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Abstract. We investigate the generation of a large-scale mag-
netic field by anαΩ-dynamo in turbulent accretion disks sur-
rounded by linear force-free coronae. The standardα-disk
model with parameters relevant to a typical disk around a com-
pact star is assumed. The dynamo-generated magnetic field is
calculated in both kinematic and nonlinear regimes. The critical
dynamo number isDc ≈ 10 and the lowest normal mode has a
quadrupole symmetry, just like dynamo models calculated for
disks surrounded by a vacuum. The equilibrated magnetic field
also has quadrupole symmetry and its distribution inside the
disk is almost the same as in a disk with vacuum exterior. The
novel feature is the existence of a toroidal field in the exterior of
the disk which, permits the corona to transmit magnetic stresses
between the inner and outer parts of the disk. However, all dy-
namical effects of the large-scale magnetic fields are small, due
to the restricted magnitude and the specific configuration of the
magnetic field generated by theαΩ-dynamo.
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1. Introduction

Magnetic fields have become a topic of great interest in research
related to accretion disks in various astrophysical contexts. The
main reason for this curiosity is the opinion that magnetic fields
may be a major factor responsible for the structure and dynam-
ical balance of those disks. Specifically, magnetic fields seem
to be involved in disks’ angular momentum redistribution, a
process responsible for driving a disk whose nature is diffi-
cult, if not impossible, to understand without invoking magnetic
fields. Because accretion disks are geometrically thin, they ex-
perience large magnetic losses (resistive and anomalous diffu-
sion in cool and dense protoplanetary disks, mostly anomalous
diffusion in hotter, high-energy accretion disks), and the mag-
netic field has to be contemporaneously generated and/or am-
plified at a high enough rate to balance the losses. There are two,
conceptually distinct, conceivable mechanisms to maintain the
magnetic field; interaction between the disk and an externally
maintained magnetic field, and an internal generation of mag-
netic field. First, the field can be continuously captured from
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the surrounding environment and advected inward by the accre-
tion flow, thus undergoing deformation leading to an increase
of its strength. However, Lubow et al. (1994) and Reyes-Ruiz &
Stepinski (1996) show that in the likely scenario of a disk driven
primarily by anomalous viscosity characterized by a magnetic
Prandtl number (ratio of turbulent magnetic diffusivity to turbu-
lent viscosity) of the order of unity, the field lines that thread the
disk are not efficiently advected by the accretion flow, and the
magnetic field is not amplified. Thus, at least in the paradigm of
viscous disks, the substantial magnetic field must be internally
generated.

Until relatively recently, the theoretical underpinning of an
internal generation process was provided by theαΩ-dynamo
model pioneered by Parker (1955) and Steenbeck et al. (1966).
In the αΩ model the toroidal field is regenerated from the
poloidal field through differential rotation, whereas the poloidal
field is regenerated from the toroidal field by the preexisting
turbulence (so-calledα-effect). Admittedly, theαΩ model is
rather heuristic. It depends on postulated turbulence of unspec-
ified origin, the magnitude of theα-effect can be only roughly
estimated, and the theory is intrinsically linear with fluid forces
being purely hydrodynamic, although, for computational pur-
poses, so-calledα-quenching formulas were invented to mimic
the back reaction of a generated field on turbulence (see Sect. 4.).
On the other hand, theαΩ model provides a very transparent
link between the small-scale, tangled magnetic field produced
directly by turbulence, and the mean, large-scale field, the quan-
tity which can be potentially measured, and which is of primary
theoretical importance. Consequently, most existing models of
the global structure of magnetic fields generated in accretion
disks are based on theαΩ formalism.

Balbus & Hawley (1991) have rediscovered the existence of
a magnetorotational instability, which given a weak initial mag-
netic field can destabilize a Keplerian disk, simultaneously pro-
viding turbulence and small-scale, tangled magnetic fields. The
magnetorotational instability acts like a dynamo that, however,
generates its own turbulence. Thus, such a process is intrinsi-
cally nonlinear: turbulence and magnetic field are inseparable. It
currently appears that the nature of dynamo activity in accretion
disks is better understood in the framework of the magnetorota-
tional instability than in terms of theαΩ-dynamo model. How-
ever, at present, computational complexity of MHD simulations
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rule out the construction of global disk models based directly
on the magnetorotational instability concept. Only studies sim-
ulatinglocal shearing boxes (Brandenburg et al. 1995, Hawley
et al. 1996) are available. One of the most interesting features of
these simulations is that the character of the generated magnetic
field is somewhat similar to that predicted by theαΩ-dynamo
(Brandenburg et al. 1995) despite some fundamental differences
between the two paradigms. One of the major difference seems
to be the magnitude of the large-scale equilibrated magnetic
field, which can be of the order of the equipartition with the gas
pressure in the magnetorotational instability simulations, but is
of the order of the equipartition with the kinetic energy of the
turbulence in theαΩ-dynamo calculations.

In this paper weassume that the generation of the magnetic
field in an accretion disk proceeds via theαΩ-dynamo process.
This is dictated by the global character of our problem. Our
calculations are self-consistent within theαΩ-dynamo frame-
work, but we hypothesize that they may also be applicable to
the actual disks, where magnetic field is probably generated by
the magnetorotational instability.

Throughout this paper we focus on the large-scale field.
However, in both, theαΩ-dynamo and the magnetorotational
instability paradigms, a small-scale field is also present. In the
αΩ-dynamo context it has been demonstrated (Pudritz 1981)
that the contribution of the large-scale magnetic field to the
Maxwell stress is not significant. Likewise, in the context of
the magnetorotational instability, results of Brandenburg et al.
(1995) suggest that the large-scale field is not a dominant con-
tributor to the Maxwell stress. Thus the large-scale field is not a
major contributor to a disk’s “viscous” evolution. On the other
hand, the large-scale magnetic field pervading the closed corona
provides a means of angular momentum exchange between dis-
joined and possibly distant segments of the disk. This may lead
to dynamical consequences that are qualitatively different from
those due to the viscous torque. Heyvaerts & Priest (1989) in-
vestigated such a scenario and concluded that strong enough
large-scale magnetic fields lead to significant non-Keplerian be-
havior. However, they left open the question of evaluating the
actual strength of a dynamo generated magnetic field in the disk.
One of the goals of our work is to see whether the magnetic field
obtained from a more self-consistent calculation is capable of
inducing any dynamical behavior above and beyond that caused
by the viscous torque.

The study of dynamo-generated magnetic fields can be con-
ceptually divided into two parts: a purely kinematic part, which
involves finding criteria (critical dynamo numbers) for the field
generation, and a semi-dynamic part, which involves compu-
tation of the overall configuration of the equilibrated magnetic
field. In both phases the results can, in principle, depend very
strongly on the assumed properties of the medium surrounding
the disk. All existing studies assume a conductivity,σ, of the
exterior medium. Most settle forσ = 0, which leads to a so-
called vacuum boundary condition. Stepinski & Levy (1990)
also consider the case ofσ = ∞, which leads to the mag-
netic field that is contained entirely within the disk. Rüdiger et
al. (1995) consider also the intermediate cases,0 < σ < ∞.

Conductivity-based boundary conditions simplify calculations,
but they are not very realistic and may lead to spurious results.
In particular, vacuum boundary conditions lead to apotential
magnetic field in the disk exterior, and thus explicitly exclude
magnetic configurations capable of the non-local exchange of
angular momentum.

The gas in an accretion disk is concentrated around the equa-
torial plane and its density drops sharply in the vertical direction.
Therefore, there exist imaginary surfaces that divide the part of
space where gravity and gas pressure dominate over the Lorentz
force (the interior of the disk) and the part where the magnetic
field is dominant (the exterior of the disk). This suggests that
dynamics-based, rather than conductivity-based, boundary con-
ditions are more appropriate. If the system is in a steady state,
and there is no wind, then, from a dynamical point of view, the
magnetic field in the exterior of the disk has a force-free con-
figuration. The assumption of force-free boundary conditions
models well many actual situations and is the simplest approx-
imation compatible with the possibility of non-local magnetic
transport of angular momentum.

The goal of this paper is to calculate the configuration of
the global magnetic field generated by theαΩ-dynamo in a
disk surrounded by a force-free medium (corona). In Sect. 2.
we discuss how to accommodate the force-free exterior into the
αΩ-dynamo, and present the analytic solution for the magnetic
field outside the disk. In Sect. 3. we present results of kinematic
calculations, the growth rates for normal modes of various sym-
metries are calculated, and the eigenmodes with fastest growth
rates are determined. In Sect. 4. we calculate the overall con-
figuration of the equilibrated magnetic field in a disk with the
force-free exterior. In Sect. 5. we assess the ability of the ob-
tained magnetic field to transport angular momentum between
distant parts of the disk, and in Sect. 6. we summarize our results
and present our conclusions.

2. A model for an accretion disk corona

We consider a portion of the space that, in the cylindrical coordi-
nates(R, φ, Z), is a hollow cylinder of radiiRi andRo extend-
ing infinitely in theZ direction. The disk occupies a thin por-
tion of this cylinder located symmetrically around the midplane
Z = 0 and bounded by disk’s surfaces defined byZ = ±H.
We define the region|Z| > H, where the gas density falls off
rapidly, as the corona. This tenuous, highly ionized region, per-
meated by magnetic fields generated in the disk, is quite similar
to the solar corona, hence the name. The entire disk-corona sys-
tem is assumed to be axisymmetric. Driven by the motion of
their footpoints at disk’s surfaces, field lines in the corona are
continuously stressed and simultaneously relaxed by resistive
processes (see Heyvaerts & Priest 1989 for details). We assume
that the coronal large-scale magnetic field relaxes in a short time
to the minimum energy state presumed to have a linear force-
free configuration (Woltjer 1958) given by the solution to the
equation

∇ × B = µ B (1)



894 M. Reyes-Ruiz & T.F. Stepinski:αΩ dynamo of accretion disks with coronae

whereµ is a constant that reflects the magnetic helicity of the
coronal field (Heyvaerts & Priest 1989 and references therein).
As it is very difficult to establish the value ofµ from the first
principles, we considerµ to be a free parameter and seek to
determine the effects, if any, of different values ofµ on the
magnetic field structure inside and outside the disk. Note, how-
ever, that for a sufficiently large value of|µ|, a linear force-free
field may not necessarily minimize the energy of the coronal
field (Aly, 1993), nonaxisymmetric fields with smaller energies
can be constructed, but a linear force-free configuration still
minimizes the energy of axisymmetric fields.

Because of the assumed axisymmetry, the magnetic field
can be expressed asB = Beφ + ∇ × Aeφ, whereAeφ is a
vector potential of the poloidal field. Using this representation
Eq. (1) reduces to
[

∂2

∂R2
+

1

R

∂
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∂Z2
+ µ2

]

A = 0 (2)

B = µA

Eq. (2) can be solved analytically subject to the following
boundary conditions:

A(Ri, Z) = B(Ri, Z) = 0, A(Ro, Z) = B(Ro, Z) = 0 (3)

A(R, Z), B(R, Z) → 0 as Z → ∞ (4)

whereRi andRo are the inner and the outer disk radii, respec-
tively. In the upper half-space (Z > H) the solution has the
following general form:

A(r, z) = Σ∞
n=1

Cne−
√

k2
n

−m2z

×
[

J1(knr) − J1(knri)

Y1(knri)
Y1(knr)

]

(5)

whereJ1 andY1 are the 1st order Bessel functions of the first
and the second kind,r = R/R0 andz = Z/R0 are coordinates
in units of a normalization measureR0 (not necessarily equal to
the outer radiusRo),ri andro are the disk inner and outer radii in
such units, andm = µR0. The dimensionless wavenumberskn,
which arise from the radial boundary conditions, are a solution
of

J1(knro)Y1(knri) − J1(knri)Y1(knro) = 0 (6)

and the unknown coefficientsCn are determined by matching
this solution to the magnetic field inside the disk atZ = H,
assuming the continuity of all magnetic field components across
the disk’s surface. In the lower half-space (Z < H) the solution
is analogous, but possibly with different coefficientsCn.

Note that condition (4) requires|µ| < µcrit = k1/R0,
wherek1 is the smallest root of Eq. (6). Forµ = 0 the magnetic
field has a familiar, potential field configuration withB = 0
and the poloidal field is characterized by closed, untwisted field
lines. The characteristic scale of∇ ×B distribution, defined as
lc = |B|/|∇×B| ∼ |µ|−1, is infinity for the current-free field.
Increasing the value of|µ| corresponds to shearing field lines
in theR − φ space toward theφ coordinate and decreasing the

value oflc. Thus, the field lines of the force-free field acquire
“swirls” as compared with the current-free field. At|µ| = µcrit

the field lines are infinitively sheared in theR − φ space, yield-
ing BR = 0. The magnetic field has a constant strength with
open field lines spiraling to infinity, andlc = R0/k1, which is
of the order ofRo.

The value ofµ can be, in principle, positive or negative.
Moreover, as the upper corona is separated from the lower
corona by the presence of the disk, the sign and/or value of
µ can be different in these two regions. In particular, it is eas-
ily seen that for the coronal field to have dipole symmetry (A
even andB odd with respect to the midplane) or quadrupole
symmetry (A odd andB even),µ must be odd with respect
to the midplane. In addition, the coefficientsCn must be even
with respect to the midplane for the dipole field and odd for
the quadrupole field. Because we consider only pure dipole or
pure quadrupole magnetic field configurations, we can restrict
our calculations to the upper half-space and use the symmetry
properties to obtain the field in the lower half-space.

3. Normal modes

Within the kinematic approximation, the induction equation for
the large-scale magnetic field is linear and the solutions are in
the form of normal modes. Establishing the generation threshold
and the symmetry of the lowest mode is of primary interest be-
cause the actual magnetic field will retain these properties (see
the next section). It has been shown (Rüdiger et al. 1995) that the
lowest mode of the dynamo-generated field in a disk surrounded
by the “halo” of finite conductivity has a quadrupole symmetry.
Only in the case of the disk surrounded by the perfect conductor
does the lowest mode have dipole symmetry (Stepinski & Levy
1990, Meinel et al. 1990). The halo, as defined by Rüdiger et al.
(1995), is a tenuous medium that is, however, capable of gener-
ating a magnetic field via theαΩ process. Thus, by definition,
the motion of the plasma in the halo governs the behavior of the
magnetic field there. On the other hand, the corona, as defined in
the previous section, is the medium where magnetic fields gov-
ern the behavior of the plasma. We seek to determine whether
changing a disk’s surroundings from halo to corona results in a
change of generation threshold and/or symmetry of the lowest
mode.

The induction equation for the large-scale magnetic field in
the axisymmetric thin disk separates into the following poloidal
and toroidal components (for details see for example Stepinski
& Levy 1991):
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whereΩk is the Keplerian angular velocity. A functionα, known
in dynamo theory as the so-calledα-effect, is responsible for
producing a poloidal field out of a toroidal field by means of
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turbulence. In a thin Keplerian diskα is given by (Stepinski &
Levy 1991)

α = αssΩkZ (9)

whereαss is a dimensionless turbulent viscosity parameter of
Shakura & Sunyaev (1978).

The total magnetic diffusivityη is dominated by turbulent
diffusivity, which in a thin Keplerian disk is given by (Stepinski
& Levy 1991)

η = αssH
2Ωk (10)

Eqs. (7) and (8) supplemented by boundary conditions at
the inner and outer radii (see Eq. (3)), at the midplaneZ = 0
(specified by the condition that the field has either dipole or
quadrupole symmetry), and at the disk’s surfaceZ = H (set
by the condition that all components of the field continuously
join the respective components of the force-free field in the
corona) describe an eigenvalue problem. The eigenvalues are
the growth rates of the normal modes. It has been shown that
the dependence of these eigenvalues on the properties of the disk
can be encapsulated to their dependence on only two parameters,
the so-called dynamo number,

D =
α0Ωk,0H

3

0

η2

0

(11)

and

λ =
H0

R0

(12)

where the subscript0 denotes characteristic values of corre-
sponding quantities.

We have calculated eigenvalues (and corresponding normal
modes) as functions ofD. Fig. 1 shows the growth rate of the
lowest mode as a function ofD for a disk of constant thickness
(λ = 0.01, which is a typical value for disks in cataclysmic vari-
ables) surrounded by a corona characterized by|µ| = 0.95µcrit.
The assumption of constant thickness is done solely for the pur-
pose of comparing our results to those obtained by Stepinski
& Levy (1991), who calculated the growth rates in a disk of
constant thickness surrounded by a vacuum using approximate
boundary conditions suggested by Zeldovich et al. (1983). How-
ever, we have found that the condition of constant disk thickness
can be relaxed without appreciable differences in the values of
the growth rate or symmetry properties of the excited modes.

To calculate eigenvalues for a given symmetry condition
we discretize Eqs. (7) and (8) and the boundary conditions with
second-order finite differences on a uniform mesh covering the
interior of the disk and having 30 points in the radial direction
and 20 points in the vertical direction. This produced a matrix for
which eigenvalues were calculated using EISPACK subroutines
based on the QR algorithm. In the process we also determine
coefficientsCn in Eq. (5). The summation in Eq. (5) has to be
truncated after 30 terms, the number equal to the number of grid
points in the radial direction.

Examination of Fig. 1 reveals that, in general, the consid-
eration of a force-free exterior has no significant effect on the
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Fig. 1. Maximum dynamo growth rate as a function of dimensionless
dynamo number for a disk with constant scale-height andλ = 0.01.
The continuous and dashed lines show the growth rate, respectively,
of quadrupole and dipole modes in a disk with|µ| = 0.95µcrit. For
comparison, triangles and squares show the corresponding maximum
growth rates using Zeldovich’s thin disk approximation for the bound-
ary conditions at H.

growth rates of the lowest modes. In fact, the difference between
our results and those of Stepinski & Levy (1991) is predomi-
nantly due to the fact that Stepinski & Levy assumedBR = 0
at the disk surfaces, and not because they use vacuum rather
than a force-free exterior. The maximum growth rates for disks
surrounded by a vacuum and those surrounded by a force-free
corona, using the full solution outside the disk, are virtually the
same. The critical dynamo number (a threshold below which
only decaying normal modes exist) is about 10, and the low-
est dynamo mode has a quadrupole symmetry. The quadrupole
mode is dominant for all dynamo numbers smaller than∼ 650.
For dynamo numbers greater than∼ 650, oscillatory dipole
modes are the fastest growing. Note thatD as given by Eq. (11)
is ∼ α−1

ss , thus only a magnetic field with quadrupole sym-
metry can be generated unlessαss is smaller than about10−3.
However, the actual magnetic field does not resemble any nor-
mal mode, as its structure is shaped by the nonlinear interaction
with the disk. Nevertheless, it has been demonstrated (Rüdiger
et al. 1995) that the equilibrated magnetic field preserves a sym-
metry of the lowest mode, in our case the quadrupole symmetry,
regardless of how small the value ofαss is.

4. Nonlinear dynamos

Within a paradigm of a linear dynamo, a seed magnetic field
will grow without limit providing thatD > Dcrit. In reality,
the Lorentz force due to a generated magnetic field modifies the
amplification sources, halting the further growth of the mag-
netic field. We performed nonlinear calculations considering
the back-reaction of the magnetic field on theα-effect, but ig-
noring the back-reaction of the magnetic field on the turbulent
diffusion (see Field 1995 for a review of such a possibility)
and the large-scale velocity field. Note that this last assumption
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must be checkeda posteriori, and it would be inconsistent if the
obtained large-scale field leads to a non-Keplerian behavior.

Nonlinear calculations require a model of the back-reaction
of the large-scale field on theα-effect. We assume that this
nonlinearity has the form of anα-quenching, which can be in-
troduced by replacing Eq. (9) by

α =
αssΩkZ

1 + |B|2

B2
eq

(13)

whereBeq is the magnitude of the magnetic field in equipartition
with the turbulent motion,B2

eq = 4παssρC2

s . Hereρ is the gas
density, andCs is the speed of sound. The turbulent velocity
is assumed to be equal toα1/2

ss Cs. Our choice of a specificα-
quenching function is arbitrary, but the fact that the quenching
scales with|B|/Beq is a result derived from the mean-field
theory (R̈udiger & Kichatinov 1993). It can be shown (Reyes-
Ruiz & Stepinski, 1997), that anα-quenching formula (13) leads
to the equilibrated large-scale magnetic field of the magnitude

B ≈ Beq

(

0.12

αss
− 1

)1/2

≈ Bpr 0.25
(

1 − αss

0.24

)1/2

, (14)

whereBpr denotes the magnitude of magnetic field in equipar-
tition with the gas pressure. Thus, in the framework of theαΩ-
dynamo theory, the saturated large-scale magnetic field isal-
ways subthermal. However, the small-scale component of the
saturated magnetic field is larger (Krause & Roberts, 1976) and
may be in the equipartition with the gas pressure. This is in
contrast to the saturated magnetic field produced by the mag-
netorotational instability, where both the small-scale and the
large-scale components can be, at their peak values, in equilib-
rium with the gas pressure (Brandenburg et al. 1995).

Beq is a function of disk quantities and a complete model
of an unmagnetized steady state disk is needed to perform non-
linear dynamo calculations. We use the “standard” disk model
(Frank et al. 1992), which has parameters corresponding to typ-
ical conditions in cataclysmic variables. Dynamo calculations
require radial profiles of disk half-thickenessH andBeq, which
for this model are

H = 1.7 × 108 α−1/10

ss Ṁ
3/20

16
M

−3/8

1
R

9/8

10
cm (15)

Beq = 634 α1/20

ss Ṁ
17/40

16
M

7/16

1
R

−21/16

10
gauss (16)

where the radial distanceR10 is measured in units of1010 cm,
the accretion rate is measured in units of1016 g sec−1, and stellar
mass is measured in units of 1M�.

We consider a model characterized byαss = 0.1, Ṁ16 = 1,
M1 = 1, Ri = 5 × 109 cm, andRo = 1010 cm. The ratio
Ri/Ro = 0.5 is smaller than expected in the actual disks to
save the time required by our numerical algorithm. The evolu-
tion of the magnetic field inside the disk, governed by Eqs. (7)
and (8), is computed using an explicit finite difference scheme,
second-order accurate in space and first-order accurate in time,
limited by the Courant stability condition. The evolution of the
field outside the disk, governed by Eq. (2) is determined by the
changing boundary conditions at|Z| = H as the field inside the
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Fig. 2. Dynamo-generated magnetic field in an accretion disk with a
corona characterized byµ = 0. The top panel shows contours of the
toroidal magnetic field intensity, solid lines denote positive (into the
R − Z plane) toroidal field, and dotted lines indicate negative toroidal
field. Poloidal field lines are shown in themiddle panel. Dashed lines
indicate the disk surfaces in both cases. Thebottom panel shows ab-
solute values of magnitudes of individual components of magnetic
field, the solid line corresponds toBφ(Z = 0), the dashed line to
30 BZ(Z = H), and the dash-dotted to30 BR(Z = H). For com-
parison, the lower dotted line shows the strength ofBeq, and the upper
dotted line shows the strength of magnetic field in equipartition with
the gas pressure.

disk evolves. At each timestep the exterior field is computed us-
ing a relaxation procedure. The entire computational procedure
is analogous to the one described by Reyes-Ruiz & Stepinski
(1997).

Figs. 2, 3, and 4 show the configuration of the equilibrated
dynamo-generated large-scale magnetic field calculated for var-
ious values ofµ. As expected, the field has quadrupole symmetry
in all cases. The sense of the magnetic field is arbitrary; we as-
sume that A is positive inside the disk. Because the field lines
must be closed, the sign of A does not change in the corona
and the poloidal field “rotates”clockwise in theR − Z plane.
Thus,BR must change its sign from the negative (toward the
Z-axis) near the disk midplane to the positive in the corona. In-
side the disk the dynamo equations dictate thatBφ andBR have
opposite signs, thus the toroidal field inside the disk “rotates”
counterclockwise (in a positive direction) around theZ-axis. In
the corona the deformation of the positiveBR by the motion
of foot points embedded in the counterclockwise-rotating disk
produces negative (rotating clockwise aroundZ-axis)Bφ. This
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Fig. 3. Same as Fig. 2 but for an accretion disk with corona character-
ized by|µ| = 0.85µcrit. We have also added a dash-triple-dot line to
denote the value of30 Bφ(Z = H).
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Fig. 4.Same as Fig. 2 but for an accretion disk corona characterized by
|µ| = 0.95µcrit. We have also added a dash-triple-dot line to denote
the value of30 Bφ(Z = H).

means that the force-free parameterµ must be negative in the
upper half-space, and the toroidal field has to change sign near
the surface of the disk.

Fig. 2 shows the configuration of the magnetic field cor-
responding toµ = 0, a condition equivalent to the vacuum
boundary condition, whereas Figs. 3 and 4 show configuration
of the magnetic field for|µ| = 0.85µcrit and|µ| = 0.95µcrit,
respectively. Force-free boundary conditions do not introduce
significant changes to the structure and the magnitude of the
field inside the disk. However, outside the disk the force-free
fields differ significantly from the vacuum field. The biggest
difference is the existence of the coronal toroidal field; how-
ever, this field is weak, and vanishes near the disk’s surface.
The existence of the force-free corona also results in “swelling”
of the poloidal field configuration, but the field lines remain
closed as required by the assumptions of our model.

Magnetic field configurations shown here are representative
and their features are robust. Similar configurations are obtained
for the standard disk model characterized by different values of
αss, M16, andM1, as well as for different disk models and
differentα-quenching models. In particular, the configuration
of the equilibrated magnetic field for disks characterized by
αss < 10−3, for which the lowest-order normal mode is an
oscillatory dipole, is still a quadrupole steady state like those
shown on Figs. 2–4. This is because the back-reaction of the
magnetic field on theα-effect, as modeled by theα-quenching,
effectively decreases the magnitude of the dynamo number to
its critical value, thus restoring the character of the magnetic
field to the steady state with quadrupole symmetry.

Note, however, that in order to obtain a magnetic field con-
figuration with the magnitude ofBφ(Z = H) comparable to the
magnitude of the poloidal field, values of|µ| close to its critical
valueµcrit = 6.393/R0 are needed. It is possible that at such
high values of|µ| the relaxed coronal magnetic field is nonax-
isymmetric and does not have a linear, force-free configuration
(Aly, 1993).

5. Dynamical effects of the generated magnetic field

The Maxwell stresses due to the dynamo-generated large-scale
magnetic field can affect the structure and the dynamical evolu-
tion of the accretion disk by 1) the contribution of the magnetic
pressure to the total pressure, 2) the contribution of theφ − R
component of the Maxwell stress to the radial redistribution
of angular momentum, or 3) the non-local transport of angular
momentum via magnetic field pervading the corona.

It is immediately clear from our calculations that the first
two contributions are independent from the assumed boundary
conditions, inasmuch as the magnetic field inside the disk is
insensitive to the particulars of the medium outside the disk.
Stepinski et al. (1993) showed that the ratio of the magnetic
pressure to gas pressure is

Pmag

Pgas
≈ 1

2
αss

(

B

Beq

)2

(17)
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and the ratio of theφ − R component of the Maxwell stress to
theφ − R component of the viscous stress is

FB

Fν
≈ αss

1/2

(

B

Beq

)2

(18)

Figs. 2–4 show that for all cases considered hereB < Beq

and the contributions of the large-scale magnetic field to the total
pressure and radial transport of angular momentum are small.
Again, this is a robust result, applicable to a broad range of
disk models and values of parameters (see Rüdiger et al. 1995).
On the other hand, the small-scale field generated by theαΩ-
dynamo may contribute significantly to both, the total effective
pressure and the radial transport of angular momentum.

The new feature of the dynamo-generated magnetic field in
a disk with the force-free corona is the possibility that theφ−Z
component of the Maxwell stress transports angular momentum
vertically from the disk to the corona (or from the corona to the
disk), thus providing dynamical link between distant portions
of the disk. In principle, this can lead to significant dynamical
effects, providing that the value ofBH

φ BH
Z is sufficiently high.

From Figs. 3 and 4 it may appear that the toroidal field reverses
its signon the surface of the disk. Such a configuration would
yield BH

φ BH
Z = 0 and would fail to provide magnetic link

between distant parts of the disk. However, closer examination
of our results reveals that the surface defined byBφ = 0 is
located beneath disk surface, so the value ofBH

φ BH
Z is small but

not equal to zero. We can assess the importance of this effect by
comparing the vertical and radial fluxes of angular momentum
due to the presence of a magnetic field.

ε ∼ 2
R

H

BH
φ BH

Z

|〈BφBR〉| (19)

where〈 〉 denotes an average over the vertical extent of the disk.
Fig. 5 showsε(R). It is clear that the vertical flux of angular
momentum is a small fraction of the radial flux of angular mo-
mentum due to the Maxwell stress, which, in turn, is a small
fraction of the radial angular momentum flux due to the viscous
stress.

The configuration of the magnetic field is such that〈BφBR〉
is always negative, and consequently the radial angular momen-
tum flux due to the magnetic stress is outward, just like the an-
gular momentum flux due to viscous stress. In the steady-state
disk with a fixedṀ theφ−R component of the magnetic stress
causes a slight increase ofVR and a corresponding decrease in
the magnitude of the surface densityΣ. In the inner portion of the
disk (whereBH

Z > 0), the vertical flux of angular momentum is
negative, and this part of the disk is losing angular momentum
to the corona. In the outer portion of the disk (whereBH

Z < 0),
the disk is gaining angular momentum from the corona. Over-
all, there is no net change in the total angular momentum, just
a non-local redistribution. In a steady-state disk with a fixed
Ṁ theφ − Z component of the magnetic stress causes a slight
increase ofVR and a decrease ofΣ in the inner portion of the
disk, but also a slight decrease ofVR and a increase ofΣ in the
outer portion of the disk. However, given the small magnitude
of BH

φ BH
Z /|〈BφBR〉|, the changes,∆VR and∆Σ, are small.
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Fig. 5.The ratio of vertical to radial fluxes of angular momentum due to
the stress of the large-scale magnetic field. The linear force-free corona
with |µ| = 0.95µcrit is assumed.

Because of the existence of the pressure gradient, the gas
velocity is slightly non-Keplerian even in a disk without any
magnetic field. The presence of the magnetic field introduces
magnetic pressure and the term proportional toBH

R BH
Z . We

have already estimated (see Eq. (17) above) thatPmag < Pgas.
Furthermore,Pmag andPgas have the same radial dependence
(due to theα-quenching model), so the contribution of magnetic
pressure to the character of the large-scale velocity is negligi-
ble. To assess the contribution of the magnetic stressBH

R BH
Z

we compare the magnitude of(BH
R BH

Z )/4π with the magni-
tude of(H/R)Pgas (Heyvaerts & Priest 1989). From Figs. (3)
and (4) we conclude that(BH

R BH
Z )/4π is about 3 to 4 orders

of magnitude smaller (recall that the values ofBH
R andBH

Z on
both figures have to be divided by the factor of 30) thanB2

eq/8π,
which itself is an order of magnitude smaller than the gas pres-
sure. On the other hand,H/R ≈ 10−2 for our disk, thus the
magnetic term is two to three orders of magnitude smaller than
the pressure term, and its contribution to the large-scale veloc-
ity is negligible. Overall, a dynamo-generated magnetic field
cannot lead to non-Keplerian behavior.

6. Conclusions

We investigated the character of the large-scale, dynamo-
generated magnetic field in a standard accretion disk. Unlike
previous calculations that addressed this problem (for example
Rüdiger et al. 1995), we assume that the disk is surrounded not
by a vacuum, but rather by a linear force-free corona. The ma-
jor objective of this study was to find out whether the force-free
corona assumption changes the conditions of the magnetic field
generation and the character of the generated field as compared
to the models with the vacuum surroundings. We have found
that conditions for a turbulent dynamo to generate a magnetic
field in a disk with a force-free corona are practically identical
to those obtained for a disk with a vacuum exterior. The normal
modes are stationary and have quadrupole symmetry (providing
thatαss > 10−3). The field inside the disk is dominated by the
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toroidal component. However, the existence of the force-free
corona allows the presence of the toroidal field in the disk exte-
rior. The direction of the toroidal field in the corona is opposite
to its direction in most of the disk. The reversal takes place in
the disk, very near its surface.

We also performed nonlinear calculations, aimed at obtain-
ing the structure of the equilibrated magnetic field. Again, inside
the disk, the equilibrated magnetic field resembles the field cal-
culated in a disk surrounded by the vacuum. In the exterior the
character of the field is different, and depends on the value of the
force-free parameterµ. All three components of the magnetic
field are present, and the field lines display a “swirly” character,
unlike the field lines in the vacuum, which have no twist. As
|µ| → µcrit the coronal field becomes more wound up, but it
is also more vertical and extends farther up beyond the surface
of the disk. The magnetic field at the surface of the disk has a
strength of about one hundredth that of the field at the midplane.
Unlike the midplane field, all components of the magnetic field
on the surface are of the same order of magnitude.

We have found that the existence of the corona does not
lead to non-Keplerian behavior or any other significant dynam-
ical effect. This follows from the magnitude and the structure
of the magnetic field generated by theαΩ-dynamo. The mag-
nitude of the magnetic field is limited toB ∼ Beq by its neg-
ative feedback on theα-effect. Therefore, magnetic pressure
and magnetic radial transport of angular momentum are small
in comparison with gas pressure and the viscous transport of
angular momentum, respectively. The magnetic field is highly
concentrated around the midplane, and its magnitude at the sur-
face is much smaller than its magnitude at the midplane. The
toroidal field reverses its sign near the surface, but it would have
a small amplitude at the surface, even without such a reversal.
Consequently the magnitude ofBφHBH

Z is small and vertical
transport of angular momentum is not significant.

Our findings complement the results of HP89 showing that,
within the framework ofαΩ dynamo, accretion disks with coro-
nae operate in the low magnetization limit. Heyvaerts & Priest
did not actually solve a dynamo problem, as is done here, in-
stead, theyassumed the radial distribution ofBZ and derived
their results in terms of a parameterλ reflecting the magnitude of
the large scale magnetic field in comparison to the gravitational
energy in the disk. We find that, within our dynamo model, this
parameter is very small and therefore deviations from keplerian
rotation are insignificant.

It appears that, at least in the framework of theαΩ-dynamo
concept, a self-generated, large-scale magnetic field in an vis-
cous accretion disk does not contribute significantly to the dy-
namics of the disk. However, the small-scale component may
be a significant factor in the radial transport of angular momen-
tum. We stress that these conclusions are reached studying a
disk model based on theαΩ-dynamo paradigm.

Guided by the qualitative similarity between the charac-
ter of the large-scale magnetic field resulting from the magne-
torotational instability simulations (Brandenburg et al. 1995),
and the field resulting fromαΩ-dynamo calculations, as far as
the relative magnitude between components, one may hypoth-

esize that an approximation of the large-scale magnetic field
produced in the former scenario can be obtained by calculating
theαΩ-dynamo. However, to do this one should replace the term
|B|/Beq by |B|/Bpr in Eq. (13) to account for the fact that the
large-scale magnetic field may be roughly in equipartition with
the gas pressure as results in some of the simulations of the mag-
netorotational instability. In the context of thin accretion disks,
such a change in anα-quenching function leads to the saturated
field with unchanged structure but appropriately increased mag-
nitude (R̈udiger et al., 1995). This has been verified within our
calculations.

If saturated, large-scale magnetic field has a magnitude
B ∼ Bpr, it contributes significantly to both, the total effec-
tive pressure and the radial transport of angular momentum (see
Eqs. (17–18)). Such contribution would be comparable to that
of the small-scale field also resulting from the instability. As for
the vertical transport of angular momentum through the corona,
increasing the magnitude ofB would result in increasing the
absolute magnitude of such transport, but its importance rela-
tive to the radial transport, as given by Eq. (19), would remain
the same. It is also easy to estimate that magnetic field with the
magnitude of the order ofBpr is still too weak to significantly
alter disk’s Keplerian rotation. However, an important point to
consider before jumping to any conclusions drawn from this
hypothesis, is that a large-scale magnetic field in equipartition
with the pressure would most likely be unstable to buoyancy in-
stabilities, a factor not considered in the formulation of theαΩ
dynamo framework. An evaluation of the potential importance
of this effect in modifying the vertical distribution of the differ-
ent field components is out of the scope of the present paper.
Finally, there are still many additional aspects to be considered.
For example, field lines could become open by the superposi-
tion of an external magnetic field or by the wind driven from
the disk. It is feasible that a magnetocentrifugally driven wind
(see Blandford 1993 for the review) may significantly change
the dynamics of the disk. Such a change would be indirectly
attributed to the generated large-scale magnetic field.
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