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ABSTRACT 
We present the results of very long-term numerical integrations of planetary orbital motions 
over 109-yr time-spans including all nine planets. A quick inspection of our numerical data 
shows that the planetary motion, at least in our simple dynamical model, seems to be quite stable 
even over this very long time-span. A closer look at the lowest-frequency oscillations using 
a low-pass filter shows us the potentially diffusive character of terrestrial planetary motion, 
especially that of Mercury. The behaviour of the eccentricity of Mercury in our integrations 
is qualitatively similar to the results from Jacques Laskar’s secular perturbation theory (e.g. 
¿max ^ 0.35 over ^±4 Gyr). However, there are no apparent secular increases of eccentricity 
or inclination in any orbital elements of the planets, which may be revealed by still longer- 
term numerical integrations. We have also performed a couple of trial integrations including 
motions of the outer five planets over the duration of ±5 x 1010 yr. The result indicates that the 
three major resonances in the Neptune-Pluto system have been maintained over the 10u-yr 
time-span. 

Key words: celestial mechanics - Solar system: general. 

1 INTRODUCTION 

1.1 Definition of the problem 

The question of the stability of our Solar system has been debated 
over several hundred years, since the era of Newton. The problem 
has attracted many famous mathematicians over the years and has 
played a central role in the development of non-linear dynamics and 
chaos theory. However, we do not yet have a definite answer to the 
question of whether our Solar system is stable or not. This is partly 
a result of the fact that the definition of the term ‘stability’ is vague 
when it is used in relation to the problem of planetary motion in the 
Solar system. Actually it is not easy to give a clear, rigorous and 
physically meaningful definition of the stability of our Solar system. 

Among many definitions of stability, here we adopt the Hill def- 
inition (Gladman 1993): actually this is not a definition of stability, 
but of instability. We define a system as becoming unstable when 
a close encounter occurs somewhere in the system, starting from 
a certain initial configuration (Chambers, Wetherill & Boss 1996; 
Ito & Tanikawa 1999). A system is defined as experiencing a close 
encounter when two bodies approach one another within an area 
of the larger Hill radius. Otherwise the system is defined as being 
stable. Henceforward we state that our planetary system is dynam- 
ically stable if no close encounter happens during the age of our 
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Solar system, about ±5 Gyr. Incidentally, this definition may be 
replaced by one in which an occurrence of any orbital crossing be- 
tween either of a pair of planets takes place. This is because we know 
from experience that an orbital crossing is very likely to lead to a 
close encounter in planetary and protoplanetary systems (Yoshinaga, 
Kokubo & Makino 1999). Of course this statement cannot be sim- 
ply applied to systems with stable orbital resonances such as the 
Neptune-Pluto system. 

1.2 Previous studies and aims of this research 

In addition to the vagueness of the concept of stability, the planets 
in our Solar system show a character typical of dynamical chaos 
(Sussman & Wisdom 1988, 1992). The cause of this chaotic be- 
haviour is now partly understood as being a result of resonance 
overlapping (Murray & Holman 1999; Lecar, Franklin & Holman 
2001). However, it would require integrating over an ensemble of 
planetary systems including all nine planets for a period covering 
several 10 Gyr to thoroughly understand the long-term evolution of 
planetary orbits, since chaotic dynamical systems are characterized 
by their strong dependence on initial conditions. 

From that point of view, many of the previous long-term numer- 
ical integrations included only the outer five planets (Sussman & 
Wisdom 1988; Kinoshita & Nakai 1996). This is because the orbital 
periods of the outer planets are so much longer than those of the inner 
four planets that it is much easier to follow the system for a given 
integration period. At present, the longest numerical integrations 
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published in journals are those of Duncan & Lissauer (1998). Al- 
though their main target was the effect of post-main-sequence solar 
mass loss on the stability of planetary orbits, they performed many 
integrations covering up to ~ 1011 yr of the orbital motions of the four 
jovian planets. The initial orbital elements and masses of planets are 
the same as those of our Solar system in Duncan & Lissauer’s paper, 
but they decrease the mass of the Sun gradually in their numerical 
experiments. This is because they consider the effect of post-main- 
sequence solar mass loss in the paper. Consequently, they found that 
the crossing time-scale of planetary orbits, which can be a typical 
indicator of the instability time-scale, is quite sensitive to the rate 
of mass decrease of the Sun. When the mass of the Sun is close 
to its present value, the jovian planets remain stable over 1010 yr, 
or perhaps longer. Duncan & Lissauer also performed four simi- 
lar experiments on the orbital motion of seven planets (Venus to 
Neptune), which cover a span of ~109 yr. Their experiments on 
the seven planets are not yet comprehensive, but it seems that the 
terrestrial planets also remain stable during the integration period, 
maintaining almost regular oscillations. 

On the other hand, in his accurate semi-analytical secular pertur- 
bation theory (Laskar 1988), Laskar finds that large and irregular 
variations can appear in the eccentricities and inclinations of the 
terrestrial planets, especially of Mercury and Mars on a time-scale 
of several 109 yr (Laskar 1996). The results of Laskar’s secular 
perturbation theory should be confirmed and investigated by fully 
numerical integrations. 

In this paper we present preliminary results of six long-term nu- 
merical integrations on all nine planetary orbits, covering a span 
of several 109 yr, and of two other integrations covering a span of 
±5 x 1010 yr. The total elapsed time for all integrations is more 
than 5 yr, using several dedicated PCs and workstations. One of the 
fundamental conclusions of our long-term integrations is that So- 
lar system planetary motion seems to be stable in terms of the Hill 
stability mentioned above, at least over a time-span of ±4 Gyr. Ac- 
tually, in our numerical integrations the system was far more stable 
than what is defined by the Hill stability criterion: not only did no 
close encounter happen during the integration period, but also all 
the planetary orbital elements have been confined in a narrow region 
both in time and frequency domain, though planetary motions are 
stochastic. Since the purpose of this paper is to exhibit and overview 
the results of our long-term numerical integrations, we show typical 
example figures as evidence of the very long-term stability of Solar 
system planetary motion. For readers who have more specific and 
deeper interests in our numerical results, we have prepared a web- 
page (access http://www.cc.nao.ac.jprtito/articles/MNRAS2002/), 
where we show raw orbital elements, their low-pass filtered results, 
variation of Delaunay elements and angular momentum deficit, 
and results of our simple time-frequency analysis on all of our 
integrations. 

In Section 2 we briefly explain our dynamical model, numeri- 
cal method and initial conditions used in our integrations. Section 
3 is devoted to a description of the quick results of the numerical 
integrations. Very long-term stability of Solar system planetary mo- 
tion is apparent both in planetary positions and orbital elements. A 
rough estimation of numerical errors is also given. Section 4 goes 
on to a discussion of the longest-term variation of planetary orbits 
using a low-pass filter and includes a discussion of angular momen- 
tum deficit. In Section 5, we present a set of numerical integrations 
for the outer five planets that spans ±5 x 1010 yr. In Section 6 we 
also discuss the long-term stability of the planetary motion and its 
possible cause. 

2 DESCRIPTION OF THE NUMERICAL 
INTEGRATIONS 

2.1 Equations of motion 

We consider the planetary system as a non-linear Hamiltonian sys- 
tem, governed only by classical Newtonian gravitational force be- 
tween the planets and the Sun. The equation of motion in the inertial 
space is 

cl:x, 
E 
7=0 
j^i 

Grrij 
\x¡ -Xj\3 (Xi -x/)+ai, (1) 

where i denotes the index for each celestial body (Sun, Mercury, 
Venus, ... , Pluto), X; is the position and is the mass of the ith 
particle in the inertial space. Gis the gravitational constant, N(=9) is 
the number of particles and«/ represents any small extra acceleration 
arising from sources other than Newtonian gravitational interactions 
between the planets and the Sun. 

a i includes for example: satellites, general relativity, asteroids, the 
galaxy, nearby stars, passing stars and solar mass loss. In this work 
we neglected all the effects of a¡ and other dissipative forces for the 
sake of simplicity. Note that equation (1) composes a Hamiltonian 
system only when we can derive«/ from a kind of potential. Conse- 
quently, our approximation of neglecting «/ reduces the system (1) 
into a conservative one. 

2.2 Initial conditions 

We list our major six numerical integrations for all nine planets 
and two other integrations for the outer five planets in Table 1. 
Initial planetary orbital elements are taken from the Development 
Ephemeris of JPL, DE245 (cf. Standish 1990), and listed in Table 2- 
4. The effect of the Moon is basically bunched together with the mass 
of the Earth: we placed a hypothetical celestial body with mass equal 
to the sum of the mass of the Earth and the Moon and whose position 
is at the baricentre of the Earth-Moon system. In one integration 
called V_3, we simply neglected the Moon. 

The pair (V+i, N_i) uses a common initial condition. The pair 
(V+2, A 2) also uses a common initial condition. These two initial 
conditions are slightly different. The relative difference in initial 
planetary positions and velocities between V+i and N+2 (and also 
V_i and N_2) are tabulated in Table 3. 

Table 1. Description of the long-term numerical integrations. The upper six 
are for all nine planets, and the lower two are for the outer five planets (from 
Jupiter to Pluto). T denotes the length of integration. 

Planets Direction T (yr) Notes 

AVi 
A+2 
V+3 

N-i 
N—2 
N —3 
F+ 

F_ 

whole 9 
whole 9 
whole 9 

whole 9 
whole 9 
whole 9 
outer 5 

outer 5 

future 
future 
future 

past 
past 
past 

future 

past 

5.0 x 109 

5.0 x 109 

4.2 x 109 

3.9 x 109 

4.1 x 109 

4.1 x 109 

5.0 x 1010 

5.0 x 10 10 

Earth-Moon baricentre 
Earth-Moon baricentre 
Earth-Moon baricentre, 

increased Sun mass 
Earth-Moon baricentre 
Earth-Moon baricentre 
Earth 
Sun incorporates the mass 

of the inner planets 
Sun incorporates the mass 

of the inner planets 
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Long-term stability of planetary motion 485 

Table 2. Initial conditions of heliocentric planetary positions r¡ and velocities iy- used in the integrations N+\, 
N-1, N+3, iV_3, F+ and F_. and U3 represents the position and velocity of Earth-Moon baricentre used in Af+1, 
N-i and N+j. rf

3 and v3 represents the position and velocity of Earth used in N-3. The integrations F+ and F 
use only rj, U5 to rg, vg. The Solar system invariable plane is taken as the jcy-plane. The unit of the position is au 
and that of velocity is au d 1. 

n 
Ul 
^2 
V2 

V3 

r 4 
V4 
r5 
V5 
re 
ve 
n 
v7 
rg 
V8 
rg 
Vg 

-1.269180 624092 95 x 10“1 -4.477 508198 281 78 x 10“1 

+2.145 975 482 343 09 x 10“2 -6.312 659 724 381 56 x 10“3 

-7.189 382445 936 97 x 10“1 -3.683 06028009161 x 10“2 

+9.190 166 373 069 85 x 10“4 -2.028 720 830 376 35 x 10“2 

-1.824663621223 58 x 10“1 +9.662 261297 275 45 x 10“1 

-1.71793603660689 x 10“2 -3.255 497 505 688 02 x 10“3 

-1.824427 32168004 x 10“1 +9.662 486142727 94 x 10“1 

-1.718390537 545 36 x 10“2 -3.250 392793 790 74 x lO“3 

+ 1.391 19459867718 x 10° -5.707 247 228184 69 x 10“3 

+5.790115 267 804 07 x 10“4 +1.518 751558413 43 x 10“2 

+3.986 088 540490 54 x 10° +2.960 631490418 22 x 10° 
-4.604437 998175 29 x 10“3 +6.417 877 688 314 58 x 10“3 

+6.377 297 171 995 65 x 10° +6.606 954 603 275 79 x 10° 
-4.315113 791005 57 x 10“3 +3.866 355 851759 66 x 10“3 

+ 1.450 92025008910 x 101 -1.365 463 701060 73 x 101 

+2.662 948 377 580 73 x 10“3 +2.687 056 727 515 16 x 10“3 

+ 1.694 149 604226 77 x 101 -2.490194581344 67 x 101 

+2.570 995 247 93415 x 10 3 +1.791376414 808 37 x 10 3 

-9.869 829 401 329 05 x 10° -2.805 953 708 701 44 x 101 

+3.054 884 779 900 26 x 10“3 -1.515512321 04407 x 10“3 

-3.172814142021 21 x 10“2 

-1.979438134681 18 x 10“3 

+2.186 214105 039 87 x 10“2 

-4.712731 882 338 86 x 10“4 

+3.395 76 595 144 958 x 10“3 

-4.781 110245 387 70 x 10“4 

+3.393 630 83867148 x 10“3 

-4.781 061 995 766 76 x 10“4 

+1.958 023 006035 16 x lO“3 

+4.455 675 799439 64 x 10“4 

+2.779 250439 011 18 x 10“2 

+9.195 113 88697671 x lO“6 

-1.459 987 734956 59 x 10“1 

+2.255490682460 28 x 10“5 

+2.667 570613114 20 x 10“2 

+6.781620296113 45 x 10“5 

+3.607 244966794 61 x 10“1 

-1.334 389 599420 56 x 10 5 

+5.356 149 276 537 37 x 10° 
-6.451894168 82179 x 10“4 

Table 3. Relative difference in initial of planetary positions and velocities 
between A^+i and N+2 (and also N- \ and N-2). For example, 8r\ x = (r jV+1 — 
r
N^Vr

N^ -(r
N-' -r

N-2)/rN-1 rlx F rlx — V lx rlx F rlx • 

Sri +6 
Si>i +1 
Sr2 +2 
8v2 +1 
Sr2 
8V3 

-1 
-4 

Sr4 —2 
8V4 —4 
Sr5 
8V5 

-1 
-4 

Srg +3 
8v6 
8n +5 
8v7 —5 
Srg +6 
Su8 -5 
Srç +7 
8vg —5 

.708 2659 

.1619756 

.522 6952 

.738 0973 

.047 1687 

.913 9664 

.345 2534 

.546 7641 

.896 4696 
438 2387 
.800 3858 
.6691177 
.6201744 
.552 7100 
.252 6190 
.4201588 
.123 8486 
.420 1359 

x IO“5 

x 10 6 

x IO“9 

x lO“8 

x lO“6 

x lO“8 

x lO“6 

x lO“8 

x lO“6 

x lO“6 

x IO“3 

x lO“6 

x IO“3 

x lO“6 

x 10“3 

x lO“6 

x IO“3 

v m-6 

-1.9766372 x 
+4.0926775 x 
-4.8727168 x 
-5.0124943 x 
-1.7025629 x 
-4.773 5453 x 
+2.701 8727 x 
-5.5524810 x 
+2.7626629 x 
+6.0662085 x 
+2.826 8716 x 
+7.1684120 x 
+4.7125183 x 
+7.285 2927 x 
+4.1168841 x 
+7.377 0756 x 
+2.835 5964 x 
+7.377 0646 x 

10-" 
10 6 

IO“7 

lO“8 

lO“8 

lO“8 

lO“6 

lO“8 

lO“6 

lO“6 

IO“3 

lO“6 

10-3 

lO“6 

10“3 

lO“6 

10-3 

10 -6 

-6.188 6520 x 
+2.8915540 x 
-1.5874563 x 
-1.828 0344 x 
+6.9101844 x 
-2.8867561 x 
+5.7146733 x 
-2.797 5530 x 
+5.9874157 x 
+5.9806160 x 
+2.6567608 x 
+1.2422829 x 
-1.5124878 x 
+1.537 6632 x 
-1.3960963 x 
+1.4689389 x 
+4.597 6089 x 
+1.4684610 x 

lO“6 

10 7 

10“8 

IO“9 

10“8 

10-9 

lO“8 

10“9 

10“8 

10-9 

10-5 

lO“8 

10-5 

lO“8 

10“5 

10“8 

10“6 

10“8 

We also show the mass of the planets and the Sun in Table 4, 
which are also from DE245. We use the Gaussian unit system with 
the Gauss constant k = fG = 0.017 202 098 95, in which the mass 
of the Sun is basically unity. In F± integrations, the mass of the Sun 
is slightly increased (from unity to 1.000005 9401), owing to the 
incorporation of the mass of the inner four planets with that of the 
Sun. In addition, we use this increased mass of the Sun in A^+3 to 
make a different initial condition than in other integrations. 

The integration length of ±5 x 1010 yr for the integrations F± of 
the outer five planets seems to make no sense in practice, since the 

© 2002 RAS, MNRAS 336,483-500 

Table 4. The mass of the Sun Mq and the relative planetary masses 
used in the numerical integrations, is only used in A+3. The mass 
of the Sun which is greater than unity is used in F+,F_ and N+3. 

I/mi 6023 600.000 000000 
l/m2 408 523.710 0000000 
1 / m 3 332 946.047 9847735 
l/m3 328 900.560 0000000 
l/m4 3098 708.000 000007 
l/m5 1047.348 599 999 995 
1 /me 3497.897 999 999 658 
l/m7 22 902.939 999402 87 
l/m8 19 412.240 000 26145 
l/mg 134 999 999.983 5724 
M0 TO 

1.000005 9401 

only Earth (A+3) 
Earth + Moon 

A+i, A+i, A+2, A+2, A+3 
a+3, F+, F_ 

age of the Solar system is expected to be much less than the period. 
Note that our intention here is to show the very long-term stability of 
the outer Solar system as a typical example of point-mass dynamical 
systems, not to insist that the outer Solar system will really survive 
over this long interval. 

We are now planning to integrate more detailed and realistic equa- 
tions of motion of planets including the effects of the Moon and 
general relativity (cf. Quinn, Tremaine & Duncan 1991), using the 
Picard-Chebyshev numerical perturbation technique, which is well 
suited to vector integration (Fukushima 1997a,b). 

2.3 Numerical method 

We utilize a second-order Wisdom-Holman symplectic map as 
our main integration method (Wisdom & Holman 1991; Kinoshita, 
Yoshida & Nakai 1991) with a special start-up procedure to reduce 
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the truncation error of angle variables, ‘warm start’ (Saha & 
Tremaine 1992, 1994). 

The stepsize for the numerical integrations is 8 d throughout all 
integrations of the nine planets (Af±i,2,3), which is about 1/11 of 
the orbital period of the innermost planet (Mercury). As for the 
determination of stepsize, we partly follow the previous numerical 
integration of all nine planets in Sussman & Wisdom (1988, 7.2 d) 
and Saha & Tremaine ( 1994,225/32 d). We rounded the decimal part 
of the their stepsizes to 8 to make the stepsize a multiple of 2 in order 
to reduce the accumulation of round-off error in the computation 
processes. In relation to this, Wisdom & Holman (1991) performed 
numerical integrations of the outer five planetary orbits using the 
symplectic map with a stepsize of 400 d, 1/10.83 of the orbital 
period of Jupiter. Their result seems to be accurate enough, which 
partly justifies our method of determining the stepsize. However, 
since the eccentricity of Jupiter (~0.05) is much smaller than that 
of Mercury (~0.2), we need some care when we compare these 
integrations simply in terms of stepsizes. 

In the integration of the outer five planets (F±), we fixed the 
stepsize at 400 d. 

We adopt Gauss’ /and g functions in the symplectic map together 
with the third-order Halley method (Danby 1992) as a solver for 
Kepler equations. The number of maximum iterations we set in 
Halley’s method is 15, but they never reached the maximum in any 
of our integrations. 

The interval of the data output is 200 000 d (~547 yr) for the 
calculations of all nine planets (^±1,2.3), and about 8000000 d 
(~21 903 yr) for the integration of the outer five planets (F±). 

Although no output filtering was done when the numerical in- 
tegrations were in process, we applied a low-pass filter to the raw 
orbital data after we had completed all the calculations. See Section 
4.1 for more detail. 

2.4 Error estimation 

2.4.1 Relative errors in total energy and angular momentum 

According to one of the basic properties of symplectic integrators, 
which conserve the physically conservative quantities well (total or- 
bital energy and angular momentum), our long-term numerical in- 
tegrations seem to have been performed with very small errors. The 
averaged relative errors of total energy (~10 9) and of total angu- 
lar momentum (~10-11) have remained nearly constant throughout 
the integration period (Fig. 1). The special startup procedure, warm 
start, would have reduced the averaged relative error in total energy 
by about one order of magnitude or more. 

Note that different operating systems, different mathematical li- 
braries, and different hardware architectures result in different nu- 
merical errors, through the variations in round-off error handling and 
numerical algorithms. In the upper panel of Fig. 1, we can recog- 
nize this situation in the secular numerical error in the total angular 
momentum, which should be rigorously preserved up to machine-6 
precision. 

2.4.2 Error in planetary longitudes 

Since the symplectic maps preserve total energy and total angular 
momentum of A-body dynamical systems inherently well, the de- 
gree of their preservation may not be a good measure of the accuracy 
of numerical integrations, especially as a measure of the positional 
error of planets, i.e. the error in planetary longitudes. To estimate the 

numerical error in the planetary longitudes, we performed the fol- 
lowing procedures. We compared the result of our main long-term 
integrations with some test integrations, which span much shorter 
periods but with much higher accuracy than the main integrations. 
For this purpose, we performed a much more accurate integration 
with a stepsize of 0.125 d (1/64 of the main integrations) span- 
ning 3 x 105 yr, starting with the same initial conditions as in the 
A 1 integration. We consider that this test integration provides us 
with a ‘pseudo-true’ solution of planetary orbital evolution. Next, 
we compare the test integration with the main integration, A_i. For 
the period of 3 x 105 yr, we see a difference in mean anomalies of 
the Earth between the two integrations of ~0.52° (in the case of the 
A_i integration). This difference can be extrapolated to the value 
~8700°, about 25 rotations of Earth after 5 Gyr, since the error of 
longitudes increases linearly with time in the symplectic map. Sim- 
ilarly, the longitude error of Pluto can be estimated as ~12°. This 
value for Pluto is much better than the result in Kinoshita & Nakai 
(1996) where the difference is estimated as ~60°. 

3 NUMERICAL RESULTS - I. GLANCE 
AT THE RAW DATA 

In this section we briefly review the long-term stability of planetary 
orbital motion through some snapshots of raw numerical data. The 
orbital motion of planets indicates long-term stability in all of our 
numerical integrations: no orbital crossings nor close encounters 
between any pair of planets took place. 

3.1 General description of the stability of planetary orbits 

First, we briefly look at the general character of the long-term sta- 
bility of planetary orbits. Our interest here focuses particularly on 
the inner four terrestrial planets for which the orbital time-scales 
are much shorter than those of the outer five planets. As we can see 
clearly from the planar orbital configurations shown in Figs 2 and 
3, orbital positions of the terrestrial planets differ little between the 
initial and final part of each numerical integration, which spans sev- 
eral Gyr. The solid lines denoting the present orbits of the planets lie 
almost within the swarm of dots even in the final part of integrations 
(b) and (d). This indicates that throughout the entire integration pe- 
riod the almost regular variations of planetary orbital motion remain 
nearly the same as they are at present. 

The variation of eccentricities and orbital inclinations for the in- 
ner four planets in the initial and final part of the integration A+i 
is shown in Fig. 4. As expected, the character of the variation of 
planetary orbital elements does not differ significantly between the 
initial and final part of each integration, at least for Venus, Earth and 
Mars. The elements of Mercury, especially its eccentricity, seem to 
change to a significant extent. This is partly because the orbital 
time-scale of the planet is the shortest of all the planets, which leads 
to a more rapid orbital evolution than other planets; the innermost 
planet may be nearest to instability. This result appears to be in some 
agreement with Laskar’s (1994, 1996) expectations that large and 
irregular variations appear in the eccentricities and inclinations of 
Mercury on a time-scale of several 109 yr. However, the effect of 
the possible instability of the orbit of Mercury may not fatally affect 
the global stability of the whole planetary system owing to the small 
mass of Mercury. We will mention briefly the long-term orbital evo- 
lution of Mercury later in Section 4 using low-pass filtered orbital 
elements. 

The orbital motion of the outer five planets seems rigorously 
stable and quite regular over this time-span (see also Section 5). 

© 2002 RAS, MNRAS 336, 483-500 
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Time [Gyr] 

Figure 1. Relative numerical error of the total angular momentum 5A/Aq and the total energy &E/Eq in our numerical integrations A^±i,2,3» where 8E 
and <5 A are the absolute change of the total energy and total angular momentum, respectively, and Eq and Aq are their initial values. The horizontal unit is 
Gyr. 

3.2 Time-frequency maps 

Although the planetary motion exhibits very long-term stability de- 
fined as the non-existence of close encounter events, the chaotic 
nature of planetary dynamics can change the oscillatory period and 
amplitude of planetary orbital motion gradually over such long time- 
spans. Even such slight fluctuations of orbital variation in the fre- 

© 2002 RAS, MNRAS 336,483-500 

quency domain, particularly in the case of Earth, can potentially 
have a significant effect on its surface climate system through solar 
insolation variation (cf. Berger 1988). 

To give an overview of the long-term change in periodicity in 
planetary orbital motion, we performed many fast Fourier transfor- 
mations (FFTs) along the time axis, and superposed the resulting 
periodgrams to draw two-dimensional time-frequency maps. The 
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488 T. Ito and K. Tanikawa 

Figure 2. Vertical view of the four inner planetary orbits (from the z-axis direction) at the initial and final parts of the integrations N±\. The axes units are au. 
The xy-plane is set to the invariant plane of Solar system total angular momentum, (a) The initial part of N+\ (t = 0 to 0.0547 x 109 yr). (b) The final part 
of V+i {t — 4.9339 x 108 to 4.9886 x 109 yr). (c) The initial part of V_i (i — 0 to —0.0547 x 109 yr). (d) The final part of N-\ (t — -3.9180 x 109 to 
—3.9727 x 109 yr). In each panel, a total of 23 684 points are plotted with an interval of about 2190 yr over 5.47 x 107 yr. Solid lines in each panel denote the 
present orbits of the four terrestrial planets (taken from DE245). 

specific approach to drawing these time-frequency maps in this 
paper is very simple - much simpler than the wavelet analysis or 
Laskar’s (1990, 1993) frequency analysis. 

(i) Divide the low-pass filtered orbital data into many fragments 
of the same length. The length of each data segment should be a 
multiple of 2 in order to apply the FFT. 

(ii) Each fragment of the data has a large overlapping part: for 
example, when the ith data begins from t = ti and ends aD = 6 + 7\ 
the next data segment ranges from ti + 8T ^ U + 8T + T, where 
8T <^T. We continue this division until we reach a certain number 
N by which tn + T reaches the total integration length. 

(iii) We apply an FFT to each of the data fragments, and obtain 
n frequency diagrams. 

(iv) In each frequency diagram obtained above, the strength of 
periodicity can be replaced by a grey-scale (or colour) chart. 

(v) We perform the replacement, and connect all the grey-scale 
(or colour) charts into one graph for each integration. The horizontal 
axis of these new graphs should be the time, i.e. the starting times 
of each fragment of data (¿;, where / = !,...,«). The vertical axis 
represents the period (or frequency) of the oscillation of orbital 
elements. 

We have adopted an FFT because of its overwhelming speed, 
since the amount of numerical data to be decomposed into frequency 
components is terribly huge (several tens of Gbytes). 

A typical example of the time-frequency map created by the 
above procedures is shown in a grey-scale diagram as Fig. 5, which 
shows the variation of periodicity in the eccentricity and inclination 
of Earth in A+2 integration. In Fig. 5, the dark area shows that at 
the time indicated by the value on the abscissa, the periodicity in- 
dicated by the ordinate is stronger than in the lighter area around it. 
We can recognize from this map that the periodicity of the eccen- 
tricity and inclination of Earth only changes slightly over the entire 
period covered by the N+2 integration. This nearly regular trend is 
qualitatively the same in other integrations and for other planets, 
although typical frequencies differ planet by planet and element by 
element. 

4 NUMERICAL RESULTS - II. 
LOW-FREQUENCY ORBITAL VARIATION 

4.1 Low-pass filtering 

Long-term variations of planetary orbital elements are, in a sense, 
likely to be buried in short periodic oscillations in raw numerical 
output. We wanted to remove the short periodic oscillations in some 
way and extract long-periodic or, if any, secular components buried 
in the raw numerical data. For this purpose, we applied a low-pass 
filter to the raw orbital elements. The specifications of the low-pass 
filter are listed in Table 5. When we denote the filter coefficients as 
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Long-term stability of planetary motion 489 

Figure 3. Same as in Fig. 2, but for ^±2- (a) The initial part of N+2 (i = 0 to 0.0547 x 109 yr). (b) The final part of N+2 (t = 4.9829 x 108 to 5.0376 x 
109 yr). (c) The initial part of /V_2 (i = 0 to —0.0547 x 109 yr). (d) The final part of A/_2 (t = —3.9726 x 109 to —3.9179 x 109 yr). 

hj (j = 0,, A4), input data and output data y, are related as 
(Oppenheim, Schafer & Buck 1999) 

M 
Si = ^^hjXi-j, (2) 

j=o 
where A4 is the degree of the filter. The filter coefficients in the 
frequency and the time domain are displayed in Fig. 6. 

4.2 Long-term exchange of orbital energy 
and angular momentum 

We calculate very long-periodic variation and exchange of planetary 
orbital energy and angular momentum using filtered Delaunay ele- 
ments L, G, H. G and H are equivalent to the planetary orbital angu- 
lar momentum and its vertical component per unit mass. L is related 
to the planetary orbital energy E per unit mass as E = —[i2/2L2. If 
the system is completely linear, the orbital energy and the angular 
momentum in each frequency bin must be constant. Non-linearity in 
the planetary system can cause an exchange of energy and angular 
momentum in the frequency domain. The amplitude of the lowest- 
frequency oscillation should increase if the system is unstable and 
breaks down gradually. However, such a symptom of instability is 
not prominent in our long-term integrations. 

In Fig. 7, the total orbital energy and angular momentum of the 
four inner planets and all nine planets are shown for integration N+2. 
The upper three panels show the long-periodic variation of total 
energy (denoted as E-E0), total angular momentum (G-G0), and 
the vertical component (H-H0) of the inner four planets calculated 

© 2002 RAS, MNRAS 336,483-500 

from the low-pass filtered Delaunay elements. E0, GO, HO denote 
the initial values of each quantity. The absolute difference from the 
initial values is plotted in the panels. The lower three panels in each 
figure show E-E0, G-G0 and H-H0 of the total of nine planets. The 
fluctuation shown in the lower panels is virtually entirely a result of 
the massive jovian planets. 

Comparing the variations of energy and angular momentum of 
the inner four planets and all nine planets, it is apparent that the 
amplitudes of those of the inner planets are much smaller than those 
of all nine planets: the amplitudes of the outer five planets are much 
larger than those of the inner planets. This does not mean that the 
inner terrestrial planetary subsystem is more stable than the outer 
one: this is simply a result of the relative smallness of the masses of 
the four terrestrial planets compared with those of the outer jovian 
planets. Another thing we notice is that the inner planetary subsys- 
tem may become unstable more rapidly than the outer one because 
of its shorter orbital time-scales. This can be seen in the panels de- 
noted as inner 4 in Fig. 7 where the longer-periodic and irregular 
oscillations are more apparent than in the panels denoted as total 
9. Actually, the fluctuations in the inner 4 panels are to a large ex- 
tent as a result of the orbital variation of the Mercury. However, we 
cannot neglect the contribution from other terrestrial planets, as we 
will see in subsequent sections. 

4.3 Conservation and variation of the angular 
momentum deficit 

Among many indicators of planetary orbital stability and long-term 
evolution, the angular momentum deficit (AMD) is one of the most 
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Figure 4. Eccentricities and inclinations of the four inner planetary orbits in the initial and final parts of the integration /V+i. (a)-(d) Eccentricities of Mercury, 
Venus, Earth and Mars at the beginning of the integration, (e)-(h) Inclinations of Mercury, Venus, Earth and Mars at the beginning of the integration, (i)-(l) 
Eccentricities of Mercury, Venus, Earth and Mars at the end of the integration, (m)-(p) Inclinations of Mercury, Venus, Earth and Mars at the end of the 
integration. All the elements are reckoned on the Solar system invariable plane with a heliocentric origin. The unit of inclination is the degree. 

interesting quantities. When we consider the z-axis component C of 
the total angular momentum of system as 

C = E 
j=i 

where 

Wj Mq 
nij + Mq (3) 

fij = G(Mq +mj), (4) 

C should be conserved exactly, AMD Cf is defined as below: 

C' = E 
mj Mq 

nij + Mq -dcos/A (5) 

The AMD has a dynamical meaning that indicates the deviation 
of planetary orbits from planar and circular motion: if q = Ij = 0 
for allj, then Cf = 0. Laskar ( 1997) remarked that the AMD C' itself 
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Long-term stability of planetary motion 491 

Figure 5. Time-frequency map for the e and I of the Earth in N+n series. 

is also conserved besides C in averaged equations of motion, and 
suggested that the conservation of AMD is one of the key ingredients 
that determines the spacing of the four inner planets (Laskar 1997, 
2000). 

The AMD of the inner four planets is not conserved because of 
the perturbation from outer giant planets. However, since the orbital 
motion of the outer planets is quite regular, the AMD of the inner 
four planets, C", may be expected to be roughly constant. 
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492 T. Ito and K. Tanikawa 

Figure 6. Frequency domain (left) and time domain (right) characteristics of the low-pass filter. Cut-off period x 107 yr. The filter length is 5001 x dt where 
dt is the step-interval of the original data (i.e. dt — 2 x 106 d). 

Table 5. Specification of the low-pass filter. 

Cut-off period 5 x 107 yr 
Degree of filter (M) 5001 
Filter length ~ 2.74 x 108 yr 
Worst reduction ratio 100 dB 

C" E 
;=i 

nij Mq 
mj + M© 

(6) 

We have plotted C" and the AMD of each inner planet in Fig. 8 
for each integration. What we notice first is that the variation of 
C is mostly driven by the variation of the AMD of Mercury. The 
variational amplitude of the AMD of Mercury is much larger than 
that of the total AMD of the other three inner planets (‘V + E + 
M’ in Fig. 8). This fact is directly connected to the relatively larger 
scale variation of the eccentricity and inclination of Mercury. As 
an example, in Fig. 9 we show the low-pass filtered eccentricity of 
Mercury in each integration. The behaviour of the eccentricity of 
Mercury in our integrations is qualitatively similar to the results from 
Faskar’s secular perturbation theory (e.g. <?max ~ 0.35 during ~ ± 
4 Gyr). However, it has no apparent secular increase that directly 
relates to the instability of the orbit of the planet. 

Incidentally, it is rather curious that in the A+3 integration, the 
variational amplitudes of both the AMD and the eccentricity of 
Mercury are smaller than in other integrations. The only major dif- 
ference of this A_|_3 integration from others is that we have increased 
the mass of the Sun by ~6 x 10-6 as in Table 4. It might be very 
interesting if such a slight increase of central mass were found to 
affect the overall stability of long-term planetary motion. We have 
to accumulate many more integrations from various different initial 
conditions to confirm whether this phenomenon is general or not. 

relations in exchange of angular momentum. The negative corre- 
lation in exchange of orbital energy means that the two planets 
form a closed dynamical system in terms of the orbital energy. The 
positive correlation in exchange of angular momentum means that 
the two planets are simultaneously under certain long-term pertur- 
bations. Candidates for perturbers are Jupiter and Saturn. Also in 
Fig. 11, we can see that Mars shows a positive correlation in the 
angular momentum variation to the Venus-Earth system. Mercury 
exhibits certain negative correlations in the angular momentum ver- 
sus the Yenus-Earth system, which seems to be a reaction caused by 
the conservation of angular momentum in the terrestrial planetary 
subsystem. 

It is not clear at the moment why the Yenus-Earth pair exhibits 
a negative correlation in energy exchange and a positive correla- 
tion in angular momentum exchange. We may possibly explain this 
through observing the general fact that there are no secular terms in 
planetary semimajor axes up to second-order perturbation theories 
(cf. Brouwer & Clemence 1961; Boccaletti & Pucacco 1998). This 
means that the planetary orbital energy (which is directly related to 
the semimajor axis a) might be much less affected by perturbing 
planets than is the angular momentum exchange (which relates to 
e). Hence, the eccentricities of Venus and Earth can be disturbed 
easily by Jupiter and Saturn, which results in a positive correlation 
in the angular momentum exchange. On the other hand, the semi- 
major axes of Venus and Earth are less likely to be disturbed by 
the jovian planets. Thus the energy exchange may be limited only 
within the Yenus-Earth pair, which results in a negative correlation 
in the exchange of orbital energy in the pair. 

As for the outer jovian planetary subsystem, Jupiter-Saturn and 
Uranus-Neptune seem to make dynamical pairs. However, the 
strength of their coupling is not as strong compared with that of 
the Venus-Earth pair. 

4.4 Long-term coupling of several neighbouring planet pairs 

Let us see some individual variations of planetary orbital energy 
and angular momentum expressed by the low-pass filtered Delau- 
nay elements. Figs 10 and 11 show long-term evolution of the orbital 
energy of each planet and the angular momentum in V+i and V_2 
integrations. We notice that some planets form apparent pairs in 
terms of orbital energy and angular momentum exchange. In par- 
ticular, Venus and Earth make a typical pair. In the figures, they 
show negative correlations in exchange of energy and positive cor- 

5 ±5 X 1010-YR INTEGRATIONS 
OF OUTER PLANETARY ORBITS 

Since the jovian planetary masses are much larger than the terrestrial 
planetary masses, we treat the jovian planetary system as an indepen- 
dent planetary system in terms of the study of its dynamical stability. 
Hence, we added a couple of trial integrations that span ±5 x 1010 

yr, including only the outer five planets (the four jovian planets 
plus Pluto). The results exhibit the rigorous stability of the outer 
planetary system over this long time-span. Orbital configurations 
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Long-term stability of planetary motion 493 

Figure 7. Absolute difference in total energy {E — Eq), angular momentum (G — Go) and its vertical component (H — Ho) calculated by the low-pass filtered 
orbital elements in yV+2 series. E is calculated from one of the Delaunay elements L as if = —/x2/2L2. The upper three panels are for the inner four planets, 
and the lower three panels are for the total of nine planets. The unit of energy is 10-12 Mq au2 d-2, and that of angular momentum is 10-12 Mq au2 d-1. The 
unit of the horizontal axis is yr. 

(Fig. 12), and variation of eccentricities and inclinations (Fig. 13) 
show this very long-term stability of the outer five planets in both 
the time and the frequency domains. Although we do not show maps 
here, the typical frequency of the orbital oscillation of Pluto and the 
other outer planets is almost constant during these very long-term 

integration periods, which is demonstrated in the time-frequency 
maps on our webpage. 

In these two integrations, the relative numerical error in the total 
energy was ~10-6 and that of the total angular momentum was 
~io-10. 
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jl 1 1 1 N 1 1 1 L 
-4 -3 -2 -1 0 12 3 4 

Time [109yr] 

Figure 8. Angular momentum deficit of the inner four planets in each of our numerical integrations (AT 1,2,3)- inner four’ denotes the total AMD of the 
inner four planets, ‘V + E + M‘ denotes the total AMD of Venus, Earth and Mars. ‘V’ and ‘E’ denote the AMD of Venus and Earth, which are too similar to 
distinguish. The AMD of Mercury and Mars are also denoted as a thick solid line and a thin dotted line with labels ‘Mercury’ and ‘Mars’. The unit of AMD is 
the same as that of the angular momentum in Gaussian units, i.e. 10“12 Mq au2 d-1. 

Time [109yr] 

Figure 9. Low-pass filtered variation of the eccentricity of Mercury in each of our numerical integration (ATi,2,3)- 
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Long-term stability of planetary motion 495 

Figure 10. Variation of the orbital energy (absolute difference from the initial value) of each planet calculated from the Delaunay element, L — Lq, in N+\ 
series. The unit of the vertical axis is 10“12 Mq au2 d-2. The unit of the horizontal axis is yr. 

5.1 Resonances in the Neptune-Pluto system 

Kinoshita & Nakai (1996) integrated the outer five planetary orbits 
over ±5.5 x 109 yr. They found that four major resonances between 
Neptune and Pluto are maintained during the whole integration pe- 
riod, and that the resonances may be the main causes of the stability 
of the orbit of Pluto. The major four resonances found in previous 

© 2002 RAS, MNRAS 336,483-500 

research are as follows. In the following description, X denotes the 
mean longitude, Œ is the longitude of the ascending node and m 
is the longitude of perihelion. Subscripts P and N denote Pluto and 
Neptune. 

(i) Mean motion resonance between Neptune and Pluto (3:2). 
The critical argument 0i =3ÀP — 2àn — mp librates around 180° 
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Figure 11. Variation of the orbital angular momentum (absolute difference from the initial value) of each planet calculated from the Delaunay element, G — Go, 
in N-2 series. The unit of the vertical axis is 10“12 Mq au2 d-1. The unit of the horizontal axis is yr. 

with an amplitude of about 80° and a libration period of about 2 x 
104 yr. 

(ii) The argument of perihelion of Pluto = 02 = — £2P 

librates around 90° with a period of about 3.8 x 106 yr. The dominant 
periodic variations of the eccentricity and inclination of Pluto are 
synchronized with the libration of its argument of perihelion. This is 

anticipated in the secular perturbation theory constructed by Kozai 
(1962). 

(in) The longitude of the node of Pluto referred to the longitude of 
the node of Neptune, 03 = ŒP — circulates and the period of this 
circulation is equal to the period of 02 libration. When 03 becomes 
zero, i.e. the longitudes of ascending nodes of Neptune and Pluto 
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Long-term stability of planetary motion 497 

Figure 12. Oblique and vertical views of the outer five planetary orbits in the final parts of the integration F±. The unit of the axes is au. The xy-plane is set 
to the invariant plane of the Solar system total angular momentum, (a), (b) The final part of F_ (t = —4.819 x 1010 to —5.000 x 1010 yr). (c), (d) The final 
part of F+ (t — 4.819 x 1010 to 5.000 x 1010 yr). In each panel, a total of 23 810 points are plotted with an interval of about 87 611 yr over 1.814 x 109 yr. 
In (a) and (c), a rotation is applied to the coordinate system so that the ascending node of Pluto always lies on an v-axis. In (b) and (d), a rotation is applied to 
the coordinate system so that the perihelion of Pluto always lies on an x-axis. Such transformations make the figures easier to look at since the inclination and 
eccentricity of Pluto are much larger than those of other planets. 

overlap, the inclination of Pluto becomes maximum, the eccentricity 
becomes minimum and the argument of perihelion becomes 90°. 
When 03 becomes 180°, the inclination of Pluto becomes minimum, 
the eccentricity becomes maximum and the argument of perihelion 
becomes 90° again. Williams & Benson (1971) anticipated this type 
of resonance, later confirmed by Milani, Nobili & Carpino (1989). 

(iv) An argument O4 = m? — + 3(Í2P — Í2N) librates around 
180° with a long period, ~5.7 x 108 yr. 

In our numerical integrations, the resonances (i)-(iii) are well 
maintained, and variation of the critical arguments 61,62, 63 remain 
similar during the whole integration period (Figs 14-16 ). However, 
the fourth resonance (iv) appears to be different: the critical argu- 
ment 64. alternates libration and circulation over a 1010-yr time-scale 
(Fig. 17). This is an interesting fact that Kinoshita & Nakai’s (1995, 
1996) shorter integrations were not able to disclose. 

In spite of the fact that the fourth resonance may not remain 
steady over this long time-span, the Neptune-Pluto system remains 
completely stable. Thus we find that the fourth resonance may have 
little effect on the stability of the Neptune-Pluto system. 

6 DISCUSSION 

What kind of dynamical mechanism maintains this long-term sta- 
bility of the planetary system? We can immediately think of two 
major features that may be responsible for the long-term stabil- 
ity. First, there seem to be no significant lower-order resonances 
(mean motion and secular) between any pair among the nine plan- 

ets. Jupiter and Saturn are close to a 5:2 mean motion resonance 
(the famous ‘great inequality’), but not just in the resonance zone. 
Higher-order resonances may cause the chaotic nature of the plan- 
etary dynamical motion, but they are not so strong as to destroy the 
stable planetary motion within the lifetime of the real Solar system. 
The second feature, which we think is more important for the long- 
term stability of our planetary system, is the difference in dynamical 
distance between terrestrial and jovian planetary subsystems (Ito & 
Tanikawa 1999, 2001). When we measure planetary separations by 
the mutual Hill radii (Rh), separations among terrestrial planets are 
greater than 26Ru, whereas those among jovian planets are less than 
\4Rh. This difference is directly related to the difference between 
dynamical features of terrestrial and jovian planets. Terrestrial plan- 
ets have smaller masses, shorter orbital periods and wider dynam- 
ical separation. They are strongly perturbed by jovian planets that 
have larger masses, longer orbital periods and narrower dynamical 
separation. Jovian planets are not perturbed by any other massive 
bodies. 

The present terrestrial planetary system is still being disturbed 
by the massive jovian planets. However, the wide separation and 
mutual interaction among the terrestrial planets renders the distur- 
bance ineffective; the degree of disturbance by jovian planets is 
O(ej) (order of magnitude of the eccentricity of Jupiter), since the 
disturbance caused by jovian planets is a forced oscillation hav- 
ing an amplitude of 0(ej). Heightening of eccentricity, for ex- 
ample O(£j)~0.05, is far from sufficient to provoke instability 
in the terrestrial planets having such a wide separation as 26 Ru- 
Thus we assume that the present wide dynamical separation among 
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Figure 13. Eccentricities and inclinations of the five outer planetary orbits in the final parts of the integrations F±. (a)-(e) The eccentricities of Jupiter, Saturn, 
Uranus, Neptune and Pluto in the final part of the F integration. (f)-(j) The inclinations of Jupiter, Saturn, Uranus, Neptune and Pluto in the final part of 
the F integration, (k)-(o) The eccentricities of Jupiter, Saturn, Uranus, Neptune and Pluto in the final part of the F+ integration, (p)-(t) The inclinations of 
Jupiter, Saturn, Uranus, Neptune and Pluto in the final part of the F+ integration. All the elements are reckoned on the Solar system invariable plane with a 
heliocentric origin. 

terrestrial planets (>26Æh) is probably one of the most significant 
conditions for maintaining the stability of the planetary system over 
a 109-yr time-span. Our detailed analysis of the relationship between 
dynamical distance between planets and the instability time-scale 
of Solar system planetary motion is now on-going. 

Although our numerical integrations span the lifetime of the Solar 
system, the number of integrations is far from sufficient to fill the 
initial phase space. It is necessary to perform more and more nu- 
merical integrations to confirm and examine in detail the long-term 
stability of our planetary dynamics. 
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Figure 14. Critical argument 6\ for F_ (left) and F+ (right). 

Figure 15. Critical argument 66 for F (left) and F+ (right). 
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Figure 16. Critical argument 03 for F (left) and F+ (right), both in the final part of each integration. 
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Figure 17. Critical argument O4. for F_ (left) and F+ (right). 
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