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Abstract–We have developed a Web-based program for quickly estimating the regional

environmental consequences of a comet or asteroid impact on Earth (www.lpl.arizona.edu/

impacteffects). This paper details the observations, assumptions and equations upon which the

program is based. It describes our approach to quantifying the principal impact processes that might

affect the people, buildings, and landscape in the vicinity of an impact event and discusses the

uncertainty in our predictions. The program requires six inputs: impactor diameter, impactor density,

impact velocity before atmospheric entry, impact angle, the distance from the impact at which the

environmental effects are to be calculated, and the target type (sedimentary rock, crystalline rock, or

a water layer above rock). The program includes novel algorithms for estimating the fate of the

impactor during atmospheric traverse, the thermal radiation emitted by the impact-generated vapor

plume (fireball), and the intensity of seismic shaking. The program also approximates various

dimensions of the impact crater and ejecta deposit, as well as estimating the severity of the air blast

in both crater-forming and airburst impacts. We illustrate the utility of our program by examining the

predicted environmental consequences across the United States of hypothetical impact scenarios

occurring in Los Angeles. We find that the most wide-reaching environmental consequence is seismic

shaking: both ejecta deposit thickness and air-blast pressure decay much more rapidly with distance

than with seismic ground motion. Close to the impact site the most devastating effect is from thermal

radiation; however, the curvature of the Earth implies that distant localities are shielded from direct

thermal radiation because the fireball is below the horizon.

INTRODUCTION

Asteroid and comet impacts have played a major role in

the geological and biological history of the Earth. It is

widely accepted that one such event, 65 million years ago,

perturbed the global environment so catastrophically that a

major biological extinction ensued (Alvarez 1980). As a

result, both the scientific community and the general

populace are increasingly interested in both the threat to

civilization and the potential environmental consequences of

impacts. Previous papers have examined, in detail, the

natural hazard associated with the major environmental

perturbations caused by impact events (Toon et al. 1994,

1997). To provide a quick and straightforward method for

estimating the severity of several of these environmental

effects, we have developed a free-of-charge, easy-to-use

Web page maintained by the University of Arizona, which is

located at: www.lpl.arizona.edu/impacteffects. Our program

focuses on the consequences of an impact event for the

regional environment; that is, from the impact location to a

few thousand km away. The purpose of this paper is to

present and justify the algorithm behind our program so that

it may be applied more specifically to important terrestrial

impact events and its reliability and limitations may be

understood.

Before describing our program in detail, we will briefly

review the impact process and the related environmental

consequences. The impact of an extraterrestrial object on

Earth begins when the impactor enters the tenuous upper

atmosphere. At this moment, the impactor is traveling at a

speed of between 11 and 72 km s�1 on a trajectory anywhere

between normal incidence (90° to the Earth’s surface) and a

grazing impact, parallel to the Earth’s surface. The most likely

impact angle is 45° (Shoemaker 1962). The impactor’s
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traverse of the atmosphere may disrupt and decelerate the

impactor significantly—a process that greatly affects the

environmental consequences of the collision. Small impactors

are disrupted entirely during their atmospheric traverse,

depositing their kinetic energy well above the surface and

forming no crater. Larger objects, however, retain sufficient

momentum through the atmosphere to strike the Earth with

enough energy to excavate a large crater and initiate several

processes that affect the local, regional, and even global

environment.

The formation of an impact crater is an extremely

complicated and dynamic process (Melosh 1989). The abrupt

deceleration of a comet or asteroid as it collides with the Earth

transfers an immense amount of kinetic energy from the

impacting body to the target. As a result, the target and

impactor are rapidly compressed to very high pressures and

heated to enormous temperatures. Between the compressed

and uncompressed material, a shock wave is created that

propagates away from the point of impact. In the wake of the

expanding shock wave, the target is comprehensively

fractured, shock-heated, shaken, and set in motion—leading

to the excavation of a cavity many times larger than the

impactor itself. This temporary cavity (often termed the

transient crater; Dence et al. 1977) subsequently collapses

under the influence of gravity to produce the final crater form.

As the crater grows and collapses, large volumes of rock

debris are ejected onto the surface of the Earth surrounding

the crater. Close to the crater rim, this “ejecta deposit” forms

a continuous blanket smothering the underlying terrain;

further out, the ejecta lands as a scattered assortment of fine-

grained dust and larger bombs that may themselves form

small secondary craters.

In addition to cratering the surface of the earth, an

impact event initiates several other processes that may have

severe environmental consequences. During an impact, the

kinetic energy of the impactor is ultimately converted into

thermal energy (in the impactor and target), seismic energy,

and kinetic energy of the target and atmosphere. The increase

in thermal energy melts and vaporizes the entire impactor and

some of the target rocks. The hot plume of impact-generated

vapor that expands away from the impact site (referred to as

the “fireball”) radiates thermal energy that may ignite fires

and scorch wildlife within sight of the fireball. As the impact-

generated shock wave propagates through the target, it

eventually decays into elastic waves that travel great

distances and cause violent ground shaking several crater

radii away. In addition, the atmosphere is disturbed in a

similar manner to the target rocks; a shock wave propagates

away from the impact site compressing the air to high

pressures that can pulverize animals and demolish buildings,

vehicles, and infrastructure, particularly where constructional

quality is poor. Immediately behind the high-pressure front,

violent winds ensue that may flatten forests and scatter

debris.

All of these impact-related processes combine and interact

in an extremely complicated way that requires detailed

observation, laboratory experiments, or computer models to

fully simulate and understand. However, with certain

simplifying assumptions, we can derive reasonable estimates

of their consequences for the terrestrial environment. In the

following sections, we describe each of the steps that allow us

to achieve this in the Earth Impact Effects Program. We discuss

how our program estimates: 1) the impact energy and average

time interval between impacts of the same energy, somewhere

on Earth; 2) the consequences of atmospheric entry; 3) for

crater forming events, the resulting crater size and volume of

the melt produced; 4) the thermal radiation damage from the

fireball; 5) the impact-induced seismic shaking; 6) the extent

and nature of the ejecta deposit; and 7) the damage caused by

the blast wave. To clearly identify our algorithm in the

following discussion, all of the equations that we implement in

the code are labeled with an asterisk (*).

To make the program accessible to the broadest range of

users, it was written with as few input parameters as possible.

The program requests six descriptors, which are illustrated

schematically in Fig. 1: the diameter of the impactor L0 (we use

the term impactor to denote the asteroid, comet or other

extraterrestrial object considered), the impactor density Ui, the

impact velocity v0, the angle that the trajectory of the impactor

subtends with the surface of the Earth at the impact point T, the

target type, and the distance away from the impact at which the

user wishes to calculate the environmental consequences r.

Three target types are possible: sedimentary rock, for which we

assign a target density of Ut   2500 kg m�3, crystalline rock (Ut

  2750 kg m�3), or a marine target, for which the program

requests a water-layer depth dw and assigns a density of Uw  
1000 kg m�3 for the water and a target density of Ut   2700 kg

m�3 for the rock layer below. The program offers the user a

variety of options for units; however, in this paper, the units for

all variables are the SI units (mks) unless otherwise stated.

IMPACT ENERGY AND RECURRENCE INTERVAL

The most fundamental quantity in assessing the

environmental consequences of the impact is the energy

released during the impact, which is related to the kinetic

energy of the impactor E before atmospheric entry begins. At

normal solar system impact speeds, E is approximately given

as one half times the impactor mass mi times the square of the

impactor velocity v0, which can be rewritten in terms of the

meteoroid’s density Ui and diameter L0, assuming that the

meteoroid is approximately spherical:

(1*)

In fact, the program uses the relativistic energy equation

to accommodate the requests of several science fiction

writers. The program does not limit the impact velocity to
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72 km s�1, the maximum possible for an impactor bound to

the Sun; however, we have limited the maximum velocity to

the speed of light, in response to attempts of a few users to

insert supra-light velocities!

Natural objects that encounter the Earth are either

asteroids or comets. Asteroids are made of rock (Ui ~2000–

3000 kg m3; Hilton 2002) or iron (Ui ~8000 kg m3) and

typically collide with the Earth’s atmosphere at velocities of

12–20 km s�1 (Bottke et al. 1994). Detailed knowledge of the

composition of comets is currently lacking; however, they are

of much lower density (Ui ~500–1500 kg m3) and are composed

mainly of ice (Chapman and Brandt 2004). Typical velocities

at which comets might encounter the Earth’s atmosphere are in

the range of 30–70 km s�1 (Marsden and Steel 1994). Thus, an

asteroid or comet typically has 4–20 times the energy per unit

mass of TNT at the moment atmospheric entry begins.

Therefore, impact events have much in common with chemical

and nuclear explosions, a fact that we will rely on later in our

estimates of the environmental effects of an impact.

Observations of near-Earth objects made by several

telescopic search programs show that the number of near-

Earth asteroids with a diameter greater than Lkm (in km) may

be expressed approximately by the power law (Near-Earth

Object Science Definition Team 2003):

N(>L) | 1148Lkm
�2.354 (2)

These data may also be represented in terms of the

recurrence interval TRE in years versus the impact energy EMt

in megatons of TNT by assuming a probability of a single-

object collision with Earth (~1.6 × 10�9 yr�1; Near-Earth Object

Science Definition Team 2003; their Fig. 2.3) and multiplying

by the number of asteroids of a given potential impact energy

that are estimated to be circling the sun with potentially

hazardous, Earth-crossing orbits. We found that a simple

power-law relationship adequately represents these data:

TRE | 109EMt
0.78 (3*)

Thus, for a given set of user-input impact parameters (L0,

v0, Ui, Ut, and T), the program computes the kinetic energy

(EMt, in megatons; 1 Mt = 4.18 × 1015 J) possessed by the

impacting body when it hits the upper atmosphere and defines

an average time interval between impacts of that energy,

somewhere on the Earth. Furthermore, we estimate the

recurrence interval TRL for impacts of this same energy within

a certain specified distance r of the impact. This is simply the

product of the recurrence interval for the whole Earth and the

fraction of the Earth’s surface area that is within the distance r:

(4*)

where ' is the epicentral angle from the impact point to a

range r (given in radians by: ' = r/RE, where RE is the radius

of the Earth; Fig. 1).

Currently, the relative importance of comets to the Earth-

crossing impactor flux is not well-constrained. The Near-Earth

Object Science Definition Team (2003) suggests that comets

comprise only about 1% of the estimated population of small

NEOs; however, there is evidence to suggest that, at larger

sizes, comets may comprise a significantly larger proportion of

the impactor flux (Shoemaker et al. 1990). Of the asteroids that

collide with the Earth’s atmosphere, the current best estimate

is that approximately 2–10% are iron asteroids (Bland and

Artemieva 2003), based on NEO and main-belt asteroid

spectroscopy (Bus et al. 2002; Binzel et al. 2003), meteorite

composition, and the impactor types in large terrestrial craters.

ATMOSPHERIC ENTRY

Atmospheric entry of asteroids has been discussed in

detail by many authors (Chyba et al. 1993; Ivanov et al. 1997;

Krinov 1966; Melosh 1981; Passey and Melosh 1980; Svetsov

et al. 1995; Korycansky et al. 2000, 2002; Korycansky and

Zahnle 2003, 2004; Bland and Artemieva 2003) and is now

understood to be a complex process, involving interaction of

the atmosphere and fragmenting impactor in the Earth’s

gravitational field. For the purposes of a simple program of the

type that we have created, many of the refinements now

understood are too complex to be included. Therefore, we

have opted to make a number of drastic simplifications that,

we believe, will still give a good description of the basic

events during atmospheric entry for most cases. Of course, for

refined predictions, a full simulation using all of the known

processes and properties must be undertaken. Atmospheric

entry has no significant influence on the shape, energy, or

Fig. 1. Diagram illustrating the input parameters for the Earth Impact
Effects Program: L0 is the impactor diameter at the top of the
atmosphere, v0 is the velocity of the impactor at the top of the
atmosphere, Ui is the impactor density, Ut is the target density, and T
is the angle subtended between the impactor’s trajectory and the
tangent plane to the surface of the Earth at the impact point. The
distance r from the impact site at which the environmental
consequences are determined is measured along the surface of the
Earth; the epicentral angle ' between the impact point and this
distance r is given by ' = r/RE, where RE is the radius of the Earth.

TRL

TRE

2
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momentum of impactors with a mass that is much larger than

the mass of the atmosphere displaced during penetration. For

this reason, the program procedure described below is applied

only for impactors less than 1 km in diameter.

For the purposes of the Earth Impact Effects Program, we

assume that the trajectory of the impactor is a straight line

from the top of the atmosphere to the surface, sloping at a

constant angle to the horizon given by the user. Acceleration

of the impactor by the Earth’s gravity is ignored, as is

deviation of the trajectory toward the vertical in the case that

terminal velocity is reached, as it may be for small impactors.

The curvature of the Earth is also ignored. The atmosphere is

assumed to be purely exponential, with the density given by:

U(z)   U0e
�z/H (5)

where z is the altitude above the surface, H is the scale height,

taken to be 8 km on the average Earth, and U0 is the surface

atmospheric density, taken to be equal to 1 kg/m3.

During the first portion of the impactor’s flight, its speed

is decreased by atmospheric drag, but the stresses are too

small to cause fragmentation. Small meteoroids are often

ablated to nothing during this phase, but in the current

program implementation, we ignore ablation on the grounds

that it seldom affects the larger impactors that reach the

surface to cause craters. Thus, this program should not be

used to estimate the entry process of small objects that may

cause visible meteors or even drop small meteorites to the

surface at terminal velocity.

While the body remains intact, the diameter of the

incoming impactor is constant, equal to the diameter L0 given

by the user. The rate of change of the velocity v is given by the

usual drag equation (corrected from Melosh 1989, chapter 11):

(6)

where CD is the drag coefficient, taken to equal 2, and Ui is the

impactor density (an input parameter). This equation can be

greatly simplified by making the replacement dt = �dz/v sinT
(justified by our assumption that the impactor travels in a

straight line) and rearranging:

(7)

Integration of this equation using the exponential density

dependence gives the velocity of the impactor as a function of

altitude:

(8*)

where T is the entry angle, and v0 is the impact velocity at the

top of the atmosphere, given by the user.

As the impactor penetrates the atmosphere the

atmospheric density increases and the stagnation pressure at

the leading edge of the impactor, Ps   U(z) v(z)2, rises.

Eventually, this exceeds the strength of the impactor, and it

begins to break up. Observed meteoroids often undergo

several cascades of breakup, reflecting components of widely

varying strengths. The entire subject of meteoroid strength is

poorly understood, as measured crushing strengths of

specimens collected on the ground are often a factor of 10 less

than strengths inferred from observed breakup (Svetsov et al.

1995). Clearly, strong selection effects are at work. For the

purposes of our program, we decided not to embroil the user

in the ill-defined guesswork of estimating meteoroid crushing

strength. Instead, we found a rough correlation between

density and estimated strength for comets (about 15 Pa in

tension from the tidal breakup of SL-9; Scotti and Melosh

1993), chondrites (Chyba et al. 1993), and iron or stone

objects (Petrovic 2001). Based on four simplified estimates

for comets, carbonaceous, stony, and iron meteorites, we

established an empirical strength-density relation for use in

the program. The yield strength Yi of the impactor in Pa is thus

computed from:

(9*)

where the impactor density Ui is in kg m�3. Note that, even at

zero density, this implies a non-zero strength of about 130 Pa.

Thus, this empirical formula should not be applied too far out

of the range of 1000 to 8000 kg m�3, over which it was

established.

Using this estimate of strength and comparing it to the

stagnation pressure, we can compute an altitude of breakup z*

by solving the transcendental equation:

Yi = U(z*)v
2(z*) (10)

Rather than solving this equation in the program directly,

an excellent analytic approximation to the solution was found

and implemented:

(11*)

where If is given by:

(12*)

In certain specific instances (i.e., small, strong

impactors), the impactor may reach the surface intact; in this

case, If >1, and Equation 11 does not apply. The properly

decremented velocity, calculated using Equation 8, is used to

compute a crater size. (If this velocity happens to be less than

the terminal velocity, then the maximum of the two is used

instead.) The velocity at the top of the atmosphere and at the

surface is reported.

Most often, the impactor begins to break up well above

the surface; in this case, If <1, and Equation 11 is used to

dv

dt
------

3UzCD

4UiL0
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2

=
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exp=
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compute the breakup altitude z*. After breakup, the fragments

begin to disperse in a complex series of processes (Passey and

Melosh 1980; Svetsov et al. 1995) that require detailed

numerical treatment. However, a simple approximation to this

cascade was found (Chyba et al. 1993; Melosh 1981), called

the pancake model, that does a good job for Tunguska-class

events. The basic idea of this model is that the impactor, once

fractured, expands laterally under the differential pressure

between the front and back surfaces. The front of the impactor

is compressed at the stagnation pressure, and the rear is

essentially in a vacuum with zero pressure. The sides squirt

out at a rate determined by force balance in an inviscid fluid.

This leads to a simple equation for the expansion of the

impactor diameter L, now a function of time:

(13)

The initial condition is that L = L0 at z = z*. If L does not

increase too much over the scale height H, the time

derivatives can be replaced with altitude derivatives (Chyba

et al. 1993) and a nonlinear differential equation can be

constructed that does not contain v(z):

(14)

Again, we construct an analytic approximation to the full

solution of this equation, which is adequate for the purposes

of the program:

(15*)

where the dispersion length scale l is given by:

(16*)

The velocity as a function of altitude is then given by

inserting this expression for L(z) into the drag equation and

integrating downward from the breakup altitude z*. Because

of the rapid expansion of the pancake, the drag rises rapidly as

well, and the velocity drops as a double exponential:

(17*)

The crushed impactor spreads laterally until the ratio

L(z)/L0 reaches a prescribed limit, which we call the “pancake

factor” fp. In reality, this should be no larger than 2 to 4

(Ivanov et al. 1997), after which the fragments are sufficiently

separated that they follow independent flight paths and may

suffer one, or more, further pancake fragmentation events.

However, Chyba et al (1993) obtained good agreement with

Tunguska-class events using pancake factors as large as 5–10.

In this work, we experimented with different factors and

settled on a value of 7 to terminate the dispersion of the

impactor. The altitude at which this dispersion is obtained is

called the “airburst altitude” (zb; see Fig. 2a); it is given by

substituting fp = L(z)/L0 into Equation 15 and rearranging:

(18*)

If the airburst occurs above the surface (Fig. 2a), most of

the energy is dissipated in the air. We report the airburst

altitude zb and the residual velocity of the swarm, which is

computed using Equation 17. In this case, the integral in the

exponent, evaluated from the airburst altitude to the

disruption altitude, is given by:

(19*)

with the definition . The surface impact velocity

of the remnants from the airburst vi is also reported as the

maximum of the terminal velocity of a fragment half the

diameter of the original impactor or the velocity of the

swarm as a whole. The spreading velocity at airburst

multiplied by the time to impact is added to the breadth of

the swarm to estimate the dispersion of what will be a strewn

field on the surface. The principal environmental

consequence of such an event is a strong blast wave in the

atmosphere (see below).

On the other hand, if the pancake does not spread to the

limiting size before it reaches the ground (zb d0 in

Equation 19; Fig. 2b), the swarm velocity at the moment of

impact is computed using Equation 17. In this case, the

integral in the exponent, evaluated from the surface (z = 0) to

the disruption altitude, is given by:

(20)

The dispersion of the swarm at impact is compared to the

estimated transient crater size (see below) and, if it is

comparable or larger, then the formation of a crater field is

reported, similar to that actually observed at Henbury,

Australia. Otherwise, we assume the impact to be a crater-

d
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forming event and use the velocity at the surface to compute

a crater size. In either case, the environmental consequences

of these events are calculated based on an impact energy

equal to the total kinetic energy of the swarm at the moment it

strikes the surface.

Although simple, we have found the prescription above

to give a fairly reasonable account of atmospheric entry over

a wide range of impactor sizes and compositions. As

mentioned above, a much more complex treatment must be

made on a case-by-case basis if more exact results are needed.

In particular, our program is not capable of providing a mass-

or velocity-distribution for fragmented impactors and,

therefore, cannot be used to model production of terrestrial

crater fields where the size of the largest crater is related to the

largest surviving fragment.

CRATER DIMENSIONS AND MELT PRODUCTION

Determining the size of the final crater from a given

impactor size, density, velocity, and angle of incidence is not

a trivial task. The central difficulty in deriving an accurate

estimate of the final crater diameter is that no observational or

experimental data exist for impact craters larger than a few

tens of meters in diameter. Perhaps the best approach is to use

sophisticated numerical models capable of simulating the

propagation of shock waves, the excavation of the transient

crater, and its subsequent collapse; however, this method is

beyond the scope of our simple program. Instead, we use a set

of scaling laws that extrapolate the results of small-scale

experimental data to scales of interest or extend observations

of cratering on other planets to the Earth. The first scaling law

we apply is based on the work of Holsapple and Schmidt

(1982), Schmidt and Housen (1987), and Gault (1974) and

combines a wide range of experimental cratering data (for

example, small-scale hypervelocity experiments and nuclear

explosion experiments). The equation relates the density of

the target Ut and impactor Ui (in kg m�3), the impactor

diameter after atmospheric entry L (in m), the impact velocity

at the surface vi (in m s�1), the angle of impact T (measured to

the horizontal), and the Earth’s surface gravity gE (in m s�2),

Fig. 2. Schematic illustration of two atmospheric entry scenarios considered in the Earth Impact Effects Program: a) the impactor (initial
diameter L0) begins to break up at an altitude z*; from this point the impactor spreads perpendicular to the trajectory due to the different
pressures on the front and back face. We define the airburst altitude zb to be the height above the surface at which the impactor diameter L(z)
= 7L0. All the impact energy is assumed to be deposited at this altitude; no crater is formed, but the effects of the blast wave are estimated; b)
the impactor breaks up but the critical impactor diameter is not reached before the fragmented impactor strikes the surface (z* >0; zb <0). The
cluster of fragments impacts the target surface with a velocity vi, forming a single crater or crater field depending on the lateral spread of the
cluster, L(z = 0)/sinT.
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to the diameter of the transient crater Dtc (in m) as measured

at the pre-impact target surface (Fig. 3a):

(21*)

This equation applies for impacts into solid rock targets

where gravity is the predominant arresting influence in crater

growth, which is the case for all terrestrial impacts larger than

a couple of hundred meters in diameter. For impacts into

water, the constant 1.161 must be replaced by 1.365 (Schmidt

and Housen 1987). In reality, these constants are not known to

three decimal places; the values quoted serve as a best

estimate within a range of 0.8 to 1.5.

The transient crater is only an intermediate step in the

development of the final crater (Fig. 3). To estimate the final

crater diameter, we must consider the effect of the transient

crater’s collapse using another scaling law. For craters

smaller than ~3.2 km in diameter on Earth (classified by

Dence [1965] as “simple” based on their intuitive

morphology), the collapse process is well-understood:

highly brecciated and molten rocks that were originally

pushed out of the opening crater slide back down the steep

transient cavity walls forming a melt-and-breccia lens at the

base of the crater (Grieve et al. 1977; Fig. 3a). To derive an

estimate of the final crater diameter for simple craters, we

applied an analytical model for the collapse of simple

craters originally developed by Grieve and Garvin (1984) to

two terrestrial craters for which good observational data on

breccia-lens volume and final crater dimensions exist. In

matching the observational data to model predictions we

found that an excellent first order approximation is that the

final rim-to-rim diameter Dfr for a simple crater is given

approximately by:

Fig. 3. Symbols used in the text to denote the various dimensions of an impact crater. a) Transient crater dimensions: Dtc is the transient crater
diameter measured at the pre-impact surface; Dtr is the diameter of the transient crater measured from rim crest to rim crest; htr is the rim height
of the transient crater measured from the pre-impact surface; dtc is the depth of the transient crater measured from the pre-impact surface (we
assume that Dtc = 2  dtc); b) simple crater dimensions (the transient crater outline is shown by the dotted line): Dfr is the rim-to-rim diameter;
hfr is the rim height above the pre-impact surface; tbr is the breccia lens thickness; dfr is the crater depth measured from the crater floor (above
the breccia lens) to the rim crest. We assume that the base of the breccia lens coincides with the floor of the transient crater at a depth of dtc

below the pre-impact surface; therefore, dfr = dtc + hfr � tbr; c) complex crater dimensions: Dfr is the rim-to-rim diameter; hfr is the rim height
above the pre-impact surface; tm is the melt sheet thickness; dfr is the crater depth measured from the crater floor (above the melt sheet) to the
rim crest.
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Dfr | 1.25Dtc (22*)

if the unbulked breccia lens volume Vbr (i.e., the observed

volume of the breccia lens multiplied by a 90–95% bulking

correction factor; Grieve and Garvin 1984) is assumed to be

related to the final crater diameter by:

Vbr | 0.032Dfr
3 (23*)

This approximate relationship is based on estimates of

unbulked breccia-lens volumes at Meteor Crater and Brent

Crater (Grieve and Garvin 1984).

The model may also be used to estimate the thickness

of the breccia lens, the depth to the base of the breccia lens,

and the final depth of the crater. Assuming that the top

surface of the breccia lens is parabolic and that the

brecciation process increases the bulk volume of this

material by 10%, the thickness of the breccia lens tbr is

given approximately by:

(24*)

where dtc is the transient crater depth (below the original

ground plane), and hfr is the rim height (above the original

ground plane) of the final crater (see the section below on

ejecta deposits). The depth to the base of the breccia lens is

taken to be the same as the transient crater depth dtc, which we

assume is given by:

(25*)

based on observations by Dence et al. (1977). The depth of

the final crater from the rim to the crater floor dfr is then

simply (see Fig. 3b):

dfr   dtc � hfr � tbr (26*)

For craters larger than 3.2 km on Earth (termed complex

because of their unintuitive morphology after Dence [1965]),

the collapse process is less well-understood and involves the

complicated competition between gravitational forces

tending to close the transient crater and the strength

properties of the post-impact target rocks. Several scaling

laws exist for estimating the rim-to-rim diameter of a

complex crater from the transient crater diameter, or vice

versa, based on reconstruction of the transient craters of

lunar complex craters (see, for example, Croft 1985;

McKinnon and Schenk 1985; Holsapple 1993). We use the

functional form:

(27*)

established by McKinnon and Schenk (1985), which lies

intermediate between the estimates of Croft (1985) and

Holsapple (1993). In this equation, Dc is the diameter at

which the transition from simple to complex crater occurs

(taken to be 3.2 km on Earth); both Dtc and Dfr are in km (See

Fig. 3b). If the transient crater diameter is greater than

2.56 km, we apply Equation 27 to determine the final crater

diameter and report that a “complex” crater is formed;

otherwise, we apply Equation 22 and report that a “simple”

crater is formed. It is worth emphasizing that the final crater

diameter that the program reports is the diameter of the fresh

crater measured from rim crest to rim crest (see Figs. 3b and

3c). The topographic rim is likely to be strongly affected by

post-impact erosion. Furthermore, multiple concentric zones

of structural deformation are often observable at terrestrial

impact structures—a fact that has led to uncertainty in the

relationship between the structural (apparent) and

topographic (rim-to-rim) crater diameter (Turtle et al. 2005).

Therefore, the results of the scaling arguments above should

be compared with caution to apparent diameters of known

terrestrial impact structures.

To estimate the average depth dfr (in km) from the rim to

floor of a complex crater of rim-to-rim diameter Dfr (in km),

we use the depth-to-diameter relationship of Herrick et al.

(1997) for venusian craters:

dfr = 0.4Dfr
0.3 (28*)

The similarity in surface gravity between Earth and

Venus as well as the large number of fresh complex craters on

Venus makes this relationship more reliable than that based

on the limited and erosion-affected data for terrestrial

complex craters (Pike 1980; Grieve and Therriault 2004).

We also estimate the volume of melt produced during

the impact event, based on the results of numerical modeling

of the early phase of the impact event (O’Keefe and Ahrens

1982b; Pierazzo et al. 1997; Pierazzo and Melosh 2000) and

geological observation at terrestrial craters (Grieve and

Cintala 1992). Provided that: 1) the impact velocity is in

excess of ~12 km s�1 (the threshold velocity for significant

target melting, O’Keefe and Ahrens 1982b); 2) the density

of the impactor and target are comparable; and 3) all impacts

are vertical, these data are well-fit by the simple expression:

(29)

where Vm is the volume of melt produced, Vi is the volume of

the impactor, and Hm is the specific energy of the Rankine-

Hugoniot state from which the isentropic release ends at the

1 bar point on the liquidus. To avoid requiring further input

parameters in our program, we use Hm = 5.2 MJ/kg for granite

(see Pierazzo et al. 1997), which we take as representative of

upper-crustal rocks, and assume an impactor and target

density of 2700 kg m�3. This allows us to rewrite Equation 29,

giving the impact melt volume Vm (in m3) in terms of just the

impact energy E (in J): Vm = 8.9 × 10�12 E.

To account for the effect of impact angle on impact melt

tbr 2.8Vbr

dtc hfr+

dtcDfr
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production, we assume, based on numerical modeling work

(Pierazzo and Melosh 2000; Ivanov and Artemieva 2002), that

the volume of impact melt is roughly proportional to the

volume of the transient crater. In our program, the diameter

and depth of the transient crater are proportional to sin1/3T
(Equations 21 and 25); hence, the volume of the transient

crater is proportional to sinT. The equation used in our

program to compute the impact melt volume is, therefore:

Vm = 8.9 × 10�12 E sinT (30*)

This expression works well for all geologic materials

except ice. In this case, Vm is about ten times larger than for

rock (Pierazzo et al. 1997). Equation 30 neglects the effect of

geothermal gradient on melt production. For very large

impacts, which affect rocks deep in the Earth where ambient

temperatures are much closer to the melting point, this

expression will underestimate the volume of melt produced.

Equation 30 agrees well with model predictions (Pierazzo and

Melosh 2000) of impact melt volume versus impact angle for

impact angles greater than ~15q to the horizontal; for impact

angles of ~15q or less, Equation 30 probably overestimates

the volume of impact melt produced by a factor of ~2.

In simple craters, the melt is well-mixed within the

breccia lens on the floor of the crater; in larger complex

craters, however, the melt forms a coherent sheet, which

usually has an approximately uniform thickness across the

crater floor (Grieve et al. 1977). Here we assume that the

crater floor diameter is similar to the transient crater diameter

(Croft 1985). Thus, we estimate the average thickness of this

sheet tm as the ratio of the melt volume to the area of a circle

equal in diameter to the transient crater:

tm = 4Vm/SDtc
2 (31*)

In extremely large terrestrial impact events (Dtc

>1500 km), the volume of melt produced, as predicted by

Equation 30, is larger than the volume of the crater. In this case,

we anticipate that the transient crater would collapse to a

hydrostatic, almost-featureless surface and, therefore, our

program does not quote a final crater diameter. Instead of a

topographically observable crater, the program postulates that

a large circular melt province would be formed. We note,

however, that no such feature has been unequivocally

identified on Earth. Our program also compares the volume of

impact-generated melt to the volume of the Earth and reports

the fraction of the planet that is melted in truly gigantic impacts.

THERMAL RADIATION

As alluded to above, the compression of the target and

impactor during the initial stages of an impact event

drastically raises the temperature and pressure of a small

region proximal to the impact site. For impacts at a velocity

greater than ~12 km s�1, the shock pressures are high enough

to melt the entire impactor and some target material;

vaporization also occurs for impacts at velocities greater than

~15 km s�1. Any vapor produced is initially at very high

pressure (>100 GPa) and temperature (>10,000 K) and, thus,

begins to rapidly inflate; the expanding hot vapor plume is

termed the “fireball.” The high temperatures imply that

thermal radiation is an important part of the energy balance of

the expanding plume. Initially, the fireball is so hot that the air

is ionized and its radiation absorption properties are

substantially increased. As a result, the fireball is initially

opaque to the emitted radiation, which remains bottled up

within the ball of plasma. The actual process is much more

complex than the simple description here and we refer the

interested reader to Glasstone and Dolan (1977) for a more

complete exposition. With continued expansion, the fireball

cools; as the temperature approaches a critical temperature,

known as the transparency temperature T* (Zel’dovich and

Raizer 1966, p. 607), the opacity rapidly diminishes and the

thermal radiation escapes, bathing the Earth’s surface in heat

from the fireball. The thermal radiation lasts for a few seconds

to a few minutes; the radiation intensity decays as the

expanding fireball rapidly cools to the point where radiation

ceases. For Earth’s atmosphere, the transparency temperature

is ~2000–3000 K (Nemtchinov et al. 1998); hence, the

thermal radiation is primarily in the visible and infrared

wavelengths—the fireball appears as a “second sun” in the

sky. The transparency temperature of silicate vapor is about

6000 K (Melosh et al. 1993), so that the limiting factor for

terrestrial impacts is the transparency temperature of air

surrounding the silicate vapor fireball.

Provided that the impact velocity is in excess of 15 km s�1,

we estimate the fireball radius Rf* at the moment the

transparency temperature is achieved, which we consider to be

the time of maximum radiation. Numerical simulations of vapor

plume expansion (Melosh et al. 1993; Nemtchinov et al. 1998)

predict that the fireball radius at the time of maximum radiation

is 10–15 times the impactor diameter. We use a value of 13 and

assume “yield scaling” applies to derive a relationship between

impact energy E in joules and the fireball radius in meters:

Rf*   0.002E1/3 (32*)

Yield scaling is the empirically derived concept that

certain length and time scales measured for two different

explosions (or impacts) are approximately identical if divided

by the cube root of the yield (or impact) energy. Yield scaling

can be justified theoretically, provided that gravity and rate-

dependent processes do not strongly influence the measured

parameters (Melosh 1989, p. 115). The constant in

Equation 32 was found by dividing the fireball radius (given

by Rf*   13L0) by the cube root of the impact energy (given by

Equation 1), for a typical impactor density (2700 kg m�3) and

terrestrial impact velocity (20 km s�1).

The time at which thermal radiation is at a maximum Tt is

estimated by assuming that the initial expansion of the fireball

occurs at approximately the same velocity as the impact:
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(33*)

To calculate the environmental effects of the thermal

radiation from the fireball, we consider the heating at a

location a distance r from the impact site. The total amount of

thermal energy emitted as thermal radiation is some small

fraction K (known as the “luminous efficiency”) of the impact

energy E. The luminous efficiency for hypervelocity impacts

is not presently well-constrained. Numerical modeling results

(Nemtchinov et al. 1998) suggest that K scales as some power

law of impact velocity. The limited experimental,

observational, and numerical results that exist indicate that

for typical asteroidal impacts with Earth, K is in the range of

10�4–10�2 (Ortiz et al. 2000); for a first-order estimate we

assume K = 3 × 10�3 and ignore the poorly-constrained

velocity dependence.

The thermal exposure ) quantifies the amount of heating

per unit area at our specified location. ) is given by the total

amount of thermal energy radiated KE divided by the area

over which this energy is spread (the surface area of a

hemisphere of radius r, 2Sr2):

(34*)

The total thermal energy per unit area ) that heats our

location of interest arrives over a finite time period between

the moment the fireball surface cools to the transparency

temperature and is unveiled to the moment when the fireball

has expanded and cooled to the point where radiation ceases.

We define this time period as the “duration of irradiation” Wt.

Without computing the hydrodynamic expansion of the vapor

plume this duration may be estimated simply by dividing the

total energy radiated per unit area (total thermal energy

emitted per unit area of the fireball) by the radiant energy

flux, given by VT*
4, where V = 5.67 × 10�8 W m�2 K�4 is the

Stefan-Bolzmann constant. In our program, we use T* =

3000 K. Then, the duration of irradiation is:

(35*)

For situations where the specified distance away from the

impact point is so far that the curvature of the Earth implies that

part of the fireball is below the horizon, we modify the thermal

exposure ) by multiplying by the ratio f of the area of the

fireball above the horizon to the total area. This is given by:

(36*)

In this equation, h is the maximum height of the fireball

below the horizon as viewed from the point of interest, given

by:

h   (1 � cos')RE (37*)

where ' is the epicentral angle between the impact point and

the point of interest, and RE is the radius of the Earth. If

h tRf*, then the fireball is entirely below the horizon; in this

case, no direct thermal radiation will reach our specified

location. The angle G in Equation 36 is half the angle of the

segment of the fireball visible above the horizon, given by

G  cos�1 h/Rf*. We presently ignore atmospheric refraction

and extinction for rays close to the horizon (this effect is

important only over a small range interval).

Whether a particular material catches fire as a result of

the fireball heating depends not only on the corrected thermal

exposure f) but also on the duration of irradiation. The

thermal exposure )ignition (J m�2) required to ignite a material,

that is, to heat the surface to a particular ignition temperature

Tignition, is given approximately by:

(38)

where U is the density, cp is the heat capacity, and N is the

thermal diffusivity of the material being heated. This

expression equates the total radiant energy received per unit

area, on the left, to the heat contained in a slab of unit area

perpendicular to the fireball direction, on the right. The

thickness of the slab is estimated from the depth, ,

penetrated by the thermal wave during the irradiation time Wt.

Analysis of Equation 35 shows that Wt is proportional to the

thermal exposure divided by the fireball radius squared.

Hence, the duration of irradiation is proportional to E1/3, and

the thermal exposure required to ignite a given material is

proportional to E1/6. This simple relationship is supported by

empirical data for the ignition of various materials by thermal

radiation from nuclear explosion experiments over a range of

three orders of magnitude in explosive yield energy

(Glasstone and Dolan 1977, p. 287–289). Thus, although a

more energetic impact event, or explosion, implies a greater

total amount of thermal radiation, this heat arrives over a

longer period of time, and hence, there is more time for heat

to be diluted by conduction through the material. This results

in a greater thermal exposure being required to ignite the

same material during a more energetic impact event. 

To account for the impact-energy dependence of the

thermal exposure required to ignite a material (or cause skin

damage), we use a simple scaling law. We estimate the

thermal exposure required to ignite several different

materials, or burn skin, during an impact of a given energy by

multiplying the thermal exposure required to ignite the

material during a 1 Mt event (see Table 1; data from

Glasstone and Dolan 1977, p. 287–289) by the impact energy

(in MT) to the one-sixth power:

)ignition(E)   )ignition(1 Mt)EMt
1/6 (39*)

To assess the extent of thermal radiation damage at our

location of interest, we compute the thermal radiation
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exposure f) and compare this with )ignition (calculated using

Equation 39) for each type of damage in Table 1. For thermal

exposures in excess of these ignition exposures, we report that

the material ignites or burns.

Our simple thermal radiation model neglects the effect of

both atmospheric conditions (cloud, fog, etc.) and the

variation in atmospheric absorption with altitude above the

horizon. Experience from nuclear weapons testing (Glasstone

and Dolan 1977, p. 279) suggests that, in low visibility

conditions, the reduction in direct (transmitted) radiation is

compensated for, in large part, by indirect scattered radiation

for distances less than about half the visibility range. This

observation led Glasstone and Dolan (1977) to conclude that

“as a rough approximation, the amount of thermal energy

received at a given distance from a nuclear explosion may be

assumed to be independent of the visibility.” Hence, although

the above estimate should be considered an upper estimate on

the severity of thermal heating, it is probably quite reliable,

particularly within half the range of visibility.

SEISMIC EFFECTS

The shock wave generated by the impact expands and

weakens as it propagates through the target. Eventually, all

that remains are elastic (seismic) waves that travel through the

ground and along the surface in the same way as those excited

by earthquakes, although the structure of the seismic waves

induced by these distinct sources is likely to be considerably

different.

To calculate the seismic magnitude of an impact event,

we assume that the “seismic efficiency” (the fraction of the

kinetic energy of the impact that ends up as seismic wave

energy) is one part in ten thousand (1 × 10�4). This value is the

most commonly accepted figure based on experimental data

(Schultz and Gault 1975), with a range between 10�5–10�3.

Using the classic Gutenberg-Richter magnitude energy

relation, the seismic magnitude M is then:

M   0.67log10 E � 5.87 (40*)

where E is the kinetic energy of the impactor in Joules

(Melosh 1989, p. 67).

To estimate the extent of devastation at a given distance

from a seismic event of this magnitude we determine the

intensity of shaking I, as defined by the Modified Mercalli

Intensity Scale (see Table 2), the most widely-used intensity

scale developed over the last several hundred years to

evaluate the effects of earthquakes. We achieve this by

defining an “effective seismic magnitude” as the magnitude

of an earthquake centered at our specified distance away from

the impact that produces the same ground motion amplitude

as would be produced by the impact-induced seismic shaking.

We then use Table 3, after Richter (1958), to relate the

effective seismic magnitude to the Modified Mercalli

Intensity. A range of intensities is associated with a given

seismic magnitude because the severity of shaking depends

on the local geology and rheology of the ground and the

propagation of teleseismic waves; for example, damage in

alluviated areas will be much more severe than on well-

consolidated bed rock.

The equations for effective seismic magnitude use curves

fit to empirical data of ground motion as a function of distance

from earthquake events in California (Richter 1958, p. 342).

We use three functional forms to relate the effective seismic

magnitude Meff to the actual seismic magnitude M and the

distance from the impact site rkm (in km), depending on the

distance away from the impact site. For rkm <60 km:

Meff   M � 0.0238rkm (41a*)

for 60 drkm <700 km:

Meff   M � 0.0048rkm � 1.1644 (41b*)

and for rkm t700 km:

Meff   M � 1.66log10 ' � 6.399 (41c*)

To compute the arrival time Ts of the most violent seismic

shaking, we assume that the main seismic wave energy is that

associated with the surface waves. Then, Ts is simply the user-

specified distance rkm (in km) divided by the typical surface-

wave velocity of upper-crustal rocks (~5 km s�1):

(42*)

Table 1. Ignition factors for various materials.a

Material

Thermal exposure required to ignite 
material during a 1 Mt explosion 
()ignition(1 Mt), MJ m�2)

Clothing 1.0

Plywood 0.67

Grass 0.38

Newspaper 0.33

Deciduous trees 0.25

Third degree burns 0.42

Second degree burns 0.25

First degree burns 0.13

aData extracted from Glasstone and Dolan (1977).

Table 2. Seismic magnitude/Modified Mercalli Intensity.a

Richter magnitude Modified Mercalli Intensity

0–1 –

1–2 I

2–3 I–II

3–4 III–IV

4–5 IV–V

5–6 VI–VII

6–7 VII–VIII

7–8 IX–X

8–9 X–XI

9+ XII

aBased on data from Richter (1958).
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EJECTA DEPOSIT

During the excavation of the crater, material originally

situated close to the target surface is either thrown out of the

crater on ballistic trajectories and subsequently lands to form

the ejecta deposit, or is merely displaced upward and outward

to form part of the crater rim. This uplifted portion of the

crater-rim material is significant close to the transient crater

rim but decreases rapidly with distance such that, outside two

transient-crater radii from the crater center, the material

above the pre-impact target surface is almost all ejecta

deposit. For simplicity, we ignore the uplifted fraction of the

crater rim material. We estimate the thickness of ejecta at a

given distance from an impact by assuming that the material

lying above the pre-impact ground surface is entirely ejecta,

that it has a maximum thickness te   htr at the transient crater

rim, and that it falls off as one over the distance from the

crater rim cubed:

(43)

The power of �3 is a good approximation of data from

explosion experiments (McGetchin et al. 1973) and a

satisfactory compromise for results from numerical

calculations of impacts and shallow-buried nuclear

explosions, which show that the power can vary between �2.5

and �3.5.

The ejecta thickness at the transient crater rim (assumed

to be equal to the transient crater rim height htr) may be

calculated from a simple volume conservation argument

where we equate the volume of the ejecta deposit and uplifted

transient crater rim Ve with the volume of the transient crater

below the pre-impact surface Vtc. For this simple model, we

assume that the transient crater is a paraboloid with a depth to

diameter ratio of 1:2 . Ve is given by:

(44)

where Dtr is the diameter of the transient crater at the transient

crater rim (see Fig. 3a), which is related to Dtc by: 

(45)

The volume of the transient crater is given by:

(46)

Equating Ve with Vtc and rearranging to find the rim

height gives htr = Dtc/14.1. Inserting this result into

Equation 43 gives the simple expression used in the program:

(47*)

Table 3. Abbreviated version of the Modified Mercalli Intensity scale.
Intensity Description

I Not felt except by a very few under especially favorable conditions.

II Felt only by a few persons at rest, especially on upper floors of buildings.

III Felt quite noticeably by persons indoors, especially on upper floors of buildings. Many people do not recognize it as an 
earthquake. Standing motor cars may rock slightly. Vibrations similar to the passing of a truck.

IV Felt indoors by many, outdoors by few during the day. At night, some awakened. Dishes, windows, doors disturbed; walls 
make cracking sound. Sensation like heavy truck striking building. Standing motor cars rocked noticeably.

V Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable objects overturned. Pendulum clocks 
may stop.

VI Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. Damage slight.

VII Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary structures; 
considerable damage in poorly built or badly designed structures; some chimneys broken. 

VIII Damage slight in specially designed structures; considerable damage in ordinary substantial buildings with partial collapse. 
Damage great in poorly built structures. Fall of chimneys, factory stacks, columns, monuments, and walls. Heavy furniture 
overturned.

IX General panic. Damage considerable in specially designed structures; well-designed frame structures thrown out of plumb. 
Damage great in substantial buildings, with partial collapse. Buildings shifted off foundations. Serious damage to reservoirs. 
Underground pipes broken. Conspicuous cracks in ground. In alluviated areas sand and mud ejected, earthquake fountains, 
sand craters.

X Most masonry and frame structures destroyed with their foundations. Some well-built wooden structures and bridges 
destroyed. Serious damage to dams, dikes, and embankments. Large landslides. Water thrown on banks of canals, rivers, 
lakes, etc. Sand and mud shifted horizontally on beaches and flat land. Rails bent slightly.

XI As X. Rails bent greatly. Underground pipelines completely out of service.

XII As X. Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown into the air.
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As this model ignores any “bulking” of the ejecta deposit

and entrainment of the substrate on which the ejecta lands, it

provides a lower bound on the probable ejecta thickness. The

use of transient crater diameter instead of final crater diameter

avoids the need for a separate rim height equation for simple

and complex craters. Rim heights of complex craters, as a

fraction of the final crater diameter, are significantly smaller

than the scaled rim heights of simple craters because, for

complex craters, the thickest part of the ejecta blanket

collapses back into the final crater during the late stages of the

cratering process. As this collapse process is not fully

understood, we only report the ejecta thickness outside the

final crater rim. The final rim height of the crater, which is

required for our estimate of the breccia-lens thickness in

simple craters (above) is found by inserting r = Dfr/2 into

Equation 31:

(48*)

The outward flight of rock ejected from the crater occurs

in a transient, rarefied atmosphere within the expanding

fireball. In large impacts (E >200 Mt), the fireball radius is

comparable to the scale height of the atmosphere; hence, the

ejecta’s trajectory takes it out of the dense part of the

atmosphere, allowing it to reach distances much in excess of

the fireball radius. For smaller impacts, however, the ejecta’s

outward trajectory is ultimately stifled at the edge of the

fireball, where the atmospheric density returns to normal. We

incorporate these considerations into our program by limiting

the spatial extent of the ejecta deposit to the range of the

fireball for impact energies less than 200 Mt.

The ejecta arrival time is determined using ballistic travel

time equations derived by Ahrens and O’Keefe (1978) for a

spherical planet. Using a mean ejection angle of 45° to the

Earth’s surface allows us to estimate the approximate arrival

time of the bulk of the ejecta. In reality, material is ejected

from the crater at a range of angles, and consequently, the

arrival of ejecta at a given location does not occur

simultaneously. However, this assumption allows us to write

down an exact (although complex) analytical expression for

the average travel time of the ejecta Te to our specified

location:

(49*)

where RE is the radius of the Earth, gE is the gravitational

acceleration at the surface of the Earth, and ' is the epicentral

angle between the impact point and the point of interest. The

ellipticity e of the trajectory of ejecta leaving the impact site at

an angle of 45° to the horizontal and landing at the point of

interest is given by:

(50*)

where ve is the ejection velocity, and e is negative when ve
2/

gERE d1. The semi-major axis a of the trajectory is given by:

(51*)

To compute the ejection velocity of material reaching the

specified range r   'RE, we use the relation:

(52*)

which assumes that all ejecta is thrown out of the crater from

the same point and at the same angle (45°) to the horizontal.

Equation 49 is valid only when ve
2/gERE d1, which

corresponds to distances from the impact site less than about

10,000 km (1/4 of the distance around the Earth). For

distances greater than this, a similar equation exists (Ahrens

and O’Keefe 1978); however, we do not implement it in our

program because, in this case, the arrival time of the ejecta is

much longer than one hour. Consequently, an accurate

estimate of ejecta thickness at distal locations must take into

account the rotation of the Earth, which is beyond the scope of

our simple program. Furthermore, ejecta traveling along these

trajectories will be predominantly fine material that

condensed out of the vapor plume and will be greatly affected

by reentry into the atmosphere, which is also not considered

in our current model. For ejecta arrival times longer than one

hour, therefore, the program reports that “little rocky ejecta

reaches our point of interest; fallout is dominated by

condensed vapor from the impactor.”

We also estimate the mean fragment size of the fine

ejecta at our specified location using results from a study of

parabolic ejecta deposits around venusian craters (Schaller

and Melosh 1998). These ejecta deposits are thought to form

by the combined effect of differential settling of fine ejecta

fragments through the atmosphere depending on fragment

size (smaller particles take longer to drop through the

atmosphere), and the zonal winds on Venus (Vervack and

Melosh 1992). Schaller and Melosh (1998) compared a

theoretical model for the formation of the parabolic ejecta

deposits with radar observations and derived an empirical law

for the mean diameter of impact ejecta d (in m) on Venus as a

function of distance from the crater center rkm (in km):

(53*)

where Dfr is the final crater diameter measured from rim to

rim (in km); D   2.65, and dc   2400(Dfr/2)�1.62. This relation

neglects the effects of the atmosphere and wind

transportation on Earth, which will be more significant for
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smaller fragment sizes, and the disintegration of ejecta

particles as they land. Thus, the uncertainty in these

predictions is greatest very close to the crater, where ejecta

fragments are large and will break up significantly during

deposition, and at great distances from the impact point,

where the predicted fragment size is small. We circumvent

this problem at small distances by not calculating the mean

fragment size for ranges less than two crater radii, which

roughly corresponds to the extent of the continuous ejecta

blanket observed around extra-terrestrial craters (Melosh

1989, p. 90). We also emphasize that the predicted fragment

size is a rough mean value of the ejecta fragment size. At any

given location, there will be a range of fragment sizes around

this mean including large bombs and very fine-grained dust,

which will arrive at different times depending on how easily

they traverse the atmosphere.

AIR BLAST

The impact-induced shock wave in the atmosphere is

referred to as the air blast or blast wave. The intensity of the

blast depends on the energy released during the impact and

the height in the atmosphere at which the energy is deposited,

which is either zero for impacts where a crater is formed or

the burst altitude for airburst events. The effects of the blast

wave may be estimated by drawing on data from US nuclear

explosion tests (Glasstone and Dolan 1977; Toon et al. 1994,

1997; Kring 1997). The important quantities to determine are

the peak overpressure, that is, the maximum pressure in

excess of the ambient atmospheric pressure (1 bar = 105 Pa),

and the ensuing maximum wind speed. With these data, tables

compiled by the US Department of Defense may be used to

predict the damage to buildings and structures of varying

constructional quality, vehicles, windows, and trees.

To estimate the peak overpressure for crater-forming

impacts, we assume that the impact-generated shock wave in

the air is directly analogous to that generated by an explosive

charge detonated at the ground surface (surface burst). We

found that the expression:

(54*)

is an excellent fit to empirical data on the decay of peak

overpressure p (in Pa) with distance r1 (in m) for a 1 kiloton

(kt) surface burst (Glasstone and Dolan 1977; their Fig. 3.66,

p. 109). In this equation, the pressure px at the crossover point

from ~1/r2.3 behavior to ~1/r behavior is 75000 Pa

(0.75 bars); this occurs at a distance of 290 m.

The peak overpressure resulting from an airburst is

estimated using a similar suite of equations fit to empirical

data on the peak overpressure experienced at different

distances away from explosions detonated at various heights

above the surface (Glasstone and Dolan 1977, p. 113). The

relationship between peak overpressure and distance away

from ground zero (the location on the Earth directly below the

airburst) is more complex than for a surface burst due to the

interaction between the blast wave direct from the source and

the wave reflected off the surface. Within a certain distance

from ground zero, the delay between the arrival of the direct

wave and the reflected wave is sufficient for little constructive

interference of the waves to occur; this region is known as the

regular reflection region. Beyond this zone, however, the two

waves merge in what is known as the “Mach reflection

region;” this effect can increase the overpressure at a given

location by as much as a factor of two (Glasstone and Dolan

1977, p. 38). Within the Mach region, we found that Equation

54 holds approximately, provided that the crossover distance

rx is increased slightly as a function of burst altitude (rx   289

� 0.65zb). At distances inside the regular reflection region, we

found that the peak overpressure decreases exponentially

with distance from ground zero:

(55*)

where p0 and E are both functions of burst altitude: 

p0   3.14 × 1011zb
�2.6 (56a*)

E�  34.87zb
�1.73 (56b*)

To extrapolate these relationships to explosions (impacts)

of greater energy, we again rely on yield scaling, which

implies that a specific peak overpressure occurs at a distance

from an explosion that is proportional to the cube root of the

yield energy. In other words, the ratio of the distance at which

a certain peak overpressure occurs to the cube root of the

impact energy (r(p)/E1/3) is constant for all impacts.

Therefore, the peak overpressure at the user-specified

distance r away from an impact of energy Ekt (in kilotons) is

the same as that at a distance r1 away from an impact of

energy 1 kt, where r1 is given by:

(57*)

The equivalent burst altitude in a 1 kt explosion zb1 is

related to the actual burst altitude by a similar equation zb1  
zb/Ekt

1/3.

To compute the peak overpressure, we substitute the

scaled-distance r1 into Equation 54 or 55, depending on

whether the distance r1 lies within the Mach region or the

regular reflection region for a 1 kt explosion. The distance

from ground zero to the inner edge of the Mach region rm1 in

such an explosion depends only on the altitude of burst zb1;

we found a good fit to the observational data with the simple

function:

(58*)
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Note that for surface bursts (zb1   0), the Mach region is

assumed to begin at the impact point (rm1   0); for scaled

burst-altitudes in excess of 550 m, there is no Mach region.

The calculated peak overpressure can then be compared with

data presented in Table 4 to assess the extent of the air blast

damage.

The characteristics of a blast wave in air at the shock

front are uniquely related by the Hugoniot equations when

coupled with the equation of state for air. The particle velocity

(or peak wind velocity) behind the shock front u is given by:

(59*)

where P0 is the ambient pressure (1 bar), c0 is the ambient

sound speed in air (~330 m s�1), and p is the overpressure

(Glasstone and Dolan 1977, p. 97). If the calculated

maximum wind velocity is greater than 40 m s�1, experience

from nuclear weapons tests suggests that “about 30% of trees

are blown down; the remainder have some branches and

leaves blown off” (Glasstone and Dolan 1977, p. 225). If the

maximum wind velocity is greater than 62 m s�1, devastation

is more severe: “Up to 90 percent of trees blown down;

remainder stripped of branches and leaves.”

The blast wave arrival time is given by:

(62)

where U is the shock velocity in air, given formally by:

(63)

For convenience, however, we assume that the shock

wave travels at the ambient sound speed in air c0. In this case,

the air blast arrival time at our specified distance r is simply:

(64*)

This simplification results in large errors only very close

to the crater rim.

The air blast model we use extrapolates from data

recorded after a very small explosion (in impact cratering

terms) in which the atmosphere may be treated as being of

uniform density. Furthermore, at this scale of explosion, the

peak overpressure decays to zero at distances so small (<1

km) that the curvature of the Earth may be ignored. Neither of

these assumptions applies to larger impacts; thus, the

reliability of our predictions decreases as impact energy

increases. In the future, we hope to examine the effect of a

variable-density atmosphere and a curved Earth on the blast

wave decay using numerical modeling. Such sophisticated

calculations of the interaction between a hot ejecta plume and

a realistic atmosphere by Zahnle (1990) and Toon et al.

(1994), which included blast wave formation, are in good

agreement with our simple model in the 1–10000 Mt range;

for impact energies greater than this, Equation 44 probably

overestimates the blast wave effects by a factor of 2–5. 

EFFECT OF A WATER LAYER

The rationale discussed above for predicting the

environmental consequences of an asteroid collision with

Earth assumes that the impact occurs on land. In fact, marine

impacts are more than twice as likely to occur as land impacts

on Earth. The influence of a water layer on the impact process

has been the subject of many recent field studies (Tsikalas et

Table 4. Air blast damage.a

Distance from a 1 kt explosion

(d1 in m)
Over pressure 

(p in Pa) Description of air blast-induced damage

126 426000 Cars and trucks will be largely displaced and grossly distorted 
and will require rebuilding before use.

133 379000 Highway girder bridges will collapse.

149 297000 Cars and trucks will be overturned and displaced, requiring major 
repairs. 

155 273000 Multistory steel-framed office-type buildings will suffer extreme 
frame distortion, incipient collapse. 

229 121000 Highway truss bridges will collapse. 

251 100000 Highway truss bridges will suffer substantial distortion of 
bracing. 

389 42600 Multistory wall-bearing buildings will collapse.

411 38500 Multistory wall-bearing buildings will experience severe 
cracking and interior partitions will be blown down.

502 26800 Wood frame buildings will almost completely collapse. 

549 22900 Interior partitions of wood frame buildings will be blown down. 
Roof will be severely damaged.

1160 6900 Glass windows shatter.

aData extracted from Glasstone and Dolan (1977).
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al. 1998, 1999; Ormö and Lindström 2000), laboratory

experiments (McKinnon and Goetz 1981; Gault and Sonnett

1982), and numerical simulations (O’Keefe and Ahrens

1982a; Roddy et al. 1987; Ormö and Miyamoto 2002;

Shuvalov et al. 2002; Artemieva and Shuvalov 2002;

Wünnemann and Lange 2002), which have led to a

qualitative paradigm for submarine cratering in both the deep

ocean (Wünnemann and Lange 2002) and shallow seas

(Oberbeck et al. 1993; Poag et al. 2004). However, like many

other aspects of impact cratering, an accurate quantitative

treatment of the effect of a water layer on the cratering

process requires complicated numerical methods beyond the

scope of our program. Consequently, our program employs

only a rudimentary algorithm for estimating the effect of a

water column on the environmental consequences of an

impact. We estimate the change in velocity of the impactor at

the seafloor vi|seafloor from that at the surface vi|surface by

integrating the drag equation (Equation 7) over the depth of

the water column:

(65*)

In this equation, dw is the thickness of the water layer, L

is the diameter of the impactor after the atmospheric traverse,

and CD is the drag coefficient for a rigid sphere of water in the

supersonic regime, which we set equal to 0.877 (Landau and

Lifshitz 1959). This simple expression ignores both the

flattening of the impactor during penetration and the

propagation of the shock wave through the water column;

however, it agrees quite favorably with numerical simulations

of deep sea impact events (Wünnemann and Lange 2002).

For marine impact scenarios, we calculate the

approximate kinetic energy of the impactor at the moment it

strikes the surface of the water layer Esurface and when it reaches

the seafloor Eseafloor. Using Equation 16, we compute and

report two transient crater diameters: one in the water layer and

one in the seafloor. For the transient crater diameter in the

water layer, we use the impact velocity at the surface (vi  
vi|surface), replace the constant 1.161 with 1.365, and use a target

density equal to the density of water (Ut   Uw   1000 kg m�3).

For the transient crater diameter in the seafloor we assume that

the impact velocity is that of the impactor at the seafloor (vi =

vi|seafloor) and use a target density of Ut = 2700 kg m�3.

From this point, the program continues as before,

calculating the dimensions of the crater in the seafloor,

whether it is simple or complex, the volume of the target

below the seafloor that is melted, etc. The air blast and

thermal radiation calculations proceed assuming that the

impact energy is that released at the surface of the water layer

(E   Esurface); the seismic shaking and ejecta calculations, on

the other hand, assume that the impact energy is the kinetic

energy of the impactor at the moment it reaches the sea floor

(E   Eseafloor). As a result, our program predicts that the

thermal radiation and air blast effects are unchanged by the

presence of the water column relative to a land impact of the

same energy. However, a deep enough water layer could

entirely suppress the seismic shaking and excavation of rocky

ejecta that would occur in an impact of the same size on dry

land.

The current version of the program does not compute the

effects of impact-generated tsunamis for water impacts. There

are several reasons for this omission, in spite of requests by

many users for this feature. The first set of reasons is

practical. A plausible tsunami computation requires not only

the depth of the water at the impact site, but also the depth of

the ocean over the entire path from the impact to the observer.

The observer must, of course, be on a coastline with an

unobstructed great circle path to the impact site. The observed

tsunami height and run up depends on the local shoreline

configuration and slope, the presence or absence of offshore

bars, etc. The sheer number of input parameters required

would daunt most potential users. This sort of computation

requires a professional effort of the scale of Ward and

Asphaug (2000, 2003); it is far beyond the capability of our

simple program. The other set of reasons centers around the

current uncertainty of the size of tsunamis generated by

impacts. Following some initial spectacular estimates of

tsunami heights, heights that greatly exceed the depth of the

ocean itself (Hills et al. 1994), a reaction occurred (Melosh

2003) based on a newly-unclassified document (Van Dorn et

al. 1968) that suggests that impact-tsunami waves break on

the continental shelf and pose little threat to coastal locations

(the “Van Dorn” effect). The present situation with regard to

this hazard is thus confused, and we decided against including

such an estimate in our code until the experts have sorted out

the actual size of the effect.

GLOBAL EFFECTS

In addition to the regional environmental consequences

of the impact event, we also compute some global

implications of the collision. We compare the linear

momentum of the impactor at the moment it strikes the target

surface, Mi   mivi, with the linear momentum of the Earth, ME

  mEvE, where mE is the mass of the Earth (5.83 × 1024 kg) and

vE is the mean orbital velocity of the Earth (29.78 km s�1).

Depending on the ratio Mi/ME, the program reports the likely

effect of the impact on the orbit of the Earth. Our choice of

limits on Mi/ME and the corresponding degree to which the

orbit changes is presented in Table 5. We compare the angular

momentum imparted by the impact *i = miviREcosT to the

angular momentum of the Earth *E = 5.86 × 1033 kg m3 s�1 in

a similar manner. Table 5 also presents the ranges of the ratio

*i/*E for which we assume certain qualitative changes to the

Earth’s rotation period and the tilt of its axis as a result of the

impact. Finally, we compare the volume of the transient crater

Vtc with the volume of the Earth VE. In the event that the ratio

vi
seafloor

vi
surface

3UwCDdw

2UiL Tsin
-------------------------–
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Vtc/VE is greater than 0.5, we assume that the Earth is

completely disrupted by the impact and forms a new asteroid

belt between Venus and Mars. If Vtc/VE is in the range of 0.1–

0.5, the program reports that the Earth is strongly disturbed by

the impact but loses little mass. Otherwise, the program

reports that the Earth is not strongly disturbed by the impact

and loses negligible mass.

Currently, we do not make any estimates regarding the

potentially global environmental consequences of large

impact events. In such catastrophes, dust, melt droplets, and

gas species generated during the impact event are ejected out

of the Earth’s atmosphere and dispersed all over the globe

(Alvarez 1980). Several potentially devastating

environmental consequences could result from the re-entry

and prolonged settling though the atmosphere of this material

(Toon et al. 1982, 1994, 1997; Zahnle 1990; Kring 2000).

Thermal radiation generated during the re-entry of high speed

ejecta may be strong enough to ignite wildfires over large

areas of the globe (Alvarez 1980; Melosh et al. 1990; Toon et

al. 1994, 1997). Dust loading in the atmosphere may block out

light and restrict photosynthesis for months after the impact

(Toon et al. 1982, 1994, 1997; Covey et al. 1990; Zahnle

1990). Furthermore, the presence of carbonate or anhydrite

rocks in the sedimentary target sequence may add additional

environmental consequences due to the production of

climatically active gas species (Lewis et al. 1982; Prinn and

Fegley 1987; Zahnle 1990; Brett 1992; Pope et al. 1997;

Pierazzo et al. 1998; Kring 1999). These compounds may

produce aerosols that further reduce the amount of light that

reaches the surface of the Earth, condense with water to form

acid rain, react with and deplete ozone levels, and cause

“greenhouse” warming. To make reasonable estimates of the

severity of these effects requires detailed, time-consuming

computations involving a large suite of model parameters (for

example, target chemistry and mass-velocity distributions for

the ejected material; Toon et al. 1997). Such calculations are

well beyond the scope of our simple program; we direct

readers interested in these processes to the above references

for further information.

APPLICATIONS OF THE EARTH IMPACT EFFECTS 

PROGRAM

We have written a computer program that estimates the

environmental consequences of impact events both past and

future using the analytical expressions presented above. To

illustrate the utility of our program, consider the hypothetical

devastation at various locations within the United States if

asteroids of various sizes were to strike Los Angeles. The first

event worthy of consideration is the impact of a ~75-m

diameter stony asteroid (density   2000 kg m�3), which

occurs somewhere on earth every 900 years on average. In

this case, our program determines that the impactor would

begin to disrupt at an altitude of ~66 km and deposit the

majority of its kinetic energy in the atmosphere at a burst

altitude of ~5 km. The air blast from this event would be

strong enough to cause substantial damage to wooden

buildings and blow down 90% of trees to a radius of ~15 km,

which agrees well with the extent of forest damage observed

after the Tunguska airburst event in Siberia in 1908.

Next, let us examine the environmental consequences of

three impact events of drastically different magnitudes at a

fixed distance of 200 km away from our impact site in Los

Angeles, which is the approximate distance from L.A. to San

Diego. The three impacts we will consider are a 40-m diameter

iron asteroid (density   8000 kg m�3) impacting at 20 km s�1

into a sedimentary target (density   2500 kg m�3), which is the

approximate scenario of the event that formed Barringer

Crater in northern Arizona; a 1.75-km diameter stony asteroid

(density   2700 kg m�3) impacting at 20 km s�1 into a

crystalline target (density   2750 kg m�3), which corresponds

approximately to the magnitude of the impact event that

formed the Ries crater in Germany; and an 18-km diameter

stony asteroid also impacting at 20 km s�1 into a crystalline

target, which represents a reasonable estimate of the scale of

the Chicxulub impact event in the Gulf of Mexico. For each

impact we assume identical impact angles (T = 45°). Table 6

presents a comparison of the important parameters discussed

in this paper for each impact event at a distance of 200 km

away from our hypothetical impact center in Los Angeles.

Note the substantial variation in impact energy between each

impact event, which results in very different estimated

environmental effects 200 km away in San Diego. The average

recurrence interval is for the entire Earth; the two larger

impact scenarios are both extremely rare events. All of these

impactors are large enough (or strong enough) to traverse the

atmosphere and create a single impact crater; however, the

Barringer-scale impactor is slowed considerably by the

atmosphere.

In the case of the small iron asteroid impact, San Diego is

a very safe place to be. As little to no vapor is generated

during this event, there is no significant thermal radiation.

The impact crater formed is only 1.2 km in diameter; the

atmosphere would prevent much if any ejecta thrown out of

Table 5. Global implications of an impact event.
Ratio Qualitative global change

Mi/ME <0.001 No noticeable change in orbit.

0.001 <Mi/ME <0.01 Noticeable change in orbit.

0.01 <Mi/ME <0.1 Substantial change in orbit.

Mi/ME >0.1 Totally changes orbit.

*i/*E <0.01 No noticeable change in rotation period 
and tilt of axis.

0.01 <*i/*E <0.1 Noticeable change in rotation period and 
tilt of axis.

0.1 <*i/*E <1.0 Substantial change in rotation period and 
tilt of axis.

*i/*E >1.0 Totally changes rotation period and tilt of 
axis.
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the crater from reaching San Diego. Furthermore, the air blast

would be extremely weak at a radius of 200 km: the change in

atmospheric pressure would be barely discernible at a rise of

less than one part in a hundred with ensuing wind speeds of

under a meter per second. The only noticeable consequences

from this scale of impact would be from seismic shaking,

which would be most obvious around 40 sec after the impact

occurred. The impact would be analogous to an earthquake of

Richter magnitude 4.9 centered in L.A. The Modified

Mercalli Intensity of the shaking in San Diego would be in the

range of I–II, depending on the local geology, meaning that

the disturbance would be felt only in favorable circumstances

and would not cause any permanent damage.

In stark contrast, San Diego would not be an attractive

location in the event that either of the two larger impacts

occurred in L.A. In the case of a 1.75-km diameter asteroid

impact, the thermal exposure at a range of 200 km would be

sufficient to ignite most combustible materials and cause third

degree burns to unfortunate San Diegans, particularly if

visibility was good. The seismic surface waves emanating

from the impact site would arrive half a minute later and

would be violent enough to damage poorly constructed

structures, topple tall chimneys, factory stacks, and

monuments, and overturn furniture in homes and offices. A

relatively thin layer of ejecta would arrive a few minutes after

the impact and begin to rain down through the atmosphere

covering the city in a few cm of ejecta fragments. During this

time, the air blast wave would propagate across the city

flattening any poorly constructed structure that remained

standing and kicking up 150 m/s winds capable of blowing

over most trees. 

In the case of a Chicxulub-scale event, the environmental

consequences in San Diego would be extreme. Seconds after

the impact, the fireball would engulf the city of San Diego,

incinerating all combustible materials. The seismic shaking

that would arrive moments later would be as violent as that

caused by the most severe earthquake recorded on Earth. If

anything remained standing after this episode, it would soon

be smothered and suffocated by the arrival of a huge amount

of rock debris thrown out of the growing crater. Finally, a

 Table 6. Comparison of environmental effects 200 km away from various impacts.
Impactor size (km) 0.04 (iron) 1.75 18

Percentage reduction in velocity 
during atmospheric entry 

Equations 9, 11, 12, 
15, 16, 17, 20

50 – –

Impact energy (J)
(megatons; 1 Mt = 4.2 × 1015 J)

Equation 1 1.3 × 1016

3.2
1.5 × 1021

3.6 × 105
1.65 × 1024

3.9 × 108

Recurrence interval (years; 
whole Earth)

Equation 3 1000a 2.1 × 106 4.6 × 108

Final crater diameter (km) Equations 21 and 22 or 
27

1.2 (Simple) 23.7 (Complex) 186 (Complex)

Fireball radius (km) Equation 32 – 23 236

Time at which radiation begins 
(s)

Equation 33 – 1.2 –

Thermal exposure (MJ m�2) Equation 34, 36, 37 – 14.8 –

Duration of irradiation (s) Equation 35 – 300 –

Thermal radiation damage Equation 39; Table 1 No fireball created due 
to low impact velocity.

Third degree burns; 
many combustible 
materials ignited.

Within the fireball 
radius, everything 
incinerated!

Arrival time of major seismic 
shaking (s)

Equation 42 40 40 40

Richter scale magnitude Equation 40 4.9 8.3 10.4

Modified Mercalli Intensity Equation 41; Tables 2 
and 3

I–II (III)b VII–VIII (VIII)b X–XI (XI)b

Arrival time of bulk ejecta (s) Equations 49–52 Ejecta blocked by 
atmosphere.

206 206

Average ejecta thickness (m) Equation 47 – .09 137

Mean fragment diameter (cm) Equation 53 – 2.4 –

Arrival time of air blast (s) Equation 64 606 606 606

Peak overpressure (bars) Equations 54 and 57 0.004 0.80 77

Maximum wind velocity (m/s) Equation 59 0.96 145 2220

Air blast damage Table 4 Blast pressure 
insufficient to cause 
damage.

Wooden and tall 
unstable buildings 
collapse; glass 
windows shatter; 90% 
trees blown down.

Collapse of almost all 
buildings and bridges; 
damage and 
overturning of 
vehicles; 90% of trees 
blown down.

aNote that the recurrence interval is based on impact energy alone. Iron asteroids represent only ~5% of the known NEOs; therefore, the real recurrence interval

for an impact of this sort is ~20 times longer.
bEstimates of seismic intensity according to Toon et al. (1997).
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strong pressure wave nearly 80 times greater than atmospheric

pressure would pass through San Diego flattening any

remaining erect buildings; winds over 2 km per second would

follow, violently scattering debris and ripping up trees.

The algorithm presented in this paper also allows us to

extend our study of potential impact-related disasters over a

range of distances away from the impact. Figures 4–7

illustrate how each of the major environmental consequences

depends on the distance away from the impact site for the

three different scales of impact; in each figure, the dotted line

represents the 40-m diameter iron asteroid impact, the dashed

line represents the 1.75-km diameter asteroid impact, and the

solid line represents the 18-km diameter asteroid impact. Also

marked on the figures are the approximate locations of four

major U.S. cities with respect to Los Angeles, the location of

our impact site. Figure 4 shows the reduction in thermal

exposure with distance away from the edge of the fireball.

The change in slope of the curves is caused by the curvature

of the Earth, which acts to hide more and more of the fireball

below the horizon with increasing distance away from the

impact. As a result, the thermal radiation damage from even a

Chicxulub-scale impact is restricted to a range of ~1500 km;

in the event that an 18-km diameter asteroid struck L.A.,

Denver would probably escape any thermal radiation damage.

The horizontal positions of the grey arrows in Fig. 4 denote

the radial extent of thermal radiation damage for the two

larger impacts, according to Toon et al. (1997). Comparing

our predictions and those of Toon et al. illustrates the

approximate uncertainty of both estimates. Figure 5 shows the

impact ejecta thickness for each potential impact event as a

function of distance. Figure 6 shows the drop in effective

seismic magnitude with distance away from the impact,

which can be related to the intensity of shaking using Table 2.

The graph illustrates that impact-related seismic shaking

would be felt by all as far as Denver if a Ries-scale impact

occurred in L.A.; and significant tremors would be felt as far-

a-field as New York City following a Chicxulub-scale impact

in L.A. The decay in peak overpressure with distance from the

impact associated with the impact air blast wave is depicted in

Fig. 7. In the case of a 40-m diameter iron asteroid, the air

blast damage would be confined to a few km away from the

impact site. However, the blast wave from a Chicxulub-scale

impact centered in L.A. may be strong enough to level steel

framed buildings in San Francisco and wooden buildings as

far away as Denver. For comparison, the grey squares in

Fig. 7 illustrate the approximate radial extent of airblast

damage for each impact event, as predicted by Toon et al.

(1997). For the two larger impacts, the disagreement between

Fig. 4. Thermal exposure from the impact-generated fireball, divided by the impact energy (in Mt) to the one-sixth power, as a function of
distance from the impact center, for three hypothetical impacts in Los Angeles. (Dividing f) by EMt

1/6 allows us to more easily compare the
extent of thermal radiation damage for impacts of different energies. Plotted in this way, the scaled thermal exposure required to ignite a given
material does not depend on impact energy; thus, values on the ordinate can be compared directly with the data in Table 1.) The solid line
represents an impact of an 18-km diameter stony asteroid; the dashed line represents an impact of a 1.75-km stony asteroid; no line appears
for the 40-m iron asteroid because little to no vapor is produced during the impact and no significant thermal radiation occurs. The vertical
lines represent four distances from the impact center that correspond to the approximate distances from L.A. to four major U.S. cities. Grey
arrows indicate the radial extent of fires ignited by thermal radiation from the fireball as predicted by Toon et al. (1997). See the text for further
details. 



836 G. S. Collins et al.

Fig. 5. The effective seismic magnitude as a function of distance away from three hypothetical impacts in Los Angeles. The solid line
represents an impact of an 18-km diameter stony asteroid; the dashed line represents an impact of a 1.75-km stony asteroid; the dotted line
represents the impact of a 40-m diameter iron asteroid. The vertical lines represent four distances from the impact center that correspond to
the approximate distances from L.A. to four major U.S. cities. See the text for further details. 

Fig. 6. The variation in ejecta-deposit thickness with increasing distance from the impact point for three hypothetical impacts centered in Los
Angeles. The solid line represents an impact of an 18-km diameter stony asteroid; the dashed line represents an impact of a 1.75-km stony
asteroid; the dotted line represents the impact of a 40-m diameter iron asteroid. The vertical lines represent four distances from the impact
center that correspond to the approximate distances from L.A. to four major U.S. cities. See the text for further details. 
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our predictions and those of Toon et al. (1997) is due to our

neglect of the effects of Earth curvature and a variable density

atmosphere, as discussed earlier.

DISCUSSION

The Earth Impact Effects Program provides a

straightforward method for estimating the regional

environmental consequences of the collision of extraterrestrial

objects with the Earth. To implement such a program, it is

necessary to make some simplifying assumptions that limit the

accuracy of any predictions. Nevertheless, some important

conclusions may be drawn from our simple model. Of the

environmental consequences that we consider, the seismic

shaking poses the most significant threat at large distances

from the impact site; effects of ejecta fallout and the air blast

decrease much more rapidly with distance away from the

impact site. Moreover, the curvature of the Earth ensures that,

even in the case of very rare ~20-km scale impact events, the

thermal radiation will be confined to a maximum range of

1500 km, at which point the fireball is completely hidden

below the horizon. Closer to the impact site, however, the air

blast, thermal radiation, and ejecta deposition combine to

severely affect the local environment and should all be

considered in any hazard assessment.

We believe that we have developed a valuable tool for

use both within the scientific community and the population

at large. We anticipate that within the field of impact cratering

our program will serve the function of providing a quick

assessment of the hazard risk for potential future impact

scenarios and enable those studying particular terrestrial

impact events to estimate the regional environmental

consequences associated with the impact. We welcome any

suggestions for improvements or additions to the algorithm

presented here.
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Fig. 7. The peak airblast overpressure as a function of distance from three hypothetical impacts centered in Los Angeles. The solid line
represents an impact of an 18-km diameter stony asteroid; the dashed line represents an impact of a 1.75-km stony asteroid; the dotted line
represents the impact of a 40-m diameter iron asteroid. The dash-dotted line illustrates the decay of peak overpressure with distance away from
an airburst resulting from the impact of a 75-m diameter stony object (density = 2000 kg m�3) at 17 km s�1, as discussed in the text. The vertical
lines represent four distances from the impact center that correspond to the approximate distances from L.A. to four major U.S. cities. The grey
squares show the extent of the airblast damage as predicted by Toon et al. (1997). See the text for further details. 
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