendix of Lee 1993 and

references therein).

For computational ease we neglect the lower order 1–2PN terms

(precession of the periapsis) in the post-Newtonian expansion.

Though much larger in magnitude than the radiation reaction force,

these terms are unimportant in the statistical sense because they con-

serve the intrinsic properties of the system, such as energy (Iwasawa

et al. 2006; Kupi, Amaro-Seoane & Spurzem 2006). We need not

concern ourselves with relativistic precession destroying the Kozai

resonance since the semimajor axis ratio given by equation (11) is

much smaller than that of equation (9).

2.5 Code tests and energy errors

One way to establish the reliability of our integration methods is to

test them on problems with known solutions. Fig. 6 shows an exam-

ple on the two-body problem with gravitational radiation. The upper
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Figure 6. Code tests on the Newtonian two-body problem with gravitational

radiation. Upper panels: evolution of elliptical orbits computed using RK4

integration of the Peters equations (black solid), RK4 integration with the

Damour & Deruelle (DD) radiation back-reaction acceleration (red dashed)

and CHAIN integration with the DD acceleration (diamonds). The ICs were

chosen to give |a/ȧ| = 107 yr at the beginning of each integration. Left:

semimajor axis evolution for initial eccentricities of e0 = 0.0, 0.5, 0.9 and

0.99 (bottom to top). Right: eccentricity evolution for e0 = 0.5, 0.9 and

0.99. The curves’ indistinguishability demonstrates the reliability of all three

methods. Lower panels: hyperbolic orbits with impact parameters b set to

80 and 120 per cent of the critical value for gravitational radiation capture,

computed using the DD acceleration in the CHAIN code. Left: 0.8bcrit; BH is

captured. Right: 1.2bcrit; BH is not captured. The blue asterisks are points

along the Newtonian trajectory (without gravitational radiation). The devia-

tion from the Newtonian trajectory after periapsis can be seen in both plots,

even though the energy remains positive in the latter.

panels show the evolution of the semimajor axis a and eccentricity

e of four decaying elliptical orbits, computed using (a) our RK4

integrator and equation (32), with an error tolerance of ǫ = 10−9,

(b) the CHAIN code and equation (32), with ǫ = 10−14 and (c) the

Peters (1964) equations (33–34). In each case the initial semimajor

axis a0 was chosen to give a gravitational radiation time-scale of

|a/ȧ| ≈ 107 yr, and the four curves (from bottom to top) are for

eccentricities of 0.0, 0.5, 0.9 and 0.99. The agreement of the three

computation methods demonstrates the reliability of both the RK4

integrator and our implementation of the CHAIN code in handling

dissipative forces.

The lower panels show two hyperbolic orbits with periapsis dis-

tances around 30 times the Schwarzchild radius rsb of the larger BH,

computed using equation (32) in CHAIN. The RK4 integrator was

found to fail some tests on very close approaches from hyperbolic

orbits with gravitational radiation, so we treat all such approaches

using the regularized CHAIN code in our runs, even during the un-

perturbed binary evolution. The blue asterisks are points along the

Newtonian orbits while the red solid lines show the trajectories with

gravitational radiation. There is a simple analytic expression for the

maximum periapsis distance for gravitational radiation capture from

a hyperbolic orbit,

rp,max =
[

85
√

2πG7/2m1m2(m1 + m2)3/2

12c5v2
∞

]2/7

, (35)

where m1 and m2 are the masses of the two bodies and v∞ is their

relative velocity at infinity. The orbit on the lower left begins at

80 per cent of the critical impact parameter and the incoming BH
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Figure 7. Energy errors. Upper panel: errors given by equation (36), for each

code stage: close triple encounters, integrated with CHAIN (red); unperturbed

binary evolution with the RK4 integrator (blue) and very close two-body

encounters computed with CHAIN after the binary has coalesced (green). The

black (heavy) histogram shows the energy errors for close triple encounters

normalized to the initial energy instead of the energy dissipated. Lower panel:

effective energy errors for the entire run, computed from equation (37).

is captured. On the right the intruding BH starts at 120 per cent

of the critical impact parameter and is not captured, though the

deviation from the Newtonian trajectory due to the energy radiated

at periapsis can be seen on the way out. We tried iterating over

impact parameters close to the critical value and found that the

code reproduces equation (35) to within a part in 106 for periapsis

distances rperi ∼ 30rs, and to within a part in 103 for rperi ∼ 3rs.

We also evaluated the performance of the code by repeating our

canonical set of 1005 runs with a static inner profile to check the

precision of energy conservation. In Fig. 7 we histogram the energy

errors, computed as

ǫ =

∣

∣

∣

∣

∣

∣

E0 +
∑

i

[

∫ tf

t0
(Fdf,i · vi + Fgw,i · vi )dt

]

− Ef

E0 − Ef

∣

∣

∣

∣

∣

∣

, (36)

where E0 and Ef are the initial and final energies, and the two terms

in the integral under the sum are the work done by dynamical fric-

tion and gravitational radiation during the current stage of the code.

In the upper panel we separately plot the errors for close three-

body encounters, RK4 integration of the unperturbed binary motion

(‘far’), and close two-body encounters computed with CHAIN during

the unperturbed binary evolution. The plot includes all code stages

where the energy dissipated was at least 10−3 in code units, or about

a part in 105–6 of the initial binding energy of the system. The black

(heavy) histogram shows the errors for close encounters normalized

to the initial energy instead of the dissipated energy in the denomi-

nator of equation (36), since the energy dissipated was very small in

many close encounters. In the lower panel we combine the energy

errors from the various code stages to get an effective energy error

for each entire run,

ǫrun =
√

ǫ2
1�E2

1 + ǫ2
2�E2

2 + · · · + ǫ2
n�E2

n

�E1 + �E2 + · · · + �En

. (37)

We had to combine the separate errors to obtain ǫrun since the galactic

potential is handled slightly differently during different stages of the

code, e.g. the triaxial modification is applied only during the RK4

integration. In a large majority of cases ǫrun falls between 10−12 and

10−9, and energy is conserved to better than a part in 104 in every

run. The excellent energy conservation gives us confidence in the

robustness of our integration methods.

3 R E S U LT S

3.1 Outcome statistics

We begin with an overview of the outcomes of our three-body sim-

ulations. In subsequent sections we focus on various effects in more

detail. Our data consists of eight sets of 1005 runs, each sampling a

different distribution of the ICs. A set of 1005 runs took anywhere

from ∼4 to ∼30 h to finish on five 2.0-GHz Opteron processors,

depending on the ICs.

In our CN runs, we chose �m = 0.3 for the threshold merger

mass ratio, modelled the stellar bulge as a Hernquist (η = 2) profile,

started off the inner binary at ahard, and generated the ICs from a 5 ×
1013 M⊙ halo at z = 0. In each of the remaining runs we varied one

of these assumptions. Runs D1 and D5 used �m = 0.1 and 0.5 to

explore the effects of widening or narrowing the range of BH mass

ratios. In runs MX we assigned a mass mbh [max (M21, M22), zf2]

instead of mbh(M21 + M22, zf2) to the intruding BH, as discussed in

Section 2.1. In runs BA and SA we started off the inner binary at

3ahard and ahard/3 instead of at ahard. We initialized the stellar bulge to

an η = 1.5 profile in runs SC, to explore the effect of a steeper inner

cusp. Finally, in runs H1 we generated the ICs from a 1 × 1013 M⊙
halo at z = 0, for total BH masses of ∼5 × 107 M⊙, about an order

of magnitude lower than in our CN runs. Table 1 summarizes the

outcomes.

The first two rows give the percentage of cases in which (i) one BH

pair coalescenced by the end of the run (i.e. by the time since the last

major merger) and (ii) the remaining two BHs also coalesced within

the run time. At least one pair coalesced in a large majority of the runs

for each set of ICs that we tried. The new system formed from the

third BH and binary remnant also coalesced in ∼10–20 per cent of

the cases. Since we assume that stellar hardening of the new binary

shuts off at ahard, it can only coalesce by gravitational radiation

from a highly eccentric orbit; we will discuss this topic further

in Sections 3.2 and 3.4. The coalescence rate is somewhat lower

(∼68 per cent) in set D1, since (a) the hardening effect of the third

body is lessened for more extreme mass ratios and (b) mergers with

mass ratios as low as �m = 0.1 are more frequent, so the run time is

typically shorter. Naturally the coalescence rate is somewhat higher

(95 per cent) in runs SA, where we begin with a tighter binary (a0 =
ahard/3, τgw ∼ 1011–12 yr). Coalescence is also significantly less

common in runs H1. This can be understood in light of equation (3)

in Section 1.1. The separation between the scale set by the stellar

kinematics (ahard) and that set by gravitational radiation (agw) is

proportional to m
−1/4

bin . Hence in lower mass systems, coalescence

is less likely relative to escape. This observation motivates future

study of triple BH dynamics in much lighter systems.

The next three rows of the table give the fraction of runs in which

(i) the single BH escaped the stellar bulge + halo potential, (ii) all

BHs (both the single and the binary) escaped the halo and (iii) the

single BH either escaped or remained wandering far out in the halo

at the end of the run. The single escaped in ∼15–20 per cent of the

runs in all cases. If we also count runs where it remained wandering

through the halo for of order a Hubble time, this fraction increases to

∼40 per cent. Double escapes (of both the binary and the single BH)
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Table 1. Summary of outcomes for eight different distributions of the ICs. See text for explanation of the entries.

Outcome CN D1 D5 MX BA SA SC H1

Coalescence

One pair 87 per cent 68 per cent 89 per cent 84 per cent 84 per cent 95 per cent 84 per cent 75 per cent

Two pairs 15 per cent 13 per cent 18 per cent 16 per cent 22 per cent 13 per cent 16 per cent 10 per cent

Escape

Single 15 per cent 18 per cent 17 per cent 19 per cent 21 per cent 14 per cent 14 per cent 22 per cent

Double 0.0 per cent 0.0 per cent 0.1 per cent 0.0 per cent 0.1 per cent 0.2 per cent 0.1 per cent 0.3 per cent

Wander 37 per cent 51 per cent 38 per cent 42 per cent 42 per cent 26 per cent 45 per cent 50 per cent

Final state

Binary 60 per cent 67 per cent 54 per cent 57 per cent 51 per cent 65 per cent 56 per cent 63 per cent

Single 38 per cent 31 per cent 45 per cent 41 per cent 47 per cent 33 per cent 43 per cent 35 per cent

No BH 1.3 per cent 2.0 per cent 1.2 per cent 1.5 per cent 1.4 per cent 1.4 per cent 1.2 per cent 1.8 per cent

Core

〈Mdef〉 1.41 1.20 1.50 1.38 1.31 1.96 1.42 1.61

� Mdef 0.48 0.37 0.57 0.44 0.52 0.44 0.57 0.61

Termination

Sing escape 14 per cent 16 per cent 16 per cent 18 per cent 18 per cent 14 per cent 12 per cent 21 per cent

New binary 61 per cent 44 per cent 61 per cent 55 per cent 53 per cent 73 per cent 54 per cent 49 per cent

T.O. far 22 per cent 30 per cent 22 per cent 23 per cent 20 per cent 12 per cent 31 per cent 28 per cent

T.O. CHAIN 2.1 per cent 10 per cent 1.7 per cent 4.4 per cent 8.4 per cent 0.3 per cent 1.6 per cent 1.5 per cent

Crashed 0.5 per cent 0.1 per cent 0.3 per cent 0.3 per cent 0.7 per cent 0.2 per cent 0.6 per cent 0.1 per cent

were very rare. We get more wandering BHs in set D1, since a larger

fraction of the released energy is apportioned to the escaper when

it is relatively lighter, the dynamical friction time is longer and the

run time is shorter. Runs SA produced less wandering BHs since the

binary pair more often coalesced before the intruder had a chance

to harvest much of its energy. Wandering was also more common in

set H1, due to the m
−1/4

bh scaling discussed in the previous paragraph.

The escape fraction of course depends on the depth of the galactic

potential well. Given the uncertainty and scatter in the mbh–Mhalo

relation and specificity of the prescription adopted, we must expect

these numbers to vary somewhat in studies with different halo or

stellar density models.

The entries under ‘final state’ tell whether, at z = 0, the galactic

centre hosts (i) a stalled BH binary, (ii) a single BH or (iii) no BHs

(neither the single nor the binary has yet returned to the centre by

dynamical friction). About 50–70 per cent of the runs ended with

a binary at the galactic centre whose gravitational radiation time

exceeded the time until z=0. This includes cases where (a) the single

was ejected to large distance and the binary settled to the centre

before it hardened enough to coalesce by gravitational radiation,

(b) when the inner binary coalesced during a close encounter the

outer binary coalescence time exceeded the remaining run time or

(c) the single and binary remnant both returned to the centre after an

ejection and formed a bound pair with a long gravitational radiation

time. In most of the remaining cases (30–50 per cent) the run ended

with a single BH at the galactic centre, or a binary destined to

coalesce before t0. This occurred when (a) the single was ejected

to large distance and the binary (or remnant) settled to the centre

after having hardened to the point of coalescence through some

combination of repeated interactions with the third BH and stellar

dissipation or (b) a new binary with a short gravitational radiation

time formed following return from an ejection or coalescence during

a close encounter. In only a small fraction (1–2 per cent) of cases the

run ended with the centre empty of BHs. Note also that this happened

most often in runs where the last merger occurred recently, so the

total time spent with the centre empty of BHs is still smaller.

The next two entries give the mean and standard deviation of the

core ‘mass deficit’ scoured out by the triple system, in units of the

total BH mass mbh. For a galaxy modelled as an η model with stellar

mass parameter Ms, bulge scale radius as and a break to inner slope

γ at rb, we define the mass deficit Mdef by

Mdef = 4π

[
∫ rb

0

ρη(r )r 2dr −
∫ rb

0

ρ(r )r 2dr

]

= Ms

[(

r

r + as

)ηs

−
(

rb

rb + as

)ηs
]

−
4πρbs

3 − γ
r 3

b + DM,

(38)

where ρbs is the stellar density at rb and DM denotes the corre-

sponding dark matter terms. The mass deficits are highly scattered

within each set of runs, with typical Mdef/mbh ≈ 1.4 ± 0.5. More ex-

treme mass ratios (runs D1) tended to produce smaller cores, while

a narrower mass range (runs D5) gave somewhat larger ones. The

fraction of runs ending with very high mass deficits varied strongly

with �m; for instance 17 per cent of cases ended with Mdef/mbh >

2 for �m = 0.5 versus only (11, 4.4 per cent) for �m = (0.3, 0.1).

The large cores in set SA arose mostly from enhanced core scour-

ing during the creation of the initial hard binary, and so are more a

consequence of the ICs than of the triple interactions themselves.

This sensitivity of Mdef to the binary stalling radius is an interesting

point in its own right. The larger cores in runs H1 probably arise

from the higher mean number of ejections and smaller fraction of

runs ending in immediate coalescence as the BH mass is decreased.

21 per cent of the runs in this set ended with Mdef/mbh > 2 and

8.7 per cent ended with Mdef/mbh > 2.5. The subject of core scour-

ing will be discussed in further detail in Section 3.5.

Both the core scouring effect and the coalescence rate induced by

the encounters are significantly reduced for the extreme mass ratios
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in set D1. One must keep in mind, however, that halo mergers with

these mass ratios are much more frequent than those above �m =
0.3 (see Fig. 3), so the cumulative effect of these events may be as

high or higher than that of encounters with near-equal masses. To

quantify this statement our simulations would need to be embedded

in a merger tree that follows the formation of triple systems.

Finally, the last five lines in Table 1 give the statistics of the con-

dition which formally terminated the run: (i) the single escaped the

halo and the binary (or remnant) settled to rest at the galactic cen-

tre; (ii) the escaper and binary remnant formed a stalled binary or

coalesced (in a few per cent of these cases a bound binary never

actually formed; the pair coalesced suddenly upon a very close pe-

riapsis passage from an unbound orbit); (iii) the maximum physical

time tmax = t0 − tf0 was reached (in these cases one or more BHs

were left wandering through the halo at the end of the run); (iv) the

maximum time for a close encounter (tchn = 3 × 107 yr for our CN

runs) was exceeded or (v) the time-step went to zero or a limit on the

number of time-steps was reached at some stage of the integration,

which always occurred in <1 per cent of cases. Runs terminating on

condition (iv) or (v) were left out when computing the upper entries

in Table 1.

In this slew of runs we have varied only a few of the relevant

parameters; one might also try, for instance, varying or adding scatter

to the halo mass prescription, further steepening the stellar bulge

profiles or adding a disc component, and exploring vastly different

BH mass scales, in particular the much lower (∼104–5 M⊙) masses

that may be relevant at high redshift. One of the advantages of our

method is the relative ease of varying the model and ICs. This paper

should be viewed as a work in progress, in which we have developed

a method that can be applied to three BH systems in whatever context

they may arise. Given the qualitative similarity of the outcomes in

the runs we have performed so far, we will focus on the CN runs in

the more detailed presentation of our results.

3.2 Efficient binary coalescence

The inner binary begins at ahard, where the gravitational radiation

time is τgw ∼ 1013–15 yr, in our CN runs. It must shrink by a factor

of ∼10 before gravitational radiation can cause coalescence in a

Hubble time, or by a factor of ∼40 for τ gw to become comparable

to the dynamical friction time. The intruder helps to bridge this gap

in several ways: (a) direct hardening of the binary through repeated

three-body interactions, (b) enhanced stellar hardening by scattering

of stars into the loss cone and motion of the binary about the nucleus

and (c) enhanced gravitational radiation losses due to thermalization

of the eccentricity during the chaotic encounters and eccentricity

growth via the Kozai resonance.

We find that the combination of these mechanisms leads to co-

alescence of the inner binary within the time t0 − tf0 between the

merger that formed the triple system and z = 0 in a large majority

of the runs. It is instructive to distinguish the systems that coa-

lesce by ‘collision’ during a close three-body encounter from those

that gradually harden enough to coalesce within the time t0 − tf0,

through the cumulative effect of repeated encounters and loss-cone

refilling while the binary wanders about the nucleus. In runs CN,

23 per cent of the systems undergo collision during the first en-

counter, and another 19 per cent coalesce during later close en-

counters, for a net 42 per cent collision rate. Thus about half of

the total coalescence efficiency arises from collisions during close

encounters, and the other half comes from gradual hardening over

the course of the simulation. Kozai oscillations account for most of

the collisions during the first encounter, while in later encounters
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Figure 8. Distribution of coalescence times for the inner binary (upper

panel) and new binary (lower panel), formed by the third BH and coa-

lesced binary remnant. The lower plot includes only runs where a new binary

formed, and not e.g. cases where the single escaped or was left wandering

far from the galactic centre at the end of the run.

random eccentricity variations are more likely to result in coales-

cence, since the binaries are harder. Our numbers are reasonable

based on analytic estimates of the collision rate in chaotic encoun-

ters (e.g. Valtonen & Karttunen 2006, chapter 11).

Fig. 8 shows the distribution of binary coalescence times. The

upper panel is for the inner binary, while the lower panel is for the

new system formed by the third BH and binary remnant. In cases

where coalescence occurred during the run, we plot the coalescence

time recorded by the code. In other cases we plot trun + tgr,end, where

trun is the total run time and tgr,end is the time obtained by integrating

the Peters (1964) equations from the state at the end of the run to

coalescence. The lower plot includes only those runs where the third

BH ended up bound to the binary remnant, excluding, for instance,

cases where the single escaped the galaxy. In ∼15 per cent of the

runs the new binary also coalesced within the time t0 − tf0.

Under circumstances where the gap-crossing mechanisms dis-

cussed in Section 1.1 fail, the efficient coalescence in massive triple

systems provides a ‘last resort’ solution to the final parsec problem.

3.3 The three-body interactions

Though the close encounters take up only a small fraction of the

physical time in our runs, it is the energy exchanges during these

encounters that determine the large-scale BH dynamics. We now

take a closer look at the three-body dynamics in a few representative

cases.

In ∼20 per cent of the runs the binary swiftly coalesces during

the first encounter, usually with the help of the Kozai resonance.

Two examples of this are shown in Fig. 9. The time evolution of

the inner and outer binary separations is plotted for two different

runs in the upper panels. For a circular orbit the separation would

be roughly constant over an orbital period, or just a horizontal line

in the figure. On the left the inner binary undergoes many Kozai

oscillation cycles before coalescing. Observe that at the second-to-

last eccentricity maximum, though it does not coalesce, the binary

radiates away a large amount of energy and passes through the next

eccentricity minimum with a significantly reduced semimajor axis.
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Figure 9. Two examples of rapid coalescence by Kozai oscillations. Upper

panels: time evolution of the inner (red, lower) and outer (blue, higher) binary

separations. Lower panels: total gravitational radiation power, averaged over

BS time-steps. m1 and m2 are the masses of the binary members and m3 is

the mass of the intruder.
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Figure 10. Two examples of longer runs. Left panels: entire run, with time

spent in each code stage normalized to unity. Actual times in years are

indicated by the numbers on the plot. The red (inner binary) and blue (outer

binary) portions show the close encounters, while the black portions show the

calls to the RK4 integrator. Upper right: zoom in on the first close encounter

in the run at left. Lines are colour coded according to which pair is closest, to

highlight the exchanges. Lower right: zoom in on the third close encounter of

the lower run, showing also the total gravitational radiation power averaged

over BS time-steps. See text for further explanation of this figure.

In the example on the right, the binary coalesces after just one full

Kozai cycle. The lower panels show the time evolution of the to-

tal gravitational radiation power, averaged over the BS time-steps.

Since the system starts on the verge of chaotic interactions where

the outer to inner binary semimajor axis ratio is small (so that the

quadrupolar approximation breaks down), we get ‘messy’ Kozai os-

cillations which can give way to catastrophic eccentricity growth at

an unpredictable time.

Fig. 10 shows two examples of more complex runs. The left-

hand panels summarize the entire run, including all of the close

encounters and ejections in between. Each call to the CHAIN code

or the unperturbed binary integrator is separated by dashed vertical

lines. The total time in each stage is normalized to unity in order to

see the full history of the run at once, and not just distant ejections.

The numbers on the plot are the actual times (in yr) spent in each

stage.

Each run begins with a short period of secular evolution (illus-

trating the remarkable stability of hierarchical triples even slightly

within the Mardling–Aarseth boundary). Dynamical friction brings

the intruder in a bit further to get chaotic interactions underway.

This can be seen more clearly in the upper right-hand panel, where

we zoom in on the first close encounter at left. In this panel we

also colour code the lines according to which two BHs instanta-

neously form the closest pair, to show the numerous exchanges that

occur during close encounters. Large-amplitude Kozai oscillations

are present in the first encounter of the lower run, but no oscillations

are seen in the upper run, where the initial inclination is below the

critical angle.

After the first encounter, in both runs the outer components suffer

a few ‘near’ (∼0.1–1 kpc) ejections before they get shot out to kpc

scales and come back by dynamical friction. In the upper run, the

single goes out to ∼10 kpc, then comes back and forms a bound pair

with the former binary, which has coalesced in the meantime. The

new binary is highly eccentric (e ∼ 0.9998) and quickly coalesces by

gravitational radiation. In the lower run the single returns after the

first kpc-scale ejection, strongly interacts with the binary one more

time and then escapes the galaxy. The binary has a semimajor axis of

0.15 pc at the beginning of the final encounter, and its binding energy

increases by 17 per cent in the interaction, imparting a velocity of

∼1400 km s−1 to the escaper.

In the lower right-hand two panels we focus on the third encounter

of this run, which was selected because a significant amount of

energy was lost to gravitational radiation over its duration. We can

see that the radiation loss occurred during two very close approaches,

by two different BH pairs. If close three-body encounters between

BHs are sufficiently common in the Universe, such gravitational

radiation spikes could be detectable with LISA.

Fig. 11 shows the distribution of post-encounter velocities, for

the single and recoiling binary. Included in the plot are all close

encounters in which (a) the binary and single are unbound at the

end of the encounter; (b) the binding energy of the binary increases

by at least 5 per cent (to avoid numerous ‘glancing’ encounters

where δF just barely exceeds the close encounter threshold) and (c)
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Figure 11. Distribution of ejection velocities. Upper panel: single BH.

Lower panel: binary COM. The total BH mass is typically ∼6 × 108 M⊙.
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Figure 12. Energy exchanges during close encounters. Upper panel: distri-

bution of the fractional change in the binding energy of the binary, 1 + � =
1 + (BEf − BE0)/BE0, in close encounters. Blue points with 1.5σ Poisson

error bars are the simulation data; the red line shows a comparison with the

shape predicted by theory (see text). Lower panel: fraction of encounters with

the relative energy radiated as gravitational waves in the encounter greater

than 1 + �gw = 1 + Egw/BE0. Both panels include only encounters that end

with the single BH unbound from the binary, and exclude the first encounter

of each run, which starts in a special hierarchical triple configuration and

also includes some dissipation by the dynamical friction used to bring in the

intruder.

the encounter ends by δF falling below threshold (and not e.g. by

coalescence of the binary or timing out). The dashed vertical line

indicates the typical galactic (stellar bulge + halo) escape velocity,

vesc ∼ 1400 km s−1. We see that the single will sometimes escape

the galaxy (or be ejected far out into the halo where the dynamical

friction return time exceeds a Hubble time), but the binary will rarely

go far.

The upper panel of Fig. 12 shows the distribution of fractional

changes in the binding energy of the binary during close encounters,

1 + � = 1 + (BEf − BE 0)/BE 0. The first encounter of each run

is excluded from this plot, since it begins in a special hierarchical

triple configuration and includes some dissipation by the dynamical

friction used to bring in the intruder. The red line shows the best fit

to the form f (1 + �) = K�−1/2 (1 + �)−9/2, with the normalization

K depending on the mass ratios and intruder velocity, predicted by

theory (Heggie 1975; Valtonen & Karttunen 2006). The lower panel

shows the fraction of encounters with the relative energy radiated

as gravitational waves in the encounter greater than 1 + �gw =
1 + Egw/BE 0. This shows that gravitational radiation plays a sig-

nificant role in the dynamics in only a few per cent of the encounters

ending in the escape of one component. Another ∼20 per cent of

the encounters end in coalescence; gravitational radiation of course

plays a significant role in all of these.

Another point of interest is the statistics of the closest approach

distances between two-body pairs during the encounters. Besides

their intrinsic significance, the distances of closest approach are re-

lated to the extent of tidal stripping of the BHs during the encounters.

One can imagine that if some stars, or even the inner portion of an

accretion disc, remained bound to the individual BHs at the end of

an encounter, then some ejected SMBHs might become observable.

Since BS time-steps are not at all infinitesimal (see Section 2.4),

we cannot simply take the minimum over the discrete time-steps
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Figure 13. Tidal radius rtid of the lighter pair member at closest approach.

In this plot we include only encounters where one BH escaped at a speed

above 940 km s−1. Upper panels: rtid in units of the Schwarzchild radius of

the lighter pair member, rs,min. For reference, the red circles show the per

cent of the BH’s mass contained within rtid in an α disc if the BH is accreting

at the Eddington rate ṁEdd, averaged over the encounters in each bin. Lower

panels: rtid in pc. Red circles show the mass in stars (in M⊙) contained

within rtid in the Hernquist profile used to model the stellar component of

the galaxy. Left panels: closest pair. Right panels: second closest pair.

to be the closest approach distance. When the relative perturbation

δF from the third body is small, one can obtain the periapsis distance

analytically in the Keplerian two-body approximation. When δF is

larger, the minimum over the time-steps should give a better estimate

since the time-steps tend to be smaller, but this statement is difficult

to quantify. To construct the distance of closest approach in our

simulations, we first identify any step where d|r |/dt = r̂ ·v switches

sign from negative to positive and |r | < 30000(rs1 + rs2) for any

pair as a ‘passing step’ containing a close approach. Here r = r 1 −
r 2, v= v1 − v2 and rs1,2 are the Schwarzchild radii of the two-pair

members. We then iteratively bisect the time-step, evaluating r̂ · v
at each bisection to find the place where it switches sign until the

distance between the two bodies converges to within a part in 106.

Fig. 13 shows the distribution of the tidal radius rtid at closest

approach, for the closest and second closest pair. Since we are in-

terested in observing ejected SMBHs, we only include encounters

where the single escaped with a velocity above 940 km s−1, the typ-

ical velocity needed to reach the stellar scale radius of ∼3 kpc in

our galactic model. rtid is defined by the equation

δatid ≡
Gm2

(d − rtid)2
−

Gm2

d2
=

Gm1

r 2
tid

, (39)

where m1 is the reference mass being stripped (the smaller pair

member), m2 is the other point mass and d is the distance between

m1 and m2. We solve this polynomial equation for rtid exactly rather

than Taylor expanding about rtid/d = 0 to get the familiar expression

r = (m1/2m2)1/3 for the tidal radius, since rtid/d is not generally

small at closest approach for the near-equal mass problem at hand.

The upper panels show rtid in units of the Schwarzchild radius of the

smaller BH. The red circles indicate the per cent of this BH’s mass

contained within rtid in an α disc (Shakura & Sunyaev 1973; Frank,

King & Raine 2002; Narayan 2003) accreting at the Eddington rate

ṁEdd, assuming α = 0.1 and a radiative efficiency of ǫ = 0.1. The

lower panels give rtid in pc, and here the red circles show the mass
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in stars within rtid in the Hernquist model representing the stellar

bulge.

The α-disc model assumes that the disc is not self-gravitating

and breaks down as ṁ → ṁEdd, so the red circles in the upper

panels are merely to give the reader an idea of the bound mass

scales associated with the approaches. The tidal approximation is a

pessimistic estimate of the extent of the stripping since swift, one-

time close passages would be impulsive (Binney & Tremaine 1987,

chapter 7). We record only the single closest approach, so we cannot

distinguish between such impulsive events and approaches that are

part of periodic patterns in the trajectories.

In a significant fraction of cases rtid � 104 rs encloses a substantial

fraction of the BH’s mass in accreting gas, so near-Eddington accre-

tion could continue for a duration of order the Salpeter (1964) time

after the slingshot ejection (Hoffman & Loeb 2006). The enclosed

stellar mass shown in the lower panels is never nearly comparable

to the BH mass, but in most cases the escaper would drag some

stars. In principle one can imagine one of these stars entering a

giant phase and overflowing its Roche lobe, producing detectable

accretion on to the SMBH long after its ejection from the galactic

centre (e.g. Hopman, Portegies Zwart & Alexander 2004; Kuranov

et al. 2007).

3.4 Distant evolution and binary re-formation

Slingshot ejections in triple encounters produce a population of

‘wandering’ SMBHs in the haloes of galaxies and intergalactic space

(Volonteri et al. 2003a; Volonteri & Perna 2005). Fig. 14 shows the

total time spent by the single BH (upper panel) and binary/remnant

(lower panel) at various distances from the galactic centre, averaged

over all 1005 runs. The time spent in each distance bin is summed

over the duration of each run, and if the system reaches a steady

state at time tend < t0 − tf0 then the state of the system after the

run (until z = 0) is included. If a component escapes, then the time

t0 − tend is added to the highest bin; if it settles to the centre then

this time is added to the lowest bin. The single is found wandering

at large distances nearly half the time, while the binary spends the

vast majority of its time at the galactic centre. Over all of our runs,

the total fraction of the time spent with no SMBHs within 50 pc of
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Figure 14. Total time spent by the single BH (upper panel) and bi-

nary/remnant (lower panel) at various distances from the galactic centre,

averaged over all 1005 runs. The lowest bin includes all distances below

17 pc and the highest bin includes all distances above 105 pc.
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Figure 15. Distribution of parameters of ‘final state’ binaries. The plot in-

cludes binaries that settled to the centre after a single escape, and new bina-

ries that formed from the single BH and inner binary remnant. Upper panel:

semimajor axis. Lower panel: eccentricity.

the centre since the formation of the halo hosting the triple system

is only ∼1 per cent. Hence we expect the ejections in triple BH

encounters at low redshift to produce very few nuclei empty of

SMBHs. A cD galaxy cluster, having hosted several dry mergers,

might contain up to a few naked SMBHs wandering through the

cluster halo as a result of single ejections.

The escaper remains wandering through the halo in only ∼40 per

cent of the runs. In the other cases dynamical friction brings it back

to the centre, where it becomes bound to the binary remnant and

forms a new, hard binary. Fig. 15 shows the semimajor axis (upper

panel) and eccentricity (lower panel) distributions of the ‘final state’

binaries in our simulations. This plot includes binaries formed when

a pair coalesces during a close encounter and is replaced by a single

BH with its COM coordinates; cases where the original binary never

coalesces, but rather settles to the centre and stalls after the single

escapes and binaries that form from the third BH and coalesced

remnant after ejections.

Whereas in the absence of triple encounters we would expect most

SMBHs to sit around ahard, the encounters introduce a second popu-

lation of stalled binaries at smaller separations. The eccentricities of

the final binaries span the whole range from 0 to 1. Note the peak at

very high eccentricity, arising mostly from cases where the escaper

rejoins the binary remnant from a radial orbit following a distant

ejection, as in the run shown in the upper panel of Fig. 10. Many of

the binaries in this peak are expected to coalesce quickly by gravita-

tional radiation. This result has importance for LISA if three-body

ejections are common enough, since the gravitational radiation sig-

nature of a highly eccentric binary is quite different from that of a

circular binary. An eccentric binary radiates at all integer harmonics

of the orbital frequency, so its spectral energy distribution peaks at

higher frequencies, possibly enabling the detection of higher mass

SMBH binaries (e.g. Pierro et al. 2001; Enoki & Nagashima 2006).

However, we caution the reader that the high-eccentricity coa-

lescence rate appears to be sensitive to the dynamical friction and

core updating prescriptions. SMBH binary eccentricity evolution

is a delicate question to which simulators have obtained widely

discrepant answers (e.g. Milosavljevic & Merritt 2001; Aarseth

2003; Merritt & Milosavljević 2005). While the conclusion that a
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high-eccentricity population forms through distant ejections is ro-

bust, the question of whether these systems tend to coalesce or

remain as an observable population of stalled high-eccentricity bi-

naries may depend on the details.

3.5 Core creation

A number of studies have addressed the mark left on a stellar

core by the hardening of one or more BH binaries in indepen-

dent succession (Milosavljevic & Merritt 2001; Ravindranath, Ho

& Filippenko 2002; Volonteri, Madau & Haardt 2003b; Merritt

2006). To estimate the damage, consider a succession of mergers

(M0, M ′
0) → M1, (M1, M ′

1) → M2, . . . , (MN−1, M ′
N−1) → MN ,

between galaxies containing BHs of mass (m0, m′
0), . . . , (mN−1,

m′
N−1), and having insufficient gas for significant stellar cusp re-

generation. Suppose that following each merger the BHs spiral in

to ahard by dynamical friction on the stars, then cross the gap from

ahard to agw by some non-stellar mechanism, e.g. interaction with

a modest amount of gas that ends up in the nucleus through tidal

torques associated with the merger. The total energy deposited in

the stellar core is roughly

Edep ∼
N−1
∑

i=0

(

Gmi m
′
i

ahard,i

−
Gmi m

′
i

ainf,i

)

, (40)

where ahard,i is the hardening radius of the BH binary formed in each

merger, and the radius of influence ainf,i is the radius containing about

twice the mass of the larger binary member in stars (e.g. Merritt

2006). Note that the right-hand side of (40) is dominated by the

first term in the parentheses, so the precise definition of ainf,i is

not important. If the inner density profile of a galaxy flattens from

d ln ρ/d ln r = 3 − η to a shallower slope γ within some core radius

rb, then we can define a core ‘energy deficit’ by

Udef = π

∫ ∞

0

[

ρ(r )�(r )r 2 − ρη(r )�η(r )r 2
]

dr , (41)

the difference between the binding energy of the galaxy with the

density break and that of the same galaxy, but with the density

profile outside the core extrapolated inward to the centre. In this

equation ρ = ρstars + ρhalo and � = �stars + �halo denote the sums of

the contributions to the density and gravitational potential from the

stellar and dark matter halo components. The cross terms ρstars�halo

and ρhalo�stars contribute about 10–20 per cent of the total binding

energy, while the halo–halo term is negligible. We denote the outer

slope by 3 − η to match the Tremaine et al. (1994) parametrization

used in our galactic models. We can estimate the size of the core

created by the cumulative scouring action of the BH binaries formed

in the succession of mergers by equating Udef of equation (41) to

Edep given by equation (40).

The Udef = Edep prescription was introduced in order to estimate

the extent of cusp destruction before the binary hardens. If stalling

were prevented by sufficient scattering of stars into the loss cone,

an analogous energy argument would grossly overestimate the size

of the core scoured out as the binary decayed from ahard to the sepa-

ration where gravitational radiation could take over. This is because

a hard binary loses energy by ejecting stars at high velocities, of-

ten exceeding the escape velocity of the entire galaxy. Most of the

energy released by the binary goes into excess kinetic energy of

these hypervelocity stars rather than heating of the local medium.

Equations (40) and (41) capture the essence of the core scouring

in the limit of weak encounters (dynamical friction), but for hard

binaries we must view the cusp destruction as mass ejection rather

than energy injection, once again following the work of Mikkola

& Valtonen (1992) and Quinlan (1996). A hard SMBH binary is

defined by the fact that it hardens at a constant rate, dE/dt = const.

In the limit of very high orbital velocity (w ≫ σ ) this implies that a

constant mass in stars, comparable to the total BH mass, is ejected

from the galactic centre per e-folding of the binary semimajor axis,

1

mbin

dMej

d ln(1/a)
=

1

mbin

dMej

d ln(Est)
≡ J ≈ 0.5, (42)

where Est is the energy transferred from the BH system to the stars.

We can estimate the core damage due to mass ejection by equating

the total mass ejected by the binary to Mdef as defined in equa-

tion (38).

Now suppose that instead of coalescing without further damaging

the stellar core, the binary formed in the first merger in our sequence

stalls at ahard until a third BH sinks in following the second merger.

On the one hand, some energy that would have been injected into

the stars as the outer binary hardened may now instead be carried

off as gravitational radiation or kinetic energy of a fast escaping

BH, causing less damage to the stellar core than the decay of two

separate binaries. On the other hand, the intruder may continue

scattering stars into the loss cone well after the inner binary reaches

ahard, and ejected BHs heat the core by dynamical friction as their

orbits pass repeatedly through the dense nucleus (Boylan-Kolchin,

Ma & Quataert 2004).

To quantify these considerations our code evolves the core radius

rb and slope γ along with the BH orbits to roughly account for the

core heating and mass ejection caused by the triple systems. At the

beginning of each run we initialize the core by injecting an energy

Einit =
Gm1m2

ahard,i

+
G(m1 + m2)m3

ainit,o

−
Gm1m2

ainf,i

−
G(m1 + m2)m3

ainf,o

(43)

into the parent η model according to equation (41). In runs where

the inner binary starts at a > ahard we replace ahard,i with ainit,i in

equation (43). In runs where it starts at a < ahard we also eject a

mass 0.5mbin ln(ahard,i/ainit,i) according to equation (38) before the

start of the run.

There is an ambiguity in the way we update the profile since

energy may be injected (or mass may be ejected) either by increasing

rb to make the core larger, or by decreasing γ to make it shallower.

We resolved this ambiguity by performing a rough fit to the γ versus

y ≡ Mdef/mbh data in Merritt (2006), to obtain the relation

γ ≈ −0.0281y3 + 0.2451y2 − 0.7094y + 1.000 (44)

for η = 2, which gives sensible slopes for all y � 5. This relation at

least has the desired property that γ → 3 − η as Mdef → 0, but the

slope becomes quite shallow toward large Mdef. The mass deficits

are not sensitive to our prescription for γ .

During the unperturbed binary integration, we increment the en-

ergy injected at each time-step t → t + �t by

�Einj =
2

∑

i=1

∫ t+�t

t

(Fdf,i · vi )θ (rcore − ri ) dt, (45)

the work done on the single BH and binary COM by dynamical

friction while the respective masses are located within a distance

rcore ≡ 1.5rb of the galactic centre. When the binary is located within

rcore and has not yet coalesced or settled to the centre and stalled,

we also increment the ejected mass by

�Mej = 0.5mbin ln

(

E0 + �Est

E0

)

(46)
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Figure 16. Comparison of calculated and observed mass deficits. Upper

panel: calculated mass deficits in units of the total BH mass, m1 + m2

+ m3. Blue (left): beginning of simulation, based on core heating during

inspiral to the initial configuration. Black dashed (middle): net effect of

two dry mergers in which core scouring stops at ahard. Red (right): end of

simulation, reflecting net energy injection and mass ejection caused by close

triple encounters. Lower panel: observed mass deficits in units of the SMBH

mass (Graham 2004; Ferrarese et al. 2006). In the red dashed histogram we

determine the BH masses from the m–σ relation of Tremaine et al. (2002) for

all entries. In the black solid histogram we instead use the m–MV relation of

Lauer et al. (2006) for those galaxies with MV < −22, and the dynamically

measured BH masses in the four cases where they are available.

at each time-step, where E0 is the binding energy of the binary at the

beginning of the time-step and �Est is the change in binding energy

due to stellar hardening during that step. We cannot simply use the

semimajor axis increment in equation (46) since the binary may

also have hardened by gravitational radiation during the time-step.

At the beginning of each run, we also include the energy injected

by dynamical friction as the intruder spirals in before the onset of

chaotic interactions.

Each time the total energy injected reaches 1 per cent of Ehard or

the total mass injected reached 1 per cent of the total BH mass we

update the core accordingly. At the end of each run we record the

final Mdef, rb and γ . Though both mass ejection and energy injection

enter into our core growth algorithm, at the end both translate into

a single effective Mdef as given by equation (38), which we record

for comparison with observed galaxies.

Fig. 16 compares our calculated mass deficits to 14 cored, lumi-

nous elliptical galaxies with BH masses ranging from ∼108 to 3

× 109 M⊙, with measured mass deficits. The upper panel shows

data from our simulations. The blue (left) histogram is the dis-

tribution at the beginning of the runs, reflecting the heating of

the core by dynamical friction on the BHs as they sink into the

initial configuration with the inner binary at ahard, equation (43).

This distribution also approximately represents the core damage

expected for a single merger in which stellar hardening ceases at

ahard. Note that a significant core (Mdef/mbh ∼ 0.5) is scoured out

even before the binary hardens and begins ejecting stars. The middle

(black dashed) histogram shows the core predicted for a series of

two dry mergers, in both of which stellar hardening stops at ahard.

The red (right) histogram is the distribution of cores at the end

of our runs, reflecting the core scouring effect of the three-body

interactions.

Table 2. Mass deficits in galaxies with dynamically measured SMBH

masses.

Galaxy mbh/M⊙ MV Mdef/mbh Reference

NGC 4291 3.1 × 108 −20.64 1.8 G03

NGC 4374 1.6 × 109 −22.28 1.4 B98

NGC 4486 3.0 × 109 −22.71 2.9 M97, H94

NGC 4649 2.0 × 109 −22.51 1.1 G03

References: G03 – Gebhardt et al. 2003; B98 – Bower et al. 1998; M97 –

Macchetto et al. 1997; H94 – Harms et al. 1994.

The mass deficits in the lower panel are obtained in Graham

(2004) and Ferrarese et al. (2006) by fitting the outer nuclear density

profile to a Sérsic law (Sérsic 1968), and then subtracting a power-

law fit to the inner core from the inward extrapolation of the Sérsic

profile. The red dashed histogram in the lower panel shows the

observed Mdef/mbh with mbh computed from the mbh–σ relation

of Tremaine et al. (2002). However, Lauer et al. (2006) argue that

luminosity may be a better predictor of BH mass than σ for the most

luminous elliptical galaxies (MV � −22), since their recent merger

histories consisted mostly of passive (dissipationless) mergers in

which both the BH mass and luminosity are simply additive. The

mbh–σ relation is thought to arise from self-regulation of accretion

on to the SMBH in gaseous mergers (Silk & Rees 1998; Wyithe

& Loeb 2003b), which does not apply in this context. Lauer et al.

(2006) also show that an extrapolation of the mbh–L relation to the

highest luminosities is more consistent with the observed rcore–mbh

relation and provides a better match between the z = 0 SMBH

space density and the quasar population seen at z ∼ 2 for reasonable

quasar duty cycles. In the black histogram, we used the observed

BH masses for the four cases with dynamical mass measurements,

listed in Table 2 (Harms et al. 1994; Macchetto et al. 1997; Bower

et al. 1998; Gebhardt et al. 2003). For the rest of the galaxies we used

the Lauer et al. (2006) mbh–MV relation to estimate the BH masses

in galaxies with MV < −22, and the Tremaine et al. (2002) mbh–σ

relation for those with MV > −22. Showing both plots gives an idea

of how much the mass deficits vary with mbh estimator.

In set CN ∼11 per cent of the runs resulted in cores with

Mdef/mbh > 2. In some rare runs where the binary was ejected to

a large distance and then brought back by dynamical friction, we

obtained even higher mass deficits (up to Mdef/mbh = 3–4). The

binary is more efficient at core scouring than the single BH since it

is more massive. If each independent binary inspiral adds ∼0.5mbh

to the mass deficit, then the mean Mdef enhancement of ∼0.5mbh

due to the triple encounters is equivalent to one extra merger in the

system’s history. An Mdef one standard deviation above the mean is

equivalent to two extra mergers.

4 D I S C U S S I O N A N D C O N C L U S I O N S

Triple SMBH systems in galactic nuclei produce a range of phe-

nomena and signatures rather different from those expected if no

more than two SMBHs occupy them at a time. We have developed

an efficient numerical method for following the evolution of three-

body systems in the centres of galaxies, and used it to explore the

outcomes of such encounters in massive elliptical galaxies at low

redshift.

We find a high efficiency of SMBH coalescence due to the encoun-

ters, providing a ‘last resort’ solution to the final parsec problem.

There is, however, a caveat in extending this result immediately to

all BH masses. If we define aesc to be the binary semimajor axis

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 377, 957–976



Triple black hole systems 975

where escape of one BH first becomes likely (Gmbin/β aesc = v2
esc

where β is a factor of order 10 for a Hernquist profile), then since

vesc ∝ σ we have aesc ∝ mbin/σ
2 ∝ m

1/2

bin if mbin obeys the mbh–σ

relation mbin ∝ σ 4, so aesc/agw ∝ m
−1/4

bin . In other words, at smaller

BH masses, the lightest BH is more likely to escape the galaxy be-

fore driving the binary to coalescence by gravitational radiation. By

focusing on massive galaxies we have chosen the systems where the

binary is least likely to coalesce by other means (e.g. gas or MPs),

and most likely to coalesce in the next merger with the help of three

BH interactions. We may address the efficiency of triple-induced

coalescence in much smaller mass systems in future studies.

We find that close triple encounters can produce a population

of high-eccentricity binaries, whose gravitational radiation signal

could potentially be observable by LISA. Such signals originate

from Kozai oscillations in hierarchical triples at high initial inclina-

tions and highly eccentric binaries formed following distant ejec-

tions. As the eccentricity increases, the radiation spectrum peaks at

progressively higher harmonics of the fundamental frequency, ap-

proaching a nearly flat spectrum as e → 1 (Pierro et al. 2001; Enoki

& Nagashima 2006). A circular 108–9 M⊙ BH binary remains be-

low the band of frequencies (∼10−4 to 10−1 Hz) detectable by LISA

throughout its inspiral, but the occurrence of high-eccentricity co-

alescences could extend LISA’s sensitivity into this mass range,

or lengthen the duration of its sensitivity to ∼106–7 M⊙ events.

A highly eccentric binary produces a ‘spiky’ waveform that looks

quite different from that of a circular system (see fig. 7 in Pierro

et al. 2001). Gravitational radiation ‘spikes’ at very close approaches

during chaotic three-body interactions could also produce radiation

bursts detectable by LISA.

If triple encounters are indeed limited to massive systems at low

redshift, then the importance of these considerations is limited by

the expected event rate in this mass range, assuming efficient coa-

lescence. This rate is highly uncertain, ranging from ∼1/yr (Sesana

et al. 2005) to ∼1/1000 yr (Rhook & Wyithe 2005) depending on

the merger and BH population model adopted. If three BH systems

occur in other contexts, e.g. IMBHs in galactic nuclei or star clus-

ters, then the phenomena we have discussed may be observationally

relevant even if the high-mass SMBH event rate is low. A detailed

look at the gravitational waveforms expected from three-body en-

counters and their expected detection rates is an interesting topic for

a future study.

The slingshot ejections in triple encounters produce a population

of ‘wandering’ SMBHs in and outside the haloes of galaxies. In

systems that have undergone several major dry mergers (e.g. cD

galaxy systems), one might expect a few such ejected SMBHs to

be floating in the vicinity. As of yet, no probable way of observ-

ing these wandering BHs has been proposed.1 In principle one can

imagine a star bound to the ejected SMBH entering a giant phase

and overflowing its Roche lobe, producing some accretion on to

the SMBH and an observable flare. Single ejections could also in

principle affect BH–bulge correlations such as the mbh–σ relation,

but since it is the lightest BH that gets ejected this effect would fall

well within the observed scatter in the correlations for just one or

two ejection events.

Triple interactions in galactic nuclei can have a large effect on the

expected properties of stable SMBH binaries in the local Universe.

While many models of binary formation predict mostly circular

binaries around ahard, three-body encounters produce binaries at all

1 Gravitational lensing is difficult to search for without knowing in advance

the location of the BHs.

eccentricities. They also create a population of stalled binaries at

separations significantly smaller than ahard but still larger than agw,

as does any partial gap-crossing mechanism.

Better measurements and statistics on the mass deficits in cored

elliptical galaxies may provide clues on the history of the nuclear

SMBH activity in these systems. Triple BH encounters produce a

highly scattered distribution of core sizes, with mass deficits up

to ∼2 × higher than expected for successive binary coalescences.

The apparent peak at mass deficits of ∼0.5–1 times the nuclear BH

mass in observed cores may very tentatively hint that multiple-BH

encounters are not the norm in these systems. This signature of bi-

nary or multiple-BH activity is appealing because (a) its duty cycle

is the lifetime of the galaxy; (b) it is present whether binary pairs

stall or coalesce and (c) it can be observed even in the complete

absence of radiative activity, such as disc accretion or jet produc-

tion. However, the interpretation of galaxy cores is complicated by

multiple mergers, the possibility of partial stellar cusp regeneration

from traces of cold gas, and observational complications such as

projection effects in non-spherical galaxies and optimizing the fit-

ting/extrapolation algorithm to best represent the mass deficit. There

is a need for theoretical studies on the cores produced by SMBH

mergers in triaxial galaxies, since triaxility seems to be the most

likely candidate for a gap-crossing mechanism in dry mergers be-

tween gas-poor, giant ellipticals. Inferring the nuclear histories of

galaxies from their observed core properties will likely be a topic

of much interest in the future.
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Sérsic J. L., 1968, Cordoba. Observatorio Astronomico, Argentina

Sesana A., Haardt F., Madau P., Volonteri M., 2005, ApJ, 623, 23

Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337

Silk J., Rees M. J., 1998, A&A, 331, L1

Spergel D. et al., 2006, ApJ, in press (astro-ph/0603449)

Springel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776

Stiefel E. L., Scheifele G., 1971, Linear and Regular Celestial Mechanics.

Springer-Verlag, New York

Taffoni G., Mayer L., Colpi M., Governato F., 2003, MNRAS, 341, 434

Tremaine S., Richstone D. O., Byun Y., Dressler A., Faber S. M., Grillmair

C., Kormendy J., Lauer T. R., 1994, AJ, 107, 634

Tremaine S. et al., 2002, ApJ, 574, 740

Valtonen M. J., 1976, A&A, 46, 435

Valtonen M., Karttunen H., 2006, The Three-Body Problem. Cambridge

Univ. Press, Cambridge

Valtonen M. J., Mikkola S., Heinamaki P., Valtonen H., 1994, ApJS, 95, 69

Volonteri M., Perna R., 2005, MNRAS, 358, 913

Volonteri M., Haardt F., Madau P., 2003a, ApJ, 582, 559

Volonteri M., Madau P., Haardt F., 2003b, ApJ, 593, 661

Wyithe J. S. B., Loeb A., 2003a, ApJ, 590, 691

Wyithe J. S. B., Loeb A., 2003b, ApJ, 595, 614

Wyithe J. S. B., Loeb A., 2005, ApJ, 634, 910

Yu Q., 2002, MNRAS, 331, 935

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 377, 957–976


