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AB S TRACT

We present a theory for describing the evolution of a galaxy caused by stochastic events such

as weak mergers, transient spiral structure, orbiting blobs, etc. This noise excites large-scale

patterns that drive the evolution of the galactic density profile. In a dark matter halo, the

repeated stochastic perturbations preferentially ring the lowest-order modes with only a very

weak dependence on the details of their source. The subsequent redistribution of halo mass is

determined only by the mechanics of these modes. The halo profile then evolves toward a

universal asymptotic form for a wide variety of noise sources. Such a convergence may help

explain the similarity of normal galaxy morphology in diverse environments. A variety of

other applications are discussed.
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1 INTRODUCTION

Galaxies never reach a true equilibrium state. The outer halo in

large galaxies is less than 10 dynamical times old, so primordial

inhomogeneities will not have had time to phase mix and continued

disturbances from mergers will not have relaxed (see Tremaine

1992 for additional discussion). These features, as well as those

from other intrinsic sources of noise, such as a population of

106-M( massive black holes, gas accretion, orbiting dwarf

galaxies, debris streams (Johnston 1998; Morrison et al. 2000) or

dark clusters, are amplified by the self-gravity of the halo. These

distortions create potentially observable asymmetries in the stellar

and gaseous Galactic disc at the current epoch. In addition, this

noise may be sufficient to drive the evolution of the halo in a

variety of environments (Weinberg 2001, hereafter Paper II). This

paper provides a theoretical framework for studying the evolution

of a near-equilibrium galaxy caused by scattering of orbits by

fluctuations in the gravitational potential.

The motivation for this theory is as follows. Previous work has

shown that fluctuations in stellar systems on the largest scales can

be strongly amplified by their own self-gravity. For example, in the

case of particle noise, this means that large-scale fluctuations will

greatly exceed their Poisson amplitudes. Weinberg (1993) explored

the idealized case of periodic cube; the fluctuations become very

large as the system size approaches its Jeans’ length. This does not

apply directly to an equilibrium galaxy but does suggest that the

fluctuations in bound systems will be largest for the discrete modes

with the largest spatial scales. For example, Weinberg (1994)

argues that galaxies will often have very weakly damped m ¼ 1

(sloshing or seiche) modes and these result in large excitations

when excited (see Vesperini & Weinberg 2000). These weakly

damped modes are similar to those which cause Landau damping in

a plasma (e.g. Binney & Tremaine 1987). Putting this together, one

might ask: if noise preferentially excites particular modes with

little dependence on the details of the noise source, is it possible

that the repetitive stochastic response of the galaxy will drive the

equilibrium toward some characteristic profile, independent of its

initial conditions?

In order to answer this question and address related applications,

this paper concentrates on a theoretical framework for describing

the evolution of a galaxy by stochastic fluctuations. Beginning with

a description of the linear response of a galaxy to a perturbation,

and assuming that the process is Markovian, one may expand the

Boltzmann collision term in a series. Analogous to two-body

collisions, only the first two terms contribute and the resulting

evolution equation has a Fokker–Planck form. This equation is

very far from being analytically tractable because the Fokker–

Planck coefficients depend on integrals over all phase space under

the stochastic perturbation. It is straightforwardly solved

numerically, however. This approach is perturbative and assumes

that the stellar system remains near an equilibrium and therefore

applies to galaxies after formation. Weinberg (Paper II) will

demonstrate that the repetitive self-gravitating response to noise

does indeed evolve a halo toward an asymptotically universal

profile. Damped modes are key to understanding this result. These

modes slowly redistribute mass to the outer halo in a way that

depends on the mode alone, and repetitive excitation leads to self-

similarity.

Given these analytic and numerical complications of this

approach, it might appear easier to treat these problems by n-body

simulation. However, the interpretation of such simulations are

complicated by the intrinsic fluctuations of the gravitationalPE-mail: weinberg@astro.umass.edu
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potential as a result of the finite number of particles. In particular,

the graininess intrinsic to n-body simulations causes the orbital

conserved quantities to diffuse in phase space even though the

system is in equilibrium. Therefore, resonances whose libration

periods are larger than the diffusion time can not exist in an n-body

simulation.1 On the other hand, the actions are conserved for all

time in a true collisionless system. This difference-limits the time

interval over which an n-body simulation approximates a

collisionless stellar system and limits the ability of a simulation

to resolve the collective dynamics which drive large-scale patterns

and depend on coherence in phase space. In addition, n-body

fluctuations provide a background source that may be larger than

natural noise sources. Even if the astronomical noise source is

strong overall, the true noise is likely to have large spatial scale and

low frequency. The response to low-frequency noise may be wiped

out by the diffusion caused by the n-body fluctuations. For this

reason, the often-used test of doubling or halving the particle

number will be specious, because particle noise likely will

continue to dominate the desired collisionless effects unless one is

unwittingly fortunate. In summary, one needs to understand the

details underlying dynamical mechanisms in order to interpret

n-body results. Simulations, therefore, are likely to be inefficient

and possibly deceptive on their own, but coupled with some

analytic underpinning they should be a useful tool for studying

noise phenomena in galaxies.

The plan for this paper is as follows. The overall analytic

approach is outlined in Section 2, with an explicit derivation for

spherical haloes given in Appendix A. This could be extended

straightforwardly to most often-used geometries (e.g. elliptical,

disc or disc and halo together). We characterize the noise for two

general cases, transient and quasi-periodic perturbers (a halo of

black holes, for example) in Section 3. These two cases result in

qualitatively different behaviour and represent the most plausible

astronomical scenarios. We will see that transient noise is probably

the most relevant and important, but an understanding of the

qualitative difference between the two cases is insightful. Finally,

the main findings are summarized and discussed in Section 4.

Derivation details appear in the Appendices. Paper II will review

the basic physics and apply these methods to understanding the

evolution of halo in a noisy environment and may be a better place

to begin for those interested in astronomical consequences rather

than the kinetic theory.

2 DEVELOPMENT OF THE EVOLUTION

EQUATION

The general problem of deriving a phase-space evolution equation

for stochastic events will be familiar from the collisional dynamics

literature and could be solved following the standard two-body

approach: beginning with the collisional Boltzmann equation, one

writes the collision term in Master equation form and expands in a

Taylor series to derive Fokker–Planck equation (e.g. Binney &

Tremaine 1987; Spitzer 1987). For a spherically symmetric system,

the perturbed, out-of-equilibrium phase-space distribution is a

function of two action and two angle variables. Averaging over

times which are short compared to the evolution time but long

compared to the dynamical time (orbit-averaging), one obtains a

Fokker–Planck equation.

Alternatively, recent work in statistical mechanics and noise

theory has developed a body of methods for treating stochastic

differential equations based directly on transition probabilities. If

Pðx0; t1 tjx; tÞ is the transition probability to some new state x0 at
time t1 t from the initial state x at time t, then the following

integral equation determines all subsequent evolution of the

distribution f(x):

f ðx; t1 tÞ ¼
ð

dx0Pðx; t1 tjx0; tÞf ðx0; tÞ:

By expanding the transition probability in moments of x2 x0 for
small t, one can derive a differential equation of the form:

›f ðx; tÞ
›t

¼
X

1

n¼1

2
›

›x

� �n

D ðnÞðx; tÞf ðx; tÞ; ð1Þ

where the coefficients D (n) are proportional to the time-derivative

of the moments in transition probability:2

D ðnÞðx; tÞ ¼ 1

n t!0
lim

1

t

ð

dx0Pðx0; t1 tjx; tÞðx0 2 xÞn: ð2Þ

This is known as the Kramers–Moyal expansion. The main

advantage of the Kramers–Moyal expansion is that the noise

process appears explicitly as the solution to an initial-value

problem. Because the response of the galaxy to a stochastic event

can be computed straightforwardly in perturbation theory or by

n-body simulation (described below), we can compute the noise-

driven evolution for a wide variety of astronomical scenarios. For

this reason, the Kramers–Moyal expansion is better suited to

treating general stochastic noise than the Master equation, even

though the two approaches are formally equivalent.

For galaxy evolution, the state variable x in the equations above

is replaced with the six-dimensional phase-space vector. We are

interested in long-term behaviour and may simplify the problem by

orbit-averaging the evolution equation. Writing the phase space in

action-angle variables, we may use the averaging theorem (Arnold

1978) to turn the orbit average into an angle average. This gives us

an evolution equation that is a function of actions alone. We can

solve for the change in actions of any orbit in the galaxy using

Hamiltonian perturbation theory for any given noise process and

similarly derive the change in the phase-space distribution function

(Weinberg 1998, hereafter W98). Evaluation of these quantities

lead directly to the moments needed for the Fokker–Planck-type

evolution equation. The most subtle aspect of the development

below is enforcing a consistent time-ordering. The angle averaging

defines two time-scales: a short dynamical time-scale and a long

evolutionary time-scale. The stochastic perturbations may last for

several dynamical time-scales but they are instantaneous from the

evolutionary point of view. Although this approximation may seem

restrictive and only marginally true for some scenarios of interest,

it yields results that a in good agreement with n-body simulation in

the case of globular cluster evolution and the closely related case of

self-gravitating fluctuations explored W98.

We will use the method described in W98 to derive the

coefficients D
(1) and D

(2). Briefly summarized, we represent

distortions in the structure of halo in a biorthogonal basis whose

member pairs, dlmj and ulmj , satisfy the Poisson equation,1Mathematically, resonance with a bar with pattern speed Vb in an

axisymmetric disc has the form: nVr 1 mVf ¼ mVb. This corresponds to

an orbit that makes m radial oscillations for every n rotations and therefore

has a closed-orbit period P ¼ 2pm/Vr.

2The factorial divisors from the Taylor series expansion are absorbed in to

the coefficients D (n) following Risken (1989).
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72ulmj ¼ dlmj . Any distortion then can be summarized by a set of

coefficients with three indices. We can truncate this expansion and

still recover most of the power, because large spatial scales are

most important in understanding global evolution. Moreover, we

can analytically compute the self-gravitating response of the halo

to some arbitrary disturbance using Hamiltonian perturbation

theory as previously described. This development gives us the

perturbed quantity x0 for all phase-space variables (see equations 2
and A3) and the appropriate ensemble averages give us the

required diffusion coefficients. See Appendix A for additional

detail.

By using the same biorthogonal basis as the potential solver for

an n-body simulation of a desired transient process (e.g. Clutton-

Brock 1972, 1973, Kalnajs 1976, Hernquist & Ostriker 1992,

Weinberg 1999), the time-series of coefficients for describing the

noise source can be used directly to derive the coefficients D (1) and

D (2). The coefficients for other n-body Poisson solvers can be

easily computed from phase-space slices at discrete times. The

equilibrium distribution corresponds to the time-invariant (‘DC’)

component and does not contribute. We will consider point mass

perturbers in Section 3.1 and transient perturbers.

We work out the details for two examples in the following

section: quasi-periodic distortions such as orbiting super-massive

black holes (Section 3.1) and transient perturbers such as dwarf

galaxy mergers, decaying substructure and spreading debris trails

(Section 3.2). The consequences of both of these will be explored

in Paper II.

3 NOISE MODELS

The noise response can be divided into two classes depending on

its frequency spectrum: quasi-periodic or transient. Typical quasi-

periodic sources are orbiting black holes, low-mass dwarfs and star

clusters. A time-series analysis of expansion coefficients from a

quasi-periodic noise source will contribute power at a discrete set

of frequencies; a line spectrum. In practice, the linewidths are

inversely proportional to the evolutionary time-scale for the near-

equilibrium gravitational potential. This time is the age of the

galaxy at most. This width may be relatively large for an orbiting

satellite with mean radius of roughly 100 kpc and periods of several

Gyr.

Transient sources have aperiodic time variation. The power from

these time-series are characterized by a significant continuum

component. The perturbation can couple to modes over a

continuous range of frequencies, and therefore any weakly damped

modes in the range will be excited automatically. In contrast, the

line frequency from a line spectrum needs to nearly coincide with

the modal frequency to produce a large excitation. Although

commensurabilities in a line spectrum densely cover real

frequencies in general, those with large integer multiples are

likely to have very small amplitudes and require unrealistically

long time-scales to be of practical interest. Typical astronomical

examples with continuous spectra include bodies on decaying

orbits such as large satellites, disrupting dwarfs and fly-by

encounters. The case of orbital decay leads to a continuous

spectrum with broadened line-like features.

Evaluation of the response is similar in both cases. For the line

spectrum, one sums over discrete responses at each line. For the

continuous spectrum, one integrates over the frequencies, which is

also a sum over frequencies in practice. In both cases therefore, the

response to a single frequency is the building block and we begin

with a development common to both cases.

The goal is the calculation of the coefficients needed to solve the

evolution equation (1) and defined in detail by equations (A3) and

(A4). Any perturbed quantity can be represented as a Fourier series

in angles with coefficients depending on actions because orbits in

the equilibrium phase space are quasi-periodic and representable as

fixed actions and constantly advancing angles. Following W98, the

perturbed Hamiltonian is

HðI;wÞ ¼ HoðIÞ1 H1ðI;wÞ ð3Þ

¼ HoðIÞ1
l

X

H1lðIÞ eil :w; ð4Þ

where

H1lðIÞ ¼
X

1

l¼0

X

l

m¼2l j

X

Y ll2 ðp=2; 0Þrll2mðbÞW
l1j
ll2m

ðIÞalmj ðtÞ ð5Þ

¼
X

1

l¼0

X

l

m¼2l j

X

Y ll2 ðp=2; 0Þrll2mðbÞW
l1 j
ll2m

ðIÞ
ð

1

21

dv eivt

�
k

X

½Mlm
jk ðvÞ1 djk�blmk ðvÞ; ð6Þ

where l ¼ l1; l2; l3 is a triple of integers, r
l
ijðbÞ and W

l1j
ll2l3

ðIÞ are the
rotation matrices and action–angle transforms of the gravitational

potential basis, ulmj . For a given spherical harmonic Ylm, only terms

with l3 ¼ m contribute (Tremaine & Weinberg 1984).3 Therefore,

features with m ¼ 1 symmetry first occur at spherical harmonic

order l ¼ 1 and those with m ¼ 2 symmetry first occur at l ¼ 2. We

will emphasize these two lowest-order symmetries l ¼ m ¼ 1 and

l ¼ m ¼ 2 below. The time-dependence of the coefficients

describing the response in equation (5), almj ðtÞ, may be represented

as its Fourier transform in time and this allows each frequency to be

treated separately. The response matrix M describes the reaction of

the galaxy to the perturbation and depends on the equilibrium

profile only. The sum M
lm
jk 1 djk therefore represents both the

response and direct forcing. This development gives us equation

(6) from equation (5). The interested reader can find the details in

W98; the practical importance of this result is the convenient

factorization of the response from the perturbation. We may

integrate the equations of motion directly to evaluate Iðt1 tÞ.
Hamilton’s equations yield

_Ij ¼ 2
›H

›wj

¼ 2i
l

X

ljH1lðIÞ eil :w; ð7Þ

and therefore we have

DIjðt1 tÞ; Ijðt1 tÞ2 IjðtÞ ¼
ðt1t

t

dt_IjðtÞ: ð8Þ

The evolution of the perturbed distribution function in time follows

from the linearized, collisionless Boltzmann equation and the total

time-derivative for a Hamiltonian system:

_f1 ;
›f 1

›t
1 ½f 1;H� ¼ ›f 1

›t
1

›H0

›I

:
›f 1

›w
¼ ›H1

›w

:
›f 0

›I
; ð9Þ

3A regular system is described by an action–angle pair in each dimension.

For a sphere, the Fourier analysis on the torus will have three indices. The

symmetry of the sphere leads to an identically zero frequency

corresponding to the restriction of orbits to a plane. The choice of a

particular spherical harmonic, Ylm, implicitly specifies the arbitrary axis and

requires l3 ¼ m.
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where only the first-order terms are retained and the final equality

follows from Liouville’s equation. A Fourier series expansion in

action–angle variables analogous to the development above for

H1(t) yields

_f1ðI;w; tÞ ¼
l

X

eil
:wil :

›f 0

›I
H1lðI; tÞ; ð10Þ

and therefore

f 1ðI;w; t1 tÞ ¼
l

X

eil
:wil :

›f 0

›I

ðt1t

t

dt0H1lðI; t0Þ: ð11Þ

To evaluate the evolution equation (equations 1 and A6), we need

the first- and second-order action moments defined by equations

(2) and (A5). We assume that t is larger than intrinsic dynamical

times consistent with the ordering of our slow and fast time-scales

and use the time-asymptotic form for the response matrix M lm (see

W98). Previous work, including detailed comparison to n-body

simulations, suggests that this is a very good approximation for

time-scales longer than several crossing times. The response of the

galaxy to the distortion induces a shift in the actions I and the

overall response causes a change in the distribution function. This

is represented in the matrix equation defined by equations (5) and

(6) for an external perturbation described by the coefficients blmj ðtÞ.
The stochastic variables are the coefficients blmj ðtÞ themselves.

We will denote the ensemble average of the fluctuating

coefficients with angle brackets, e.g. kblmj ðt1Þblmj ðt2Þ…blmj ðtnÞl.
Note that kblmk ðt1Þb*lmk ðt2Þl is related to the density correlation

function:

kblmk ðt1Þb*lmk ðt2Þl ¼
ð

d3r1

ð

d3r2Y
*
lmðu1;f1ÞY lmðu2;f2Þu*lmj

� ðr1Þulmk ðr2Þkrðr1; t1Þrðr2; t2Þl: ð12Þ

Assuming that the process causing fluctuations is independent of

time (e.g. a stationary process) we can write the correlation in

terms of the time difference: krðr1; t1Þrðr2; t2Þl ¼ Cðr1; r2; t1 2 t2Þ.
The quantity kblmk ðt1Þb*lmk ðt2Þl ¼ kblmk ð0Þb*lmk ðt1 2 t2Þl describes the
correlation of random variables blmj as a function of time. The limit

t1 ! t2 gives the mean-squared fluctuation amplitude and was

explored and compared to n-body simulations in W98.

The overall conditional probability required for evaluating the

Kramers–Moyal moments (see equations 1, 2 and A1) has two

contributions. First, the response of the galaxy changes the

underlying distribution and consequently the probability of

obtaining a given final state. Secondly, the resonant coupling

changes the action of an orbit at a particular point in phase space.

Altogether we have

PðI0; t1 tjI; tÞf ðI; tÞ ¼ ½f 0ðIÞ1 f 1ðI; tÞ1…�

� d I
0
2 I 2

ðt1t

t

dt0D _Iðt0Þ
� �

: ð13Þ

The first and second moments of DI; I
0
2 I over this distribution

are proportional to the square of the perturbation coefficients b 2

and are therefore second-order in the perturbation amplitude. With

additional work, one can show that the next contribution is

proportional to b 4 and relatively negligible. One now factors out

f ðI; tÞ to get the moments over the conditional probability. The f1
contribution oscillates rapidly on a time-scale ofO(t) and has zero

mean. The f2 term has a non-oscillatory term of O(b 2). Its

contribution to the two moments is then O(b 4) so we ignore this

contribution as well. Therefore, to O(b 2) accuracy, our

factorization is equivalent to division by f0(I).

We can now use equations (6), (8), (11) and (13) to evaluate the

moment average in equation (A5). After explicit substitution and

averaging over angles and factorisation of f0(I), we have

kDIjðt1 tÞl ¼ 2 ljl :
› ln f o

›I
jY ll2 ðp=2; 0Þrll2mðbÞj

2 1

2p

� �2

�
ð

1

21

dv1

ð

1

21

dv2
mn

X

rs

X

W
l1m
ll2m

ðIÞW*l1n
ll2m

ðIÞ

�M
lm
mrðv1ÞM*lm

ns ðv2Þ
ðt1t

t

dt1

ðt1t

t

dt2 e
iðv1t11v2t2Þ

� kblmr ðv1Þb*lms ðv2Þl: ð14Þ

The expression for kDIjðt1 tÞDIkðt1 tÞl is nearly the same, with

l : ðd ln f o/dIÞ in equation (14) replaced with 2lk. Although

cumbersome in appearance, all quantities in this expression are

straightforwardly computed. In particular, the rotation matrices,

r
l
l2m

ðbÞ, have closed-form analytic expressions and the response

matrices, M
lm
mrðvÞ, have elements that can be evaluated by

numerical quadrature. Everything but the term kblmr ðv1Þb*lms ðv2Þl
depends only on the equilibrium galaxy profile and describes the

mean response to an arbitrary perturbation. For a specific stochastic

process, all that remains is to evaluate the Fourier transform of the

density correlation function which contains all of the information

about the perturbations. We will do this below for quasi-periodic

and transient noise sources.

3.1 Orbiting point-mass perturbers

For a halo of black holes, the space density r is a sum of delta

functions. Expanding the distribution for a single black hole in an

action–angle series gives

blmj ðtÞ ¼
l

X

Y ll2 ðp=2; 0Þrll2mðbÞW
*l1n
ll2m

ðIÞ eil :wðtÞ; ð15Þ

where wðtÞ ¼ wo 1Vt and after Fourier transforming in time, we

find

blmj ðvÞ ¼
l

X

Y ll2 ðp=2; 0Þrll2mðbÞW
*l1n
ll2m

ðIÞ eil :wo2pdðv2 l :VÞ; ð16Þ

As in W98, we assume that individual particles are uncorrelated.

The wakes from the black holes do give rise to correlations but this

is of higher order in 1/N in the Bogolyubov, Born, Green,

Kirkwood & Yvon (BBGKY) expansion than the lowest-order

effect we will consider here (cf. Gilbert 1969). Assuming that

individual black-hole orbits are uncorrelated, the number density

of particles at I1, w1 at time t1 and at I2, w2 at time t2 is

PðI1;w1; t1; I2;w2; t2Þ ¼ PðI1;w1ÞdðI1 2 I2Þ

� d½w1 2 w2 1VðI1Þðt2 2 t1Þ�; ð17Þ

where P(I, w) is the equilibrium particle distribution with

N ¼
ð

d3I d3wPðI;wÞ: ð18Þ

Direct substitution demonstrates that equation (17) solves the

Liouville equation with the initial condition I2 ¼ I1 and w2 ¼ w1

at t ¼ t1. Similarly, integrating equation (17) over all coordinates

gives N. The ensemble average kblm
r
ðt1Þb*lms ðt2Þl is then the average

of blm
r
ðt1Þb*lms ðt2Þ over the distribution given by equation (17).
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Using these definitions in equation (14) yields (see Appendix C1

for details)

kDIjðt1 tÞl ¼ 2
1

f 0ðIÞ
ljl :

›f o

›I
jY ll2 ðp=2; 0Þrll2mðbÞj

2

�
mn

X

rs

X

r
l
l2m

ðbÞr*ll2mðbÞW
l1m
ll2m

ðIÞW*l1n
ll2m

ðIÞ

� ð2pÞ3
l

X

ð

d3If oðIÞjY ll2 ðp=2; 0Þj2Wl1r
ll2m

ðIÞ

8

<

:

�W
*l1s
ll2m

ðIÞMlm
mr½l :VðIÞ�M*lm

ns ½l :VðIÞ�

�
ðt1t

t

dt1

ðt1t

t

dt2 e
il :VðIÞðt12t2Þ

�

: ð19Þ

The term in {…} is the temporal correlation function for the

response to the point-mass fluctuations and only depends on the

time difference t1 2 t2. We may change the double time integration

from variables t1, t2 to T ¼ ðt1 1 t2Þ=2; t ¼ t1 2 t2. Our diffusion

calculation is in the regime t @ 1=V. The integral over t in this

limit gives a delta function d½l :VðIÞ� and the integral over T gives

t. This approach to a delta function has a physical interpretation.

Consider placing a black hole in some halo orbit. Initially, a large

volume of phase space in the vicinity of the perturber’s orbit is

disturbed. In time, the phase of the disturbance for orbits more

distant from the actions of the perturber drifts out of phase and the

initial perturbation mixes away. Conversely, perturbations for

nearby orbits will continue to grow in amplitude. The trade-off

between phase-space volume and amplitude leads to an overall

linear change in action with time. The delta function reflects that

only orbits with nearly commensurate frequencies will give rise to

secular changes. As a smaller and smaller phase-space volume will

have larger and larger amplitude, this approximation will break

down for a fixed potential. However, the equilibrium gravitation

potential evolves as a result of the perturbation and this prevents

breakdown and allows the secular evolution to continue.

We may also gain insight from the morphology of orbits

responsible for the secular change. The disturbance must present

an asymmetric force distribution on average in order to cause a

secular change in the actions. If the orbital frequencies are not

commensurate, the long-term average of the perturbing force will

be axisymmetric. In this particular case, the ratio of radial to

azimuthal frequencies ranges from 1 in the point-mass limit to 2

near the centre of a homogeneous core. Most haloes have ratios

1 , V1/V2 , 2 between and excluding these limits. The

commensurability or closed orbit condition is l1V1 2 l2V2 ¼ 0

where l1 [ ð21;1Þ and l2 [ ½2l;2l1 2;…; l2 2; l�. For l ¼ 1,

commensurability requires 1/ l1 ¼ V1/V2 and obviously there is no

solution between the limiting cases. Similarly, for l ¼ 2, we need

2/ l1 ¼ V1/V2 and this also admits no solution. Therefore for most

systems, no commensurabilities are available for harmonic orders

l ¼ 1; 2. A closed l ¼ 1 orbit will look like a Keplerian orbit,

executing one radial oscillation for every one azimuthal and a

closed l ¼ 2 orbit will look like a bisymmetric oval (e.g. stationary

bar orbit), executing two radial oscillations for every azimuthal

oscillation. Neither exist in any significant measure in most

extended stellar systems. Because of these symmetries, orbiting

point-mass perturbers can not excite the most weakly damped

m ¼ 1 and m ¼ 2 discrete modes.

We will concentrate on the evolution of haloes modelled as a

collisionless spherical distribution for application in Paper II and

adopt the traditional E, J, Jz or E; k; J/JmaxðEÞ, cosb; Jz/ J

phase-space variables for computational purposes. In addition, we

will not consider any processes with a preferred axis so we can

average the evolution equation (A6) over b with no loss of

information. If we further restrict ourselves to an isotropic

distribution, we can average over k to yield a 111 dimensional

Fokker–Planck equation in time and energy, E; this is described in

Appendix B. The Fokker–Planck equation (equation A6) is non-

linear, just as for globular cluster evolution, because the diffusion

coefficients depend on the distribution function. However, it is

straightforward to solve this numerically by iteration.

This application is a generalization of two-body relaxation in a

stellar system, such as a globular cluster or galactic nucleus. There

are two significant differences with the standard approach. First,

the development here and in W98 describes the large-scale low-

order structure rather than the small-scale structure included in the

homogeneous local approximation of Rosenbluth, MacDonald &

Judd (1957; see Binney & Tremaine 1987 for a summary).

Secondly, the current approach includes self-gravity of the

response. Self-gravity is important only for the features at the

largest scales. In the development here, the standard results would

be recovered by eliminating self-gravity and extending the series in

large harmonic order l. One finds that the contribution diverges as

ln l (Weinberg 1986). This is analogous to the standard logarithmic

divergence parametrized by the lnL/ logðbmax/bminÞ term. Here,

the large impact parameter cut-off is intrinsic to the equilibrium

model. The small impact parameter cut-off is now a cut-off in the

maximum of l included in equation (11). Computational expense

makes a direct numerical check of this limit prohibitive.

Fig. 1(a) shows the Fokker–Planck coefficients and flux for a

W0 ¼ 3 King model halo with total massM ¼ 1 and total potential

energy W ¼ 21=4. In these units the core radius is rc ¼ 1:33 and

the circular orbit with rc has energy E ¼ 20:44. The three panels

show the run of coefficients in energy DE and DEE and the particle

flux defined as the argument of the partial differential in E in

equation (B3). The coefficients scale inversely as the number of

particles N and are shown here with N ¼ 1. This will be applied to

study a halo consisting of 106M( black holes in Paper II. The

dominant resonance is 2:3 (three radial for every two azimuthal

oscillations). These orbits only occur at energies E ¼ 20:32 or

larger, in other words in the outer halo. The next contributing

resonance is 3:4 at energies about E ¼ 20:22. The advection and

diffusion is predominantly in the outer halo, near the resonant

perturbers. The inner halo does respond to these zero-frequency

perturbations but more weakly (see Murali & Tremaine 1998 for

additional discussion of the zero-frequency response). The outward

decreasing flux in the inner halo causes an advection of particles

inward for E & 20:47 and the outward increasing flux beyond

E < 20:47 causes an advection of particles outward.

3.2 Transient processes

Here, we describe the results of bombarding the galaxy

isotropically with bits of mass on linear trajectories. This is an

idealization of interactions during the epoch of galaxy evolution.

The perturbations are shots, not quasi-periodic, and therefore this

process has a continuous spectrum of perturbation frequencies.

This case and the previously considered point-mass case represent

two extremes.

The expansion coefficients are straightforward for the perturbers
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inside of the galaxy:

blmi ðtÞ ¼
ð

d3rY*lmðu;fÞu*lmi ðrÞdðr2 b2 vtÞ

¼ Y*lm½uðtÞ;fðtÞ�u*lmi ½rðtÞ�: ð20Þ

The argument of the delta function in this expression describes the

linear trajectory. An arbitrary trajectory can be treated similarly.

Any perturbation can always be constructed from mass elements

on arbitrary trajectories and therefore it is sufficient to consider the

response to a point mass. If the perturber is outside the galaxy, we

use the multipole expansion with the density rather than the

potential member of the biorthogonal pair to evaluate the

coefficients:

blmi ðtÞ ¼ 2
1

4p

ð

d3rY*lmðu;fÞd*lmi ðrÞ 1

jr2 rðtÞj

¼ 2
1

4p

ð

d3rY*lmðu;fÞd*lmi ðrÞ
l

XX

l

m¼2l

� 4p

2l1 1

r
l
,

rl11
.

Y*lm½uðtÞ;fðtÞ�Y*lmðu;fÞ

¼ 2
1

2l1 1
Y*lm½uðtÞ;fðtÞ�

ð

drr 2d*lmi ðrÞ r l

rðtÞl11
: ð21Þ

For both cases, substituting into equation (14) and rearranging

yields

kDIjðt1 tÞl ¼ 2
1

f 0ðIÞ
ljl :

›f o

›I
jY ll2 ðp=2; 0Þj2

mn

X

rs

X

� r
l
l2m

ðbÞr*ll2mðbÞW
l1m
ll2m

ðIÞW*l1n
ll2m

ðIÞ

� 4p

ð

1

21

dvMlm
mrðvÞM*lm

ns ðvÞkblm
r
ðv1Þb*lms ðv2Þl:

ð22Þ

See Appendix C2 for details. The expression for kDIjðt1 tÞDIk
(t1t)l follows by analogy with the equations (14) and (C7) in

Section 3.1. These moments describe the change in action for a

single encounter. The rate of change in actions follows from the

convolution with the ensemble flux of all encounters.

Fig. 1(b) shows the diffusion coefficients and flux for a dwarfs

passing through the halo on linear trajectories (‘shrapnel model’).

Each encounter is a single shot and independent of the others. The

trajectories have constant velocity chosen to be
ffiffiffi

2
p

times the peak

halo circular velocity for the same King model described in Section

3.1. Here (and in Paper II) we assume that the flux of shrapnel is

uniform and average over impact parameters. The diffusion

coefficients scale with the impact rate of shrapnel and the square of

the perturber mass. Both quantities are chosen to be unity in Fig.

1(b). Scalings and results for realistic scenarios are described in

Paper II.

For transient perturbations, the continuous spectra will have

some power near the frequencies of weakly damped modes and

these dominate the response. The amplitude of the weakly damped

m ¼ 1 mode is an order of magnitude larger than the remainder of

the response in all cases explored. The subsequent evolution of the

halo mass distribution, then, is determined only the mechanics of

these modes. Therefore, no matter what shape the frequency

spectrum takes, the coefficients and flux in Fig. 1(b) will have

similar shapes, depending only on the equilibrium model. In

particular, the results are nearly unchanged if the incoming velocity

is increased or decreased by a factor of 2, or the trajectory is

parabolic or hyperbolic rather than linear. Similarly, an orbiting

satellite sinking as a result of dynamical friction has a continuous

spectrum with features of a line spectrum at higher frequencies

because of the orbital motion and a broad low-frequency

component because of the decay. The decay broadens the line-

like part of the spectrum, of course, but primary resonances are

easily distinguished. Direct computation shows that the coeffi-

cients and flux are nearly identical to the shrapnel model in

Fig. 1(b) up to an overall multiplicative factor, because the

coupling is dominated by the weakly-damped modes. This also

suggests that the aperiodic noise sources will dominate the

response and therefore the response will depend only weakly on the

details of the source.

The effect of the damped mode on the halo is described

graphically in Fig. 2. The pattern speed of the damped mode, Vp is

smaller than the any orbital frequency in the halo. However, there

is a commensurate combination of frequencies 2Vf 2Vr ¼ Vp.

Figure 1. Isotropized Fokker–Planck coefficients and flux for (a; left-hand panel) orbiting point masses and (b; right-hand panel) perturbers on linear

trajectories or ‘shrapnel’. The three subpanels show the advection and diffusion coefficients, DE and DEE, and the energy flux.
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Because the frequency of a weakly damped mode has a very small

imaginary component, there will be halo orbits very close to

resonance and these will dominate the response. The resonance

exists from energies at roughly core radius outward. The near

resonant orbits become increasingly radial at high energies. The

modal profile may be found by solving for the null space of the

matrix dij 2Mij whose determinant is the dispersion relation (see

Weinberg 1994). The change in phase-space density follows by

using Liouville’s equation to express the second-order rate of

change of the distribution function, ḟ2 (analogous to equation 9), in

terms of the first-order solutions for the distribution function f1 and

Hamiltonian H1. The change in the number of orbits at a given

energy, dNðEÞ=dE, (solid curve in Fig. 2) and the change in the

phase-space density df ðEÞ=dE (short-dashed curve) shows that

the mode deposits most of its energy and angular momentum in the

outer halo. The density profile of the mode, rmode (dotted curve) is

plotted in the same figure using change of variables E ¼ FðrÞ
where F(r) is the halo gravitational potential. The enclosed mass

for the halo modelM (long-dashed curve) is shown for comparison.

The density profile of the mode peaks inside of the core and is

small at the half-mass radius. This is the reason for weak damping:

the coupling is strongest in the outer halo where its amplitude is

very small. The character of weakly damped modes in halo models

without cores is similar: angular momentum and energy is

deposited in the outer halo and the relative density of the mode

peaks inside the scalelength.

4 SUMMARY

Recent results of large-scale structure simulations and observations

of substructure in the Milky Way halo (stellar streams and

disrupting dwarf galaxies) provides ample evidence that galaxies

are not in equilibrium and motivates the question: what is the long-

term response of a stellar system to a fluctuating potential? This

paper presents a general method for computing noise-driven

evolution that incorporates the full self-gravitating response of a

stochastic process. By working in the perturbation limit, linearity

guarantees that the process is Markovian. The response of the

stellar system to repeated stochastic events is naturally treated

using the matrix method and the standard statistical techniques for

stochastic differential equations.

Expansions of integral equations for stochastic processes yield

an infinite number of terms. However, a general theorem (Pawula

1967, see Appendix for additional discussion) demonstrates that

the truncation at quadratic order is consistent for a Markovian

process and the resulting evolution equation takes the Fokker–

Planck form.4 Evaluation of the Fokker–Planck coefficients

requires the specifying the response of stellar system individual

events in the stochastic process.

We explicitly develop techniques for two general situations:

quasi-periodic perturbers and transient perturbers. The former case

is motivated by halo of super-massive black holes (e.g. Lacey &

Ostriker 1985). The latter case includes almost everything else. For

example, unbound dwarf encounters (fly-by), orbiting substructure

decaying as a result of dynamical friction, disrupting dwarfs and

mixing tidal debris are transient perturbations. There is no practical

constraint on deriving the Fokker–Planck coefficients for transient

noise as long as the process can be represented as an expansion in

some biorthogonal basis. For dwarfs on decaying or unbound

orbits, this is particularly easy and can be done by quadrature.

Alternatively, one may construct an n-body simulation using the

expansion method and let the simulation produce the time-series of

coefficients directly.

The theory described here is more difficult than an n-body

simulation but is necessary. The nature of noise-dominated

dynamics described here shows that exploration of noise-driven

evolution by n-body simulation alone will be difficult at best for

two reasons: (i) Poisson fluctuations from the distribution of bodies

(and possibly numerical noise from the Poisson solver) results in

background noise that may swamp the investigation even for 106

particles (W98); and (ii) the Poisson noise at small scales causes

diffusion of an orbit’s conserved quantities and this may eliminate

the otherwise important resonance structure. Therefore, the

traditional test of doubling or halving the number of bodies in

the simulation is not sufficient. For example, a simulation strongly

dominated by diffusion is likely to remain so when the particle

number is doubled. Similarity of the evolution in this case would

not imply convergence to the collisionless limit.

A key finding is the importance of weakly damped modes to the

evolution of haloes and therefore to galaxy evolution on the whole.

The long-lived weakly damped modes depend only on the

equilibrium halo profile. If they can be excited by noise, their

dynamics will dominate the redistribution of angular momentum,

energy and mass. The companion paper (Paper II) applies the

method described here to investigate the evolution of haloes in

noisy environments. Such environments may be found in the epoch

just after galaxy formation or in clusters and groups at present

times. We find that both unbound encounters and decaying

substructure excites these modes and drive the halo profile to a

universal time-asymptotic form.

There are a number of other possible implications and

Figure 2. Features of the weakly damped m ¼ 1 mode in theW0 ¼ 3 King

model halo. The excited damped mode will deposit angular momentum and

energy at resonances, changing the phase-space distribution. The profile of

this change is shown in two ways: (i) the change in particle number in

energy space, dNðEÞ=dE and (ii) the change in phase-space distribution with

energy, df ðEÞ=df . The enclosed mass M(r ) and the profile of the mode in

physical space rmode(r ) is also shown for comparison. The normalizations

for phase-space and density distributions are arbitrary and chosen for

convenience.

4This is also true for two-body collisions if one eliminates strong

encounters.
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applications ripe for study. The spectrum at all harmonic orders l

have discrete damped modes; the l ¼ m ¼ 1 mode is emphasized

here because it is the most weakly damped and dominates the

fluctuation spectrum. However, an excited, weakly damped l ¼
m ¼ 2 mode in a dark halo may interact with and trigger disc

features, such as transient bar formation and spiral arms. The long-

term influence of halo features on galactic structure in the 10 �
109 yr since formation may be significant. Conversely, the response

of the halo caused by transient structure in ‘maximal’ discs may

effect the evolution of the disc itself, either reinforcing the disc

features or hastening their evolution. An interesting possibility is a

excitation of disc bars by the halo or, perhaps, by the disc and halo

together. In the latter case, the dark halo may help reinforce, rather

than only dissipate, bars through dynamical friction (e.g.

Weinberg 1985, Debattista & Sellwood 2000). For non-galactic

application, consider the distribution of binary semi-major axes a

in the field star populations. This observed to be proportional to

a
21 over several orders of magnitude. Preliminary work suggests

that this may be explained as the result of fluctuations from the

noisy environment found in proto-stellar clusters and molecular

clouds.
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APPENDIX A: DERIVATION OF A

FOKKER – PLANCK EQUATION

The natural coordinates for the Boltzmann equation are action–

angle variables. For a collisionless equilibrium, the actions are

constant and the angles advance at constant rate. The initial

distribution function then depends on actions alone, f ¼ f ðIÞ. As
outlined in Section 2, one begins the derivation with the definition

of transition probability:

f ðI; t1 tÞ ¼
ð

dI0PðI; t1 tjI0; tÞf ðI0; tÞ; ðA1Þ

where an average over the rapidly oscillating angles is implied and

P is the conditional probability that a state has action I at time t1 t

if it had I
0 at time t initially. A Taylor series expansion of the

integrand of equation (A1) in the action perturbation D; I
0
2 I is

followed by a change of variables to and integration over D. In the

limit t ! 0 this expansion leads directly to

›f ðI; t1 tÞ
›t

¼
X

1

n¼1

2
›

›I

� �n

D ðnÞðI; tÞf ðI; tÞ; ðA2Þ

where the moments D [n] will be defined explicitly below. Note that

P is the probability of a change in I caused by stochastic events

despite the appearance of continuity. Therefore, the formal time-

derivatives in the expansion and phase-space integral should be

considered as the limit for small t (but for t greater than a

dynamical time) of the ensemble average of stochastic events. If

we let j be the stochastic value of I at some later time, the

expansion coefficients describing the stochastic variables j is:

D ðnÞðx; tÞ ¼ 1

n! t!0
lim

1

t
k½jðt1 tÞ2 I�nl

�

�

�

�

jðtÞ¼I

: ðA3Þ

In N dimensions, this becomes:

D
ðnÞ
j1 ;j2 ;…;jn

ðI; tÞ ¼ 1

n! t!0
lim

1

t
M

ðnÞ
j1 ;j2 ;…;jn

ðI; t; tÞ; ðA4Þ

where the moments M (n) are

M
ðnÞ
j1 ;j2 ;…;jn

ðx; t; tÞ ¼ kð�Ij1 2 Ij1 Þð�Ij2 2 Ij2 Þ…ð�Ijn 2 Ijn Þl: ðA5Þ

The angle brackets denote the expectation over the conditional

probability of obtaining the state variable Īj at time t1 t given Ij at

time t. The approach sketched here is described by Risken (1989,

chapter 4).

Although the Kramers–Moyal expansion has an infinite number

of terms in general (cf. equation 1), the Pawula Theorem (Pawula

1967) shows that consistency demands that the expansion either

stops after two terms and takes the standard Fokker–Planck form

or must have an infinite number of terms. The response function

guarantees that the Kramers–Moyal expansion terminates after

two terms in the limit of weak perturbations because higher order

terms are vanishingly small in comparison. This is consistent with

our intuition that repetitive, weak, stochastic excitation in a galaxy

is a Markov process and the transition probability should take a

Gaussian form following the Central Limit Theorem. The

evolution equation is then a Fokker–Planck equation:

›f ðI; tÞ
›t

¼ LFPðI; tÞf ðI; tÞ; ðA6Þ
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where

LFPðI; tÞ ¼ 2
›

›Ii
D

ð1Þ
i ðI; tÞ1 ›

2

›Ii›Ij
D

ð2Þ
ij ðI; tÞ: ðA7Þ

APPENDIX B : AVERAGED

FOKKER – PLANCK EQUATION

A number of authors have described coordinate transformations for

the multivariate Fokker–Planck equation (Rosenbluth et al. 1957,

Risken 1989). The approach is the familiar one: write the equation

in terms of scalars, covariant and contravariant vectors and tensors

and covariant derivatives only and apply the standard tools of

differential geometry. Rosenbluth et al. use the Jacobian of the

coordinate transformation as a metric and Risken uses the diffusion

matrix. We will use the former approach here. Denote the Jacobian

of the coordinate transformation as J. Under a change of

coordinates, one can show after a fair bit of algebra that the

advection and diffusion coefficients transform as

D0
k ¼

›x0k
›xi

Di 1
›
2x0k

›xi›xj
Dij; ðB1Þ

D0
kl ¼

›x0k
›xi

›x0l
›xj

Dij: ðB2Þ

The phase-space distribution function transforms as f 0ðIÞ ¼ Jf ðIÞ
(cf. Risken 1989) and in the new variables, the equation takes the

standard Fokker–Planck form:

›f 0ðI; tÞ
›t

¼ 2
›

›I 0k
D0

k 1
›
2

›I 0k›I
0
l

D0
kl

� �

f 0ðI; tÞ: ðB3Þ

Now let I0 ¼ ðE;k; cosbÞ. Assuming that the distribution function f

is time-independent and non-zero, we may integrate equation (B3)

over k and cosb. As both of these variables have a bounded

domain, the flux through their boundaries must vanish, leaving a

single flux term:

›kf 0l

›t
¼ ›

›E
2DEf

0
1 DEj

›f 0

›x j

� �� �

iso

; ðB4Þ

where the angle brackets denote integration over k and cosb and

implied sum on j is over all three variables. Expanding the

contravariant vectors in terms of the original advection and

diffusion coefficients one finds that

›kf l

›t
¼ ›

›E
2DEf 1

›

›x j
ðDEjf Þ

� �

iso

: ðB5Þ

The isotropically averaged Fokker–Planck equation is then

›�f ðEÞ
›t

¼ ›

›E
2kDEliso �f ðEÞ1

›

›E
½kDEEliso �f ðEÞ�

� �

; ðB6Þ

where kDEliso and kDEEliso are the isotropically averaged diffusion

coefficients:

kDEl

kDEEl

( )

¼ J2maxðEÞ
f ðEÞ

ð

dk dðcosbÞk
DE

DEE

( )

f ðE; k;bÞ; ðB7Þ

where

�fðEÞ ¼ J2maxðEÞ
ð

dk dðcosbÞkf ðE; k;bÞ; ðB8Þ

and the phase-space volume is

PðEÞ; J2maxðEÞ
ð

dk dðcosbÞk: ðB9Þ

Note that the standard notation in the globular cluster literature is

f ðEÞ ¼ �f ðEÞ/PðEÞ.

APPENDIX C : DERIVATION OF ACTION

MOMENTS AND COEFFICIENTS

C1 Orbiting point-mass perturbers

We apply the two-particle distribution function from Section 3.1,

equation (17) to explicitly evaluate the moments in actions. The

ensemble average in equation (14) implies an average of possible

distributions of point masses consistent with some underlying

distribution. Therefore

kblmr ðv1Þb*l
0m0

s ðv2Þl ¼
l

X

dmm0Y ll2 ðp=2; 0ÞY*l0l2 ðp=2; 0Þr
l
l2m

ðbÞ
*

� r
*l0
l2
ðbÞ �W

l1n
ll2m

ðIÞW*l1m
l0l2m

ðIÞð2pÞ2

� dðv1 1 v2Þdðv1 2 l :VÞ
�

; ðC1Þ

and

kblm
r
ðt1Þb*l

0m
s ðt2Þl ¼

1

2p

� �2ð1

21

dv1

ð

1

21

dv2 e
iðv1 t12v2t2Þ

� kbl
0m
r
ðv1Þb*lms ðv2Þl: ðC2Þ

Integration over angles identifies l with l
0 and therefore

m ¼ l3 ¼ l03 ¼ m0. Now using equations (15), (16), (17) and the

orthogonality of rotation matrices,
ð

db sinðbÞrlmnðbÞrl
0
mnðbÞ ¼

2

2l1 1
dll0 ; ðC3Þ

(Edmonds 1960) to evaluate the average, we find that the final part

of expression (14) becomes

1

2p

� �2 ð

1

21

dv1

ð

1

21

dv2 e
iðv1t11v2t2Þblm

r
ðv1Þb*lms ðv2Þ

� �

¼ ð2pÞ3
l

X

ð

d3If oðIÞ eil :VðIÞðt12t2ÞjY ll2 ðp=2; 0Þj2

� jrll2mðbÞj
2
W

l1r
ll2m

ðIÞW*l1s
ll2m

ðIÞ; ðC4Þ

where the integration over v1 and v2 has become a sum over

discrete frequencies denoted by l. We now substitute this

development into equation (14) and find

kDIjðt1 tÞl ¼ 2
1

f 0ðIÞ
ljl :

›f o

›I
jY ll2 ðp=2; 0Þj2

mn

X

rs

X

� r
l
l2m

ðbÞr*ll2mðbÞW
l1m
ll2m

ðIÞW*l1n
ll2m

ðIÞ

� ð2pÞ3
l

X

ð

d3If oðIÞjY ll2 ðp=2; 0Þj2rll2mðbÞ

8

<

:

r
l
l2m

ðbÞ

�W
l1r
ll2m

ðIÞW*l1s
ll2m

ðIÞMlm
mr½l :VðIÞ�M*lm

ns ½l :VðIÞ�

�
ðt1t

t

dt1

ðt1t

t

dt2 e
il :VðIÞðt12t2Þ

)

: ðC5Þ

Returning to equation (A3), we can now read off our diffusion

Noise-driven evolution in stellar systems – I 319

q 2001 RAS, MNRAS 328, 311–320



coefficients in action variables:

D
ð1Þ
j ðI; tÞ ¼

t!0
lim

kDIjðt1 tÞl
t

¼ 2
1

f 0ðIÞ
ljl :

›f o

›I
jY ll2 ðp=2; 0Þj2

�
mn

X

rs

X

r
l
l2m

ðbÞr*ll2mðbÞW
l1m
ll2m

ðIÞW*l1n
ll2m

ðIÞ

� ð2pÞ3
l

X

ð

d3If oðIÞjY ll2 ðp=2; 0Þj2rll2mðbÞr
l
l2m

ðbÞ

8

<

:

�W
l1r
ll2m

ðIÞW*l1s
ll2m

ðIÞMlm
mr½l :VðIÞ�M*lm

ns ½l :VðIÞ�2pd

� ½l :VðIÞ�
)

: ðC6Þ

D
ð2Þ
jk ðI; tÞ ¼ t!0

lim
kDIjðt1 tÞDIkðt1 tÞl

2t

¼ ljlk

2
jY ll2 ðp=2; 0Þj2

mn

X

rs

X

r
l
l2m

ðbÞr*ll2mðbÞW
l1m
ll2m

ðIÞW*l1n
ll2m

ðIÞ

� ð2pÞ3
l

X

ð

d3If oðIÞjY ll2 ðp=2; 0Þj2rll2mðbÞr
l
l2m

ðbÞ

8

<

:

�W
l1r
ll2m

ðIÞW*l1s
ll2m

ðIÞMlm
mr½l :VðIÞ�M*lm

ns ½l :VðIÞ�2pd

� ½l :VðIÞ�
)

: ðC7Þ

The limit t!0 must be taken in the sense that t is small compared

to the evolutionary time-scale as a result of the fluctuations but

large compared to the dynamical time. The time-dependence of the

diffusion coefficients reminds us that the underlying equilibrium

distribution fo(I) changes on an evolutionary time-scale but, for the

purposes of computation, is held fixed on a dynamical time-scale.

The integrals may be simplified by noting that d3I ¼
dE dJJ dðcosbÞ=V1ðE; JÞ: We can do the integral in b using the

orthogonality of the rotation matrices as previously described.

For a given equilibrium distribution function fo(I), the term in

curly brackets in equations (C6) and (C7) can be computed once

and for all as they are independent of the local value of the

actions.

C2 Transient processes

The development for transient ‘shot’ noise is similar to that above

and this section will emphasize the differences. The Fourier

transform needed for equation (14) is carried out most easily

assuming the perturber is in the equatorial plane of the coordinate

system. We denote the Fourier transform of blmj ðtÞ as b̂
lm

j ðvÞ. In
practice, the transform is easily computed numerically by fast

fourier transform (FFT). Equations (20) and (21) in Section 3.2

describe the time-dependence of coefficients for any trajectory

r(t),u(t),f(t). A cloud of points and more generally any phase-

space distortion yielding blmi ðtÞ or coefficients at discrete times

from an n-body simulation are possible input to the FFT. Now, we

can evaluate the final line in equation (14) by changing coordinates

from t1, t2 to T ¼ ðt1 1 t2Þ=2; t ¼ t1 2 t2. We have

eiðv1 t11v2 t2Þ ¼ eiðv1½T1t/2�1v2½T2t/2�Þ ¼ eiðv11v2ÞTeiðv12v2Þt/2:

Using this in the last line of equation (14) we find
ðt1t

t

dt1

ðt1t

t

dt2 e
iðv1 t11v2 t2Þkblmr ðv1Þb*lms ðv2Þl

¼
ðt1t/2

t

dT4pdðv1 2 v2Þ ei2vT kblmr ðv1Þb*lms ðv2Þl

¼ 4pdðv1 2 v2Þ eivt
sinvt

v
k�b

lm

r ðv1Þ�b*lms ðv2Þl: ðC8Þ

where v;v1 ¼ v2. In deriving the second equality, we note that

the bombardment must occur between t and t1 t and use the shift

properties of the Fourier transform to write kblmr ðv1Þb*lms ðv2Þl ¼
e22vtk�b

lm

r ðv1Þ�b*lms ðv2Þl where the transform b̄(v) denotes the

transform of an event centred about the temporal origin. In the limit

t!0, this expression becomes 4pdðv1 2 v2Þt. Substituting this

back into equation (14), we can perform one of the v integrals

straight away. After rearranging we have

kDIjðt1 tÞl ¼ 2
1

f 0ðIÞ
ljl :

›f o

›I
jY ll2 ðp=2; 0Þj2

mn

X

rs

X

r
l
l2m

ðbÞr*ll2mðbÞ

�W
l1m
ll2m

ðIÞW*l1n
ll2m

ðIÞ 4p
ð

1

21

dvMlm
mrðvÞM*lm

ns ðvÞ

� kblmr ðv1Þb*lms ðv2Þl: ðC9Þ
The expression for kDIjðt1 tÞDIkðt1 tÞl follows by analogy with

the equations (C6) and (C7).

Symmetry suggests the choice of perturbing orbits on the

equatorial plane should not effect the final results. This can be

demonstrated explicitly using the rotational properties of the

spherical harmonics. Let Rl
mm0 ða;b; gÞ be the rotation matrix with

the Euler angles a, b, g. Then

Y lmðu;fÞ ¼
X

l

m0¼2l

Y lm0 ðu0;f0ÞRl
mm0 ða;b;gÞ;

where the primed coordinates refer to the rotated coordinate

system, and therefore we have

blmj ðtÞ ¼
X

l

m0¼2l

blm
0

j ðtÞRl
mm0 ða;b; gÞ; ðC10Þ

For an isotropic spherical system the response operator Mlm
mrðvÞ is

independent of m. We can exploit this and the rotational properties

of blmr ðvÞ to simplify the computation of kblmr ðv1Þb*lms ðv2Þl. First,
express blmr ðvÞ in any convenient coordinate system and then use

the rotation matrices to rotate this to any orientation:

kblmr ðv1Þb*lms ðv2Þl

¼
X

l

m0¼2l

R
l
mm0 ða;b; gÞblm0

r ðv1Þ
X

l

m00¼2l

R
l
mm00 ða;b; gÞb*lm00

s ðv2Þ
* +

:

ðC11Þ
Summing over all values m for a given l we have

X

l

m¼2l

blmr ðv1Þb*lms ðv2Þ
* +

¼
X

l

m0¼2l

blm
0

r ðv1Þb*lm
0

s ðv2Þ
* +

; ðC12Þ

having used the orthogonality of rotation matrices. We assume that

the ensemble average includes random events from all directions

and therefore only the same event will be correlated in the

computation of kblmr ðv1Þb*lms ðv2Þl.
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