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Abstract. This paper addresses the modeling issue of spectral line po-
larization in stellar atmospheres, taking into account scattering processes
and the Hanle and Zeeman effects in two-level and multilevel atomic mod-
els, and with the statistical equilibrium and radiative transfer equations
formulated within the framework of the quantum theory of polarization.
After arguing why this research field is of real astrophysical interest, the
basic equations and anisotropic pumping mechanisms are reviewed. Fi-
nally, it is shown how to solve efficiently a variety of polarization transfer
problems via the application of fast iterative methods and accurate formal
solvers of the Stokes vector transfer equation.

1. Imntroduction

Most observational work in astrophysics has so far been carried out mainly on
the basis of the intensity of the radiation received from the object observed as
a function of wavelength. However, an important but frequently overlooked as-
pect of electromagnetic radiation is its state of polarization, which is related
to the orientation of the electric field of the wave. The state of polarization of
a quasi-monochromatic beam of electromagnetic radiation can be conveniently
characterized in terms of four quantities that can be measured by furnishing our
telescopes with a polarimeter. These observables are the four Stokes parameters
(I,Q,U, V) which were formulated by Sir George Stokes in 1852 and introduced
into astrophysics by the Nobel laureate Subrahmanyan Chandrasekhar in 1946.
The Stokes I()\) profile represents the intensity as a function of wavelength,
Stokes Q()) the intensity difference between vertical and horizontal linear polar-
ization, Stokes U(A) the intensity difference between linear polarization at +45°
and —45°, while Stokes V() the intensity difference between right-handed and
left-handed circular polarization (cf. Born & Wolf 1994). Note that the def-
inition of the Stokes @ and U parameters requires to choose first a reference
direction for > 0 in the plane perpendicular to the direction of propagation.
There are numerous physical mechanisms that can generate polarized ra-
diation (e.g. Rybicki & Lightman 1979; Landi Degl’Innocenti 2002). In stellar
atmospheres, the most important mechanisms that induce (and modify) polar-
ization signatures in spectral lines are the Zeeman effect, anisotropic radiation
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pumping and the Hanle effect (e.g. Trujillo Bueno 2001). All these physical
mechanisms leave their ‘fingerprints’ in the polarization of the electromagnetic
radiation that we collect with our increasingly large telescopes (see Astrophysical
Spectropolarimetry, edited by Trujillo Bueno, Moreno-Insertis & Sanchez 2002a).
The interesting point is that the development of diagnostic techniques that com-
bine the Hanle and Zeeman effects in suitably chosen spectral lines may allow us
to investigate the strength and topology of stellar magnetic fields in a parameter
domain which ranges from at least milligauss till thousands of gauss. Moreover,
the observation and rigorous physical interpretation of polarized radiation may
also help us to verify the geometry of the astrophysical system under investiga-
tion, even without being possible to resolve it spatially?. Such remote sensing
techniques are based on the theory and numerical modeling of the generation
and transfer of polarized radiation in magnetized plasmas.

In my opinion, at present the most suitable theoretical framework for mod-
eling polarization signals in spectral lines is the quantum theory of line forma-
tion, as developed by Landi Degl’Innocenti (1983). In this theory, the excitation
state of the atomic (or molecular) system is described by the diagonal and non-
diagonal elements of the atomic density matrix, which provide information on
the population imbalances and quantum coherences (or interferences) between
the magnetic sublevels, respectively. Similarly, the symmetry properties of the
radiation field are described by 9 tensors which quantify the mean intensity, the
‘degree of anisotropy’, the degree of breaking of the axial symmetry, etc. (see
the review by Trujillo Bueno 2001). This QED theory is based on the Marko-
vian assumption of complete frequency redistribution (see a critical review in
Trujillo Bueno 1990). For problems where the only significant coherences are
those between the sublevels pertaining to each degenerate level, it provides a
physically consistent description of scattering phenomena if the spectrum of the
pumping radiation is flat across a frequency range wider than both the Larmor
frequency (v1) and the inverse lifetime of the levels (see Landi Degl’Innocenti et
al. 1997). As discussed by Trujillo Bueno & Manso Sainz (2002), this turns out
to be a sufficiently good approximation for modeling the observed polarization
signatures in a variety of solar spectral lines (e.g. the Ca 11 IR triplet, the Mg 1
b lines, the He 1 10830 multiplet, the O I triplet at 777 nm, etc.) 3.

The logical structure of this article is the following. Sections 2 and 3 consider
the iterative methods we had developed for the efficient solution of ‘unpolarized’
RT problems. The next four sections introduce the basic physical mechanisms
and the general equations, including the development of two new formal solvers
of the Stokes-vector transfer equation. Section 8 focuses on the iterative solu-
tion of linear polarization transfer problems, assuming a two-level atomic model
without ground-level polarization. We consider the following cases: resonance

2Completely unpolarized radiation can be expected only from a perfectly symmetric object.

% Although much theoretical work remains to be done, the first steps towards the generalization
of this density matrix theory to partial frequency redistribution (PRD) have already been
taken (e.g. Bommier 1997a,b; Landi Degl'Innocenti et al. 1997). The key issue now is to
derive, from the first principles of QED, a consistent set of equations capable of describing
scattering polarization in spectral lines taking fully into account the presence of lower-level
atomic polarization in all the lines of the assumed atomic model.
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line polarization, the Hanle effect and the Zeeman effect. Section 9 concerns
the iterative solution of the general (non-linear) problem where we allow for the
possibility of lower-level polarization in two-level and multilevel atomic systems,
in the absence and in the presence of weak magnetic fields. Finally, section 10
gives some concluding remarks.

2. The standard Non-LTE problem

The standard Non-LTE problem (e.g. Mihalas 1978) consists in calculating the
atomic (or molecular) level populations that are consistent with the intensity of
the radiation field generated within any given stellar atmospheric model. This
requires solving jointly the radiative transfer (RT) equations for the specific
intensity and the rate and conservation equations for the level populations. Note
that each level of total angular momentum J has associated with it one single
unknown: its overall population n;.
The combination of such equations leads to a coupled system of the form

Ax =D, (1)

where A is an operator whose coefficients depend on collisional and radiative
rates, b is a known vector and x is the unknown vector formed by the populations
of the assumed atomic or molecular model at all the spatial grid points. In
general, the standard Non-LTE problem is non-linear, i.e. the elements of the
operator A depend on x. This is because the radiative rates that are proportional
to the radiation field intensity (i.e. the transfer and relazation rates due to
absorption and stimulated emission processes) depend implicitly on the level
populations via the radiative transfer equations. Because of this non-linearity,
iterative algorithms are necessary to solve Egs. (1). Here, at each iterative step,
one has to manage to set up a suitable linear system of equations whose solution
leads to approximate corrections to the unknowns. The paper by Socas-Navarro
& Trujillo Bueno (1997) clarifies why the preconditioning strategy of Rybicki &
Hummer (1991; 1992) is the most suitable one for achieving easily the required
linearity of the statistical equilibrium (SE) equations at each iterative step,
independently of the fact that the linearization and preconditioning techniques
may lead to similar sets of linearized equations if the same information is taken
into account.

Finally, note that iterative methods that require the construction and in-
version of large matrices at each iterative step are of little practical interest. It
was therefore imperative to develop novel RT methods where everything goes
as simply as in the A-iteration scheme, but for which the convergence rate is
extremely high (see the reviews by Auer and by Hubeny in these proceedings).

3. Iterative methods for radiative transfer applications
The essential ideas behind the iterative schemes on which our Non-LTE multi-

level transfer codes are based on can be easily understood by considering the
‘simplest’ Non-LTE problem: the coherent scattering case with source function
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S=(1-¢€)J + €eB, (2)

where € is the Non-LTE parameter, J the mean intensity and B the Planck
function. Note that the mean intensity at the spatial grid point ‘¢’ is the angu-
lar average of incoming (‘in’) and outgoing (‘out’) contributions of the specific
intensity.

The well-known A —iteration scheme is to do the following in order to obtain
the ‘new’ estimate of the source function at each spatial grid-point ‘z’:

SPeV — (1 — €)J? + eB;, (3)

where JoM

¢ is the mean intensity at the grid-point ‘%’ calculated via a formal
solution of the RT equation using the current estimate of the source function
(i.e. using S;-’ld at all the grid-points j). For a given spatial grid of Np points

the formal solution of the transfer equation can be symbolically represented as

I5=Ag[S] + Tg, (4)

where T5 gives the transmitted specific intensity due to the incident radiation
at the boundary and Ag is a Np xNp operator whose elements depend on the
optical distances between the grid-points. Thus, the mean intensity at the grid-
point ‘2’ would be:

Ji = AinST 4+ Ay 1 SE A+ MiiSiH A1 SE + o+ Aine ST + Tie (5)

In this last expression A; ; = Z(A:’; + A;”]‘t)/ 2 (with the sum applied to all the

directions € of the numerical angular quadrature) and a, b and ¢ are simply
symbols that we use as a notational trick to indicate below whether we choose
the ‘old’ or the ‘new’ values of the source function. Thus, for instance, the A-
iteration method consists in calculating J; choosing a = b = ¢ = old, which gives
; = J as indicated in Eq. (3).

The Jacobi method, known in the RT literature as the local ALI method
(see Olson, Auer and Buchler, 1986), and on which most Non-LTE codes are
based on, is found by choosing a = ¢ = old, but b = new, which yields

Jp=JM + Ay (SPeY — Sy = gPld 4 A 68; (6)

In fact, using this expression instead of J'¢ in Eq. (3) we find that the resulting
Jacobi iterative scheme is

Spev = 59 +48;, (7)

with the correction
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Figure 1.  The sensitivity of the maximum absolute eigenvalue () of
the iteration operators of the SOR and SSOR methods to the choice
of the w parameter. (These results have been obtained from Non-
LTE calculations in an isothermal atmosphere of two-level atoms with
¢ = 10~*). The pure GS method that results when applying the SSOR
strategy with w = 1 is four times faster than Jacobi (i.e. than the local
ALI method), while SOR with the optimum w value is 10 times faster.
Fortunately, the rate of convergence of SSOR is relatively insensitive
to the exact choice of w so that a precise optimum value of w is not
crucial for achieving an extremely high convergence rate. The a-value
for w = 1 gives the convergence rate of the pure GS method.

old . __ qold
55; = [(1—¢€)J2¢+eB; — S ]’ (8)
[1—(1-¢€)A;;
where A;; at the spatial grid-point ‘¢’ is the corresponding diagonal element of
the A-operator, which can be obtained easily while doing the formal solution
of the RT equation for calculating J'¢ (e.g. via a formal solver based on the
‘short-characteristics’ method described by Kunasz & Auer 1988).

A superior type of RT methods are those developed by Trujillo Bueno &
Fabiani Bendicho (1995; hereafter TF95), which are based on Gauss-Seidel (GS)
iterations. This type of iterative schemes are obtained by choosing ¢ = old and
a = b =new in Eq. (5). This yields

J; = JAHmeW 4 A, .88, (9)
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where J{’ld“’ew is the mean intensity calculated using the ‘new’ values of the

source function at grid-points 1,2,....; — 1 and the ‘old’ values at points 7,7 +
1,...,Np. The iterative correction is given by

[(1 _ E)Jiold+new + 6Bi _ S?ld]
[1—(1—e€)Ay]

6855 = (10)

It is very important to clarify the meaning of this last equation:

1) First, at point ¢ = 1 (which we can freely assign to any of the two
boundaries of the medium under consideration) use ‘old’ source function values
to calculate J; via a formal solution. Apply Egs. (10) and (7) to calculate SPeV.

2) Go to the next point ¢ = 2 and use S7*" and the “o0ld” source-function
values S;-’ld at points j = 2,3, ..., Np to get Jo via a formal solution. Apply Egs.
(10) and (7) to calculate S5¢V.

3) Go to the next spatial point k and use the previously obtained ‘new’
source function values at j = 1,2,...,k — 1, but the still ‘old’ ones at j =
k,k+1,...,Np to get Jg via a formal solution and S;*% as dictated by Egs. (10)
and (7).

4) Go to the next point k£ + 1 and repeat what has just been indicated in
the previous point until arriving to the other boundary point.

The result of what we have just indicated is a pure GS iteration. A SOR
iteration is obtained by doing the corrections as follows:

8SSOR =, 6855, (11)

where w is a parameter with an optimum value between 1 and 2 which can
be found easily (see section 2.4 of TF95). Obviously, the optimum w-value is
that which leads to the highest rate of convergence, i.e. that which minimizes
the mazimum absolute eigenvalue (o) of the iteration operator of the iterative
scheme. Note that a gives the asymptotic rate of convergence of the iterative
method and that the number of iterations required to reduce the error by a
given factor is inversely proportional to —In(a) (see TF95). The solid line of
Fig. 1 gives the sensitivity of the convergence rate of our SOR radiative transfer
method to the parameter w, showing that it is very significant. Although the
selection criterion for the optimum w-value proposed by TF95 is robust enough
to guarantee the effectiveness of their SOR radiative transfer method, one would
be much happier with a RT method characterized by a similar convergence rate,
but having a considerably reduced sensitivity to the w parameter (which lies
always between 1 and 2).

Has such a RT method been developed? The answer is affirmative, as shown
by the dashed line of Fig. 1. It is a Symmetric SOR (SSOR) method which has
some very interesting mathematical properties (e.g. Hageman & Young 1981).
The corresponding GS limit (i.e. the case with w = 1) goes exactly as indicated
previously, but with the fourth step modified as follows:

4) Go to the next point k + 1 and repeat what has just been indicated in
the previous point until arriving to the other boundary point. Having reached
this boundary point initiate again the same process, but choosing now as first
point ¢ = 1 this boundary point.
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The basic idea of this RT method was clearly indicated in the conclusions
of TF95. With respect to their original GS-based technique the improved GS-
based method yields the converged solution with a factor 2 of saving in the
total computational work, simply because the ensuing formal solver produces
two (instead of just one!) GS iterations: one after the incoming pass with the
formal solver and an extra one after the outgoing pass. The application of the
same iterative scheme, but with 1 < w < 2, produces the SSOR method (see the
dashed line of Fig. 1). Note that its rate of convergence is relatively insensitive
to the exact choice of w so that a precise optimum value of w is not crucial.
An additional interesting feature is that, contrary to what happens with the
original SOR technique of TF95, the SSOR method for RT applications can be
combined with standard acceleration techniques (e.g. with Ng’s acceleration) in
order to achieve even faster convergence (Trujillo Bueno 2002)%.

Finally, it is helpful to remember that all these methods are based on the
idea of operator splitting. Therefore, they are characterized by a convergence
rate which decreases as the resolution of the spatial grid is increased. As a result,
if Np is the number of grid-points in a computational box of fized dimensions, the
computing time or computational work (W) required by these iterative methods
to yield the self-consistent atomic (or molecular) level populations scales with
Np as follows:

e Jacobi-based ALI method — W ~Np?
e GS-based method — W ~Np?/4
e SOR method - W~Np+/Np

The only available multilevel RT method that yields W~Np is the non-linear
multigrid method, which is of particular interest for 3D applications where Np~
10® (see Fabiani Bendicho, Trujillo Bueno & Auer, 1997). In section 2.1 of
the just quoted paper the interested reader can find a brief description of our
“MUltilevel GAuss-Seidel” method (MUGA), which is the generalization of the
GS-based method of TF95 to the non-linear multilevel case. MUGA is actually
the method of choice for the smoothing part of the non-linear multigrid iteration.

4. The Zeeman effect, optical pumping and the Hanle effect

The Zeeman effect requires the presence of a magnetic field, which causes the
atomic energy levels to split into different magnetic sublevels characterized by
their magnetic quantum number M. This Zeeman splitting produces local
sources and sinks of light polarization because of the ensuing wavelength shifts
between the 7 (AM = M, — M, =0) and ¢ (AM = M, — M; = +1) transitions.
The Zeeman effect is most sensitive in circular polarization, with a magnitude
that for not too strong fields scales with the ratio between the Zeeman splitting
and the width of the spectral line (which is very much larger than the natu-
ral width of the atomic levels) and in a way such that the Stokes V' (\) profile

% As a result, the reader may prefer to call it “Super SOR”.
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Figure 2. Illustration of the atomic polarization that is induced in
the lower level of a two-level atom (with J; = 1 and J, = 0) by two
types of anisotropic illuminations (a and b). The incident radiation
field is assumed to be unpolarized and with axial symmetry around
the vertical direction, which is our choice here for the quantization
axis of total angular momentum. In both cases, an excess population
tends to build up in the weakly absorbing sublevels. Note that the
alignment coefficient of the lower level (i.e. pg = (N1 —2Ng+N_1)/v/6,
being N; the populations of the magnetic sublevels) is negative in case
(a) (where the incident beam is parallel to the quantization axis), but
positive in case (b) (where the incident beams are perpendicular to
the quantization axis). The physical understanding of the information
provided in this figure is left as an exercise to the reader.

changes its sign for opposite orientations of the magnetic field vector. This so-
called longitudinal Zeeman effect responds to the line-of-sight component of the
magnetic field. In contrast, the transverse Zeeman effect responds to the compo-
nent of the magnetic field perpendicular to the line of sight, but produces linear
polarization signals that are normally negligible for magnetic strengths B < 100
gauss.

In contrast, the spectral line polarization that is induced by scattering pro-
cesses in the outer layers of stellar atmospheres is directly related with the
anisotropic illumination of the atoms. Anisotropic radiation pumping produces
atomic level polarization—that is, population imbalances and quantum interfer-
ences between the sublevels of degenerate atomic levels. Such a pumping is
selective (e.g. Kastler 1950). For example, upper-level population pumping
occurs when some upper state sublevels have more chance of being populated
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Figure 3. Example of the application of the basic formula of the
Hanle effect to the lower and upper levels of MgH lines that produce
scattering polarization on the Sun. Each point refers to a spectral line
of the @ branch, whose lines have J; = J, = J.

than others. On the contrary, as illustrated in Fig. 2, lower-level depop-
ulation pumping occurs when some lower state sublevels absorb light more
strongly than others. As a result, an excess population tends to build up in the
weakly absorbing sublevels. It is also important to note that line transitions
between levels having other total angular momentum values (e.g., J; = J, = 1)
permit the transfer of atomic polarization between both levels via a process
called repopulation pumping (e.g. lower-level atomic polarization can result
simply from the spontaneous decay of a polarized upper level).

The presence of a magnetic field is not necessary for the operation of such
optical pumping processes, which can be particularly efficient in creating atomic
polarization if the depolarizing rates from elastic collisions are sufficiently low.
The Hanle effect is the modification of the atomic-level polarization (and of its
ensuing observable effects on the emergent Stokes @ and U profiles) caused by
the action of a magnetic field such that its corresponding Zeeman splitting is
comparable to the inverse lifetime of the degenerate atomic level under consider-
ation (Hanle 1924; see the review by Trujillo Bueno 2001). For the Hanle effect
to operate, the magnetic field vector (B) has to be significantly inclined with
respect to the symmetry axis of the pumping radiation field.

A useful formula to estimate the magnetic field intensity By (measured in
gauss) to which the Hanle effect can (in principle) be sensitive is

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2003ASPC..288..551T

FZ0D3ASPC. ~788C “551T!

560 Trujillo Bueno

2nvp g7 = 8.79x10% By g5 =~ 1/tyse , (12)

where vy, is the Larmor frequency, while g; and ¢j¢ are, respectively, the Landé
factor and the lifetime (in seconds) of the atomic level under consideration (which
can be either the upper or the lower level of the chosen spectral line). This for-
mula shows that the measurement and physical interpretation of weak polariza-
tion signals in suitably chosen spectral lines may allow us to diagnose magnetic
fields having intensities between 10™2 and 100 gauss approximately, i.e., in a
parameter domain that is very hard to study via the Zeeman effect alone. Fig.
3 shows an illustrative example of the type of information that this formula may
provide.

In general, the physical interpretation of polarization signatures in spectral
lines requires to find the diagonal and non-diagonal elements of the atomic den-
sity matrix (associated to each level of total angular momentum J of the chosen
atomic or molecular system) which are consistent with both the intensity and
polarization of the radiation field generated within the (generally magnetized)
stellar atmospheric model under consideration. This is a very involved non-local
and non-linear RT problem for which the term ‘Non-LTE of the Second
Kind’ has been proposed (Landi Degl’Innocenti 2002). The numerical solution
of this Non-LTE problem, which lies at the basis of ‘Astrophysical Spectropo-
larimetry’, is addressed below after a brief review of the basic equations.

5. The rate equations for the elements of the atomic density matrix

As illustrated in Fig. 2, the concept of overall population of each level of total
angular momentum J is not sufficient to describe the excitation state of a po-
larized atomic or molecular system. In general, one has to use the mixed state
density operator (p*) of quantum mechanics (e.g. Fano 1957). This operator
is represented in the basis of eigenvectors of the total angular momentum via a
matrix called the atomic density matrix whose (2.J + 1)? elements are:

Pas(M, M) = (aJM|p*|a M), (13)

where p2 (M, M) is the population of the sublevel with magnetic quantum num-
ber M, while p2,(M, M') (with M#M') quantifies the degree of quantum in-
terference (or coherence) between the magnetic sublevels M and M’ pertaining
to the level of total angular momentum J.

In the context of scattering polarization and the Hanle effect it is more
convenient to quantify the atomic polarization of a given level by means of the
following linear combinations of the p2;(M, M') elements (e.g. Omont 1977):

pan) = 3 (CVMVIRFI( 5y Ly 1o )PhOLM), (1)
MM

where the 3-j symbol is defined as indicated by any suitable textbook on Racah
algebra (e.g. Brink & Satchler 1968). It is important to note that 0< K <2J and
—K<Q<K. The pg elements with () = 0 are real numbers given by linear com-
binations of the populations of the various Zeeman sublevels corresponding to
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the level of total angular momentum J. The total population of the atomic level
is quantified by v/2J + 1p}, While the population imbalances among the Zee-
man sublevels are quantified by p¥ (e.g. pg(J =1) = (Ny — 2Ny + N_1)/V/86).
However, the pQ elements with QQ#£0 are complez numbers given by linear com-
binations of the coherences between Zeeman sublevels whose magnetic quantum
numbers differ by Q. In fact, since the density operator is Hermitian, we have
that for each spherical statistical tensor component pg with @ > 0, there exists
another component with @ < 0 given by p{fQ = (—l)Q[pg ]*. We thus have

(2J +1)? density—ma.tnx elements corresponding to each level of total angular
momentum J. The p8 elements produce the dominant contribution to the Stokes
I parameter. The p, elements (the alignment components) contribute to the
linear polarization s1gnals, which we quantify by the Stokes parameters @ and
U (see sections 8.1, 8.2, 9.1 and 9.2). The p1Q elements (the orientation com-

ponents) contribute to the circular polarization (see the second point of section
8.3).

For the case of a multilevel atom devoid of hyperfine structure and taking
into account quantum coherences only between the sublevels pertaining to each
J-level, the rate of change of the density matrix element p‘g (J) in the magnetic

field reference system reads® (Landi Degl’Innocenti 1983, 1985):

9 585(0) = ~2mivy 0,Q P () (15)

+33 I Ta(J Ki1Qr = JEQ)

Ji KjQ

+ > > 5t (Ju) Te(Ju; Ku Qu = ;K Q)
Ju KuQu

+3 D paH(Ju) Ts(Ju; Ku Qu » J; K Q)
Ju KuQuy

- Y P (D RA(;KQK Q — )
KIQI

-ZpQ )Re(; K QK Q — Jy)

-3 pg, (J)Rs(J;KQ,K Q — Ji)
KIQI
)5 (D),

where v, = 1.39 x 10° B is the Larmor frequency (with the magnetic field
strength B in gauss). Egs. (15) indicate that in the magnetic field reference

®This is the reference system with the quantization axis of total angular momentum parallel to
the magnetic field vector.
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system the population imbalances (i.e. the pg density-matrix elements with
Q = 0) are insensitive to the magnetic field, while the coherences (i.e. the pg
elements with Q+#0) are reduced and dephased as the magnetic field strength
increases. We note that the limiting case in which polarization phenomena
are neglected (cf. Mihalas 1978) is obtained by retaining only the terms with
K = @Q = 0 and neglecting the Zeeman splittings.

The last term of Eq. (15) is the contribution of elastic collisions to the
rate of change of pg (J), since D) is the depolarizing collisional rate for the
density-matrix element of rank K (e.g. Lamb & Ter Haar 1971). For notational
simplicity, Eq. (15) does not include the contribution of inelastic collisional
rates. However, the scattering polarization calculations shown below do take
them fully into account. It is more interesting to focus on the radiative rates,
both on the transfer rates due to absorption (T4), spontaneous emission (Tg)
and stimulated emission (T's) from other levels, and on the relazation rates
due to absorption (R4), spontaneous emission (Rg) and stimulated emission
(Rs) towards other levels. The explicit expressions for all these transfer and
relaxation rates can be found in Bommier & Sahal-Bréchot (1978) and Landi
Degl’Innocenti (1983, 1984, 1985). Of particular interest are the transfer rate T4
due to absorption from lower levels and the transfer rate T due to spontaneous
emisstons from upper levels.

Let us first consider the expression for T4 (Landi Degl’Innocenti 1983):

TA(J; KiQi — J;KQ) = (21+1)B(Ji — J) 3. /32K +1)(2K; + 1)(2K; + 1)
K. Q:

J g1 )
X(_l)K1+Qz J g 1 (_{22 gl _I§§ >JCIQ{:7
K K, K, : r

where J5*, with K, = 0,1,2, and Q; = —Ki, ..., K;, are radiation field ten-
sors given by integrals over frequency and solid angle of the Stokes parameters,
we1ghted by suitable frequency and angular functions (see their exphclt expres-
sions in section 3 of Trujillo Bueno 2001). We point out that J§ is the familar
J-quantity of the standard Non-LTE problem (which is an average over frequen-
cies and directions of the Stokes I parameter weighted by the absorption profile),
while

(16)

ag 1
R=[aof oo 60 - 0Lg+307 0@, (7
where ¢, is the absorption line shape and z the frequency distance from line
center measured in units of the Doppler width. This JZ tensor, which is dom-
inated by the contribution of the Stokes I parameter, provides information on
the ‘degree of anisotropy’ of the radiation field. For instance, let us assume a
one-dimensional plane-parallel atmosphere with the Z-axis along the vertical. In
the absence or in the presence of a microturbulent and isotropic magnetic field,
the only non-zero radiation field tensors are JJ and JZ. Therefore, a funda-
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Figure 4. The ‘anisotropy factor’ in solar Fe 1 lines. For each iron

line of a realistic multilevel model (see Shchukina & Trujillo Bueno
2001) the figures show the value of A at the atmospheric height where
Tiine = 1 along the line of sight for a simulated observation at u = 0.1.

mental quantity in scattering polarization is the ‘anisotropy factor’ A = J2/Jg,
whose possible values are bounded as dictated by the following expression®:

—% <V24<1 (18)
In the chosen reference system (with the Z-axis along the vertical), the largest
value corresponds to an illumination coming from a purely vertical radiation
beam (case (a) of Fig. 2) and the lowest one to a purely horizontal radiation
field without any azimuthal dependence (case (b) of Fig. 2). Figure 4 of Trujillo
Bueno (2001) gives the variation of A with line optical depth in Milne-Eddington
atmospheres, showing that A increases with the source function gradient. An
additional interesting example is given in Fig. 4, which shows the A values
for many lines of the Fe 1 spectrum resulting from a self-consistent Non-LTE
calculation in a semi-empirical model of the solar atmosphere.

We now turn our attention to the transfer rate due to spontaneous emissions
from upper levels (Landi Degl’Innocenti 1983):

Ju Ju K
Te(Ju; Ku Qu ~ J3K Q) = 0xk.00q. (—1)“"+"“+K{ JoJ 1 }

X (2Jy + 1)A(Jy = J) (19)

This expression and the corresponding term of Eq. (15) clearly indicate that
the atomic polarization of a given level can simply result from the spontaneous
decay of a polarized upper level. As mentioned in section 4, this is known as
repopulation pumping.

®Note that there is a typing error in Eq. (11) of Trujillo Bueno (2001), since the inequality
given there is correct for 2.4 and not for A, as it was typed.
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6. Formal solvers of the Stokes-vector transfer equation

In the polarized case, instead of the standard RT equation for the specific inten-
sity I(x, ) one has to solve, in general, the following vectorial transfer equation
for the Stokes vector I(z,Q) = (I,Q,U, V)! (with {=transpose)

I €1 nooNQ MU NV I
d1 Q| _|e]|_|n7 m e —p Q (20)
ds | U €U nwo—pv N PQ u -

14 37 v pU  —pPQ NI |4

This equation, whose QED derivation can be found in Landi Degl’Innocenti
(1983), can be written in more compact notation as follows:

d

—I = e—KI, (21)
ds

where s measures the geometrical distance along the ray of direction ﬁ, K is the

absorption (or propagation) matrix and e is the emission vector. Alternatively,

introducing the optical depth dr = —nds,

dr_KTI-S, (22)
dr
where K* =K /n; and S = e/n;.

Let us consider three spatial points (points M, O and P) situated along
the direction € of a ray propagating in a given spatial grid. Point O is the
grid-point of interest at which one wishes to calculate the Stokes vector Ip for
a given frequency (z) and direction (ﬁ) Point M is the intersection point with

the grid-plane that one finds when moving along —Q. At this upwind point the
Stokes vector Iy (for the same frequency and angle) is known from previous
steps. In a similar way, point P is the intersection point with the grid-plane
that one encounters when moving along Q). We also introduce the optical depths
along the ray between points M and O (Amy) and between points O and P
(A7p). ;From the formal solution of Eq. (22) one finds that the Stokes-vector
at the grid-point O is

Io = O(0, Ary) Iy + /0 M O, Ar) S(2) dt, (23)

where O(¢,Any) is the evolution operator (i.e. the 4x4 Mueller matrix of
the atmospheric slab between ¢ and A7y). In general, this evolution opera-
tor does not have an easy analytical expression (see Landi Degl'Innocenti &
Landi Degl’Innocenti, 1985) and, therefore, the integral of the previous equa-
tion cannot be solved analytically. However, if the 4x4 absorption matrix K*
conmutes between depth points M and O (e.g. because one assumes that matrix
K* is constant between M and O and equal to its true value at the middle point)
the evolution operator reduces then to an expression given by the exponential of
the absorption matrix. The integral of Eq. (23) can then be solved analytically
assuming that the source function vector S varies parabolically along M, O and
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Figure 5.  The variation of the maximum relative true error versus
the iteration number for three Non-LTE Zeeman line transfer calcu-
lations (see section 8.3). Dotted line corresponds to the local ALI
method with Ng acceleration in combination with the original DELO
formal solver using n = 20 spatial grid-points per decade (the finest
grid). The dashed line corresponds to Jacobi with Ng acceleration, but
using our formal solution solver with n = 20 points per decade. The
solid line corresponds to an iterative calculation without Ng acceler-
ation for a grid with n = 9 (the coarsest grid) and using our formal
solution method of the Stokes-vector transfer equation.

P. The first of the two formal solution methods presented here is precisely based
on this idea and the result is

Io = O(0, Amm)Im + TMSM + ¥oSo + ¥pSp, (24)

where ¥x (with X either M, O or P) are 4x4 matrices which are given in-
terms of A7my and A7p, in terms of the inverse of the absorption matrix K*

and in terms of the analytical expression given by Landi Degl’Innocenti & Landi

Degl’Innocenti (1985) for the evolution operator.

Figure 5 shows a comparison between two different calculations performed
with the iterative methods we have developed for solving the Non-LTE Zeeman
line transfer problem outlined in section 8.3. One of such calculations was car-
ried out combining ALI with the DELO formal solution method of Rees, Murphy
& Durrant (1989), while the second Non-LTE calculation was performed using
the new formal solution method. The figure gives the variation of the maximum

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2003ASPC..288..551T

FZ0D3ASPC. ~788C “551T!

566 Trujillo Bueno

relative true error (Te) versus the iteration number. It demonstrates that DELO
is not sufficiently accurate for self-consistent Non-LTE calculations. Note that,
even with n = 20 spatial grid-points per decade, the Non-LTE calculation us-
ing DELO as formal solver gives a maximum true error of the order of 10%.
However, our formal solution solver for polarization transfer assumes that the
source function vector varies parabolically and this is indeed suitable for Non-
LTE calculations yielding a T, < 1% already for n = 9. This new formal solution
method can be considered as a generalization, to the polarization case, of the
short-characteristics method of Kunasz & Auer (1988), which is often applied
for solving 1D, 2D and 3D Non-LTE unpolarized transfer problems. The Non-
LTE Zeeman line transfer calculations of Trujillo Bueno & Landi Degl’Innocenti
(1996) were performed combining this Stokes-vector formal solver with the iter-
ative schemes discussed in section 8.3.

The reason why the DELO method, as originally formulated, is not suitable
for Non-LTE polarization transfer is because it is based on a linear interpolation
approximation. However, it can be easily improved so as to make it a truly ac-
curate formal solution method without deteriorating its efficiency. The original
DELO method is based on the following transfer equation which can be easily
derived from Eq. (22):

d

—I=1I-S 25

dT eﬂ) ( )
where the effective source-function vector Seg = S — K'I, being K =K*-1

(with 1 the unit matrix). Therefore, the Stokes vector at grid-point O reads:

ATprr
Io = e 2™ I + / . e~ (BM=tg o (¢)dt . (26)

Assuming that S varies parabolically along M, O and P, but that K'I varies
linearly along M and O, we obtain:

[1+‘I/OK’0]IO = [e_ATMl— ‘I/,MKIM]IM+ Yrpr Sy +¥%0So +¥pSp, (27)

where the ¥x functions (with X either M, O or P) are given in terms of the
quantities A7y and A7p, while \II'X in terms of Any.

The big advantage of this improved DELO method (which I like to call
‘DELOPAR’) is that it is substantially more accurate than the original DELO
method. Note that for the limiting case of negligible polarization DELOPAR
has full parabolic accuracy, while DELO simply has linear accuracy. It is in
fact a very suitable formal solver for obtaining the self-consistent solution of
complicated Non-LTE polarization transfer problems, both for the Zeeman line
transfer case (Trujillo Bueno & Landi Degl’Innocenti 1996) and for the solution
of the multilevel Hanle effect problem (see Section 9.2). We have also applied
it for developing a Non-LTE inversion code of Stokes profiles induced by the
Zeeman effect (Socas-Navarro, Trujillo Bueno & Ruiz Cobo 2000a,b). Fabiani
Bendicho & Trujillo Bueno (1999) indicate how these formal solution methods
of the Stokes-vector transfer equation can be generalized to the 3D case with
horizontal periodic boundary conditions.
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7. Emission and absorption coefficients

The general expressions of the components of the emission vector and of the
absorption matrix are very involved and will not be written here (see Landi
Degl’'Innocenti 1983). They are given in terms of the pg elements of the upper
and lower levels of the line transition under consideration and on line-shape pro-
files whose dependence on the magnetic quantum numbers cannot be neglected
when the Zeeman splittings are a significant fraction of the spectral line width.
Such general expressions simplify considerably for several cases of practical in-
terest. Probably, the most familiar case is that of Zeeman line transfer without
atomic level polarization, in which the polarization signatures are purely due to
the wavelength shifts of the 7 and o transitions between the magnetic sublevels
of the upper and lower levels (e.g. Landi Degl’Innocenti 1992; Stenflo 1994).
For the case of scattering line polarization in weakly magnetized regions of stel-
lar atmospheres, the general expressions for the I, Q and U components of the
emission vector reduce to

1 .
er = €0 pg + GOw.(Iz)Jz{z 753 u? —1)p5 — V3uy/1 — p?(cos xRe[pf] — sin xIm[p7])

+—-\g——(1 — u?)(cos 2x Re[p3] — sin2x Im[pg])}, (28)

€Q = €9 w.(ru)J,{z f(u — 1)pg — V/3py/1 — p?(cos xRe[p}] — sin xIm[p}])
\/§

5 (1+ ?)(cos 2x Re[p3] — sin 2x Im[p3]) }, (29)
€U = € wJ Jl\/— {\/ 2 (sin xRe[p?] + cos xIm[p?])
+u(sin 2x Re[p2] + cos 2x Im[p2])}, (30)

where the p‘g values are those of the upper level of the line transition under con-
sideration, €9 = (hv/4mw)Ayd N /2T, + 1 (with N the total number of atoms

per unit volume), wSi) g, 18 the quantity introduced by Landi Degl’Innocenti
(1984) (which depends only on J, and J;), and where the orientation of the
ray is specified by g = cosf (with 8 the polar angle) and by the azimuthal
angle x. The elements 717, ng and ny of the absorption matrix are given by
identical expressions (i.e. by n; = €5, 19 = €@ and ny = €y), but with

= (hv/47)B, ¢ N+/2J; + 1 instead of €, w(J?)Ju instead of w-(Ii)Jl and with
the pg values of the lower level of the line transition instead of those of the up-

per level (for the case in which stimulated emissions are neglected). Note that

€@ and 7¢ depend on both the population imbalances (p2) and on the coherences

(sz, with Q = 1,2), while ey and 7y depend only on the quantum coherences’.

"In these expressions, the reference direction for Q > 0 lies in the plane formed by the propa-
gation direction and the Z-axis.
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8. Linear Problems: the two-level atom without ground-level polar-
ization

The following sub-sections summarize how the iterative schemes of section 3 can
be generalized to several polarization transfer problems for which the operator
A of Eq. (1) does not depend on the unknown x. To have this simplification,
one needs to choose a two-level atomic model neglecting stimulated emissions
and ground-level polarization®.

8.1. Resonance line polarization and the Hanle effect of a microtur-
bulent magnetic field

Let us consider first the polarization transfer problem that offers the easiest con-
ceptual transition between unpolarized and polarized Non-LTE radiative trans-
fer. We assume a two-level model atom neglecting atomic polarization in the
lower level and a one-dimensional (1D) plane-parallel atmosphere taking into
account the Hanle effect caused by the presence of a weak microturbulent and
isotropic magnetic field. Since for this model atmosphere the radiation field has
rotational symmetry with respect to the vertical to the stellar surface, the only
non-vanishing Stokes parameters are I and Q°. As shown in detail by Trujillo
Bueno & Manso Sainz (1999), the application of the general equations (15) to
this two-level atom problem leads to the following SE equations:

Sy = (1—-¢)J) + €B,, (31)
g _ (1-¢ @ 7
So = %1 To(1l—e) wy 5,705 (32)

where (for K =0 and K = 2)

23 20 +1 g
2 e 170

In Eq. (32) # is a Hanle depolarization factor which varies between 1
(for v, /Ay = 0, with v, the Larmor frequency) and 0.2 (for vy, /Ay —0), € is
the collisional destruction probability due to inelastic collisions, § = D(® [Au
is the collisional depolarizing rate due to elastic collisions measured in units
of the Einstein A,; coefficient, jg and J¢ are the only radiation field tensors
that play a role in this particular scattering polarization problem, and p and
p? are the density-matrix elements of the upper level normalized to the overall
population of the ground level. These two density matrix elements are here the
only unknowns whose self-consistent values need be calculated at each spatial
grid-point.

S§ =

(). (33)

8In addition, one has to prescribe the line opacity, which is proportional to the overall population
of the lower level.

We are choosing the reference direction for Q > 0 in the plane formed by the propagation
direction and the vertical.
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Since the ground level is assumed to be unpolarized and the chosen magnetic
field is microturbulent with mixed polarities, the absorption matrix K of Eq.
(21) is diagonal (i.e. K = n;1, with 1 the 4 x 4 unit matrix). Therefore, the
general Stokes-vector transfer equation (21) reduces to the following uncoupled
equations!?

dr 15, (34)
dr,

d
E’TZQ = Q - SQ’ (35)

where 7, is the monochromatic optical depth along the ray, while S; and Sg are
the source function components of the Stokes parameters I and @, respectively.
The line contribution to S; and Sg depend on the values of S§ and SZ:

(2)

R w
Shine — g0 4 _Juli(g,2_ 1)52 36
I 0 2\/5( u )Sa (36)
@)
. 3
Siine = SA (2 - 1)8, (37)

2v/2
2)

where wjy, ; is the quantity introduced by Landi Degl’Innocenti (1984), which

only depends on the values of J, and J; (e.g. wfg =1, but w((,?z = 0). We thus

see in Eq. (37) that the ‘sources’ of Stokes @ are the upper-level population
imbalances (S2), which in turn are created by anisotropic radiation pumping
(see Eq. 32).

We now turn our attention to describing how the iterative methods of sec-
tion 3 can be applied to solve this polarization transfer problem. As shown in
detail by Trujillo Bueno & Manso Sainz (1999), it suffices with introducing into
Egs. (31) and (32) the following expressions:

Jo (&)= Jg*(5) + AQ(3,9) 855(d) + A3(i,)8S5(3), (38)

Jg (i)~ J§*(4) + A§(4,1) 6S9(i) + A5(i,4)855(4), (39)

where ‘i’ is the spatial grid-point under consideration, A(i,4), A3(4,1), A3(s,1) =

w(JZu)JZ AS(i,i) and A%(i,i) are the diagonal elements of the A-operators of the

problem and §S§ (i) = SE™" — S()KOld (with K = 0 and K = 2). The Jacobi.
scheme (i.e. the local ALI method) is obtained by choosing * = old in the
previous expressions, while our GS-based methods are found by taking * =
old+new.

It is very important to understand that in typical stellar atmospheres the
‘degree of anisotropy’ of the radiation field is weak (i.e. J2/J¢ < 1) and that this

1%Note that the formal solution to find I and Q at each point within the medium from given
values of St and Sg can be carried out applying directly the same formal solvers developed for
the unpolarized case (e.g. the short-characteristics technique).
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Figure 6. The maximum relative change R, versus the iteration num-
ber for different iterative schemes. We have adopted a constant prop-
erty atmosphere with collisional destruction probability e = 104, Ini-
tialization: LTE values for p} and p§ = 0. Dashed-dotted lines: the
Jacobi-based ALI method. Dashed lines: the GS method. Solid lines:
the SSOR method (with w = 1.6). For each pair of lines the upper one
gives R.(pZ) and the lower one R.(p}). From Trujillo Bueno & Manso
Sainz (1999).

implies that the population imbalances of the J-levels are only a small fraction
of their overall population (i.e. p3/p) < 1). As a result, J¢ is dominated by
the Stokes I parameter (see the top panels of Fig. 6 in Trujillo Bueno 2001),
which in turn is set by the S values (i.e. by the level populations). Therefore,
in most practical situations, one can simply retain the information provided by
the diagonal elements of the AJ operator and obtain the following system of
equations which give the corrections at each iterative step'!:

[1— (1 - e)AS(,4)]680 = (1—¢€) J0* + B, — 8%, (40)

(1—c¢) 2 .
0S8 = M5 wi), T3 — 530, (41)

Figure 6 shows an example of the convergence rate. We point out that the
computing time per iteration is similar for the three RT methods and that matrix

'Note that J{ and S5 are being improved at the rate given by Eq. (40), which yields S3.
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inversions are not performed at all. Thus, our pure GS method is 4 times faster
than the local ALI method, while our SSOR method for polarization radiative
transfer applications is 10 times faster.

Finally, it is also of interest to mention that in weakly polarizing media the
A-iteration scheme can often be used to solve this type of resonance line polariza-
tion problems if one initializes using the self-consistent pg-values corresponding
to the unpolarized case (see Fig. 2 of Trujillo Bueno & Manso Sainz 1999).
However, since the computing time per iteration in all these methods (Jacobi,
GS, SOR and SSOR) is basically the same, it is better and safer to solve polar-
ization transfer problems using any of our rapidly convergent iterative methods,
which yield the self-consistent solution independently of the initialization.

8.2. The Hanle effect of a deterministic magnetic field

Let us now consider polarization transfer problems where the rotational sym-
metry of the radiation field with respect to the vertical to the stellar surface is
broken!2. This can happen either because one assumes 1D geometry with an
inclined magnetic field that produces the Hanle effect, or because one is dealing
with 2D or 3D geometries without any magnetic field, or because one is inves-
tigating the more general case where we have magnetic fields of any orientation
in horizontally inhomogeneous stellar atmospheres. As a result, in addition to
J§ and JZ, we have now the real and imaginary parts of J? and J2. These
four extra radiation field tensors, which quantify the degree of breaking of the
axial symmetry, are given by integrals over frequency and direction of suitable
combinations of the Stokes I,Q and U parameters. We point out that, if we
choose a reference system with the Z-axis along the stellar radius vector, we
have J{ > J2 > JZ ~ J2 (e.g. Fig. 6 of Trujillo Bueno 2001).

The density-matrix elements of the upper level that are now required to fully
specify the excitation state are the overall population (v/2J, + 1p3(u)), the pop-
ulation imbalance (p2(u)), and the quantum coherences Re(p?(u)), Im(p3(u)),
Re(p3(u)) and Im(p5(u)). These are the only pf(u) elements that can be dif-
ferent from zero, independently of the J, value. This is a consequence of the
assumption of unpolarized ground level and of the fact that the radiation field
tensor Jg only has K<2. In fact, if we allowed for the possibility of ground-
level polarization (e.g. p{ (1)#0 with K even) then the absorption of the K = 2
component of the radiation field tensor could generate non-zero p(‘;{ *2 values (see
section 9).

When studying Hanle-effect problems like the one we are considering here it
1s interesting to write the SE equations in a reference system with the quantiza-
tion axis of total angular momentum chosen along the vertical. In this case, Eq.
(15) is still valid, except that the magnetic term (i.e. the first term of the rhs)
becomes equal to —27ivg g5 Y ICgQ, pg,(J ), where ICgQ, is a magnetic kernel

which couples the density matrix elements of given rank K among themselves

!2See also the information provided by Nagendra (2002) concerning their formulation of the two-
level atom Hanle-effect problem without ground level polarization, but taking into account
PRD effects. For additional information see Faurobert-Scholl, Frisch & Nagendra (1997), and
Paletou & Faurobert-Scholl (1997).
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(Landi Degl’Innocenti, Bommier and Sahal-Bréchot 1990). The application of
the general SE equations to the present two-level atom problem still yields ex-
pression (31) for 57, but the following five equations for Sé (see Manso Sainz &

Trujillo Bueno 1999):

S5 0 M M3z My Ms S5
S7 My 0 Mss My Mos Sy
l+6(1—e)]| S2 | =-1~-€eTu| Msz Msz 0 Mss Mss 52
G2 My My Mgz 0 Mg S3
52 Ms; Msz Mss Msa O 52
T3
J3
+(1—¢) w-(]i)-]l —if , (42)
J3
_j%

with 'y, = 8.79 x 10%g;, B/A,; (with B in gauss and A,; in s™!), and where 5’%

and J7, indicate the real parts, while S’é and J % the imaginary parts. The M;;-
coefficients, which can be obtained from the components of the magnetic kernel
K, depend on the orientation of the local magnetic field vector (see Table 1 of
Landi Degl’Innocenti et al. 1990). The SE equations (42) have a clear physical
meaning. The magnetic operator M couples locally the K = 2 statistical tensors
among them. The second term in the 7.h.s. of Eq. (42) is the radiative coupling
term. It ‘transfer’ the symmetry properties of the radiation field directly to
the atomic system. Therefore, even if I'y, = 0 optical pumping processes can
generate both population imbalances (if JE#0) and coherences (if J2#0 and/or
J2+#0). In the presence of an inclined field such Sf? values are modified by
the action of the magnetic operator (the Hanle effect). On the other hand,
assuming J2 = J2 = 0 all coherences are zero if I', = 0. However, in the
presence of an inclined magnetic field (but still assuming JZ = J2 = 0 on the
basis of the argument that in stellar atmospheres they are much smaller than J&)
coherences are generated through the magnetic operator. As deduced from Eq.
(42), this is possible thanks to the population imbalances (S3) that are directly
induced by the anisotropic illumination (JZ). In magnetized stellar atmospheres,
the population imbalances themselves are in fact the main ‘source’ of quantum
coherences (i.e. from the point of view of the above-mentioned reference system).

The transfer equations for this type of Hanle-effect problems where the
ground level is assumed to be unpolarized are similar to Egs. (34) and (35),
but with an extra equation for the Stokes U-parameter. As shown in detail by
Manso Sainz & Trujillo Bueno (1999), the iterative methods of section 3 can
be obtained easily by introducing into the previous SE equations the following
approximations:

Jo ()~ Jg*(5) + AJ(5,4)0S3(3),
i} ] (43)
T (i) = J* (1),

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2003ASPC..288..551T

FZ0D3ASPC. ~788C “551T!

Generation and Transfer of Polarized Radiation 573

where * = old for Jacobi and * = old+new for the Gauss-Seidel scheme, being
‘> the spatial grid-point under consideration. One then obtains, at each grid-
point ‘¢’ independently, a system of equations that can be solved easily to find
the new values of Sg (¢). We point out that this is equivalent to applying the

operator splitting technique to the AJ operator only. It can be demonstrated
that in stellar atmospheres no gain is obtained if the splitting is applied to the
whole set of 36 operators that correspond to this Hanle-effect problem (Manso
Sainz & Trujillo Bueno 1999).

All these equations are valid in 1D, 2D and 3D. The only difference is the
formal solver that one has to apply in each case. Thus, for example, for 2D Hanle-
effect problems with horizontal periodic boundary conditions a very suitable
2D formal solution technique is that developed by Auer, Fabiani Bendicho and
Trujillo Bueno (1994), while for solving the Hanle effect problem in 3D we use
the formal solver developed by Fabiani Bendicho & Trujillo Bueno (1999).

8.3. Non-LTE Zeeman line transfer

Finally, we consider the case of Zeeman line transfer for situations where the
magnetic field is sufficiently strong (typically B > 100 Gauss) so that the Zeeman
splitting of the atomic levels is much larger than the natural width. This implies
that in the magnetic field reference frame all the quantum coherences between
the Zeeman sublevels vanish, which means that only the pg elements with Q=0
suffice to describe the atomic excitation (Landi Degl’Innocenti, Bommier and
Sahal-Bréchot 1991). Since we now have Zeeman splitting with magneto-optical
effects, all the coefficients of the absorption matrix K are in principle non-zero
and the solution of this problem requires the application of a fast an accurate
formal solver of the Stokes-vector transfer equation. To this end, a good choice is
to apply the DELOPAR method described in section 6. One should distinguish
two cases:

(1) Zeeman line transfer without atomic level polarization. With
this simplification, the unknowns of the problem are the same as those corre-
sponding to the standard Non-LTE problem, i.e. the overall population of each
atomic level (v/2J + 1pQ). The only novelty is that, in the SE equations, in-
stead of having for each radiative transition the well-known quantity J (which
is identical to the radiation field tensor J§), we have

= 1
Jool = =
pol ain

/dm/dﬁ[@;]+@QQ+@UU+@VV], (44)
where ®x (with X = I,Q,U or V) are the profiles of the first row (or column)
of the 4x4 line absorption matrix, which depend on the Zeeman splitting and on
the direction of the magnetic field vector with respect to the direction  of each
ray. Therefore, the numerical solution of the multilevel Zeeman line transfer
problem without atomic polarization can be carried out applying directly any
of the operator splitting methods of section 3. For instance, for the case of a
two-level atomic model the relevant equation to be solved iteratively is

S=(1-€) Jps + €B,, (45)
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It is straightforward to show that the application of the iterative schemes
of section 3 yields an iterative correction similar to Eq. (8) for the local ALI
method, and to Eq. (10) for our GS-based schemes'3. The only difference is
that now we need to calculate jpol and the diagonal elements of the A oper-
ator of the problem, whose values depend on the Zeeman splitting. The re-
sulting convergence rate is similar to that shown in Fig. 6 for the p) values.
Some interesting model calculations have been presented by Trujillo Bueno &
Landi Degl'Innocenti (1996) and by Bruls & Trujillo Bueno (1996). These au-
thors investigated in detail the impact of the Zeeman splitting on the atomic
level populations in the presence of magnetic field gradients. Previously, such
an impact had been investigated for constant magnetic fields only (Rees 1969;
Domke & Staude 1973; Auer, Heasley & House 1977). Of particular interest is
the ‘polarization-free’ approximation of Trujillo Bueno & Landi Degl’Innocenti
(1996), ie. Joq =4 fdz [ dQ®; I, which provides a fairly good account of
the effects of homogeneous and inhomogeneous magnetic fields on the statistical
equilibrium without having to solve the Stokes-vector transfer equation'®.

(2) Zeeman line transfer with atomic level polarization. Consid-
ering atomic polarization in the Zeeman line transfer problem complicates the
situation considerably. First, the number of unknowns grows significantly, since
one must calculate the population of each Zeeman sublevel (or, alternatively,
the p{ density matrix elements). Second, there is no longer a single radiation
field tensor that plays a role in the SE equations. In principle, we may have
both atomic orientation (e.g. pj) and alignment (e.g. p3)-

One has atomic orientation in a given level when the populations of its
Zeeman sublevels with magnetic quantum numbers M and —M are different.
In the absence of level crossings between the J-levels (or between the F-levels if
we were dealing with a hyperfine structured multiplet) the only way to induce
atomic orientation is via a radiation field showing net circular polarization or
if the pumping radiation has spectral structure over a frequency interval Av
smaller than the frequency separation between the Zeeman sublevels (e.g. via
Doppler-shifted spectral-line radiation). Although solar-like atmospheres have
both magnetic fields and macroscopic mass motions, there is a physical argument
that suggests that the errors we make by neglecting atomic orientation might
be small. This is because the level populations in realistic atomic models are
controlled mainly by strong UV line transitions and continua. The critical UV
lines are broad and weakly split.

The other manifestation of atomic level polarization is alignment, which is
non-zero when states of different |M| are unequally populated, while the popu-
lations in M and —M can be the same. This can simply occur via anisotropic
radiation pumping, even in the presence of the Zeeman splitting of a strong
magnetic field. However, from the two-level atom calculations of Bommier &
Landi Degl’Innocenti (1996), we expect the influence of atomic alignment on
the emergent Stokes profiles to be significant mainly for weakly split lines and
concerning only @ and U. Bommier & Landi Degl’Innocenti (1996) applied nu-

138ee also Takeda’s (1991) alternative formulation of the local ALI method.

Note that the profile ®; accounts for the Zeeman broadening of the Stokes I profile.
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merical methods that require the construction and inversion of large matrices.
Fortunately, this type of problems (including its generalization to the full multi-
level case) can be solved in a much more efficient and general way applying the
iterative methods discussed in section 3. To this end, it suffices to follow the
same ideas that we have summarized above. Finally, it may be useful to mention
that Sdnchez Almeida & Trujillo Bueno (1999) introduced a suitable approxi-
mation for facilitating the numerical solution of the general Zeeman line transfer
problem. Figure 7 of their paper illustrates that sizable population imbalances
can indeed be generated even in the presence of relatively strong fields.

9. Non-linear Problems: taking into account lower-level polarization

The assumption of unpolarized lower-level is strictly true for line transitions with
Ji=0 of atoms without hyperfine structure!®>. The argument used in favour of
this simplifying approximation for other J; values is that the lower level of a line
transition is generally long-lived, and that it must thus have plenty of time to
be depolarized by elastic collisions and/or weak magnetic fields (Stenflo, 1994).
However, it has been demonstrated recently that the ground and metastable
levels of a variety of solar spectral lines are indeed significantly polarized (see
the review by Trujillo Bueno 2001).

The consideration of lower-level atomic polarization leads to a coupled sys-
tem of non-linear equations, even for the case of a two-level model atom. More-
over, it implies that even in the unmagnetized case the absorption matrix K is
not simply given by ny1. As a result, there is always a coupling of the intensity
with the Stokes @ and U parameters which is due to the absorption process. In
other words, now we have dichroism, i.e. the absorption coefficient in the line
transition depends on the polarization of the incident radiation.

9.1. Multilevel scattering polarization without magnetic fields

Let us consider first the 1D case of a plane-parallel atmosphere without mag-
netic fields. As in section 8.1 the symmetry properties of the radiation field are
described by J§ and J¢ and there are no coherences. Moreover, the only non-
zero Stokes parameters are I and @, and the Stokes-vector transfer equation
(21) reduces to

d
Bl _ 4
dsI esr—nr I—ng Q, (46)
d
£Q=6Q*77QI—TIIQ, (47)

where the emission and absorption coefficients are given by expressions (28) and
(29), but with p? = p2 = 0.

It is easy to show from these equations that the emergent fractional polar-
ization at p is approximately given by (Trujillo Bueno 1999; 2001):

*Note also that a level with J = 1/2 can be oriented but not aligned.
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QI ~ (1= W)W a(up) — Zaflow), (48)
where the reference direction for @ > 0 has been chosen here along the line
perpendicular to the radial direction through the observed point. We note that
ot = pt/pd (ie. it is the fractional atomic alignment), while W = wf,i)Jl and
2= wf,??,u (e.g. W= Z = —1/2 for a transition with J; = J, = 1). In Eq. (48)
the o2 values are those corresponding to the optical depth 7 where 7/u =~ 1
(which means 7 = 0 for a limb observation at x = 0). Formula (48) shows that
the observed linear polarization amplitude in a given spectral line has in general
two contributions: one from the fractional alignment of the upper-level (03(u))
and an extra one from the fractional alignment of the lower level (¢2(1)). In
general, the first contribution (caused exclusively by the emission events from
the polarized upper level) is the only one that is normally taken into account.
However, the second contribution (caused by the selective absorption resulting
from the population imbalances of the lower level) plays the key role in producing
the ‘enigmatic’ linear polarization signals that have been discovered recently in
‘quiet’ regions close to the solar limb'® as well as in solar filaments (Trujillo
Bueno 1999, 2001; Manso Sainz & Trujillo Bueno 2001; Trujillo Bueno et al.
2002b; see also Trujillo Bueno & Landi Degl’Innocenti 1997).

The formal solution of the transfer equations (46) and (47) can be carried
out using any of the methods previously developed for the unpolarized case.
This is because, in place of Egs. (46) and (47), one can write two decoupled
transfer equations: one for I = I + @ (with absorption coefficient n = nr+ng
and emission coefficient €t = €7 + €g) and an extra one for I~ = I — Q (with
absorption coefficient 7~ = 5 — 7o and emission coefficient €~ = €5 — €q).

The SE equations are given by Eq. (15), but without the magnetic term
because here vy = 0. As mentioned above, the only non-zero radiation field
tensors are J{ (intensity) and JZ (anisotropy). As a result, each level of total

angular momentum J is described by its overall population (v/2J + 1pJ) and by

a hierarchy of population imbalances quantified by'” p2, p§, of, ... péf""‘"‘, whose

absolute values decrease with increasing K. Note that we can now induce pf
values with K = 4,6, ..., Kjhax because the lower levels of the line transitions of
the assumed atomic model can be polarized.

The best we can do to illustrate the additional complexity is to apply the
general equations (15) to the case of a gas of two-level atoms with J; = J,, =
1, neglecting stimulated emission processes, but taking fully into account the
possibility of atomic polarization in both levels (Trujillo Bueno 1999). We obtain

72 2
& 8w = Bul B0 - 20— 4uw) (49)

dt
+Clup(0)(l) - Culpg(u) =0,

63ee the observations of Stenflo, Keller & Gandorfer (2000).

17Since Kmax = 2J for integer values of J and Kmax = 2J — 1 for half-integer values of J, the
total number of p& (J) elements is J + 1 and J + 1/2, respectively.
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Bu,
2

ZERAD + ERAD] - Ausdw)  (50)

+C P p2(1) = (Cut + D® (u))p2(u) = 0,

o) = - | +

- B,
d—tp(zy(l) = —Aypa(u) + [Bzujgpg(l) — 2B, Jopi(l) - ‘j—g‘jgpg(l)] (51)

+20P g (w) ~ 2(Cry + DD (1)) = 0,

po(1) + po(u) =1/V3, | (52)

where the last equation expresses the conservation of the number of particles.

The number of unknowns is only four (i.e. pd(u), p2(u), pd(1), and p(1)).
However, this is only because we are considering the illustrative example of a
two-level atom with J; = J, = 1. In fact, the mere presence of lower-level po-
larization implies that we have to solve a non-local and non-linear RT problem
of exactly the same nature as the general Non-LTE problem of the 2nd kind.
The non-linearity is caused by the terms of the form Jg pg. To solve the gen-
eral multilevel problem we have developed the methods DALI and DEGAS
summarized below (see Trujillo Bueno 1999).

With DALT and DEGAS everything goes as simply as in the A-iteration
scheme, but the convergence rate is extremely high (see an example in Fig.
7). DALI, besides the name of the famous Spanish painter, is an acronym
for Density-matrix ALI method (which is based on Jacobi iteration), while
DEGAS, besides the name of the fine French painter, refers here to my Density-
matrix Gauss-Seidel iterative scheme. The basic idea, inspired by the precon-
ditioning approach of Rybicki & Hummer (1991; 1992), consists in making the
following changes for achieving linearity in the SE equations at each iterative
step:

If K£0,

JE pb - JE* ot (53)

If K=0,

0 _k knew .. old gnew gold pnew

o = T + AJ(G,0) (o A (W) — P W)y ) (54)
where AJ(i,1) (4’ being the spatial grid-point under consideration) is the diag-
onal element of the AJ operator that arises in the definition of JJ, and where
‘old’ means to take the value of the previous iterative step, while ‘new’ indicates
the improved values of the density-matrix elements that are to be obtained at
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0 20 40 60 80 100
iteration number

Figure 7. The convergence rate of the DALI method when solving
the multilevel scattering polarization problem assuming a 5-level Ca
11 model (with the H & K resonance lines and the IR triplet) and a
semi-empirical model of the solar chromosphere. Initialization: LTE
values for pJ and p& = 0. The number of p¥ elements is 9 at each
spatial grid point. We would have 29 pg elements in the presence of a
deterministic magnetic field, which is the case of Fig. 8.

the current iterative step by simply solving the resulting linear system of equa-
tions. In the DALI method we take * = old, while with DEGAS we have
* = old+new, with the ensuing radiation field tensors (and also AJ(3,)) calcu-
lated, at each iterative step, as explained in section 3 (see also Trujillo Bueno
and Manso Sainz, 1999). For the solution of scattering line polarization prob-
lems using realistic multilevel atoms it is better to initialize the calculation using
the p§ self-consistent values corresponding to the unpolarized case. With this
initialization given, it is easy to obtain rapidly the self-consistent solution of any
Non-LTE problem of the 2% kind applying either DALI iteration or DEGAS
iteration.

9.2. Multilevel scattering polarization in the presence of weak mag-
netic fields

Finally, we turn our attention to consider the multilevel problem of the Hanle
and Zeeman effects acting together in weakly magnetized stellar atmospheres
(e.g. with B<100 G). In this range of magnetic field strengths the Zeeman
splitting is typically a very small fraction of the spectral line width, and the
contribution of the fransverse Zeeman effect to the emergent linear polarization
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is negligible. Therefore, we are considering here a regime in which the linear po-
larization signatures are governed by scattering processes and the Hanle effect,
while the circular polarization is the result of the longitudinal Zeeman effect. Ob-
viously, in this more complicated case all four Stokes parameters come into play.
However, since in weakly magnetized stellar atmospheres €;>>€qg, €, ey and
nr>N9, MU, MV, PQ, PU, Pv, (Which in turn implies that I'>Q, U, V') the Stokes-
vector transfer equation (21) simplifies to

d

li=a-mI-nQ-mU-nwV=e-nl (55)
d
a—szq—an*mQ, (56)
S
d
d—U%th—nUI—mU, (57)
S
QY neymmy = V (58)
ds ~ ey —Nv nrv.

In these transfer equations the Stokes I, @ and U components of the emission
vector and absorption matrix are given by Egs. (28)-(30), while ey and ny
include only the contribution of the longitudinal Zeeman effect.

The formal solution can be carried out efficiently applying the DELOPAR
method outlined in section 6. For each radiative transition the formal solver cal-
culates the diagonal elements of the A} operator and six radiation field tensors
(JR, JZ, and the real and imaginary parts of J? and J2). The numerical calcu-
lation is harder now because we have to discretize not only the polar angle (to
specify the inclination of each radiation beam) but also the azimuthal angle 2.
We formulate the statistical equilibrium Egs. (15) using a reference system with
the quantization axis along the vertical. Therefore, we have again the action of
the magnetic operator of section 8.2, which produces a local coupling of all the
pg elements of the same rank K, but now for each of the levels of the assumed
multilevel atom.

Finally, note that the total number of p‘g unknowns associated to each
level of total angular momentum value J is (J + 1)(2J + 1) (for J integer) and
J(2J + 1) (for J half-integer). The numerical solution of the non-local and
non-linear sets of equations can be carried out efficiently applying the same
DALI and DEGAS methods outlined above. In fact, Manso Sainz & Trujillo
Bueno (2002) have successfully developed a general multilevel program for the
numerical simulation of the Hanle and Zeeman effects in weakly magnetized
stellar atmospheres. Figure 8 shows an example of a numerical simulation of
the Hanle and Zeeman effects, which explains the four Stokes profiles of the
‘enigmatic’ Ca 11 8662 A line that we have observed in weakly magnetized regions
of the solar chromosphere at p = 0.1. Of particular interest are the Stokes Q
and U profiles, whose physical origin is the existence of population imbalances
and coherences in the metastable lower-level.

8This is necessary now, even for the 1D case, because of the presence of lower-level atomic
polarization (Manso Sainz & Trujillo Bueno 2002).
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Figure 8. The emergent Stokes parameters of the Ca I1 8662 A line
calculated at 4 = 0.1 in a semi-empirical model of the solar atmosphere.
We have assumed a magnetic field of 20 gauss that is inclined by 25°
with respect to the radial direction. This RT modeling yields a fairly
good fit to the spectropolarimetric observation of the Ca 11 8662 A line
shown in Trujillo Bueno & Manso Sainz (2002).

10. Concluding remarks

The modeling of spectral line polarization in stellar atmospheres should be done
applying a rigorous theory for the generation and transfer of polarized radiation.
The quantum theory of line formation provides a robust and suitable framework
for the investigation of polarization transfer problems aimed at a confrontation
with high-sensitivity spectro-polarimetric observations. Although it is indeed a
complicated QED theory, it is worthwhile the effort to study it in detail because
it allows us to formulate with confidence RT problems of increasing complication,
taking properly into account a variety of subtle physical mechanisms that play
a key role in producing the observed polarization signals.

Besides providing an introduction to the quantum theory of polarization,
the main aim of this article has been to show that the ensuing statistical equi-
librium and Stokes-vector transfer equations can be solved efficiently with the
same iterative methods and formal solvers we had previously developed for the
fast and accurate solution of RT problems in one, two and three-dimensional
geometries.
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