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Abstract. A brief review of the Accelerated Lambda Iteration (ALI)
methods is presented. Besides explaining the basis of the method, three
particular topics that are important for practical applications are dis-
cussed — construction of approximate A* operators; efficient numerical
methods for formal solution of the transfer equation; and the basic phi-
losophy of applying the method beyond the simple case of two-level atom.

1. Imtroduction

Accelerated Lambda Iteration (ALI) is a simple yet very powerful numerical
scheme that has revolutionized the field of stellar atmospheres and radiative
transfer. As will be shown in many contributions in this Proceedings, we are now
able to construct models of stellar atmospheres and other radiation-dominated
objects (e.g., accretion disks, H II regions, etc.) with an unprecedented degree
of realism and complexity. This was made possible both by the amazing devel-
opment of computer capabilities, as well as by more efficient numerical methods,
above all by ALI It is thus quite appropriate to devote one of the introductory
papers of this volume to this method.

2. The Problem

Let us demonstrate the basis of the problem with the following simple case,
namely radiative transfer in a gas of two-level atom in a 1-D homogeneous, static
medium. The problem consists of solving simultaneously two basic equations.
The first one is the radiative transfer equation, written as

dI,,

dry

= I#V_Sy7 (1)

where I,,, is the specific intensity of radiation, and S, the source function. The
specific intensity depends on three variables, the frequency v, the directional
cosine u, and the (monochromatic) optical depth 7,,. Let us further assume no
overlapping continuum and complete frequency redistribution (CRD), in which
case the source function is independent of frequency, S, = S (relaxing both
approximations will be outlined in § 8.). The formal solution of (1) may be
written as

I/w = A;w[su]a (2)
17
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where A operates on the quantity within the square brackets. By integration we
obtain analogous relations for angle- and frequency-averaged quantities, viz.

1 1 1
Jy = AY[S], where J, = %/ Idp and A, = 5/ Apdp,  (3)
-1 -1

and

J=A[S], where J= f J,éydv and A = / Avodv, @)

where ¢, the (normalized) absorption profile. J, and J are mean intensity and
frequency-averaged mean intensity, respectively. Analogously, we call A, and A
the angle-averaged, and frequency- and angle-averaged A operator, respectively.
For notational simplicity, we omit a bar on A.

The second basic equation is the equation of statistical equilibrium, which
for a two-level atom may be written as an expression for the line source function,

S = (1-¢)J+eB, (5)

where € is the collisional destruction probability, and B the Planck function.
Substituting equation (4) into (5), we obtain a single integral equation,

S=(1—-e)A[S] +eB. (6)

Because A is a linear operator, Eq. (6) may in fact be solved in a single step (but
notice, this applies only for a two-level atom!). The solution can be formally
written as

S=[1-(1-eA] [eB]. (7)

However, due to the above-mentioned angle-frequency coupling, the matrix rep-
resenting A may be large, so that inverting it may be quite time consuming,
and therefore a direct solution may be impractical. This is why we seek faster,
iterative, schemes.

We stress that in actual applications the A operator does not have to be
constructed explicitly, nor does it have to be numerically inverted. By the terms
”setting up” and ”inverting” A operator we mean any procedure that solves the
radiative transfer equation, together with equation(s) that specify the source
function.

3. Ordinary and Accelerated Lambda Iteration

The simplest possibility is to iterate between the intensity and the source func-
tion; that is to evaluate the source function from equation (5) using the current
specific intensity, and then to solve the transfer equation (1) or (2) using the
new source function. This procedure is called “Lambda iteration”. Specifically,

S(+1) = (1 — €)A[S™)] + €B. (8)

This method is very simple. It treats all the coupling iteratively, so it avoids
the need to invert the Lambda operator (matrix) completely. However, it is
well known that it converges extremely slowly — see, e.g., Mihalas (1978); for a
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very illustrative example, see Auer (1991; his Fig.1). And, worse yet, it exhibits
a pathological behavior in that the solution stabilizes (i.e., relative changes of
the source function become extremely small) long before the correct solution is
reached.

More efficient iterative methods to handle these types of problems itera-
tively date back to the mid-nineteenth century, to the work of Jacobi. The
first who applied the idea in the context of astrophysical radiative transfer was
Cannon (1973), who in this seminal paper introduced the method of deferred cor-
rections, also called, somewhat inaccurately, operator splitting. The idea consists
of writing

A=A*+(A—A%), (9)

where A* is an appropriately chosen approzimate lambda operator. The iteration
scheme for solving Eq. ( 6) may then be written as

SO — (1 — OA*[SPHI] + (1 — ) (A — A*)[S™] + B. (10)

The action of the exact A operator is thus split into two contributions: an
approximate A* operator that acts on the new iterate of the source function,
and the difference between the exact and approximate operator, A — A*, acting
on the previous, old and thus known, source function. The latter contribution
may be easily evaluated by the formal solution.

We emphasize that although we use an approzimate operator, equation (6)
is solved exactly, i.e., it is iterated to convergence, hence it is ezact at the
converged limit. If we choose A* = 0, we recover the ordinary lambda iteration.
On the other hand, the choice A* = A represents the exact method, which can be
done without iteration, but an inversion of the exact A operator may be costly.
Thus, in order that A* brings an essential improvement over both methods, it
has to incorporate all the essential properties of the exact A operator (in order
to obtain a fast convergence rate of the iteration process), but at the same
time it must be easy (and cheap) to invert. Therefore, the construction of the
optimum A* is a delicate matter. Cannon (1973) used a special variant of the
A* operator (angular and/or frequency quadratures of a low order) so that the
advantages of the ALI method were not fully realized by most workers in the
field. This realization came about a decade later, when Scharmer (1981) has
reformulated an idea of ALI in a more physical way, and motivated an intensive
development of the ALI-based approaches. The period of early development of
the ALI method culminated in a seminal paper of Olson, Auer, & Buchler (1986
— OAB). We will return to construction of the A* operator in Sect. 4.

We may write equation (10) in a slightly different form. First, we introduce
an “intermediate” source function, namely that obtained from the old source
function by the mere formal solution,

SFS = (1 — e)A[S™] + eB. (11)

(superscript FS stands for “Formal Solution”). Using this definition, equation
(10) can be rewritten as

55M = g+l _ g(n) — 11 — (1 — )A*]L[STS — 5] (12)
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This equation is particularly instructive. To put it in a better perspective, let
us rewrite the equation (8) that governs the traditional Lambda iteration, using
equation (11), '

65t = gFS _ 5(n) (13)

These equations show that the ALI iteration process is driven, similarly to or-
dinary Lambda iteration, by the difference between the old source function and
the newer source function obtained by formal solution. However, unlike the
ordinary Lambda iteration, this difference is amplified by the “acceleration op-
erator”, [1 — (1 — e)A*]7L.

To gain more insight, let us consider a diagonal (i.e., local) A* operator.
The appropriate A* has to be chosen such that A*(7) — 1 for large 7 (roughly
speaking, because I, — S, for large 7). Because in typical cases ¢ < 1, the
acceleration operator indeed acts as a large amplification factor. This interpre-
tation was first introduced by Hamann (1985) and Werner & Husfeld (1985),
who also coined the term “Accelerated Lambda Iteration” (ALI). The acronym
ALI is also sometimes understood to mean “Approximate Lambda Iteration”.

Equation (12) can be also derived using a slightly different, but related,
reasoning. Let us assume that we have a current estimate of the source function,
So. We write the correct source function as S = Sy + 8S. We further write the
exact A operator as A = A* + §A, i.e. as an approximate operator A* plus a
“perturbation” A. We require that the source function satisfies equation (6),
S = (1 — €)A[S] + eB. By substituting the perturbation expansions for S and A
we obtain

So+6S = (1 — e)A*[So] + (1 — )A*[6S] + (1 — €)6A[So] + B,

where we dropped the second-order contribution §A[6S]. By rearranging the
terms we obtain

[1—(1—€)A*][6S] = (1 — €)A[So] + €B — Sp = S¥5 - S, (14)

where we used equation (11). Equation (14) is easily seen to be equivalent to
equation (12). This procedure explains why the approach is sometimes called
the “Operator Perturbation” method.

The ALI iteration scheme thus proceeds as follows:

(a) For a given S(™ (with the initial estimate S(®) = B, or some other suitable
value), we perform a formal solution, for one frequency and angle at a time.
We obtain new values of the specific intensity I, .

(b) We calculate the new source function S¥> from equations (11), (3), and
(4), using the new values of the specific intensity.

(c) We then apply equation (12) to evaluate a new iterate of the source func-
tion, S(**Y),

(d) Because the source function found in step (¢) differs from that used in step
(a), we iterate steps (a) through (c) to convergence.

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2003ASPC..288...17H

FZ0D3ASPC. ~788C ~.C17H!

Accelerated Lambda Iteration 21

To apply this idea efficiently in astrophysical radiative transfer problems,
the following three issues are crucial: (i) evaluation of the optimum A* oper-
ator; (ii) development of efficient, fast and accurate, formal solvers; and (iii)
understanding how to go beyond simple academic case of two level atom.

4. Construction of the A* Operator

4.1. -Overview

Construction of the optimum approximate A-operator lies at the very heart of
the method. As pointed out above, it has to satisfy two dichotomous conditions,
namely it should be easy and cheap to invert, and it has to describe well the basic
physics of the problem. Again, by the terms “constructing” and “inverting” the
A* operator we generally understand a process of solving the transfer equation
in some approximate, though judicious, way.

We will not discuss here all possible variants of A* operator; the interested
reader is referred to Hubeny (1992) for the history of early development of the
ALI method and a comprehensive list of references. We discuss only those forms
that have survived the test of time, and which are being presently used in actual
applications. There are several categories of the A* operator, each category
offers certain advantages and suffers from certain drawbacks.

4.2. Diagonal Operators

In one of the seminal papers on astrophysical radiative transfer, Olson, Auer, &
Buchler (1976) showed that a nearly optimum A* operator is in fact the diagonal
part of the exact A operator,

A* = A*(7)]1, (15)

where I is the unit diagonal matrix, and we understand A*(7) as a simple scalar
function of 7. This variant of ALI is sometimes called the Jacobi method (e.g.,
Trujillo Bueno & Fabiani Bendicho 1995). A diagonal operator is indeed the
easlest one to use because its inversion is a simple scalar division. However, how
does one evaluate the diagonal part of exact A efficiently? There are several
possibilities, depending on exactly which formal solver of the transfer equation
is used.

¢ Quite generally, the diagonal part can be evaluated as
Aga = A[d(7q — 7)] . (16)

In other words, the diagonal element of the A matrix at depth point d is equal to
the mean intensity (or the specific intensity, in the case of elementary, frequency-
and angle-dependent A,,) computed for the source function having a zero value
everywhere but at the point d, i.e., Sy =1, and S; =0, (i #d). As follows from
equation (16), to evaluate the diagonal operator at 74, we merely have to take
the coefficient that multiplies S(74). This method can be used with many formal
solvers, including the short characteristics method (in one or more dimensions),
or the Discontinuous Finite Element Method (Castor et al. 1992).
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e Olson & Kunasz (1987) were the first to suggest applying the method of
short characteristics to evaluate the A* operator. In this case, one can either
use the approach from the previous item, or one can also write down explicit
expressions for A*. For instance, using the linear form of the short characteristics
method, one obtains for the approximate operator corresponding to the mean
intensity of radiation, A}, namely

1 1 /1= BTa-172 11— ATdt1/2
At=1-+ / + du. 17
v 0 ( A7'd—1/2 A7’al+1/2 ) K (17)

where A1y_1/3 = 74 — 74-1 and analogously for Aty /.

e Rybicki & Hummer (1991) used a formalism based on the Feautrier
scheme, employing a very efficient and clever algorithm for inverting a tridi-
agonal matrix, and demonstrated that the entire set of the diagonal elements
of A can be found with an order of ND operations (ND being the number of
depth points). Thus, if one uses the Feautrier method as a formal solver, the
Rybicki-Hummer method of evaluation of A* is the method of choice.

A drawback of the diagonal operator is that the convergence speed decreases
with increasing spatial resolution, which was first demonstrated by OAB. In
other words, the higher the depth resolution, the lower the convergence speed.
This is easily understood. Roughly speaking, in a finer grid, the information
must go through more points in order to propagate the same distance in the
optical depth space, and therefore the iteration is slower. However, in many
applications one needs high spatial resolution. A possible cure is an application
of the multigrid methods (Steiner 1991; Trujillo Bueno & Fabiani Bendicho
1995).

4.3. Higher Multi-Band Operators

Olson & Kunasz (1987) suggested the use of a tridiagonal part of the exact
A-operator as an even better approximate A* operator. They presented expres-
sions for off-diagonal elements based on the short characteristic method, which
are analogous to, but more complicated than, equation (17). The off-diagonal
elements may also be easily evaluated in the context of the Rybicki-Hummer
scheme.

Analogously, one may use an even higher multi-band part of the exact A
operator. As can be expected, using penta-diagonal and higher-order multi-
band operators will increase a speed of convergence, but this gain is somewhat
outweighed by increasing numerical work to evaluate the corresponding matrix
elements. A systematic study of the effects of the number of bands on the
properties of the ALI iteration process was undertaken by Hauschildt (1992),.

4.4. Gauss-Seidel Approximate Operator

In a very interesting and important paper, Trujillo Bueno & Fabiani Bendi-
cho (1995) suggested a different form of the A* operator, namely an upper-
triangular part of the exact A operator. Notice that already Scharmer (1981)
suggested using an upper-triangular form of A*, namely that based on a general-
ized Eddington-Barbier relation. His operator was thus inherently approximate.
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Although evaluating an upper triangular part of the exact A is non-trivial,
they suggested an ingenious procedure to set up and invert the upper triangular
A* operator, in the context of the short characteristic method, with essentially
the same computational effort as with the diagonal A*.

4.5. Practical Considerations

Experience shows that for most applications, using a diagonal A* operator is a
safe bet. Moreover, it is the only practical choice for multi-dimensional geome-
tries. Although tridiagonal or higher-order band operators yield faster conver-
gence for 1-D problems, their application for multilevel transfer problems is more
difficult, and sometimes the gain in a lowered number of iterations is somewhat
offset by the increased numerical work needed in setting up necessary quantities.

5. Formal Solvers

By the term formal solution we understand a numerical solution of the transfer
equation in the case where the source function is fully specified. As explained
above, the ALI method essentially reduces the general transfer problem into a
set of formal solutions. This means that the speed with which we solve a general
problem is largely determined by the speed of the formal solution. Therefore,
we have to seek as efficient numerical schemes for performing a formal solution
as possible.

There are essentially two classes of methods, namely those based on the
first-order form of the transfer equation, and those based on the second-order
form. The most important first-order methods are the method of short char-
acteristics, and the discontinuous finite-element (DFE) method. The second-
order method is usually referred to as the Feautrier method, after its originator
(Feautrier 1964), although the general idea was first suggested in a seminal paper
by Schuster (1905; see also Mihalas 1999)

5.1. Method of Short Characteristics

We describe the method here as applied for 1-D problem; its full strength lies
in its application in multi-dimensional problems, discussed elsewhere in this
volume.

The idea is to divide the medium into a number of cells, and to write down a
simple formal solution of the transfer equation within the cell, assuming that the
source function within the cell is approximated by a simple polynomial (linear
or quadratic). Consider a given frequency v along a ray at angle-cosine u; we
shall drop explicit indication of frequency and angle variables. Denote the the
monochromatic optical depth at this frequency along this ray as 7

The formal solution within the cell is written by (adopting the convention
that the optical depth decreases in the direction of photon propagation)

Td+1
(7a) = I(rasq)e D712 f S() e~ g (18)
Td

If we assume that S is given by a linear or quadratic polynomial, the integral
in equation (18) can be evaluated analytically, and the intensity at point 74 can
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be written as
I(1q) = I(rqy1)e” 78412 + Ada1S(Ta-1) + A3 4S5 (1a) + Af 4115 (Tan),  (19)

where the actual form of coefficients A depends on whether one uses linear of
quadratic representation of the source function. Detailed expressions for these
quantities are given by Olson & Kunasz (1987). In the linear case, Aj, ; = 0.

In equation (19), the boundary value of the specific intensity, I(7441) is given
either by the boundary conditions of the problem (if the point d + 1 is at the
boundary), or by the outgoing intensity from the previous cell between d + 2
and d 4 1. One thus proceeds from the boundary where the incoming radiation
is specified to the other boundary.

5.2. Discontinuous Finite-Element Method

The method was was introduced by Castor, Dykema, & Klein (1992), and is
essentially an application of the Galerkin method. An idea is again to divide
a medium into a set of cells, and to represent the source function within a cell
by a simple polynomial, in this case by a linear segment. Unlike the short
characteristics method, the segments are assumed to have step discontinuities
at grid points. The specific intensity at grid point d is thus characterized by
two values Ij and I, appropriate for cells (74, T441) and (7q4—1, 74), respectively
(notice that we are dealing with an intensity in a given direction; the superscripts
“4” and “—” thus do not denote intensities in opposite directions as it is usually
used ir the radiative transfer theory). The actual value of the specific intensity
I(74) is given as an appropriate linear combination of I j and I;. We skip all
details here; suffice to say that after some algebra one obtains simple recurrence
relations for I;L and I

agly — 215, = Aty11/25a+1 + baSa, (20)

adI;H = 2(ATd+1/2 + 1) Id_+1 4+ b4S4+1 — ATd—}-l/QSd . (21)

As was shown by Castor et al., the method is second-order accurate. Since one
does not need to evaluate any exponentials, the method is usually the fastest
formal solution.

5.3. Feautrier Method

The method and its extensions was described many times in the literature
(Feautrier 1964; Auer 1976; Mihalas 1978; Rybicki & Hummer 1991), so there
i1s no need to go to any details here. We just outline the basic features. The
method consists in introducing the symmetric and antisymmetric parts of the
specific intensity (assuming p > 0).

j;u/ = [I(+H; V)+I(“,U>V)]/2, and h/.u/ = [I("‘ﬂ'; V) —I('".U'7V)]/27 (22)

which have, respectively, a mean-intensity-like and flux-like character. Adding
and subtracting these equations one obtains first-order differential equations for
j and h, (assuming here a source function independent of direction),

:u'(dh'uu/de/) = juu - Sy, (23)
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(i /dTy) = hpy - (24)

Eliminating h,,, one obtains a second-order equation for j,,,

Nz(d2ij/d73) = Jur — Sy - (25)

We stress that S, is assumed to be fully specified. We can thus solve equation
(25) for one frequency-angle point at a time. For simplicity, we drop indices p
and v. By discretizing, and adding appropriate boundary conditions, one arrives
at a tridiagonal system, written formally as

~Agja-1 + Baja — Cajay1 =S¢, with A3 =Cnp =0, (26)

where d is the depth index; Syisa quantity which is equal to the source function
everywhere but at the boundary points d = 1 and d = ND where one has
contributions from the incoming radiation intensities. Equation (26) is solved
by a standard Gaussian elimination, consisting of a forward-backward recursive
sweep.

5.4. Electron Scattering

To avoid misunderstanding, we stress that by the term formal solution one some-
times understands a solution for one frequency at a time, with given thermal
source function. The total source function is given by

NeTe

S, = Stherm . Jy, (27)

Xv

where the last term describes the electron (Thomson) scattering, assumed here to
be strictly coherent. In this case, the total source function is not fully specified,
but depends on J, even in the “formal” solution.

There are three possibilities to cope with this problem:

i) Using a A-iteration procedure. We replace unknown J, in Eq. (27) by the
current value JO'9, use any of the methods described previously to obtain new
I,, and J,, and iterate. If the electron scattering is not a dominant contribution
to the total source function, the procedure converges quite fast.

ii) One may use the ALI procedure. This is completely analogous to the
case of two-level atom discussed above. Since we consider a given frequency, the
ounly coupling is the angular one. Formally, in equation (5), eB is replaced by
Stherm (1 _ ¢) by neoe/Xy, and J by J,. The problem is thus reduced to a set
of true formal solutions for one frequency and angle at a time, and any of the
above methods may be used.

iii) When using the Feautrier method, one may treat the angular coupling
that arises due to electron scattering directly. To this end, one introduces vector
sja = (Jda1,---,7d,na), where NA is the number of angle points (we dropped the
frequency index). We then apply equation (26), where A, B, C are now NA X NA
matrices, and jg and Sy vectors of length NA. For details refer, e.g., to Mihalas
(1978).
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6. Acceleration of Convergence

It is well known from linear algebra that any iterative method which evaluates
the next iterate using solely the current iterate may converge at best linearly.
However, taking into account information from previous iterates, one may esti-
mate an extrapolated iterate, and the overall iteration scheme may be signifi-
cantly faster. In the context of astrophysical radiative transfer, the idea was first
used by Hamann (1981) who applied the Aitken extrapolation scheme to accel-
erate the ordinary Lambda iteration. At present, two most powerful schemes
are the Ng acceleration (Ng 1974; OAB; Auer 1987; Hubeny & Lanz 1992)- also
called the residual minimization technique; and the orthogonal minimization
technique — ORTHOMIN (Klein et al. 1989; Auer 1991).

The most widely used scheme is the Ng acceleration. A general expression
for the accelerated estimate of the solution in the n-th iteration is

M M
X3¢ = (1 -3 am) x™ 1+ 3 apx®™ (28)
m=1

m=1

where the coefficients a are determined by residual minimization; x denotes
the vector of unknowns (e.g., in the case of two-level atom, the vector of source
functions at all depths). In most applications one uses M = 2, i.e. an accelerated
estimated is computed using the current and two previous iterates. There are
two other practical issues, namely at which point in the sequence of iterations
to perform the acceleration for the first time, and what interval to use between
subsequent accelerations. Experience shows that it is usually advisable to wait
for a certain number of iterations before performing the first acceleration — in
the case of two level atom an optimum value is close to 7, i.e. one performs the
first acceleration at the 7-th iteration. Also, although the accelerated solution
vector can be calculated after each iteration, it is more efficient to perform an
acceleration every, say, 4-6 iterations.

Here we also mention the method of successive over-relaxation (SOR), has
been applied in the context of ALI by Trujillo Bueno & Fabiani Bendicho (1995).
Although, strictly speaking, it is not a genuine acceleration method, it uses the
idea of enhancing the current iteration correction using information from the
previous iterates. Roughly speaking, instead of using the correction 6.5 which
follows directly from the ALI method [e.g., from equation (14)], one computes
the new source function as S™% = S°4 1 /§S, where « is an over-relaxation
coefficient. There are several possibilities for evaluating «; a practical procedure
suggested by Trujillo Bueno & Fabiani Bendicho is to express « in terms of the
spectral radius of the appropriate iteration operator, which in turn is given as
a ratio of maximum relative changes of the source function in two subsequent
previous iterations.

7. Some Representative Numerical Results

In order to test the performance of different variants of the A* operator and
the effects of the acceleration techniques, we have computed a series of test
examples. We display here representative results for the simple case of a two-
level atom without continuum, i.e. with the source function given by equation
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Figure 1. Maximum relative change of the source function as a func-
tion of the iteration number, for different variants of the ALI scheme. In
all cases, we consider two-level atom without continuum, with depth-
independent ¢ = 107* and B = 1. We assume 4 depth-points per
decade of optical depth. Traditional Lambda iteration is shown for
comparison.

(5), where we adopt € = 10™% and B = 1 independent of depth. The results are
obtained by a pedagogically-oriented program ALIRTE, (Hubeny 1994), which
will be provided to an interested user upon request.

Figure 1 illustrates the behavior of the ALI iteration process when using
different variants of the A* operator, together with the effects of the Ng acceler-
ation. The simplest ALI variant, a diagonal A* with no acceleration, converges
relatively slowly, although still much faster than the traditional Lambda itera-
tion. The tridiagonal operator yields much faster convergence. However, using
Ng acceleration with a diagonal operator yields convergence that is comparable
to or faster than the tridiagonal operator!

8. More Realistic Applications of ALI

The academic case of two-level atom without overlapping continuum is a ped-
agogical tool to demonstrate the basic features of line transfer, but reality is
usually more complex. In this section, we outline the strategy of how to deal
with more complicated situations.
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Inspecting the case of two-level atom, one realizes that the ease with which
the idea of ALI was applied follows from the fact that the radiation intensity en-
ters the expression for the total source function only through a single frequency-
and angle-integrated quantity, J. So, here is the rule of thumb: in all the situa-
tions where this is not the case (we shall show some such situations below), the
basic strategy is to find a quantity which is frequency- and angle-integrated, and
through which the total source function can be expressed.

8.1. Two-level atom with continuum

The simplest such case is provided by the two-level atom with a background
continuum. In this case the total source function is given by (Mihalas 1978)

tot __ o) L r C
Sy _—¢V+TS +—¢V+TS . (29)

where S¥ is a frequency-independent line source functlon glven by equation (5);
S€ is the source function in the continuum, and r = s /" is the ratio of the
continuum to the frequency-averaged line opacity. Both S€ and r are viewed as
given.

Here the choice of the frequency- and angle-integrated quantity is obvious:
it is the line source function. The specific intensity is expressed through the
elementary lambda operator acting on the total source function,

_ tot | __ (vbl/ L C
Ly = A [S5] = Ao [¢,,+r5 ¢V+TS ] (30)

Substituting this to equation (5), we obtain for the line source function
St = (1-€e)A[SY] + Sq, (31)

where

M) =3 [ [7 6, 2s|av, (32)

So = ( 1—62/ du [ o, ,“,[

so that Sy is a known function.

Equation (31) is analogous to the expression for the (line) source function
without the background continuum. We may therefore use exactly the same
iterative scheme as described above, where the only difference is that the inte-
grated approximate A* operator is given by an expression analogous to (32). In
the case of diagonal approximate operator, A* is a scalar function of 7, and is

given by
%) 2
= / / ¢ ~ A5 (7) dv. (34)

and

] dv + €B, (33)
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8.2. A More Complex Example: Partial Redistribution

The case of partial redistribution (PRD) is discussed in detail elsewhere in this
Proceedings (Nagendra; Uitenbroek). Here we consider only how one can apply
ALI methods to such more complicated cases.

Source function for a two-level atom without assumption of complete fre-
quency redistribution is generally given by

_ by PRD r C
T T 9

where 1 n -
SEBD = (1 - 6) 5/ dl'l‘// R(V/}.U’I?l/a.u’) IU'/A’ dVI + EB) (36)
-1 0

where R is the redistribution function (Hummer 1962; Mihalas 1978). [Notice
that many applications assume the isotropic approximation in which the source
function is formulated through angle-averaged redistribution function R(v',v).
Here, we consider a full frequency- and angle-dependent redistribution function,
and similarly for the source function.] Because the source function now de-
pends explicitly on frequency and angle, there is no natural u- and v-integrated
quantity here. However, the redistribution function satisfies the following nor-
malization condition (assuming isotropic scattering — see Hummer 1962),

1 *© '
5/_1du/0 R(/ v, p)dv = ¢(v'), (37)

hence
1t ® &PRD L
3 leu/[) Sy dv =57 (38)

So, we may express SEBD as SE,?D = au St and adopt S as the desired
frequency- and angle-integrated quantity.

The numerical scheme proceeds as two nested iteration loops (first suggested
by Scharmer 1983):

e estimate a,, (typically, initialize a,, =1 );

e hold a,, fixed, and iterate for ST exactly as in the usual ALI treatment
of CRD two-level atom with continuum;

e after the inner loop is finished, update a,,, and repeat.

8.3. Multilevel Atoms

This is the most important application of ALI in stellar atmospheric modeling.
This topic will be discussed in more detail in a companion paper (Hubeny &
Lanz; this volume), and in a number of other contributions in this Proceedings,
so it will be not discussed here.

9. Conclusions

I have outlined here the basic principles of the Accelerated Lambda Iteration
method. I have concentrated on three particular topics, construction of the
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approximate A* operator, most efficient formal solvers, and the philosophy of
applying ALI in more complicated cases.

Many of the subsequent papers of this Proceedings will discuss details of
further extensions and applications of the ALI method, in particular to multi-
level problems, polarized radiation, multi-dimensional geometries, etc. All these
papers will demonstrate that the ALI method is indeed the true workhorse of
the modern stellar atmospheres theory.
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