

Testing convection theories using Balmer line profiles of A, F, and G stars*

R.B. Gardiner¹, F. Kupka², and B. Smalley¹

¹ Department of Physics, Keele University, Keele, Staffordshire, ST5 5BG, UK (rbg,bs@astro.keele.ac.uk) ² Institute for Astronomy University of Vienne, Täideneele and the Astronomy University (number @astro.keele.ac.uk)

² Institute for Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna, Austria (kupka@astro.univie.ac.at)

Received 25 February 1999 / Accepted 26 May 1999

Abstract. We consider the effects of convection on the Balmer line profiles (H_{α} and H_{β}) of A, F, and G stars. The standard mixing-length theory (MLT) ATLAS9 models of Kurucz (1993), with and without overshooting, are compared to ATLAS9 models based on the turbulent convection theory proposed by Canuto & Mazzitelli (1991, 1992) and implemented by Kupka (1996), and the improved version of this model proposed by Canuto et al. (1996) also implemented by Kupka.

The Balmer line profiles are a useful tool in investigating convection because they are very sensitive to the parameters of convection used in the stellar atmosphere codes. The H_{α} and H_{β} lines are formed at different depths in the atmosphere. The H_{α} line is formed just above the convection zone. The H_{β} line, however, is partially formed inside the convection zone.

We have calculated the $T_{\rm eff}$ of observed stars by fitting Balmer line profiles to synthetic spectra and compared this to: (i) the $T_{\rm eff}$ of the fundamental stars; (ii) the $T_{\rm eff}$ of stars determined by the Infra-Red Flux Method and (iii) the $T_{\rm eff}$ determined by Geneva photometry for the stars in the Hyades cluster.

We find that the results from the H_{α} and H_{β} lines are different, as expected, due to the differing levels of formation. The tests are inconclusive between three of the four models; MLT with no overshooting, CM and CGM models, which all give results in reasonable agreement with fundamental values. The results indicate that for the MLT theory with no overshooting it is necessary to set the mixing length parameter α equal to 0.5 for stars with $T_{\rm eff} \leq 6000$ K or $T_{\rm eff} \geq 7000$ K. However for stars with $6000 \text{ K} \leq T_{\rm eff} \leq 7000$ K the required value for the parameter is $\alpha \geq 1.25$. Models with overshooting are found to be clearly discrepant, consistent with the results with uvby photometry by Smalley & Kupka (1997).

Key words: convection – line: profiles – stars: atmospheres – stars: fundamental parameters – stars: interiors

1. Introduction

In stars later than mid A-type, convection can have a significant effect on the Balmer lines profiles. Thus our treatment of convection used in modelling the stellar atmosphere can alter interpretation of the observed profiles. Convection in the ATLAS code (Kurucz 1970) has always been included using the mixinglength theory (MLT) with modifications, the last one being 'approximate overshooting', as discussed by Castelli (1996). The more recently developed CM theory (Canuto & Mazzitelli 1991, 1992) proposes a model with a full spectrum turbulence as an improvement to the one-eddy MLT model.

Changing convective flux can easily make large changes in the model colours, as discussed in Smalley & Kupka (1997; hereafter Paper I). In Paper I, comparison with fundamental $T_{\rm eff}$ and log g revealed that the CM model gave results that were generally superior to the standard MLT without overshooting with α =1.25, the mixing length parameter adopted in Kurucz's grids. They found MLT with overshooting models to be discrepant.

In this work we present a discussion of the effects of different treatments of convection on the H_{α} and H_{β} profiles.

We have considered four models of convection: the standard mixing-length theory ATLAS9 models of Kurucz (1993), with and without approximate overshooting, with values of mixing length parameter α =1.25 and 0.5; ATLAS9 models with the turbulent convection theory proposed by Canuto & Mazzitelli (1991, 1992) and implemented by Kupka (1996) and an improved version proposed by Canuto et al. (1996) also implemented by Kupka. Six grids of solar-metallicity synthetic spectra in the region of H_{α} and H_{β} lines were computed (one for each convection model). The spectra were fitted to the observations to derive T_{eff} , after having fixed log g.

We have compared the $T_{\rm eff}$ obtained by these models to (i) the $T_{\rm eff}$ of the fundamental stars discussed by Smalley & Dworetsky (1995) and Smalley (1999); (ii) the $T_{\rm eff}$ of stars determined by the Infra-Red Flux Method presented by Blackwell & Lynas-Gray (1994) and (iii) the $T_{\rm eff}$ determined by Geneva photometry, as calibrated by Künzli et al. (1997) for the stars in the Hyades cluster.

Send offprint requests to: Rebecca Gardiner

^{*} Based on observations made at the Observatorio del Roque de los Muchachos using the Richardson-Brealey Spectrograph on the 1.0m Jacobs Kapteyn Telescope.

2. Observations and reduction

The spectroscopic observations were made at the Observatorio del Roque de los Muchachos, La Palma using the Richardson-Brealey Spectrograph on the 1.0m Jacobus Kapteyn Telescope (JKT) in 1997 October/November. A 24001 mm^{-1} holographic grating was used and a 1124 × 1124 pixel Tek CCD, giving a resolution of 0.4Å FWHM. Nearly 250 observations of H_{α} line profiles were taken and 50 H_{β} line profiles, with associated calibration files.

The data reduction was performed using the Starlink ECHOMOP software package (Mills et al. 1997). The spectra generally had a signal-to-noise ratio in excess of 100:1. The wavelength of the Balmer core, was in each spectrum, shifted to the laboratory value of 6562.797 Å for H_{α} and 4861.332 Å for H_{β} , to correct for radial velocity shifts.

It is important that the true shape of the profile is preserved in the reduction (Smith & van't Veer 1987). Instrumental sensitivity variations were removed by comparing to observations of stars with intrinsically narrow Balmer profiles, for example early-B or O type stars and G type stars. The spectra were rectified at both ± 40 Å and ± 100 Å and both regions were fitted to synthetic spectra. They gave the same result. The profiles for Vega were in excellent agreement with those of Peterson (1969) and the H_{β} profile for Procyon was almost identical to that observed and reduced by van't Veer-Menneret & Megessier (1996) after resolutions were matched. The observations of the Sun used in this paper are from Kurucz et al. (1984).

3. Models and Balmer profiles

In Smalley & Kupka (1997) it was found that changing convective flux in model atmospheres makes large changes to the model colours. They considered the CM model and MLT models (using α =1.25) with and without overshooting. The CM model performed best in predicting $T_{\rm eff}$ and log g of fundamental and non-fundamental stars. Also the MLT model without overshooting gave reasonable results within the error bars. MLT models with overshooting however gave very poor results and was thus ruled out as a sufficiently accurate theory of conditions in stellar atmospheres. In this work, six grids of model atmospheres have been computed.

In the ATLAS6 (Kurucz 1979b) models, the mixing length theory was introduced. This theory is a phenomenological approach to convection in which it is assumed that one eddy ("bubble"), which has a given size as a function of local mixing length, transports all of the convective energy. One of the short-comings of MLT is that it has an adjustable parameter α being the scale height that a hot bubble rises in the atmosphere before dissipating its heat to the surrounding gases. The value of α has changed in the several ATLAS versions, and in ATLAS9, α was assumed to be 1.25 to fit the energy distribution from the centre of the Sun. The parameter α has had to be set at differing values to fit different types of observations (Steffen & Ludwig 1999), no single value working in all cases. For the Sun and other stars, van't Veer-Menneret & Megessier (1996) found that setting α = 0.5 fits best overall when looking at the first four line profiles in the Balmer series. So for this work separate grids were calculated for the two values of α =1.25 and 0.5.

In ATLAS9 (Kurucz 1993), a horizontally averaged opacity and an "approximate overshooting" were included. This approximate overshooting is based on smoothing the convective flux over a certain fraction of the local pressure scale height at the transition between stable and unstable stratification (see Castelli et al. 1997). It yields a positive mean convective flux right at the beginning of the stable stratification. Again we computed two grids of model atmospheres using mixing length theory with overshooting; one with $\alpha = 1.25$, one with $\alpha = 0.5$.

A turbulent theory of convection was proposed by Canuto & Mazzitelli (1991, 1992) which accounts for eddies of a full range of sizes and which interact with each other. The mixing length used is taken to be the distance to the nearest stable layer, l = z. Thus the CM model corrects the MLT "one-eddy" approximation and has no adjustable free parameters, unlike MLT in which α could be adjusted to fit observations. The CGM model was proposed in Canuto et al. (1996), as an improvement to the CM model. It differs from the CM model in that the rate of energy input $n_s(k)$ is controlled by both the source and the turbulence it generates. However the representation of the non-linear interactions used had to be less complete than the one in the CM model, in order that the equations could still be solved numerically.

Thus the six grids computed using solar-metallicity Kurucz (1993) ATLAS9 models, for values of $T_{\rm eff}$ between 5500 K and 9750 K in steps of 250 K and values of log g between 3.50 and 5.0 in steps of 0.5, identical except for the theory of convection in each case are as follows:

- 1. Standard ATLAS9 models using mixing length without convective overshooting. The value of the mixing length parameter α is the standard value of 1.25. These will be referred to as MLT_noOV(α =1.25) models in this paper.
- 2. Standard ATLAS9 models using mixing length without convective overshooting. The value of the mixing length parameter α is 0.5. These will be referred to as MLT_noOV(α =0.5) models.
- 3. Standard ATLAS9 models using mixing length with approximate overshooting. The value of the mixing length parameter α used is 1.25. These will be referred to as MLT_OV(α =1.25) models.
- 4. Standard ATLAS9 models using mixing length with approximate convective overshooting. The value of the mixing length parameter α used is 0.5. These will be referred to as MLT_OV(α =0.5) models.
- 5. Modified ATLAS9 models using the Canuto & Mazzitelli (1991, 1992) model of turbulent convection. These will be referred to as the CM models.
- 6. Modified ATLAS9 models using the Canuto et al. (1996) model of turbulent convection. The value used for the parameter α -CGM is 0.09 (refer to Canuto et al. 1996 for definition of this parameter). These will be referred to as the CGM models.

The grids of synthetic spectra were calculated using UCLSYN (Smith 1992, Smalley & Smith 1995) which includes Balmer line profiles calculated using the Stark-broadening tables of Vidal et al. (1973) and metal absorption lines from the Kurucz & Bell (1995) linelist. This routine is based on the BALMER routine (Peterson 1969, Kurucz 1993) which includes resonance and Van der Waals broadening. The spectra were rotationally broadened as necessary and instrumental broadening was applied with FWHM = 0.4 Å to match the resolution of the observations. The synthetic spectra were normalised at ± 40 Å and ± 100 Å to match the observations. The values of $T_{\rm eff}$ were obtained by fitting model profiles to the observations using the least-square differences. The results given in this paper are using observations and model profiles normalised at ± 100 Å, although the results are not significantly different using normalisation at ± 40 Å. A microturbulence of 2 kms⁻¹ was assumed throughout for both the model atmosphere line opacities and spectrum synthesis.

High rotation and metallicity causes difficulties in modelling both Balmer line profiles and may be part of the systematic problems with the profiles, although these would be expected to effect H_{β} more than H_{α} as there are more metal lines in this wavelength region. The values of $v \sin i$ included in the tables are from Bernacca & Perinotto (1970). Values of metallicity are given in the tables, using the δm_0 calibrations, derived by Nissen (1988), Berthet (1990) and Smalley (1992). These calibrations are model-dependent and thus not definitive. The $uvby\beta$ data was taken from Hauck & Mermilliod (1998). The results presented for $T_{\rm eff}$ are not very influenced by poor agreement of metal lines as even at high values of $v \sin i$ the hydrogen line profile itself is not broadened significantly. Thus as the observations were fitted visually it was clear that the metal lines were stronger when looking at a star with high metal abundances. As a check in several cases model profiles were generated with higher metal abundances, at the same $T_{\rm eff}$ as one interpolated from the grids, and compared. The resulting fits to H_{α} observations were affected by ≤ 50 K (a decrease in calculated $T_{\rm eff}$) for an increase in metal abundance of 0.1 dex. The H_{β} line was affected more than H_{α} profile, but still the effect is ≤ 50 K for values of $T_{\rm eff} \geq 6500$ K and around 50–75 K for 5500 K $\leq T_{\rm eff} \leq 6500$ K. Thus the fit is not significantly affected by using solar metallicity grids, provided that the metallicity uncertainty is on the order of ± 0.1 dex.

Model H_{α} or H_{β} profiles for a particular T_{eff} , given log g, were obtained by interpolation between the four closest places on the grid either side of the required value of T_{eff} and log g.

The H_{α} and H_{β} profiles generated using the six different convection theories for a given $T_{\rm eff}$ and log g are all visually clearly different, for all values of $T_{\rm eff}$ below 8500 K (see Fig. 1). Fig. 1 shows profiles at 7000 K as an example but the trends between models are the same at all values of $T_{\rm eff}$. Fig. 2 (left) shows the temperature structure in synthesized stars using the different convection models and (right) shows the average optical depth of the peak of the contribution function (as defined by Gray 1992) of all points on the H_{α} and H_{β} line profiles for these models.

The Balmer lines are very sensitive to the parameters of convection used in the stellar atmosphere codes since the treatment of convection can dramatically alter the temperature structure at the depths where the lines are formed. For example, for a star of $T_{\text{eff}} = 7000 \text{ K}$ the MLT_noOV model with α =1.25 has a significant fraction of convective to radiative flux at depths $\tau \geq 0.05$, and the temperature structure above this depth is effected by this convection zone. Thus although the average depth of formation of the two Balmer lines are not within this convection zone as can be seen in Fig. 2 (right), they are affected by the different temperature structures in the region where they are formed. In the case of MLT_noOV the H_{β} profile is affected more by the choice of the mixing-length parameter α than the H_{α} profile since it is formed closer to the unstable region. In the MLT_OV model of the same $T_{\rm eff}$ there is significant fraction of convective flux between $-0.53 \le \tau \le 1.8$. Thus both Balmer profiles are considerably affected by whether approximate overshooting is assumed or not. For H_{α} , the MLT_noOV and the CM results are close because the models give very similar conditions (ie. temperatures, pressure) in all layers above the convection zone where H_{α} is formed. Between 6000 and 8000 K, in the MLT_OV, the convection zone extends into the region where the H_{α} profile is formed and gives higher temperatures with a lower gradient in this region. The profile is formed over a smaller range of depths between 40–100Å, but then relative to this there occurs a large change in depth of formation closer to the core. This causes the synthesized profiles to become narrower given a specified T_{eff} . Thus, the MLT_OV profile which matches any observed profile is always one of a higher effective temperature.

For H_{β} , the profile is formed nearer or in the convective zone for all models, at all temperatures where the convection zone has an influence on the temperature structure of the atmosphere, that is for stars with $T_{\rm eff} \leq 8500$ K. MLT_noOV(α =1.25) and CM give different results because the points on the CM profile are formed over a more gradual change in depth and temperature in the atmosphere, thus giving a broader profile for a given T_{eff} . Therefore, the CM model which matches any observed profile is always one of a lower T_{eff} . The MLT_noOV(α =1.25) H_{β} profiles are formed higher in the convection zone at a slightly cooler region. However, Fig. 1 shows that not only does this mean that the effective temperature of the MLT_noOV(α =1.25) profile which matches the CM profile at 7000 K closest is higher by ~ 250 K, but also, and very significantly, it has a different shape. However setting the parameter α =0.5 in the MLT_noOV model predicts conditions much more similar to those of the CM model than using the standard value α =1.25.

For $T_{\rm eff} \geq 8500~K$ convection in all the theories we are looking at become so insignificant as to not effect results. The Balmer line profiles are virtually insensitive to log g below $\sim 8000~K$ thus any errors in the values of log g used will not effect the results.

The errors in determining $T_{\rm eff}$ by fitting a model Balmer line profile to observations are all of the order of 100 K below 8000 K, but increase to around 200 K by 8500 K. This error must then be combined with errors in the fundamental values of $T_{\rm eff}$ in order to get the error in $\Delta T_{\rm eff}$. Above 8000 K the Balmer profiles

Fig. 2. (*Left*) Temperature shown against optical depth τ_{5000} for model atmosphere of T_{eff} 7000 K and log g 4.0. The solid line is the CM model, the dashed line is the MLT_noOV($\alpha = 1.25$), the dot-dashed line is MLT_noOV($\alpha = 0.5$) and the dotted line is MLT_OV($\alpha = 1.25$). (*Right*) Comparison between the optical depth of formation of each point on the Balmer profiles for each model atmosphere of T_{eff} 7000 K and log g 4.0. Note for H_{α} the depth of formation is very close for the CM and MLT_noOV models. However MLT_OV is formed much higher in the atmosphere in the wings 20 – 100Å and the decrease of depth of formation is gradual in the wings but then sharply increases towards the core. Thus MLT_OV is characterised by narrower profiles (as seen above in Fig. 1). The H_{β} profile at 100Å for CM is formed significantly deeper in the atmosphere than the MLT_noOV($\alpha = 1.25$) profile and the depth varies more gradually with distance from the core. Thus when normalised at 100Å the CM has a broader profile as it is formed over a larger variation of temperatures (again as seen in Fig. 1.)

become sensitive to log g (Gray 1992) making it important to have a fundamental value of log g with a small error. At 8000 K, a change in assumed log g of 0.25 for a particular star would have an equivalent effect to changing the temperature of the model profile an observation is fit to by ~150 K. For this reason and due to the problem found later of results being anonymously low compared to fundamental values, stars with $T_{\rm eff} \geq 8000$ K will be excluded from the statistical tests below.

4. $T_{\rm eff}$ from Balmer lines

We discuss the temperature derived from the six grids presented in the previous section. The $T_{\rm eff}$ was determined from the H_{α} and H_{β} profiles separately for each star, for each model and then compared with previously determined $T_{\rm eff}$ from other methods. We consider $T_{\rm eff}$ for fundamental stars (Smalley & Dworetsky 1995, Smalley 1999), $T_{\rm eff}$ from the Infra-Red Flux Method (Blackwell & Lynas-Gray 1994), and $T_{\rm eff}$ for the Hyades stars (Künzli et al. 1997).

As in Paper I, three statistical measures will be used to compare the four convection models:

 A weighted mean of the differences between the value calculated from the Balmer line profile and the previously determined value as detailed in the introduction, in order to determine which model is in closest overall agreement with the previous values.

2. A weighted root mean square of the differences, given by

$$rms = \sqrt{\frac{\sum \omega_i (\Delta x_i)^2}{\Sigma \omega_i}},$$

where ω_i are the weights as given by the square of the reciprocal of the errors, and Δx_i are the differences between the Balmer line-derived value and the value previously determined.

3. The reduced chi-square χ_v^2 and its associated probability, $P(\chi_v^2)$, as a measure of the goodness of agreement between the Balmer line-derived value and the value previously determined.

These three measures, together with a visual inspection of the figures, enable us to compare the four models.

4.1. Comparison with fundamental stars

The ideal test of the method of fitting observed profiles to model spectra is to compare the derived $T_{\rm eff}$ with direct model-independent methods. There are only 12 such fundamental stars in this temperature region, due to necessary observations being currently unavailable. The fundamental values were taken from Smalley & Dworetsky (1995) and Smalley (1999). Of these stars, Procyon (HD 61421) has the most tightly constrained value of $T_{\rm eff}$ due to the accuracy of the direct measurement of angular diameter. The four binary systems (HD16739, HD110379, HD185912, HD 202275) have larger errors due to the extra steps required to obtain the values of $T_{\rm eff}$ (Smalley 1999). Two stars, HD159561 and HD187642, do not have fundamental values of log g (see Smalley & Dworetsky 1995) and have high values of $v \sin i$.

The results are shown in Figs. 3 and 4, as a function of $\Delta T_{
m eff}$ = $T_{\text{eff}}(\text{Balmer})$ - $T_{\text{eff}}(\text{fund})$ against $T_{\text{eff}}(\text{fund})$, and in Tables 1 and 2. The results of the statistical tests are presented in Table 3. The large error bars are due to the uncertainties in the fundamental values. The error in fitting to a model Balmer line is combined with the error in the fundamental value to give the total error for $\Delta T_{\rm eff}$. Despite the small number of stars there is a trend which can be seen in the H_{α} results between $\sim 6000-9000 K$, as temperature increases, the Balmer line method to give increasingly lower values of $T_{\rm eff}$ compared to the fundamental value. Above $\sim 8000 \ K$ this slope becomes much steeper giving very low values for $T_{\rm eff}$ - up to 500 K lower than fundamental values. For stars with $T_{\rm eff} \ge 9000$ K, where convection no longer has an effect on the profiles, the results return to being in close agreement with the fundamental values. The $T_{\rm eff}$ and $\log g$ of the Sun are known very precisely, those used by the Kurucz solar model are 5777 K and 4.4377 respectively (Kurucz 1992). The results in this paper for T_{eff} for the Sun from the H_{β} profile are in complete agreement with those found by van't Veer-Menneret & Megessier (1996) in which only MLT_noOV with α =0.5 fitted well at the known temperature 5777 K. The profiles generated using MLT_noOV with α =1.25 and MLT_OV model with either α =1.25 and 0.5 were considerably too narrow. Here, using the turbulence models (CM and CGM) the generated H_{β} profile also fits very well at the known temperature, in fact slightly better than MLT_noOV(α =0.5). However for the H_{α} profile, the turbulence models and the MLT_noOV models do not fit the observed profiles of the Sun at 5777 K. They fit at about ~ 100 K lower. Only MLT_OV fits well at the correct temperature. These H_{α} results thus differ from those found by Castelli et al. (1997), who found that a no-overshooting model with α =1.25 fitted observations very well with no need to adjust α , and that models with overshooting had too weak a profile at 5777 K. Also the results differ from van't Veer-Menneret & Megessier (1996) and Fuhrmann et al. (1993) who both found that the best model was one without overshooting and α =0.5. The results between these three papers probably differ because of different continuum and line opacities and continuum levels.

Procyon has the most tightly constrained fundamental value of $T_{\rm eff}$ (6560±130 K) and thus gives the most insight into the accuracies of the four models. Fig. 3 shows that the H_{α} line profile results are in excellent agreement with the fundamental value for the CM, CGM and MLT without overshooting models, while the MLT with overshooting model result is 240 K higher than the fundamental one. For H_{β} the result using the CM model is 6325 K which is too low, the MLT_noOV(α =1.25) is in good agreement, MLT_noOV(α =0.5) is 249 K too low and the MLT_OV is again too high at 6789 K.

For the fundamental stars H_{α} profiles, the MLT_noOV $(\alpha = 1.25)$ model gives the best agreement with fundamental values, giving a weighted mean difference of -64 ± 83 K and a weighted root mean square difference of 109 K. However, the χ_v^2 is 0.70 which gives only a 62% probability that the model agrees with the fundamental values. Overall the MLT_noOV, CM and CGM models are all acceptable, but the MLT_OV models are discrepant with the given error bars. The H_{β} profiles also show the same order of success of the models, the best fit from MLT_noOV ($\alpha = 1.25$), with a 73% chance of agreement (χ^2_{ν}) = 0.52). Again the MLT_OV model has an extremely poor fit with χ^2_{ν} of 4.27 giving less than a 1% chance of agreement. In general, fitting H_{β} profiles gives lower results for T_{eff} than from fitting to the H_{α} profile for $T_{\text{eff}} \leq 7500 \text{ K}$ and slightly higher results for stars with $T_{\rm eff} \ge 7500~K$. This is the case for all models and even over 9000 K when convection is insignificant. Thus it appears to be an inconsistency of the Balmer lines which is unrelated to convection.

Note, that the H_{β} profiles have larger errors associated with them, due to more metal lines in this region, making it slightly more difficult to fit observations to synthesised spectra. The H_{β} profiles can be seen to be more sensitive to mixing length than the H_{α} profiles, with a change in mixing length parameter from α =1.25 to α =0.5 causing the result for T_{eff} to decrease by around 200 K, compared to a decrease of only 50-100 K in results from the H_{α} profile. Over 7000 K setting α =0.5 reduces the difference between results from H_{α} and H_{β} . However for 6000 $K < T_{\text{eff}} < 7000 K$ setting α =0.5 tends to increase the difference between the results from the two lines, with H_{β} 's results being on average ~200 K lower than H_{α} 's when us-

Fig. 3. Comparison between T_{eff} calculated from Balmer line profiles H_{α} to those derived from Fundamental methods for the four convection models showing the errors. $\Delta T_{\text{eff}} = T_{\text{eff}}(\text{Balmer}) - T_{\text{eff}}(\text{fund})$ is T_{β} to those derived from Fundamental methods for the four convection models showing the errors.

plotted against $T_{\rm eff}$ (fund).

Table 1. $T_{\rm eff}$	for	fundamental	stars	from	H_{α}	profiles
------------------------	-----	-------------	-------	------	--------------	----------

	Fundan	nental		С	М		MLT_noOV			
						α	= 1.25	α =	0.5	
HD $v \sin i$	[M/H]	$T_{\rm eff}$	$\log g$	$T_{\rm eff}$	$\Delta T_{\rm eff}$	$T_{\rm eff}$	$\Delta T_{\rm eff}$	$T_{\rm eff}$	$\Delta T_{\rm eff}$	
Sun 2	0.00	5777±20	4.44	5670 ± 50	-107 ± 54	5680 ± 80	-97 ± 82	$5650{\pm}70$	-127 ± 73	
16739 13	+0.33	6220 ± 170	4.26	6125 ± 75	$-95{\pm}186$	6325±73	105±185	$6250 {\pm} 70$	$30{\pm}184$	
61421 3	+0.07	6560 ± 130	4.06	$6500{\pm}60$	-60 ± 143	6514±60	-46 ± 144	$6505{\pm}60$	-55 ± 143	
48915 5	+0.09	9940±210	4.33	10196 ± 236	5 256±316	10196 ± 2	236 256±316	10196 ± 230	5 256±316	
110379 25	-0.05	$7140{\pm}459$	4.21	$6950 {\pm} 100$	$-190{\pm}461$	7025±96	$6 -115 \pm 460$	6900 ± 100	$-240{\pm}461$	
159561 240	-0.20	7960 ± 330	3.80	7700 ± 104	-260 ± 346	7817±10	$07 - 143 \pm 347$	7720 ± 104	$-240{\pm}346$	
172167 10	+0.09	$9600 {\pm} 180$	4.10	$9450{\pm}210$	$-150{\pm}277$	9450±21	$0 - 150 \pm 277$	$9450{\pm}210$	$-150{\pm}277$	
185912 50	+0.05	$6420 {\pm} 180$	4.33	$6486{\pm}80$	66 ± 196	6515±85	5 95±199	6460 ± 80	40±196	
187642 245	-0.05	$7990 {\pm} 210$	4.20	7560 ± 94	$-430{\pm}230$	7553±91	-437 ± 229	7455 ± 94	$-535{\pm}230$	
202275 13	-0.20	$6390 {\pm} 150$	4.34	$6200{\pm}66$	$-190{\pm}164$	6200 ± 61	-190 ± 162	$6170 {\pm} 66$	$-220{\pm}164$	
102647 122	+0.20	8870 ± 350	4.10	8375 ± 90	-495 ± 361	8379±95	-491 ± 362	$8370 {\pm} 90$	$-500{\pm}361$	
216956 85	+0.20	8760 ± 310	4.20	8327 ± 95	-433 ± 324	8335±10	$00 - 425 \pm 326$	$8330 {\pm} 100$	$-430{\pm}326$	
47105 48	+0.09	9220 ± 330	3.50	$9192{\pm}102$	-28 ± 345	9192±95	-28 ± 343	9192 ± 91	-28 ± 342	
		Fundamen	ntal		MLT	_OV		C	GM	
				$\alpha =$	1.25	α =	0.5			
	HD	7	eff	$T_{\rm eff}$	$\Delta T_{\rm eff}$	$T_{\rm eff}$	ΔT_{eff}	$T_{\rm eff}$	$\Delta T_{\rm eff}$	
	Sun	5777±	20	$5800{\pm}80$	23 ± 82	$5730{\pm}50$	$-47{\pm}54$	$5680{\pm}50$	$-97{\pm}54$	
	16739	6220±1	70	6665 ± 63	445 ± 194	$6608{\pm}65$	388 ± 182	6330±77	110 ± 187	
	61421	6560 ± 1	30	6800 ± 81	240 ± 153	6755 ± 70	195 ± 148	6498 ± 60	-62 ± 143	
	48915	9940±2	210	10196 ± 230	5 256±316	10196 ± 236	256±316	10196 ± 23	6 256±316	
	110379	7140±4	59	7300 ± 82	160 ± 466	7110 ± 90	$-30{\pm}468$	6930±100	-210 ± 461	
	159561	7960±3	830	7948±113	-12 ± 349	7803±83 ·	-157 ± 340	7900 ± 104	-60 ± 346	
	172167	9600±1	80	9450 ± 210	-150 ± 277	9450±210 ·	-150 ± 277	9450±210	-150 ± 277	
	185912	6420±1	80	6822 ± 96	402 ± 204	6755 ± 60	335±190	6487 ± 83	67±198	
	187642	7990 ± 2	210	7835 ± 51	$-155{\pm}216$	7596±50 ·	$-394{\pm}216$	7590 ± 94	-400 ± 230	
	202275	6390±1	50	6450 ± 90	60 ± 175	6363 ± 50	-27 ± 158	6200 ± 66	-190 ± 164	
	102647	8870±3	850	8441 ± 98	-429 ± 363	8440±99 ·	-430 ± 364	8380 ± 95	-490 ± 362	
	216956	8760 ± 3	310	8422 ± 114	-338 ± 330	8395±110 -	-365 ± 329	8400 ± 95	-360 ± 324	
	47105	9220±3	330	9193±105	-27 ± 346	9250±95	30±343	9192±102	-28 ± 345	

ing α =0.5, compared to being only $\sim 100 \text{ K}$ lower using the standard α =1.25.

Due to the trend already noted in the H_{α} results between ~ 6000 and ~ 9000 K as temperature increases, where the Balmer line method gives increasingly lower values of the Fundamental value, the statistics can not really represent performance indicators and may be misleading.

4.2. Comparison with IRFM stars

Due to the lack of truly fundamental stars, non-fundamental stars have to be used. However, these can introduce systematic errors. The Infrared Flux Method (IRFM) developed by Blackwell & Shallis (1977) uses model atmospheres only to determine the stellar surface infrared flux, but this is relatively insensitive to the actual model atmosphere. Thus the IRFM method can almost be considered as model independent, and thus semifundamental. Unfortunately due to lack of Balmer-line observations, there are relatively few stars with IRFM values of $T_{\rm eff}$ considered here. The results are shown in Figs. 5 and 6 and Tables 4 and 5.

For the H_{α} profiles IRFM stars, the MLT_noOV model gives values of $T_{\rm eff}$ which agree best with those given by the IRFM.

Considering the H_{β} profile results for the IRFM stars MLT_OV($\alpha = 0.5$) has the best agreement and MLT_noOV $(\alpha = 1.25)$ is also in very good agreement.

4.3. Comparison with Hyades stars

In order to identify trends, the stars in the Hyades cluster were used, with the values of $T_{\rm eff}$ determined by Geneva photometry (Künzli et al. 1997), which estimated $T_{\rm eff}$ from the previous calibration of Kobi & North (1990). The $T_{\rm eff}$ s of the Hyades are thus based on an old calibration based on Kurucz models which did not include molecular opacity, and used the mixinglength theory. Thus the comparisons in this section will not show which convection model is the correct one and thus is not as useful as comparing to fundamental or IRFM values. However, it is still instructive to compare to a method independent to ours, especially as the results show the same trend as the fundamental stars in Sect. 4.1, and molecular opacity in any case only affects the stars at the very left of the diagrams around $T_{\rm eff} \leq 6500 \ K$.

Table 2. $T_{\rm eff}$	for fundamental	stars from	H_{β} profiles
------------------------	-----------------	------------	----------------------

	Fundam	nental		Cl	М		MLT	_noOV	
						C	$\alpha = 1.25$	$\alpha =$	0.5
HD $v \sin i$	[M/H]	$T_{\rm eff}$	$\log g$	$T_{\rm eff}$	$\Delta T_{\rm eff}$	$T_{\rm eff}$	$\Delta T_{\rm eff}$	$T_{\rm eff}$	$\Delta T_{\rm eff}$
Sun 2	0.00	5777±20	4.44	5750 ± 90	-27 ± 92	5850±9	0 73 ±92	5710 ± 70	-67 ± 73
16739 13	+0.33	6220 ± 170	4.26	6000 ± 100	$-220{\pm}197$	6200 ± 1	00 -20±197	6020 ± 130	$-200{\pm}214$
48915 5	+0.09	9940±210	4.33	10290±135	$350{\pm}250$	$10290\pm$	135 350±250	10290 ± 133	$5\ 350{\pm}250$
61421 3	+0.07	6560 ± 130	4.06	$6325 {\pm} 106$	-235 ± 168	6548 ± 1	$06 - 12 \pm 168$	6311±107	$-249{\pm}168$
110379 25	-0.05	$7140{\pm}450$	4.21	$6464 {\pm} 150$	-676 ± 474	6642 ± 1	50 -498±474	6450 ± 150	$-690{\pm}474$
159561 240	-0.20	7960 ± 330	3.80	$7500{\pm}165$	-460 ± 368	7621±1	65 -339±368	$7605 {\pm} 165$	$-355{\pm}368$
172167 10	+0.09	$9600 {\pm} 180$	4.10	$9680{\pm}110$	$80{\pm}211$	9520±1	10 80±211	$9680{\pm}170$	$80{\pm}248$
185912 50	+0.05	$6420 {\pm} 180$	4.33	$6190 {\pm} 130$	-230 ± 222	6301±1	$23 - 119 \pm 218$	6125 ± 155	$-295{\pm}237$
187642 245	-0.05	$7990{\pm}210$	4.20	7250 ± 96	-740 ± 231	7500±9	6 -490±231	7306 ± 96	$-684{\pm}231$
		Fundamen	ntal	MLT_OV				CG	М
				$\alpha =$	1.25	$\alpha =$	0.5		
	HD	7	eff	$T_{\rm eff}$	$\Delta T_{\rm eff}$	$T_{\rm eff}$	$\Delta T_{\rm eff}$	$T_{\rm eff}$	$\Delta T_{\rm eff}$
	Sun	5777±	20	6100 ± 95	323±97	$5935{\pm}80$	158 ± 82	5750 ± 90	-27 ± 92
	16739	6220±1	70	$6554{\pm}100$	$334{\pm}197$	6422 ± 100	202 ± 197	6048±99	-172 ± 197
	48915	9940±2	210	10290 ± 135	5 350±250	10290±135	$5350{\pm}250$	10290 ± 135	$350{\pm}250$
	61421	6560 ± 1	30	$6789 {\pm} 102$	229 ± 165	$6705 {\pm} 90$	145 ± 158	6333±105	-227 ± 167
	110379	7140±4	50	6945 ± 92	-195 ± 459	$6880{\pm}80$	-260 ± 457	6500±100 ·	-640 ± 461
	159561	7960±3	830	$7878{\pm}136$	-82 ± 356	$7623 {\pm} 130$	-337 ± 354	7546±105 ·	-414 ± 346
	172167	9600±1	80	$9680{\pm}95$	$80{\pm}204$	$9680{\pm}95$	$80{\pm}204$	$9680{\pm}95$	$80{\pm}204$
	185912	6420±1	80	6675±135	225 ± 225	$6560{\pm}85$	140 ± 199	6201±125	-219 ± 219
	187642	7990±2	210	$7825{\pm}89$	-165 ± 228	$7495{\pm}110$	-495 ± 237	7532±99	-458 ± 232

Table 3. Statistics test results

			H_{α}				H_eta			
	Weighted mean	Weighted rms	χ^2_{υ}	n	% probability of good fit	Weighted mean	Weighted rms	χ^2_v	n	% probability of good fit
Fundamental										
СМ	-100	111	1.20	6	31%	-122	177	1.60	5	16%
MLT_noOV($\alpha = 1.25$)	-64	109	0.70	6	62%	14	100	0.52	5	73%
MLT_noOV($\alpha = 0.5$)	-102	126	1.06	6	38%	-128	168	1.90	5	11%
$\text{MLT_OV}(\alpha = 1.25)$	136	207	2.38	6	4%	284	297	4.27	5	<1%
$\text{MLT_OV}(\alpha = 0.5)$	26	144	2.04	6	7%	150	162	1.61	5	17%
CGM	-80	105	1.08	6	37%	-114	165	1.41	5	23%
IRFM										
CM	-60	88	0.22	9	98%	-265	292	2.56	6	3%
MLT_noOV($\alpha = 1.25$)	-50	75	0.16	9	99%	-90	151	0.69	6	63%
MLT_noOV($\alpha = 0.5$)	-84	99	0.28	9	87%	-238	269	2.16	6	6%
MLT_OV($\alpha = 1.25$)	224	258	1.87	9	5%	195	226	1.54	6	18%
MLT_OV($\alpha = 0.5$)	93	124	0.43	9	92%	28	140	0.59	6	71%
CGM	-59	88	0.22	9	98%	-250	281	2.36	6	4%
Hyades										
ĊM	21	190	0.92	31	59%	-99	215	1.19	33	21%
MLT_noOV($\alpha = 1.25$)	25	189	0.92	31	59%	101	237	1.45	33	4%
MLT_noOV($\alpha = 0.5$)	-43	205	1.08	31	35%	-90	225	1.31	33	12%
MLT_OV($\alpha = 1.25$)	329	370	3.53	31	<1%	387	431	4.80	33	<1%
MLT_OV($\alpha = 0.5$)	195	265	1.82	31	<1%	150	237	1.45	33	4%
CGM	21	170	0.75	31	87%	-84	200	1.03	33	42%

Fig. 5. Comparison between T_{eff} calculated from Balmer line profiles to those derived from the Infrared Flux Method. $\Delta T_{\text{eff}} = T_{\text{eff}}(\text{Balmer}) - T_{\text{eff}}(\text{IRFM})$. The triangles are results using the CM model, the filled circles are using the MLT with no overshooting and the open circles are those using MLT with overshooting. Notice that the H_{β} profile has given lower values of T_{eff} in general than H_{α} .

Fig. 6. Comparison between T_{eff} calculated from Balmer line profiles to those derived from the Infrared Flux Method. $\Delta T_{\text{eff}} = T_{\text{eff}}(\text{Balmer}) - T_{\text{eff}}(\text{IRFM})$. The triangles are results using the CM model, the filled squares are using the CGM model.

It is also useful to present the $T_{\rm eff}$ of the Hyades stars calculated by the Balmer line method for future reference.

The results are shown in Figs. 7 and 8 and Tables 6 and 7.

The Hyades stars allow a trend to be seen due to the greater number of stars considered. The trend in the H_{α} results seen for the fundamental stars between ~ 6000 and ~ 9000 K as temperature increases, for the Balmer line method to give increasingly lower values of $T_{\rm eff}$ compared to Fundamental values is also seen in comparison to the Geneva photometry value. Above ~ 7750 K this slope becomes much steeper giving very low values for $T_{\rm eff}$. This seems to be a systematic trend, thus the statistics can not really represent valid performance indicators on their own. Due to the sharp fall off at high temperatures the statistics excluded stars with a Geneva photometry value ≥ 7900 K.

The H_{β} profiles do not show this trend up to 7750 K. However, above this temperature, values again become very low compared to Geneva photometry. These trends in the H_{α} and H_{β} profiles are not apparent at all in the IRFM stars (Figs. 5 and 6) but could be seen in the fundamental stars (Figs. 3 and 4). The CGM model gives results which agree very accurately with the Geneva photometry results for both H_{α} and H_{β} . Clearly none of the models yield H_{α} profiles in agreement with Geneva photometry at all values of T_{eff} in the region considered.

5. Discussion

5.1. Different trends for H_{α} compared to H_{β}

In general, for the CM and CGM theories, the H_{α} results are around 100–200 K higher than those from H_{β} at around 6000 K, but steadily decreasing to about 0–100 K at 7000–8000 K. Note, however, that the MLT_noOV(α =1.25) results for α CMi agree well with the fundamental value for both H_{α} and H_{β} . In fact, for the MLT_noOV(α =1.25), as can be seen in Fig. 9, the H_{α} results are fairly consistent or higher than H_{β} at $T_{\rm eff}$ between 6000–7000 K, but over 7000 K H_{β} results are around 100–250 K higher than the H_{α} . Also for $T_{\rm eff} \leq 6000 K H_{\beta}$ results are around 100–250 K higher than the H_{α} . However, if the mix-

Table 4. $T_{\rm eff}$ for IRFM stars from H_{α} profiles

	IRFM Stars			СМ	MLT_	noOV		MLT	C_OV		CGM
					$\alpha = 1.25$	$\alpha = 0.5$	α =	= 1.25	α =	0.5	
HR	$v \sin i$	[M/H]	$T_{\rm eff} \log g$	$T_{\rm eff} \Delta T_{\rm eff}$	$T_{\rm eff} \Delta T_{\rm eff}$	$T_{\rm eff} \Delta T_{\rm eff}$	$T_{\rm eff}$	$\Delta T_{\rm eff}$	$T_{\rm eff}$	$\Delta T_{\rm eff}$	$T_{\rm eff}$ $\Delta T_{\rm eff}$
269	80	+0.03	7959 3.82	7954 -5	7917 -42	7920 -39	8045	5 86	7950	-9	7950 -9
343	100	+0.14	7949 3.91	7876 -73	7823 -126	7853 -96	8019	9 70	7880	-69	7850 -99
937	8	+0.03	6042 4.50	5894 -148	5944 -98	5875 -167	6125	5 83	6010	-32	5884 -158
996	8	+0.04	5732 4.45	5682 -50	5702 -30	5647 -85	5804	1 72	5705	-27	5682 -50
1101	8	-0.13	5977 3.98	5957 -20	5969 -8	5929 -48	6133	3 156	6085	108	5958 -19
1676	63	+0.08	6909 3.14	6973 64	6953 44	6904 -5	7291	382	6950	41	6970 61
2852	83	-0.18	6974 4.11	6857 -117	6860 -114	6832 -142	7274	4 300	7100	126	6860 -114
2930	60	-0.23	6531 3.34	6525 -6	6550 19	6521 -10	6994	463	6768	237	6534 3
7469	7	-0.17	6713 4.40	6666 -47	6620 -93	6610 -103	6964	251	6870	157	6667 -46
8665	9	-0.33	6225 4.10	6105 -120	6120 - 105	6103 -122	6376	5 151	6316	91	6118 -107
8905	60	+0.06	6050 3.61	5950 -100	5980 -70	5969 -81	6210) 160	6185	135	5945 -105

Table 5. T_{eff} for IRFM stars from H_{β} profiles

	IRFM Stars			СМ	MLT_	MLT_OV			CGM	
-					$\alpha = 1.25$	$\alpha = 0.5$	$\alpha = 1.2$	25	$\alpha = 0.5$	
HR	$v \sin i$	[M/H]	$T_{\rm eff} \log g$	$T_{\rm eff}$ $\Delta T_{\rm eff}$	$T_{\rm eff} \Delta T_{\rm eff}$	$T_{\rm eff}$ $\Delta T_{\rm eff}$	$T_{\rm eff}$ Δ	$T_{\rm eff}$	$T_{\rm eff} \Delta T_{\rm eff}$	$T_{\rm eff}$ $\Delta T_{\rm eff}$
269	80	+0.03	7959 3.82	7970 11	8044 85	7802 -157	8100	141	7860 -99	7979 20
343	100	+0.14	7949 3.91	7614 -335	7802 -147	7548 -401	7914 -	-35	7664 -285	7616 -333
937	8	+0.03	6042 4.50	5834 -208	5947 -95	5818 -224	6332	290	6232 190	5850 -192
996	8	+0.04	5732 4.45	5592 -140	5750 18	5599 -133	5950	218	5865 133	5601 -131
1101	8	-0.13	5977 3.98	5809 -168	5902 -75	5808 -172	6214	237	6128 151	5811 -166
1676	63	+0.08	6909 3.14	6710 -199	6997 88	6813 -96	7250	341	6841 -68	6756 -153
8665	9	-0.33	6225 4.10	5799 -426	6000 - 225	5867 -358	6257	32	6172 -53	5819 -406
8905	60	+0.06	6050 3.61	5603 -447	5797 -253	5605 - 445	6102	52	5867 -183	5600 - 450

ing length parameter α is reduced to 0.5, the temperatures derived from the H_{β} profiles will be in the order of 200 K lower, thus agreeing with the results from H_{α} for $T_{\rm eff} \leq 6000 \ K$ and $\geq 7000 \ K$. Thus it seems that different values of α are more appropriate dependent on the $T_{\rm eff}$ of the star in question. This seems intuitively reasonable as over $\sim 7000 \ K$ the convectively unstable region is in a narrow band in the atmosphere. However below this effective temperature the unstable region descends lower into the star and becomes larger in width while at the same time the H_{α} is formed closer to the convection zone. At $T_{\rm eff} \leq 6000 \ K$ the top of the convection zone moves deeper inside the envelope such that the H_{α} is formed at a greater distance from it, just as for the hotter stars of our samples.

In van't Veer-Menneret & Megessier (1996) the method of Balmer line fitting was used on the two Am stars, τ UMa and 63 Tau and for completeness they also used the IRFM method on these stars and confirmed the results were consistent. They found that these methods yield temperatures lower than the previously determined values by around 300 K for stars with $T_{\rm eff}$ between 7000 K-7200 K, which agrees with the results presented here. They argued that Smalley & Dworetsky (1993) had previously overestimated $T_{\rm eff}$, because they had not used the H_{α} profile, only the H_{β} profile which is highly sensitive to the choice of mixing length. In van't Veer-Menneret (1996), the mixing length α needed to be reduced from 1.25 to 0.5 to get H_{β} to agree with H_{α} . Here, again, possibilities to reduce the difference between the two lines, which may give an insight into the real explanation, include:

- 1. If the temperature stratification in the turbulence models was such there were lower temperatures where H_{α} is formed then the profiles would be broader for each temperature and thus when fitting to observed H_{α} profiles we would fit to a lower T_{eff} . This would be in agreement with the H_{β} results.
- 2. Using $\alpha \ge 1.25$ in the region $\sim 6000 \ K < T_{\text{eff}} < 7000 \ K$ and $\alpha=0.5$ for $T_{\text{eff}} \ge 7000 \ K$ and $T_{\text{eff}} \le 6000 \ K$ would ensure that H_{α} and H_{β} results are more closely matched.

From Figs. 3,4,7 and 8, it has been seen that using the H_{α} line profile to determine temperatures there is a trend for all models that, as temperature increases, the method gives increasingly lower values of $T_{\rm eff}$ in comparison with previously determined values. This trend is not apparent for the H_{β} line (we will leave consideration of the region of $T_{\rm eff}$ over 8000 K until the next section).

5.2. Problem of Balmer line profiles of stars at high effective temperatures

In Figs. 1 and 7, the trend is seen of anomalously negative differences compared to fundamental values for stars in the region 8000–9000 K, then returning to close agreement for stars over

Fig. 7. Comparison between T_{eff} calculated from Balmer line profiles to those derived from Geneva photometry. $\Delta T_{\text{eff}} = T_{\text{eff}}(\text{Balmer}) - T_{\text{eff}}(\text{Geneva})$. The triangles are results using the CM model, the filled circles are using the MLT with no overshooting and the open circles are those using MLT_OV. Notice that the H_{β} profile has given lower values of T_{eff} in general than H_{α} . See results section for a detailed discussion.

Fig.8. Comparison between T_{eff} calculated from Balmer line profiles to those derived from Geneva photometry. $\Delta T_{\text{eff}} = T_{\text{eff}}(\text{Balmer}) - T_{\text{eff}}(\text{Geneva})$. The triangles are results using the CM model, the filled squares are using the CGM model. See results section for a detailed discussion.

Fig. 9. The values of T_{eff} derived from the H_{α} line profile minus values derived from the H_{β} line for the stars considered in this paper. $\Delta T_{\text{eff}} = T_{\text{eff}}(H_{\alpha}) - T_{\text{eff}}(H_{\beta}).$

9000 K. Thus, it appears that none of the models considered here on their own predict the correct $T_{\rm eff}$ over the entire range

of $T_{\rm eff}$. While it is true that at these higher effective temperatures the profile becomes sensitive to gravity, we would have to decrease the values of log g by around 0.4 dex to increase the temperatures determined to the fundamental values. This may be realistic considering the errors in the assumed values of log g vary between 0.3 and 0.5 dex. This would indicate a possible bias in previous methods to overestimate log g in this temperature region, if the synthesized Balmer profiles are accurate. This is entirely possible, as noted in Künzli et al. (1997) and in Paper I, where systematic effects for the gravity determination of main sequence stars in the Hyades with effective temperatures between 6500 and 8000 K were found.

This point is not dealt with further in this paper but work is currently being started which suggests that using twocomponent model atmospheres, which include a 'hot' and 'cold' temperature at each depth, work considerably better in this region.

Alternatively, there may be some other unidentified effect on Balmer line profiles in this temperature region.

Table 6. T_{eff} for Hyades stars from H_{α}

	Hyades Stars			CM MLT_noOV		noOV	MLT	_OV	CGM	
					$\alpha = 1.25$	$\alpha = 0.5$	$\alpha = 1.25$	$\alpha = 0.5$		
HD v	$\sin i$	[M/H]	$T_{\rm eff} \log g$	$T_{\rm eff}$ $\Delta T_{\rm eff}$	$T_{\rm eff}$ $\Delta T_{\rm eff}$	$T_{\rm eff} \Delta T_{\rm eff}$	$T_{\rm eff}$ $\Delta T_{\rm eff}$	$T_{\rm eff}$ $\Delta T_{\rm eff}$	$T_{\rm eff}$ $\Delta T_{\rm eff}$	
20430	3	+0.07	6072 4.45	6168 96	6179 107	6005 -67	6343 271	6297 225	6089 17	
24357	50	-0.01	7023 4.27	6948 -75	6963 -60	6910 -113	7278 255	7105 82	6900 -123	
25102	50	+0.11	6625 4.33	6712 87	6729 104	6680 55	7030 405	6870 245	6632 7	
25825	0	+0.14	5916 4.49	5989 73	5997 81	5927 11	6089 173	6044 128	5992 76	
26015	25	+0.16	6736 4.32	6852 116	6876 140	6827 91	7170 434	7023 287	6757 21	
26345	18	+0.08	6679 4.32	6697 18	6712 35	6675 -4	7002 323	6891 212	6684 5	
26462	0	-0.03	7003 4.27	6885 -118	6899 -104	6835 -168	7201 198	7032 29	6893 -110	
26737	68	-0.09	6615 4.33	6716 101	6734 119	6650 35	7034 419	6908 293	6744 129	
26784	6	+0.02	6134 4.43	6312 178	6332 198	6245 111	6557 423	6460 326	6321 187	
26911	0	+0.22	6785 4.31	6780 -5	6790 5	6710 -75	7194 409	6998 213	6788 3	
27176	125	+0.04	7428 4.23	7212 -216	7214 -214	7175 -250	7585 157	7475 47	7238 -190	
27397	100	+0.09	7377 4.23	7176 -201	7177 - 200	7095 - 282	7543 166	7450 73	7300 -77	
27406	10	+0.05	6097 4.44	6182 85	6000 97	5960 -137	6373 276	6310 213	6191 94	
27429	150	+0.13	6833 4.30	6750 -83	6778 -55	6728 -105	7196 363	7010 177	6840 7	
27459	68	+0.10	7524 4.22	7530 6	7556 26	7450 -74	7918 394	7833 309	7600 76	
27628	25	+0.15	7171 4.25	7240 69	7240 69	7180 9	7526 355	7380 209	7192 21	
27819	43	+0.12	8096 4.16	7899 -197	7876 - 220	7875 -221	8086 -10	7999 -97	7900 -196	
27934	87	+0.03	8235 4.14	7831 -404	7792 -443	7792 -443	8023 -212	7940 -295	7797 -438	
27946	175	+0.06	7582 4.22	7305 -277	7297 -285	7199 -383	7660 78	7545 -37	7300 -282	
28226	93	+0.15	7269 4.24	7357 88	7353 84	7300 31	7714 445	7510 241	7396 127	
28294	135	+0.00	7056 4.26	7000 - 56	7015 -41	6929 -127	7335 279	7145 89	7000 -56	
28319	105	+0.07	7928 4.19	7626 -302	7606 -322	7600 -328	7899 - 29	7605 -323	7670 - 258	
28355	93	+0.18	7815 4.20	7767 - 48	7741 -74	7740 -75	8005 190	7860 45	7804 -11	
28485	150	+0.13	7076 4.26	7110 34	7076 0	7005 -71	7455 379	7310 234	7154 78	
28483	18	+0.14	6381 4.37	6400 19	6423 42	6330 -51	6684 303	6627 246	6411 30	
28527	88	+0.14	7986 4.18	7810 -176	7777 - 209	7777 - 209	8025 39	7948 -38	7833 -153	
28546	31	+0.25	7642 4.21	7599 -43	7588 -54	7568 -74	7894 252	7700 58	7604 -39	
28556	140	+0.06	7457 4.23	7396 -61	7393 -64	7350 -107	7746 289	7540 83	7357 -100	
28911	40	+0.03	6622 4.33	6646 24	6665 43	6550 -72	6952 330	6809 187	6565 -57	
29375	155	+0.03	7229 4.24	7153 -76	7159 -70	7105 -124	7528 299	7390 161	7205 -24	
29388	104	+0.06	8415 4.10	7997 -418	7946 -469	7945 -470	8127 - 288	8000 -415	8057 -358	
29488	154	+0.03	8094 4.16	7768 -326	7740 -354	7740 -354	7990 -104	7875 -219	7749 -345	
30210	63	+0.37	7218 4.24	7856 638	7827 609	7825 607	8084 866	8014 796	7775 557	
30738	12	+0.05	6232 4.40	6484 252	6502 270	6450 218	6761 529	6633 401	6432 200	
30780	151	+0.11	7684 4.21	7612 -72	7597 -87	7567 -117	7889 205	7762 78	7572 -112	
33254	13	+0.34	7207 4.24	7656 449	7639 432	7639 432	7947 740	7810 603	7657 450	
28052	193	+0.08	7543 4.22	7182 -361	7180 -363	7080 -463	7547 4	7342 -201	7285 -258	

 $T_{\rm eff}$ 7000 $K,\log g$ 4.0 and a MLT_noOV model with $T_{\rm eff}$ = 7250 K, $\log g$ 4.0

5.3. Differences between models

As discussed in Sect. 3, and shown in Figs. 1 and 2, for H_{α} the CM and MLT_noOV(α =1.25) profiles are close. For H_{β} they are different as formed at different depths in the atmosphere, and the MLT_noOV(α =1.25) profile which matches an observed profile has a higher T_{eff} .

Fig. 10 shows examples of HR343 showing clearly that the MLT_noOV and MLT_OV with α =1.25 shape fits the observations very well at the given values of log g; however the shape of the CM, CGM and MLT with α =0.5 is too broad. The CM profiles imitate the effect of using too high a log g, requiring, in

each case, a decrease of log g to ~ 3.5 dex from the one used of 3.91. However this is only an example of one star, and for other stars it is equally clear that the CM shape fits very well to that of the observation and that the MLT_nOOV and MLT_OV with $\alpha=1.25$ models gave profiles which were too high in the wings. No clear trend with temperature could be identified, thus we can not make any conclusions about the accuracy of the models from the shape alone.

6. Conclusion

We find that the results of $T_{\rm eff}$ from the H_{α} and H_{β} lines are different, which is consistent with the differing depths of formation of the lines. Differences of up to 400 K in the best fit $T_{\rm eff}$ are found between the four models of convection. The

Table	7.	Toff	for	Hvades	stars	from	H_{A}
		-en					D

	Hyades Stars		ars	CM MLT		LnoOV N		Γ_OV	CGM	
					$\alpha = 1.25$	$\alpha = 0.5$	<i>α</i> = 1.25	$\alpha = 0.5$		
HD ı	$v \sin i$	[M/H]	$T_{\rm eff} \log g$	$T_{\rm eff} \Delta T_{\rm eff}$	$T_{\rm eff} \Delta T_{\rm eff}$	$T_{\rm eff} \Delta T_{\rm eff}$	$T_{\rm eff}$ $\Delta T_{\rm eff}$	$T_{\rm eff}$ $\Delta T_{\rm eff}$	$T_{\rm eff} \Delta T_{\rm eff}$	
20430	3	+0.07	6072 4.45	6075 3	6290 218	6045 -27	6565 493	6420 348	6090 18	
24357	50	-0.01	7023 4.27	6726 - 297	6911 -112	6710 -313	7242 219	7085 62	6756 -267	
25102	50	+0.11	6625 4.33	6518 -107	6691 -66	6465 -160	6899 274	6835 210	6538 -87	
25825	0	+0.14	5916 4.49	5802 -114	6043 127	5852 -64	6301 385	6160 244	5842 -74	
26015	25	+0.16	6736 4.32	6636 -100	6845 109	6639 -97	7115 379	6980 244	6656 - 80	
26345	18	+0.08	6679 4.32	6468 -211	6681 -2	6475 - 204	6900 221	6818 139	6488 -191	
26462	0	-0.03	7003 4.27	6707 - 296	6876 -127	6712 -291	7210 207	6995 -8	6717 - 286	
26737	68	-0.09	6615 4.33	6352 - 263	6598 -17	6400 -215	6876 261	6750 135	6362 - 253	
26784	6	+0.02	6134 4.43	6135 1	6335 201	6142 8	6632 498	6540 406	6145 11	
26911	0	+0.22	6785 4.31	6575 - 210	6822 37	6503 - 282	6410 375	6900 115	6583 - 202	
27176	125	+0.04	7428 4.23	7278 - 150	7496 68	7280 - 148	7810 382	7450 22	7295 -133	
27383	18	+0.07	6113 4.43	6029 -84	6100 -13	5950 -163	6313 200	6355 242	6040 -73	
27397	100	+0.09	7377 4.23	7163 -214	7369 -9	7199 -178	7722 345	7348 -29	7134 -243	
27406	10	+0.05	6097 4.44	6027 -70	6141 44	5987 -110	6406 309	6345 248	6027 -70	
27429	150	+0.13	6833 4.30	6736 -97	6920 87	6735 -185	7277 444	7023 190	6758 -75	
27459	68	+0.10	7524 4.22	7514 -10	7758 234	7520 -4	8003 483	7641 117	7527 3	
27628	25	+0.15	7171 4.25	7234 63	7438 267	7225 54	7810 639	7405 234	7227 56	
27534	40	-0.02	6522 4.35	6278 - 244	6495 -27	6338 -184	6800 278	6708 186	6289 -233	
27483	18	+0.17	6461 4.36	6320 -141	6500 39	6400 -61	6776 315	6716 255	6341 -120	
27819	43	+0.12	8096 4.16	7803 -293	8060 -36	7825 -271	8181 85	7855 -241	7806 - 290	
27934	87	+0.03	8235 4.14	7841 -394	8094 -141	7745 -490	8198 -37	7865 -370	7844 -391	
27946	175	+0.06	7582 4.22	7376 -206	7626 44	7420 -162	7853 271	7497 -85	7375 -207	
28226	93	+0.15	7269 4.24	7300 31	7502 233	7390 121	7750 481	7486 217	7319 50	
28294	135	+0.00	7056 4.26	6900 -156	7061 5	6900 -156	7468 412	7200 144	6955 -101	
28319	105	+0.07	7928 4.19	7572 -356	7750 - 178	7550 -378	7928 0	7675 -253	7581 -347	
28355	93	+0.18	7815 4.20	7693 -122	7962 147	7748 -67	8050 235	7806 -9	7700 -115	
28485	150	+0.13	7076 4.26	7083 7	7251 175	7020 - 56	7550 474	7342 -208	7050 - 26	
28527	88	+0.14	7986 4.18	7762 -224	8023 37	7810 -176	8172 186	7825 -161	7769 -217	
28546	31	+0.25	7642 4.21	7448 -194	7701 59	7500 - 142	7926 284	7618 -24	7458 - 184	
28556	140	+0.06	7457 4.23	7357 -100	7450 -7	7297 -160	7800 343	7532 75	7405 - 52	
28911	40	+0.03	6622 4.33	6309 -313	6575 -47	6408 -214	6900 278	6720 98	6318 -204	
29375	155	+0.03	7229 4.24	7002 - 227	7150 -79	6968 -261	7550 321	7218 -11	7074 -155	
29388	104	+0.06	8415 4.10	7898 -517	8125 -290	7802 -613	8214 -201	7903 -512	7898 -517	
29488	154	+0.03	8094 4.16	7792 -302	7900 -194	7690 - 404	8125 31	7799 -295	7795 -299	
30210	63	+0.37	7218 4.24	7805 587	8126 908	7868 650	8259 1041	7900 682	7814 596	
30738	12	+0.05	6232 4.40	6184 -17	6375 143	6223 -9	6662 430	6540 308	6185 -47	
30780	151	+0.11	7684 4.21	7503 -181	7682 - 2	7498 -186	7971 287	7606 - 78	7514 -170	
33254	13	+0.34	7207 4.24	7685 478	7978 771	7790 583	8201 994	7765 558	7656 449	
28052	193	+0.08	7543 4.22	7234 - 309	7457 -86	7250 - 293	7753 210	7450 -93	7250 - 293	

tests are inconclusive between the four models, however the MLT_noOV and the CM and CGM models all give similarly reasonable results and perform better than MLT_OV consistent with the results with *uvby* photometry in Paper I. The improvement to the CM model, the CGM model, has been slightly more successful in predicting $T_{\rm eff}$. We find for the mixing length theory, it seems appropriate to set $\alpha \geq 1.25$ in the region $6000 \ K < T_{\rm eff} < 7000 \ K$ but need α =0.5 in the two regions $T_{\rm eff} \leq 6000 \ K$ and $T_{\rm eff} \geq 7000 \ K$.

High rotation and metallicity caused slight difficulties in modelling both Balmer line profiles and may be part of the systematic problems with the profiles. Although these effect H_{β} more than H_{α} as there are more metal lines in this wavelength

region, the effect is expected to be <75 K at most, for a 0.1 dex change in metallicity.

Comparing model values of $T_{\rm eff}$ with fundamental values, which is the ideal test, the MLT_noOV is the most successful, although no model reproduces the observations very well and the conclusion is only based on a few stars. The main reason that MLT_noOV(α =1.25) model gives the best results overall is because more stars in our tests have a $T_{\rm eff}$ between 6000 and 7000 K, ie. in the region where this parameter should be set to α =1.25. The CM and CGM results are quite close to the MLT_noOV ones, though not quite as good. The MLT_OV model is clearly discrepant, as in Paper I, and can be ruled out as a sufficiently accurate theory of conditions in stellar atmo-

Fig. 10. Observations of the H_{β} profile of HR343, (T_{eff} from the Infrared Flux Method 7949 K) with the best fit model profiles. Notice the MLT_noOV(α =1.25) model profiles fit well however the CM and CGM profiles are too deep in the wings.

spheres. It predicts the profiles are formed at a higher level in the atmosphere, nearer the outer surface, than the other three models and this appears to be disproved by this model's poor results. However, because of the slopes of the H_{α} results for all the models, clearly there is a systematic problem with all the models. This slope is not apparent for H_{β} and thus may be connected with the H_{α} profile being formed above the convection zone. As the $T_{\rm eff}$ decreases, the convection zone becomes both deeper and closer to the region where the H_{α} profile is formed, but then for $T_{\rm eff} \leq 6000 \ K$ the distance between this zone and H_{α} increases again. Whereas the H_{β} is formed within the convection zone at $T_{\rm eff} \leq 8000 \ K$. At $T_{\rm eff} \geq 8500 \ K$ convection becomes so insignificant as to not effect results.

An application of alternative broadening theories for Balmer line profiles to A and F stars could also be helpful (see Stehlé 1996)

In conclusion, the CM, CGM and MLT_noOV models (using $\alpha = 0.5$ for the two regions $T_{\rm eff} \leq 6000$ K and $T_{\rm eff} \geq 7000$ K and $\alpha \geq 1.25$ in the region 6000 K $< T_{\rm eff} < 7000$ K), all give similar results, performing reasonably well in predicting observations, however, show some systematic errors over the region 6000 K–10000 K.

Acknowledgements. The referee, Fiorella Castelli is thanked for her constructive comments on the original manuscript. This work has made use of the hardware and software provided at Keele by the PPARC Starlink Project and NASA's Astrophysics Data System Abstract Service. Rebecca Gardiner's PhD studentship is funded by EPSRC. Friedrich Kupka acknowledges support by the project *Convection in Stars*, grant P11882-PHY of the Austrian Fonds zur Förderung der wissenschaftlichen Forschung. We thank Claude van't Veer-Menneret for useful discussion and for providing her H_{β} spectrum of Procyon.

References

- Bernacca P.L., Perinotto M., 1970, CoAsi 239, 1B
- Berthet S., 1990, A&A 236, 440
- Blackwell D.E., Lynas-Gray A.E., 1994, A&A 282, 899
- Blackwell D.E., Shallis M.J., 1977, MNRAS 180, 177
- Canuto V., Goldman I., Mazzitelli I., 1996, ApJ 473, 550
- Canuto V., Mazzitelli I., 1991, ApJ 370, 295
- Canuto V., Mazzitelli I., 1992, ApJ 389, 724
- Castelli F., 1996. In: Adelman S.J., Kupka F., Weiss W.W. (eds.) Model Atmospheres and Spectrum Synthesis. A.S.P. Conf. Proc. 108, p. 85
- Castelli F., Gratton R.G., Kurucz R.L., 1997, A&A 318, 841
- Fuhrmann K., Axer M., Gehren T., 1993, A&A 271, 451
- Fuhrmann K., Axer M., Gehren T., 1994, A&A 285, 585

- Gray D.F., 1992, Obs. and Analysis of Stellar Photospheres, CUP
- Hauck B., Mermilliod M., 1998, A&AS 129, 431
- Kobi D., North P., 1990, A&AS 85, 999
- Künzli M., North P., Kurucz R.L., Nicolet B., 1997, A&AS 122, 51
- Kupka F., 1996 In: Adelman S.J., Kupka F., Weiss W.W. (eds.) Model Atmospheres and Spectrum Synthesis. A.S.P. Conf. Proc. 108, p. 73
- Kurucz R.L., 1970, Smithsonian Ap. Obs. Spec. Rept., No. 309
- Kurucz R.L., 1979a, ApJS 40, 1
- Kurucz R.L., 1979b, Dudley Obs. Rept. 14, 271
- Kurucz R.L., 1992, Rev. Mex. Astron. Astrofis. 23, 181
- Kurucz R.L., 1993, Kurucz CD-ROM 13: ATLAS9, SAO, Cambridge, USA
- Kurucz R.L., Bell B., 1995, Kurucz CD-ROM 23: Atomic Line List, SAO, Cambridge, USA
- Kurucz R.L., Furenlid I., Brault J., Testerman L., 1984, Solar Flux Atlas from 296 to 1300nm, National Solar Obs., Sunspot
- Mills D., Webb J., Clayton M., 1997, Starlink User Note 152.4

Nissen P.E., 1988, A&A 199, 146

- Peterson D.M., 1969, Smithsonian Ap. Obs. Spec. Rept., No. 293
- Smalley B., 1992, Ph.D. Thesis, University of London. Chap. 5

- Smalley B., 1999, A&A, priv. comm.
- Smalley B., Dworestsky M.M., 1993, A&A 271, 515
- Smalley B., Dworestsky M.M., 1995, A&A 293, 446
- Smalley B., Kupka F., 1997, A&A 328, 349 (Paper I)
- Smalley B., Smith K.C., 1995, UCLSYN Userguide
- Smith K.C., 1992, Ph.D. Thesis, University of London. Chap. 5
- Smith K.C., van't Veer C., 1987, In: Adelman S.J., Lanz T. (eds.) Elemental Abundance Analyses. Institut d'Astronomie de l'Universite de Lausanne, p. 133
- Steffen M., Ludwig H-G., 1999, In: Giminez A., Guinan E.F., Montesinos B. (eds.) Theory and Tests of Convection in Stellar Structure. A.S.P. Conf. Proc. 173, p. 217
- Stehlé C., 1996, In: Adelman S.J., Kupka F., Weiss W.W. (eds.) Model Atmospheres and Spectrum Synthesis. A.S.P. Conf. Proc. 108, p. 56
- van't Veer-Menneret C., 1996, In: Adelman S.J., Kupka F., Weiss W.W. (eds.) Model Atmospheres and Spectrum Synthesis. A.S.P. Conf. Proc. 108, p. 56
- van't Veer-Menneret C., Megessier C., 1996, A&A 309, 879
- Vidal C.R., Cooper J., Smith E.W., 1973, ApJS 25 37