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AB S TRACT

We introduce a new approach to meteoroid stream identi®cation, based on a distance function

involving four geocentric quantities that are directly linked to observations; the new distance

function is thus de®ned in a space that has as many dimensions as the number of independently

measured physical quantities, at variance from the conventional orbital similarity criterion of

Southworth & Hawkins. Two of the new variables turn out to be near-invariant with respect to

the principal secular perturbation affecting meteoroid orbits, the one associated with the cycle

of q.
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1 INTRODUCTION: WHY A NEW

CRITERION?

The procedures to identify meteoroid streams normally involve the

use of ameasure of the similarity of the orbits ofmeteoroids; for this

purpose, perhaps the most common and widely used such tool is the

orbital similarity criterion DSH introduced by Southworth & Haw-

kins (1963), which has been in use for more than 30 yr. This

criterion has not been without critics in the recent past; for instance,

SÏ tohl & PorubcÏan (1987) have questioned the relative weight of the

various terms in it. In fact, past attempts to improve on DSH, by

Drummond (1981) and Jopek (1993), have not changed the basic

approach, still using the conventional orbital elements but just

weighing the contributions in different ways; Jopek (1993) has

reviewed these attempts.

In essence, DSH is a generalized measure of distance between

two orbits in the ®ve-dimensional space of the conventional orbital

elements q (perihelion distance), e (eccentricity), i (inclination), q

(argument of perihelion) and Q (longitude of ascending node):
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and where the suf®xes 1 and 2 refer to the two orbits being

compared.

However, there is one dimension inDSH that we should get rid of:

as meteoroids are observed at heliocentric distance r . 1 au, we

have approximately that either

1 �
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depending on the value of q� f . These relations are valid for orbits

with non-zero inclination, which are essentially all those of prac-

tical interest.

The problem of measuring the similarity of meteor orbits there-

fore has only four dimensions, and one wonders whether there is a

suitable set of four quantities, possibly easily computable starting

from the usual orbital elements, that would allow meteoroid stream

identi®cation in a `natural' way; it would be better still if these

quantities were directly deducible from observed quantities, with-

out passing through the derivation of the orbital elements.

Southworth&Hawkins themselveswere somewhat concerned in

this respect by their choice of the orbital elements with which to

compare meteor orbits, as they wrote in their 1963 paper that

`several attempts, based upon a variety of principles, were made to

classify the meteors into streams and a `̀ sporadic'' remainder. None

of the classi®cations based on geocentric quantities ± radiants,

velocities, and dates of occurrence ± was satisfactory. It became

clear that a comprehensive quantitative criterion was required that

would embrace all the elements of the orbit'.

Regarding the fact that DSH is de®ned in a ®ve-dimensional

space, they remarked that `the fact that all observed meteors pass

close to the orbit of the Earth imposes one constraint on the
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observed ®ve elements, and thus reduces the number of independent

elements to four. The Earth is not important in the evolution of

meteor streams, however, so that this constraint is not relevant to the

differences within streams. Accordingly, we disregard it in formu-

lating D.'

It turns out that one can use a set of geocentric quantities to

classify meteors in streams, and such a set with the desirable

properties mentioned above is described in Section 2; it is based

on the components of the geocentric velocity at encounter that are

essential for OÈ pik's theory of close encounters.

In Section 3 the time behaviour of the new variables is examined,

and it is shown that two of them are near-invariant with respect to

the most important secular perturbation affecting meteoroid orbits;

numerical checks of this property are also given. The discussion

(Section 4) and the conclusions (Section 5) then follow.

2 CHANGING THE VIEWPOINT: FROM

HELIOCENTRIC TO GEOCENTRIC

QUANTIT IES

2.1 A digression: the geometric setup of OÈ pik's theory of close

encounters

OÈ pik's theory of close encounters is described in his book (OÈ pik

1976); here we only borrow from it the geometric setup, following

Carusi, Valsecchi & Greenberg (1990) and Valsecchi (1992).

We assume that the Earthmoves on an unperturbed circular orbit,

of radius equal to 1, lying on the ecliptic; a massless meteoroid is on

an orbit, with orbital parameters a (semimajor axis), e, i, q and Q,

that crosses that of the Earth at (at least) one of the nodes. We put

both the constant of gravity and the mass of the Sun equal to 1, and

impose that the heliocentric velocity of the Earth is vÅ � 1, instead

of vÅ �
����������������

1�MÅ

p

, disregarding the effect of the terrestrial mass

MÅ on its orbital velocity.

With these conventions the geocentric velocity of the meteoroid

when crossing the Earth's orbit is

U �
������������

3ÿ T
p

; �6�

where T is the well-known Tisserand parameter:
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1

a
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In a reference frame centred on the Earth, with the z-axis

perpendicular to the plane of the ecliptic, the y-axis in the direction

of the Earth's velocity and the x-axis pointing away from the Sun,

which is therefore located at x � ÿ1, y � 0, z � 0, the unperturbed

geocentric encounter velocity U of the particle has components

Ux � U sin v sinf; �8�

Uy � U cos v; �9�

Uz � U sin v cosf; �10�

where v is the angle between U and the y-axis (i.e. the direction of

motion of the Earth), and f is the angle between the y±z plane

and that containing U and the y-axis (for encounters at the

ascending node ÿ90± < f < 90±, while at the descending node

90
±

< f < 270
±

).

The components of U can be expressed in terms of a, e and i:
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and a, e and i in terms of the components of U:
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note that in equation (14) the minus sign must be used for pre-

perihelion encounters, and in equation (16) for encounters at the

descending node.

2.2 The new variables

Let us now come back to the meteoroid hitting our idealized Earth.

The longitude of the latter, lÅ, at the date and time of the meteor

observation, obviously gives us the longitude l of the meteoroid, as

well as the position of the nodal line of its orbit.

We would then like to have three more quantities to characterize

the orbit completely and we do not want to use the other orbital

parameters a (or q), e, i and q because, as seen in the Introduction,

they are four quantities, three of which are related by a constraint,

either (4) or (5).

On the other hand, the geometry of the encounter suggests to us

what to do: use the modulus of the unperturbed geocentric velocity

U and the two angles that give its direction, which in OÈ pik's theory

are v and f, given by

v � arccos
Uy

U
; �17�

f � arctan
Ux

Uz

: �18�

Actually, v and f are the angles that de®ne the direction opposite

to that from which the meteoroid is seen to arrive (after removal of

the effect of the Earth's gravity), i.e. opposite to the geocentric

radiant, with the further important difference that the latter is

de®ned with respect to ®xed stars, whereas v and f identify the

antiradiant at the place where the meteor is observed, since they are

de®ned in the instantaneous geocentric reference frame in which

the x±y plane coincides with the ecliptic and the x-axis coincides

with the heliocentric position vector of the Earth.

Let us discuss the potential use of v andf, in turn, in a new stream

identi®cation criterion.

First, we note that v depends only onU and a, and not on e and i.

Moreover, relative to the geocentric sphere of radius U, v plays

the role of a latitude, since a uniform distribution of points over the

surface of this sphere would give a uniform distribution in cos v;

this fact, coupled with the circumstance that in terms ofU and awe

have

cos v �
1ÿ U

2
ÿ 1=a

2U
; �19�

i.e. that cos v is directly proportional to ÿ1=a, the orbital energy of

the meteoroid, suggests that we use cos v, and not v, as a variable for

the new distance function.

Coming tof, let us consider the ranges of values that it takes, as a

consequence of the sign of Ux and Uz, for the four basic geometries

of encounter of a meteoroid with the Earth, summarized in Table 1.
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Actually, in order to have that set (U, cos v, f, l) maps one-to-

one with (a, e, i, q, Q), given the constraint on the nodal distance,

one could reduce f and l to, say, the ®rst and fourth quadrants, and

in this way one could recognize as belonging to the same meteoroid

stream meteors belonging to showers like the Orionids and the h

Aquarids, observed at two nodes of nearly the same orbit, when

approaching perihelion and when receding from it.

However, such a choice would have an undesirable consequence

for a nearly ecliptical stream like, for instance, the Taurids, which

are characterized by f< 2708: f of the southern branch would be

put close to ÿ908 and f of the northern branch close to 908, thus

very far away from each other, whereas in reality their velocity

vectors would differ only by a small angle.

Also making a change of variable to, say, the angle

x � fÿ 908 � arctanUz=Ux would not be a good idea, as it

would solve the problem for the southern and northern branches

of nearly ecliptical streams, but would make the same problem

reappear for a stream with q< 1 au, like the Quadrantids; in this

caseUx < 0 and f< 1808, so that x< 908: for f* 1808, we would

have x* 908 and, by the reduction to the ®rst and fourth quadrant,

x*ÿ908, i.e. the new angle would again jump by nearly 1808 for

meteors, the geocentric velocity vectors of which are in reality

rather close to each other.

We therefore keep f and l as variables for the classi®cation, and

stipulate that theymust not be reduced to just two quadrants, but can

take any value between 08 and 3608, as shown in Table 1; the various

problems that we have just described can be solved by considering

the differences in f and l, using the procedure described in the next

subsection.

The three quantities U; v and f can be obtained from the

components Ux, Uy, Uz, which in turn, can be calculated from the

directly measurable quantities that characterize an observed

meteor: the geocentric velocity VG and the equatorial coordinates

of the meteor radiant aG and dG. We have
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where Ãp�«�; Ãr�l� are rotational matrices around the x- and z-axes,

respectively, and the angle « denotes the inclination of the ecliptic

plane to the plane of the celestial equator.

Incidentally, the above expression shows that, if all the particles

in a stream share the samevalues of a, e, i [and thusq, because of (4)

or (5)], and just differ in Q, there is a unique curve in the sky along

which the radiant may lie. The radiants of observed streams move

during the period of observation, and a comparison between the

actual movement of a radiant and the one obtained from (23) and the

hypothesis of constancy of a, e and i may give some information

about the distribution of orbital elements within a stream.

2.3 The new criterion

Having identi®ed four quantities with the desired properties, we can

now proceed to de®ne a new orbital similarity criterion for meteor-

oid orbits. We formulate the new criterion as follows:

D
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andw1,w2,w3 are suitably de®nedweighting factors; note thatDy is

small if f1 ÿ f2 and l1 ÿ l2 are either both small or both close to

1808. In this second case, the two meteors would belong to the two

showers corresponding to the two node crossings of essentially the

same orbit, characterized by q�1� e�< 1 and q< 908 or q< 2708,

as is the case for the Orionids and the h Aquarids.

In the application of the new criterion to a set of precisely

measured photographic meteor orbits given in an accompanying

paper (Jopek, Valsecchi & FroeschleÂ 1999, Paper II in this issue) we

have put the three weighting factors equal to 1 but, of course, other

choices are possible.

3 A REDUCED CRITERION BASED ON

SECULARLY NEARLY INVARIANT

QUANTIT IES

3.1 Useful, directly observed secular near-invariants

Many factors in¯uence the dynamical evolution of meteoroid

stream particles, and some of them result from forces other than

gravitation, especially for meteoroids of very small size. However,

over not too long time-scales, and in the absence of planetary close

encounters, we can assume that only planetary secular perturbations

affect meteoroid orbits.

The most important secular perturbation to take into account in

this case is the one related to the cycle of q, ®rst described by

Kozai (1962). Assuming that all the planets are on circular and

coplanar orbits, that there are no close encounters, and that the

meteoroid body is not near mean motion or secular resonances, it

leaves invariant not only the so-called Kozai integral K, upon

which we will comment later, but also the z-component of the

orbital angular momentum,

Lz �
������������������

a�1ÿ e2�
p

cos i; �27�

and, because of the assumed absence of close encounters, one can
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Table 1. The sign of Ux and Uz, and the corresponding ranges of f, for the four basic geometries of encounter of a

meteoroid with the Earth.

Ascending node Descending node

Post-perihelion Ux > 0 Uz > 0 08 < f < 908 Ux > 0 Uz < 0 908 < f < 1808

Pre-perihelion Ux < 0 Uz > 0 2708 < f < 3608 Ux < 0 Uz < 0 1808 < f < 2708



also count on the invariance of the orbital energy,

E � ÿ
1

2a
: �28�

Then, however,

T �
1

a
� 2

������������������

a�1ÿ e2�
p

cos i � 2�Lz ÿ E� �29�

is constant, and therefore so isU, because of (6). Finally, if a andU

are conserved, so is cos v, because of (19). Note that here we are

dealing with U and v as quantities computed from the orbital

elements , using OÈ pik's expressions; these expressions are very

valuable in this context because of the interpretation of U and v in

terms of observed quantities in the case of meteors.

The secular invariance of U and cos v suggests to us that we use

these quantities to identify as possibly being originated from the

same parent body meteor showers with orbits having different q, e,

i, q and Q, as a result of secular perturbations on a single meteoroid

stream (Babadzhanov & Obrubov 1991, 1992a,b, 1993).

A possible de®nition for such a criterion is

D
2
R � �U2 ÿ U1�

2
� w1�cos v2 ÿ cos v1�

2
�30�

where, as before, w1 is a suitably de®ned weighting factor.

To illustrate the goodness of U and cos v as indicators of a

possible common parent body for streams on widely separated

orbits, let us examine the case of the meteoroid stream possibly

associated with comet 96P/Machholz 1 (as proposed by Babadzha-

nov &Obrubov 1993; note that Jenniskens et al. 1997 andWilliams

&Collander-Brown 1998 strongly doubt that 96P/Machholz 1 is the

parent body of the Quadrantids).

Babadzhanov&Obrubov (1993) computed the secular evolution

of 96P/Machholz 1 over an extended time span, obtaining its orbital

elements at the crossings of the Earth's orbit. They found that there

are eight such crossings, which take place in two groups of four

orbits that are similar from the point of view of a, e and i; meteor

showers are associated with each crossing, and Table 2 contains

data from their paper, supplemented with the corresponding values

of U and cos v. The Quadrantids and the d Aquarids are the most

conspicuous representatives of each group of showers, and the

possibility of their common origin had been suggested long before

the discovery of 96P/Machholz 1 by Hamid & Whipple (1963).

As it is possible to see, although the two groups of orbits cluster

about q< 0:97 au, e< 0:69, i< 728 and q< 0:07 au, e< 0:97,

i< 308, respectively, thus spanning practically all the available

range of q, and a considerable fraction of the ranges available in e

and i, their values of U and cos v are much more tightly clustered.

Fig. 1 helps to illustrate this point better. It represents the plane

U±cos v, and in it are reported the streams discussed by Babadzha-

nov & Obrubov (1993) as well as two lines: the upper line separates

solar system meteoroids from hyperbolic ones, and thus is the

practical upper bound to the U±cos v range available to meteoroid

stream orbits, while the lower line corresponds to a � 1 au.

In the ®gure are also marked the positions of comet 96P/

Machholz 1, the presumed parent body of all these streams

according to Babadzhanov & Obrubov (1993), asteroid

(5496) 1973 NA, suggested as possible parent of the Quadrantids

byWilliams & Collander-Brown (1998), comet C/1490 Y1=1491 I,

with the eccentricity adjusted to 0.77, also suggested as possible

parent of the Quadrantids byWilliams &Wu (1993), and comet 8P/

Tuttle, which has been for some time in the past considered the

parent body of the Ursids, as also remarked by KresaÂk in the

discussion following the paper of Babadzhanov & Obrubov.

The ®gure in fact shows vividly how most of the shower orbits,

either calculated or observed, are close to each other in this type of

diagram; 96P/Machholz 1, (5496) 1973 NA and the adjusted orbit

of C/1490 Y1, all being very close to the cluster, are obvious parent

candidates. The ®gure also shows how peripheric the observed

Ursids are with respect to the other observed showers, and how

much closer they are to 8P/Tuttle, thus pointing to the necessity of

further investigating the problem of their origin.

Having seen how clustered in U±cos v are orbits that have

undergone a substantial secular evolution, it is of some interest to

look at how the orbits of asteroids and comets are arranged, in the

same plane, as well as those of individual photographic meteors.

Concerning the latter, Fig. 2 contains the 865 most precise

photographic orbits, including 139 small-camera meteors (Whipple

1954), 413 Super Schmidt meteors (Jacchia & Whipple 1961), and
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Table 2. Orbital parameters of the meteoroid streams associated with 96P/Machholz 1, according to Babadzhanov &

Obrubov (1993); rows denoted with T contain the data computed by those authors, while rows denoted with O give the

observed data.

Stream name q(au) e i�8� Q�8� q�8� U cos v

Quadrantids T 0.92±1.02 0.65±0.72 67±72 278±290 159±180 1.33 ÿ0:41

O 0.97±0.98 0.65±0.70 69±73 280±283 167±170 1.35 ÿ0:43

Ursids T 0.92±1.02 0.66±0.72 68±73 271±282 180±198 1.35 ÿ0:42

O 0.94±0.95 0.64±0.85 54±67 260±283 187±206 1.21 ÿ0:30

Carinids T 0.92±1.02 0.66±0.71 72±80 86±109 344±360 1.43 ÿ0:48

O 0.98 0.61 79 108 354 1.45 ÿ0:52

k Velids T 0.92±1.02 0.68±0.71 74±80 99±109 0±16 1.45 ÿ0:49

O 0.97 0.51 77 102 18 1.39 ÿ0:52

Northern T 0.04±0.11 0.96±0.99 19±40 104±136 326±340 1.41 ÿ0:47

d Aquarids O 0.06±0.12 0.95±0.98 14±21 128±143 323±334 1.34 ÿ0:44

Southern T 0.03±0.12 0.96±0.99 20±40 296±322 141±160 1.41 ÿ0:47

d Aquarids O 0.07±0.14 0.96±0.99 23±32 304±322 139±152 1.39 ÿ0:42

Daytime T 0.03±0.12 0.96±0.99 20±40 72±87 20±37 1.41 ÿ0:47

Arietids O 0.04±0.10 0.94±0.98 18±46 77±89 19±30 1.34 ÿ0:51

a Cetids T 0.04±0.12 0.96±0.99 19±36 249±263 203±216 1.40 ÿ0:45

O 0.06±0.18 0.89±0.99 20±31 255±269 194±214 1.27 ÿ0:44



313 additional Super Schmidt meteors (Hawkins & Southworth

1958, 1961); many of them are close to the parabolic limit, while

only a minority are situated below the a � 1 au condition.

Fig. 3 shows all the comets taken from Marsden & Williams

(1996) as dots, and all the Apollo±Amor±Aten asteroids taken

from the listings of the Minor Planet Center World Wide Web

server as open circles. There is relatively little overlap between

the two populations; it is only along a strip parallel to the

parabolic limit and not very far from it. It is interesting to

compare the two ®gures, as one immediately gets a rather clear

impression of the proportion of meteors belonging to the sample

of 865 precise photographic orbits that are probably of asteroidal

origin; in doing so, however, one must take into account that slow

meteors are disfavoured, because of the larger size that they must

have in order to reach a given magnitude. In any case, from Fig. 3

we learn that, for the range of U and cos v occupied only by open

circles, even an approximate determination of just these two

quantities allows us to infer a probably asteroidal origin for a

given sporadic meteor.

3.2 Can we use additional near-invariants?

The secular problem in which a meteoroid orbit is affected by

perturbations caused by one or more planets moving in circular

orbits, all in the same plane, admits one further constant of motion

besidesE and Lz, namely the Kozai integralK (Kozai 1962; Thomas

&Morbidelli 1996). One may then think of completing DR, adding

to it the separation in K between the two orbits being compared.

This is not as useful as it might seem at ®rst glance, for several

reasons.

(i) There is no closed expression to calculate K; it is actually

computed, as described in Thomas & Morbidelli (1996), using the

orbital elements, so that one has to give up the direct link with

observed quantities enjoyed by the variables used in DN and DR.

(ii) K is not de®ned for the hyperbolic orbits that one sometimes

®nds for meteoroids associated with long-period comets.

(iii) While the conventional orbital elements as well as U and

cos v exhibit small variations for dispersions typical of meteoroid

streams, the behaviour of K in this respect is rather bizarre, and

examples of this are given below.

(iv) Even if DR were not very small for a pair of orbits, a check

made with an accurate model would still be necessary, given the

previous point, so why bother with the more complex criterion if it

would not save us the necessity of checking?

The third point is particularly important. To illustrate it, we

have compiled Table 3, where we have collected the typical

orbital parameters of some well-known streams, together with

values of U, cos v and K; in addition, for each stream the same

quantities have been recomputed after adding, at perihelion,

61 000 m s
ÿ1

in the direction of motion (`forwards' and `back-

wards' in the table), of the radius vector (`outwards' and

`inwards'), and of the normal to the orbital plane (`upwards'

and `downwards').

Actually, meteors are ejected from comets not only at perihelion

and, anyway, at far lower velocities, as demonstrated by the

observations of meteor storms and by the cometary dust trails

discovered by IRAS (KresaÂk 1992, 1993); however, planetary

perturbations and measuring errors cause an observed dispersion

ofmeteoroid stream orbits comparable to that theywould have if the

actual ejection velocities were in the km range. In Table 3 we just

want to show how the observed orbital dispersion within streams

re¯ects on individual quantities.

As one can easily see, K suffers a serious shortcoming: at

variance with the behaviour of U and cos v, the variations of K

can be very large in relative terms, and this makes the use of K as a

classi®cation parameter questionable; in fact, while a closeness in

K,U and cos v of the orbits of twometeoroids would mean that they

might have a common parent, the opposite is not always true. In

fact, according to Table 3, if two orbits were close to each other inU

and cos v, but rather widely separated in K, they could still be

compatible with ejection from the same parent body.
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Figure 1.The calculated (small dots) and the observed positions (small open

circles) of the streams discussed by Babadzhanov & Obrubov (1993) in the

plane U-cos v; the large dot corresponds to 96P/Machholz 1, the large open

circle to comet 8P/Tuttle, the asterisk to asteroid (5496) 1973 NA, and the

cross to comet C/1490 Y1 (see text).

Figure 2. The positions of 865 precisely measured photographic meteor

orbits in the plane U-cos v.

Figure 3. The positions of Apollo, Aten and Amor asteroids (open circles)

and comets (dots) in the plane U-cos v.



3.3 How good are the secular near-invariants? A numerical

check

To test the invariance of U and cos v over time-scales of interest for

the meteoroid stream identi®cation problem, we have integrated

over 25 000 yr a ®ctitious object on an orbit similar to that of 96P/

Machholz 1, and two other objects obtained by a velocity change of

65 m sÿ1 at perihelion in the forward and backward directions, in a

simpli®ed solar system consisting only of Jupiter and the Earth,

both on circular coplanar orbits. Thevelocity difference of65m sÿ1

was chosen following KresaÂk (1993), who ®nds this value to be

about the maximum compatible with the observations of meteor

storms and IRAS dust trails. We have chosen a simpli®ed solar

system model, in which the only secular effect is that tied to the q-

cycle, in order to show the difference of behaviour between the

conventional elements and our near-invariants in one of the sim-

plest, and therefore one of themost generic, gravitational systems in

which these differences are present. Of course, in a more realistic

solar system there would be more sources of perturbation, and

therefore the behaviour of our near-invariants would somewhat

degrade.

The results of the evolution details we have computed are shown

in Fig. 4, which gives the time behaviours of, from top to bottom,

the heliocentric distances of the descending and the ascending node,

Q, q, sin i, e,U, cos v,K (multiplied by 10 000) and q. The dots refer

to the central body, the small open circles to the object ejected

backwards, and the large open circles to the object ejected forwards.

While q, e and sin i exhibit the large variations correlated with the

prograde rotation of q that are to be expected for such an orbit, U,

cos v and K are much more stable, demonstrating their quasi-

invariance in this case; in fact, planetary encounters with the

Earth and Jupiter are possible, but not very effective on the time-

scale examined, because they take place at rather high velocity.

We can also consider the dispersion of the two ejected bodies

with respect to the central one by examining the behaviour of DSH

and DR (Fig. 5). The dispersion in the latter is rather small

throughout the time span covered by the integration, never exceed-

ing about 1/10 of the range of possible values for elliptical orbits,

while the dispersion in DSH can go up to 1/2 of its total range.

4 DISCUSS ION

An important question concerning the new variables is the size of

the error that we incur by using quantities that are de®ned for a

circular orbit of the Earth, of radius equal to 1 au, lying on the mean

ecliptic; moreover, the expressions that relate the components of the

geocentric unperturbed velocity of the meteoroid to the a, e and i of

its orbit are strictly valid if one disregards the effect of the terrestrial

mass MÅ on the orbital velocity of the Earth itself. This last error,

the relative size of which is about 10
ÿ6
, is immaterial compared with

the errors involved in the measurement of even the best photographic

meteor orbits, which are of relative size of about 10ÿ3. Also, the errors

resulting from the fact that the osculating semimajor axis and

inclination of the Earth are not exactly 1 and 0 respectively are of

little importance, both being below well below 10ÿ3. The only

signi®cant errors are caused by the ellipticity of the Earth's orbit.

Since eÅ � 0:0167, one obtains the heliocentric distance

0:9833 au& rÅ & 1:0167 au; �31�

the heliocentric velocity

29:2 km sÿ1
& vÅ & 30:2 km sÿ1

; �32�
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Table 3. Orbital parameters of some meteoroid streams, and variations

resulting from ejection at perihelion at 1 km s
ÿ1

Stream & q e i U cos v K

ejection dir. (au) (8) �´10
4
�

Leonids 0.98 0.92 162 2.35 ÿ0:98 ÿ0:35

backwards 0.98 0.83 162 2.32 ÿ0:98 ÿ0:71

forwards 0.98 1.01 162 2.38 ÿ0:98 hyp.

inwards 0.98 0.92 162 2.35 ÿ0:98 ÿ0:34

outwards 0.98 0.92 162 2.35 ÿ0:98 ÿ0:34

downwards 0.98 0.92 163 2.36 ÿ0:98 ÿ0:35

upwards 0.98 0.92 161 2.35 ÿ0:98 ÿ0:34

Orionids 0.57 0.97 165 2.23 ÿ0:91 ÿ0:23

backwards 0.57 0.90 165 2.20 ÿ0:91 ÿ0:68

forwards 0.57 1.04 165 2.27 ÿ0:90 hyp.

inwards 0.57 0.97 165 2.24 ÿ0:91 ÿ0:22

outwards 0.57 0.97 165 2.24 ÿ0:91 ÿ0:22

downwards 0.57 0.97 165 2.23 ÿ0:91 ÿ0:22

upwards 0.57 0.97 165 2.24 ÿ0:91 ÿ0:22

Perseids 0.95 0.95 113 2.00 ÿ0:76 ÿ0:22

backwards 0.95 0.86 113 1.97 ÿ0:77 ÿ0:56

forwards 0.95 1.04 113 2.03 ÿ0:76 hyp.

inwards 0.95 0.95 113 2.00 ÿ0:76 ÿ0:22

outwards 0.95 0.95 113 2.00 ÿ0:76 ÿ0:22

downwards 0.95 0.95 114 2.02 ÿ0:77 ÿ0:22

upwards 0.95 0.95 112 1.99 ÿ0:76 ÿ0:22

Lyrids 0.92 0.99 80 1.59 ÿ0:48 ÿ0:05

backwards 0.92 0.90 80 1.56 ÿ0:49 ÿ0:42

forwards 0.92 1.08 80 1.62 ÿ0:47 hyp.

inwards 0.92 0.99 80 1.59 ÿ0:48 ÿ0:04

outwards 0.92 0.99 80 1.59 ÿ0:48 ÿ0:04

downwards 0.92 0.99 81 1.60 ÿ0:49 ÿ0:04

upwards 0.92 0.99 79 1.57 ÿ0:47 ÿ0:04

S. d Aquarids 0.08 0.97 27 1.38 ÿ0:47 ÿ1:04

backwards 0.08 0.94 27 1.26 ÿ0:51 ÿ0:96

forwards 0.08 1.00 27 1.50 ÿ0:43 ÿ0:17

inwards 0.08 0.97 27 1.39 ÿ0:47 ÿ1:04

outwards 0.08 0.97 27 1.39 ÿ0:47 ÿ1:03

downwards 0.08 0.97 27 1.39 ÿ0:47 ÿ1:04

upwards 0.08 0.97 27 1.38 ÿ0:47 ÿ1:04

Quadrantids 0.98 0.68 72 1.37 ÿ0:44 ÿ1:02

backwards 0.98 0.59 72 1.35 ÿ0:46 ÿ0:96

forwards 0.98 0.77 72 1.40 ÿ0:42 ÿ0:82

inwards 0.98 0.68 72 1.37 ÿ0:44 ÿ1:03

outwards 0.98 0.68 72 1.37 ÿ0:44 ÿ1:00

downwards 0.98 0.68 73 1.39 ÿ0:46 ÿ1:02

upwards 0.98 0.68 71 1.35 ÿ0:42 ÿ1:02

Geminids 0.14 0.90 24 1.16 ÿ0:46 ÿ0:96

backwards 0.14 0.87 24 1.05 ÿ0:51 ÿ0:95

forwards 0.14 0.93 24 1.26 ÿ0:42 ÿ1:01

inwards 0.14 0.90 24 1.16 ÿ0:46 ÿ0:96

outwards 0.14 0.90 24 1.16 ÿ0:46 ÿ0:96

downwards 0.14 0.90 24 1.16 ÿ0:46 ÿ0:96

upwards 0.14 0.90 24 1.16 ÿ0:46 ÿ0:96

a Capricorn. 0.58 0.78 6 0.77 0:01 ÿ1:09

backwards 0.58 0.71 6 0.72 ÿ0:01 ÿ1:00

forwards 0.58 0.85 6 0.82 0:04 ÿ0:99

inwards 0.58 0.78 6 0.78 0:01 ÿ1:09

outwards 0.58 0.78 6 0.78 0:01 ÿ1:09

downwards 0.58 0.78 6 0.78 0:01 ÿ1:09

upwards 0.58 0.78 6 0.78 0:01 ÿ1:09



and the angle between the directions of radius vector and velocity

898 & arcsin
aÅ

�����������������

�1ÿ e2
Å
�

p

���������������������������

rÅ�2aÅ ÿ rÅ�
p & 918: �33�

In practice, we compute U from the tabulated VG of the meteor,

and v andf from the tabulated time of observation,aG and dG, using

the actual values of rÅ and lÅ.

Although the relations between the orbital elements andU, v and

f given in Section 2 are strictly valid only if the latter quantities

were computed with reference to our idealized circular orbit of the

Earth, we can see from the previously listed expressions that the

errors incurred in our procedure are of the order of 1 km sÿ1 for the

velocity and 18 for the angles; these errors are large if compared

with those of the best photographic meteor orbits, but always less,

and sometimes much less, than the typical dispersions within well-

established meteoroid streams.

Turning to a more general question, it can be remarked that the

problem of identifying meteoroid streams has several similarities

with that of asteroid families. In both cases, a single parent is

supposed to have originated many smaller bodies, and it is the

relatively low ejection velocity, compared with the orbital velocity,

that makes the orbital parameters still rather similar, allowing for

recognition of the common origin.

On the other hand, the dynamics is different: asteroid orbits are

far less chaotic than meteoroid orbits, because asteroid families are

located in regions of the asteroid belt far separated from the orbits of

the planets, while meteoroid orbits cross, by de®nition, the orbits of

the Earth, and very often also the orbits of various other planets, so

that the time-scales for the dissolution into the background of

asteroid families can be of the order of the age of the solar

system, while the equivalent ones for meteoroid streams cannot

be much larger than 104±105 yr. Thus, suitably de®ned `proper

elements' (near-invariants of the assumed non-chaotic motion of

asteroid family members) computed with various techniques (Kne-

zÏevicÂ et al. 1995) allow us to identify families that are probably

billions of years old, while the osculating elements of meteoroid
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Figure 4. Time evolution of a 96P/Machholz 1 like orbit (dots) and of two

similar other orbits, one obtained with a backwards ejection at perihelion

(small open circles), and one obtained with a forwards ejection (large open

circles), over 25 000 yr (see text); from top to bottom: heliocentric distances

of the descending and the ascending node, Q, q, sin i, e, U, cos v, K

(multiplied by 10 000) and q. The ranges of the ordinates are (sometimes

approximately) proportional to the ranges spanned by each quantity.

Figure 5. Time evolution of DSH (bottom panel) and of DR (top panel) of a

body ejected backwards (small open circles) and one ejected forwards (large

open circles), calculated with respect to the central body of Fig. 4. The

ranges of the ordinates are proportional to the ranges spanned by each

quantity.



streams remain concentrated over thousands of years. In this

respect, the secular near-invariants introduced in this paper allow

a certain prolongment of the time span over which meteoroid orbit

clusters can possibly be recognized.

5 CONCLUSIONS

In this paper we have introduced a new distance function DN, to be

used to test the orbital similarity of meteoroid orbits, based on

geocentric observed quantities. At variance from the usual distance

function DSH, the new one is de®ned in a space with a number of

dimensions equal to the number of independently measured physi-

cal quantities.

In addition, two of the quantities that are used in DN have been

shown to be nearly invariant under the secular perturbation

associated with the cycle of q, allowing the introduction of a

distance function DR useful to pinpoint cases of widely separated

osculating orbits that may, in fact, originate from a single parent

body.

The new distance functionsDN andDR are applied to a set of 865

precisely measured photographic meteoroid orbits in an accompa-

nying paper in this issue (Jopek et al. 1999).
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