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Abstract.
We consider the problem of fitting a parametric model to an astro-

nomical dataset. This occurs when fitting simple heuristic models (e.g.
powerlaw relation in a bivariate scatter diagram) or complex astrophys-
ical models (e.g. thermal plasma model of an X-ray spectrum). After
regression procedures have found the ‘best’ fit, the chi-squared (χ2) or
Kolmogorov-Smirnov (K-S) statistics are often used to evaluate confi-
dence limits for the parameters and goodness-of-fit probabilities. How-
ever, these procedures have mathematical limitations and biases which
are often not fully recognized among astronomers. Here we offer a re-
cently developed approach that works under very general conditions (e.g.
correlated parameter estimators). We combine K-S statistics with boot-
strap resampling to achieve unbiased parameter confidence bands. This
method can be extended using the Kullback-Leibler distance measure to
discriminate goodness-of-fit between models. This method is unusual in
that it can treat different families of models, as well as nested models
within one family.

This is an example of how contemporary statistics can address method-
ological issues that often confront astronomers. Penn State has recently
created a Center for Astrostatistics to facilitate development and pro-
mulgation of statistical expertise for astronomy and related observational
sciences. We are developing tutorials in methodology and software, pro-
moting cross-disciplinary research, providing Web resources, and other-
wise serving the statistical needs of astronomers.

1. The Problem of Model Selection and Fitting

The aim of model fitting is to provide most parsimonious ‘best fit of a paramet-
ric model to data. It might be a simple, heuristic model to phenomenological
relationships between observed properties in a sample of astronomical objects.
Examples include characterizing the Fundamental Plane of elliptical galaxies or
the power law index of solar flare energies. Perhaps more important are com-
plex nonlinear models based on our astrophysical understanding of the observed
phenomenon. Here, if the model family truly represents the underlying phe-
nomenon, the fitted parameters give insights into sizes, masses, compositions,
temperatures, geometries, and evolution of astronomical objects. Examples of
astrophysical modeling include:
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• Interpreting the spectrum of an accreting black hole such as a quasar. Is
it a nonthermal power law, a sum of featureless blackbodies, and/or a
thermal gas with atomic emission and absorption lines?

• Interpreting the radial velocity variations of a large sample of solar-like
stars. This can lead to discovery of orbiting systems such as binary stars
and exoplanets, giving insights into star and planet formation.

• Interpreting the spatial fluctuations in the cosmic microwave background
radiation. What are the best fit combinations of baryonic, Dark Matter
and Dark Energy components? Are Big Bang models with quintessence or
cosmic strings excluded?

The mathematical procedures used to link data with astrophysical models
fall into the realm of statistics. The relevant methods fall under the rubrics of
statistical model selection, regression, and goodness-of-fit. Astronomers’ under-
standing of such methods are often rather simplistic, and we seek here to develop
increased sophistication in some aspects of the methodological issues. We discuss
the advantages and limitations of some traditional model fitting methods and
suggest new procedures when these methods are inadequate. In particular, we
discuss some recently developed procedures based on nonparametric resampling
designed for model selection and goodness-of-fit when the astronomer not only
seeks the best parameters of the model, but wishes to consider entirely different
families of parametric models.

2. Challenges of Model Selection and Fitting

Consider the astronomical spectrum illustrated in Figure 1a where flux from a
source is plotted against energy of light received by an X-ray telescope. Here
the photons are shown collected into constant-width bins, and the measured
flux value F is accompanied by an error bar σ representing the uncertainty of
the intensity at each energy based on the square-root of the number of counts
in the bin. The dataset shown happens to be a low-resolution spectrum from
the Chandra Orion Ultradeep Project (COUP) where NASA’s Chandra X-ray
Observatory observed about 1400 pre-main sequence stars in the Orion Nebula
region for 13 days (Getman et al. 2005). But it could easily be an optical spec-
trum of a high-redshift starburst galaxy, or a millimeter spectrum of a collapsing
molecular cloud core, or the spectrum of a gamma-ray burst at the birth of a
black hole.

The histogram in Figure 1a shows the best-fit astrophysical model assuming a
plausible emission mechanism: a single-temperature thermal plasma with solar
abundances of elements. This model M has three free parameters – plasma
temperature, line-of-sight absorption, and normalization – which we denote by
the vector θ. The astrophysical model has been convolved with complicated
functions representing the sensitivity of the telescope and detector. The model
is fitted by minimizing χ2(θ) =

∑

[Fi − Mi(θ)]
2/σ2

i
with an iterative procedure.

Confidence intervals on best-fit parameter values are obtained using a χ2

min
-plus-

constant criterion. These procedures are familiar in the astronomical community
(e.g. Bevington 1969).

There are important limitations to χ2 minimization for use in modern astro-
nomical model selection and fitting. It fails when the errors are non-Gaussian
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Figure 1. An example of astrophysical model fitting using a spec-
trum with 264 photons from the Chandra X-ray Observatory. (a) Best-
fit thermal model (histogram) to differential binned data (separated
points with error bars)obtained by minimum-χ2. Here the absorption
parameter has value AV ∼ 1 mag. Data-minus-residuals appear in the
bottom plot. (b) Thermal model (smooth curve) obtained by minimiz-
ing the K-S statistic to the integral EDF (step function). The resulting
parameters very similar to the χ2 fit.
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Figure 1. Continued. (c) An example of the correct model family
but incorrect parameter value: thermal model with absorption set at
AV = 10 mag. (d) An example of an incorrect model family: best-fit
powerlaw model with absorption AV ∼ 1 mag.
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(e.g. small-N problems with Poissonian errors). It does not provide clear pro-
cedures for adjudicating between models with different numbers of parameters
(e.g. one- vs. two-temperature models) or between different acceptable mod-
els (e.g. local minima in χ2(θ) space). It can be difficult to obtain confidence
intervals on parameters when complex correlations between the parameters are
present (e.g. non-parabolic shape near the minimum in χ2(θ) space).

Figure 1b shows an important alternative approach to the model fitting and
goodness-of-fit problem. Here the energies of photons of observed spectrum are
shown individually rather than in a binned histogram. In statistical parlance,
this is called the empirical distribution function (EDF), and is advantageous over
the binned histogram because the exact measured values are used. This avoids
the often arbitrary choices of bin width(s) and starting point in histograms, and
the sometimes-inaccurate assumption of

√
n error bars on binned values. There

is a large statistical literature on the difficulty of choosing bin widths, and indeed
on choosing between histograms and other data smoothing procedures. Narrow
bins or smoothing kernels can be dominated by noise while wide bins can miss
physically important structure.

Among astronomers, the Kolmogorov-Smirnov (K-S) statistic is popular, al-
though other EDF based statistics such as the Cramer-von Mises (C-vM) and
Anderson-Darling (A-D) statistics have better sensitivity for some data-model
differences. However, as we review in � 3 below, the goodness-of-fit probabili-
ties derived from the K-S or other EDF statistics are usually not correct when
applied in model fitting situations with estimated parameters. Astronomers are
thus often making errors in EDF model fitting.

Figure 1c illustrates another major astrostatistical question: When a “good”
model is found with parameters θ0, what is an acceptable range of parameter
values around θ0 consistent with the data? In the example shown, we might
ask: “What is the confidence interval of absorption consistent with the data at
99% significance?” This question is not simple to answer. The scientist must
specify in advance whether the parameter of interest is considered in isolation
or in consort with other parameters, whether the statistical treatment involves
binned histograms or EDFs, and whether 67% (1σ equivalent), 90% or 99.7%
(3σ equivalent) values should be reported. The statistician must decide which
statistic to use, whether normal approximations are valid, and how extraneous
model parameters should be treated.

Finally, Figure 1d treats a broader scientific question: Are the data consis-
tent with different families of astrophysical models, irrespective of the best-fit
parameter values within a family? We illustrate this here by obtaining the best-
fit model using a nonthermal power law X-ray spectrum rather than a thermal
plasma X-ray spectrum. Among statisticians, these are called ‘non-nested’ mod-
els. Even decisions between nested models can be tricky; for example, should the
dataset in Figure 1 be modeled with thermal models with arbitrary elemental
abundances, or is the assumption of solar abundances adequate?
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3. Inference for Statistics Based on the EDF

Figure 2a shows a hypothetical EDF, the cumulative frequency distribution func-
tion of the data. The three commonly used statistics, for inference on F , based
on EDF mentioned above are:

Kolmogorov-Smirnov (K-S): sup
x

|Fn(x) − F (x)|

Cramér-von Mises (C-vM):

∫

(Fn(x) − F (x))2 dF (x),

and Anderson - Darling (A-D):

∫

(Fn(x) − F (x))2

F (x)(1 − F (x))
dF (x).

Here Fn is the EDF, F is the model distribution function, and “sup” means
the supremum. The K-S statistic is most sensitive to large-scale differences in
location (i.e. median value) and shape between the model and data. The C-vM
statistic is effective for both large-scale and small-scale differences in distribution
shape. Both of these measures are relatively insensitive to differences near the
ends of the distribution. This deficiency is addressed by the A-D statistic, a
weighted version of the C-vM statistic to emphasize differences near the ends.

Figure 2. (a) A hypothetical EDF. (b) Confidence bands around the
EDF based on the K-S statistic for 90% significance level.

The power of these statistics is that they are distribution-free as long as F is
continuous. That is, the probability distribution of these statistics is free from
F . Consequently, the confidence bands for the ‘unknown’ distribution F can be
obtained from standard tables of K-S, C-vM or A-D probabilities which depend
only on the number of data points and the chosen significance level. A typical
confidence band based on Kolmogorov-Smirnov test resembles Figure 2b.

But all these statistics are no longer distribution-free under two important
and common situations: when the data are multivariate, or when the model
parameters are estimated using the data. We address these situations here.

3.1. Failure of the Multivariate Case

Let (X1, Y1) be a data point from a bivariate distribution F on the unit square.
Simpson (1951) shows that if F1 denotes the EDF of (X1, Y1), then

P (|F1(x, y)−F (x, y)| < .72, for all x, y)

{

> 0.065 if F (x, y) = xy2

< 0.058 if F (x, y) = xy(x + y)/2.
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Thus, the distribution of the K-S statistic varies with the unknown F and hence
is not distribution-free when two or more dimensions are present. The K-S
statistic still is a measure of “distance” between the data and model, but prob-
abilities can not be assigned to a given value of the statistic without detailed
calculation for each case under consideration. Several methodological studies in
the astronomical literature discuss two-dimensional K-S tests. The results may
be unreliable to degrees that can not readily be calculated.

3.2. Failure when parameters are estimated from the data

The K-S statistic is also no longer distribution-free if some parameters are es-
timated from the dataset under consideration. For example, consider the ques-
tion whether the illustrated X-ray spectrum supports a powerlaw in addition to
a thermal model (Figure 1d). It may seem natural to find the best-fit power-
law and best-fit thermal models by a procedure such as maximum likelihood,
compute the K-S statistic for each case, and evaluate which model is acceptable
using the probabilities in standard tables. But it has long been established that
the K-S probabilities are incorrect in this circumstance (Lilliefors 1969). The
K-S probabilities are only valid if the model being tested is derived indepen-
dently of the dataset at hand; e.g. from some previous datasets or from prior
astrophysical considerations.

4. Bootstrap Resampling: A good Solution

Fortunately, there is an alternative to the erroneous use of K-S procedure, al-
though it requires a numerically intensive calculation for each dataset and model
addressed. It is based on bootstrap resampling, a data-based Monte Carlo
method that has been mathematically shown to give valid estimates of goodness-
of-fit probabilities under a very wide range of situations (Babu and Rao 1993).

We now outline the mathematics underlying bootstrap calculations. Let
{F (.; θ) : θ ∈ Θ} be a family of continuous distributions parametrized by θ. We
want to test whether the univariate dataset X1, . . . ,Xn comes from F = F (.; θ)
for some θ = θ0. The K-S, C-vM and A-D statistics (and a few other goodness-

of-fit tests) are continuous functionals of the process, Yn(x; θ̂n) =
√

n(Fn(x) −
F (x; θ̂n)). Here Fn denotes the EDF of X1, . . ., Xn, θ̂n = θn(X1, . . . ,Xn) is an

estimator of θ derived from the dataset, and F (x; θ̂n) is the model being tested.
For a simple example, if {F (.; θ) : θ ∈ Θ} denotes the Gaussian family with

θ = (µ, σ2), then θ̂n can be taken as (X̄n, s2
n) where X̄n is the sample mean

and s2
n is the sample variance based on the data X1, . . . ,Xn. In the astrophys-

ical example considered in � 2, F is the family of thermal models with three
parameters.

In the case of evaluating goodness-of-fit for a model where the parameters have
been estimated from the data, the bootstrap can be computed in two different
ways: the parametric bootstrap and the nonparametric bootstrap. The parametric
bootstrap may be familiar to the astronomer as a well-established technique of
creating fake datasets realizing the parametric model by Monte Carlo methods
(e.g. Press et al. 1997). The actual values in the dataset under consideration are
not used. The nonparametric bootstrap, in contrast, is a particular Monte Carlo
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realizations of the observed EDF using a “random selection with replacement”
procedure.

We now outline the mathematics underlying these techniques. Let F̂n be
an estimator of F , based on X1, . . . ,Xn. In order to bootstrap, we gener-
ate data X∗

1
, . . . ,X∗

n from the estimated population F̂n and then construct

θ̂∗n = θn(X∗

1
, . . . ,X∗

n) using the same functional form. For example, if F (.; θ)

is Gaussian with θ = (µ, σ2) and if θ̂n = (X̄n, s2
n), then θ̂∗n = (X̄∗

n, s∗2n ).

4.1. Parametric Bootstrap

The bootstrapping procedure is called parametric if F̂n = F (.; θ̂n); that is, we
generate data X∗

1
, . . . ,X∗

n from the model assuming the estimated parameter

values θ̂n. The process Y P
n (x) =

√
n(F ∗

n(x) − F (x; θ̂∗n)) and the sample process

Yn(x) =
√

n(Fn(x)−F (x; θ̂n)) converge to the same Gaussian process Y . Conse-

quently, Ln =
√

n supx |Fn(x) − F (x; θ̂n)| and L∗

n =
√

n supx |F ∗

n(x) − F (x; θ̂∗n)|
have the same limiting distribution. For the K-S statistic, the critical values of
Ln can be derived as follows: construct B resamples based on the parametric
model (B ∼ 1000 should suffice), arrange the resulting L∗

n values in increasing
order to obtain 90 or 99 percentile points for getting 90% or 99% critical values.
This procedure replaces the incorrect use of the standard probability tabulation.

4.2. Nonparametric Bootstrap

The nonparametric bootstrap involving resamples from the EDF;

Y N

n (x) =
√

n(F ∗

n(x) − F (x; θ̂∗n)) − Bn(x)

=
√

n(F ∗

n(x) − Fn(x) + F (x; θ̂n) − F (x; θ̂∗n))

is operationally easy to perform but requires an additional step of bias correction

Bn(x) =
√

n(Fn(x) − F (x; θ̂n)).

The sample process Yn and the bias corrected nonparametric process Y N
n con-

verge to the same Gaussian process Y . That is, Ln =
√

n supx |Fn(x)−F (x; θ̂n)|
and J∗

n = supx |
√

n (F ∗

n(x) − F (x; θ̂∗n)) − Bn(x)| have the same limiting distri-
bution. The critical values of the distribution of Ln can then be derived as in
the case of parametric bootstrap. For detailed understanding of the regularity
conditions under which these results hold see Babu and Rao (2004).

5. Confidence Limits Under Misspecification of Model Family

We now address the more advanced problem of comparing best-fit models derived
for non-nested model families; e.g. the powerlaw vs. thermal model fits in
Figure 1. Essentially, we are asking ‘How far away’ is the unknown distribution
underlying the observed dataset from the hypothesized family of models?

Let the original dataset X1, . . . ,Xn come from an unknown distribution H.
H may or may not belong to the family {F (.; θ) : θ ∈ Θ}. Let F (., θ0) be the
specific model in the family that is ‘closest’ to H where proximity is based on the
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Kullback-Leibler information,
∫

log (h(x)/f(x; θ))dH(x) ≥ 0, which arises nat-
urally due to maximum likelihood arguments and has advantageous properties.
Here h and f are the densities (i.e. derivatives) of H and F .

If the maximum likelihood estimator θ̂n → θ0, then Un(x; θ̂n) =
√

n(Fn(x) −
F (x; θ̂n))−√

n(H(x)−F (x; θ0)) converges weakly to a Gaussian process U (Babu
and Rao 2003). In this (nonparametric bootstrap) case, Y N

n (x) =
√

n(F ∗

n(x) −
F (x; θ̂∗n))−√

n(Fn(x)−F (x; θ̂n)), and Un converge to the same Gaussian process.
For the K-S statistic, for any 0 < α < 1,

P (
√

n sup
x

|Fn(x) − F (x; θ̂n) − (H(x) − F (x; θ0))| ≤ C∗

α) − α → 0,

where C∗

α is the α-th quantile of supx |
√

n (F ∗

n(x) − F (x; θ̂∗n)) − √
n(Fn(x) −

F (x; θ̂n))|. This provides an estimate of the distance between the true distribu-
tion and the family of distributions under consideration (Babu and Bose 1988).

6. Summary

The goodness-of-fit methods discussed here are useful in discriminating between
different families of models. The standard K-S test in one dimension serves
the purpose if the model tested is completely specified in advance, including
the parameter values. However, if testing for fitting a family of shapes when the
parameters are not known – which occurs whenever astrophysical parameters are
sought – the classical methods such as Kolmogorov-Smirnov, Cramer-von Mises,
and Anderson-Darling statistics lead to biased decisions. The same problem
persists in the multidimensional case, even when the shape and the parameters
are completely specified. In such cases, we recommend using the bootstrap
methods outlined in � 4. In addition, these methods give confidence bands for
the curves. Altogether, the bootstrap and Kullback-Leibler distance methods
provide answers to the questions: “What is the best-fit thermal model?”, “What
is the 99% confidence limit on absorption in the 3-parameter thermal model?”
and “Can a power law model be excluded with 99% confidence?”

We end with few words on computational procedure. The parametric boot-
strapped statistic may be difficult to compute when the shapes are given by
complicated formulae or procedures. The non-parametric bootstrap is easy to
use as it involves simulating from the original data alone, but bias correction is
necessary. The practitioner can choose between these two based on the details
of the problem at hand. A salient feature of the methods is that it allows the
use of ones own favorite software to compute the statistics and apply the basic
bootstrap wrapper, which can be easily written in any software environment,
as it involves only repeated computations for the simulated data. Bootstrap
software can also be found in R (http://www.r-project.org), the largest public
domain statistical programming environment.

7. Services of the Center for Astrostatistics

Issues of model selection and goodness-of-fit are only one of a host of important,
yet sophisticated, statistical problems that astronomers face in their research.
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The diversity of challenging statistical issues confronting astronomy today led to
the creation of the Center for Astrostatistics (http://astrostatistics.psu.edu)
at Penn State University in 2003. The Center seeks to facilitate development
and promulgation of statistical expertise and toolkits for astronomy and related
observational sciences.

The activities of the Center are multi-faceted:
• Conduct and support research at the frontiers of astrostatistics
• Provide forums where active researchers can interact and foster new cross-

disciplinary collaborations
• Disseminate advanced methodologies through curriculum development, tu-

torials, workshops, Web-based resources, and public-domain statistical
software.

An important barrier to the adoption of sophisticated statistical methods by
the astronomical community had been the absence of advanced and comprehen-
sive nonproprietary software. This problem has recently been relieved by the
emergence of R. The Center for Astrostatistics both provides a Web-based in-
terface to a subset of R (the VOStat Project) and tutorials for training in the
broader capabilities of R.
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