P99 7VHBAl -, 68, “693B!

EPICYCLES, FROM HIPPARCHUS TO CHANDRASEKHAR

Vittorio Banfi
Centro di Astrodinamica "G. Colombo", Torino

ABSTRACT - In this paper the epicycle, introduced by Chan-
drasekhar (1942) and concerning the one-body problem in
newtonian Celestial Mechanics, 1is examined and studied. A
simple derivation, in alternative to the Chandrasekhar
treatment, is here developed.

1. Introduction

As it is well known, "the epicycle method" was used in
Ptolemaic astronomy to account for the observed periodic
irregularities in planetary motions. The epicycle is a
small circle, the center of which moves around the
circumference of a larger circle called the deferent.
Introduced for the first time by Hipparchus, it was used by
Ptolemy, for instance, to explain Sun’s motion round the
Earth. Figure 1 shows how epicycles work.

(57

The Earth remains fixed at the center
of the main circle (deferent)

Figure 1. - The Earth remains fixed at the center of the
main circle (deferent)

Epicycles survived, in explications of heavenly bodies
motions, also in heliocentric theory of the Solar-System
(Reference 1) until 1627, i.e. the year of publication by
Kepler of "Tabulae Rudolphinae" (Reference 2). After this
year classical epicycles went to science museum, since
planetary orbits were recognized as ellipses. Newton
completed the formulation of the fundamental principles of
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mechanics, and applied them with unparalleled success in
the solution of mechanical and astronomical problems.

2. - Chandrasekhar’s epicycle

In the textbook "Principles of Stellar Dynamics"”
(Reference 3), S. Chandrasekhar renewed the epicycle
concept in the modern context of newtonian Celestial
Mechanics. However this mathematical model does not offer
exactly Hipparchus’ epicycle, but with some modifications.
The complete mathematical development of the theory 1is
contained in previously cited textbook, but in this paper a
more semplified version is carried on. Following rigorous
methods this analysis treats newtonian ellipse as
"perturbation” of a circular orbit and develops the
consequences in order to explain the planetary motions. The

same results of Chandrasekhar’s textbook are obtained;
they are applicable, in any way, in the case of small
orbital eccentricities (0,01 + 0,12).

3. = Analytical development of the model

In the one-body problem approximation, let us consider a
circular orbit (Figure 2) with radius r, and primary mass M
at the fixed center 0. When P is the unit mass moving on
circular orbit, the angular momentum conservation states:

-~

(1) (P-0) ANY¥ = c,

in which (P - 0) is the position vector, ¥ the velocity
vector of P and ¢ the constant vector angular momentum (for
unit mass). Assuming v, the constant velocity on circular
orbit Eg. (1) becomes

o

(2) r v, = c

(P - 0) AV =2¢c vectorial form
r v = ¢ scalar form
o (-]

Angular momentum
conservation

Figure 2. - Motion on circular orbit
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and the centripetal acceleration of P

2 2
Vo C
r r

° °

which will be equal to gravitation force (for unit mass) a
Then we have g

G M c
(4) a = 3 = —— [G = gravitation constant] .
g r, r

In order to complete the circular motion description we
have angular velocity

v, c
(5) OOO = N = —-—;
r' r°

and the corresponding period

2w
(6) T, = .

W,
Let us apply to P a small instantaneous displacement SP,
lying in a perpendicular plane with respect to original
circular orbit (Figure 3). Vector SP-is splitted in two
components: §r (radial) and &z (axial).

’//,,_ plane containing vector SP

R A e e e e ]

N
B - S

circular orbit

Figure 3. - Instantaneous perturbation of original circular
orbit
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Now we calculate the changed values a' and a on account
c g
of variation 8r. We obtain:
2 2
; c c ~ C c g
a=—— = y = =T -3 — r
c r’ @; + Sr) ﬁ? r,
(7)
G M G M G M G M
SM _ S
a = Slararals T ~ 2 r
g r? (R4-Sr) r, rf

considering the first order approximation only. On the

basis of Eq. (7), of the complete variation E>ar of point
P is
2
3 c G M
(8) _ Sa = = ( - 2 ) gr .
L 4 3
r T,
-] °
1
Remembering Eq. (4), after multiplication by — , we have
. : 2 r,
G M c
3 = T - A = positive constant.
r, r,
Then Eg. (8) becomes
(9) gea = - A S]f .
r °
On account of an outward displacement gr' > 0 , P

experiences a restoring force for unit mass proportional to

r, in which A, acts as the usual spring constant. In
fact when $r > 0, 9a,< 0. We recognize that there is an
equation of simple harmonic motion, with angular frequency

c
L = VE; = 2,the same value of angular velocity (5)
rD
of original circular motion.
Considet now the effects caused by axial component gz.
With reference to Figure 4, owing to the smallness of &P,

vector a (gravitational force for unit mass) has radial
g
G M
component a &~ —— ; furthermore we must calculate a .
gr r? gz
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. GM
r3

Figure 4. - Schematic sketch useful for calculation of a
gz

Since we can write:

12 Ya

(10) div a =— =—— (r a

+
1]
o

z
g r Or gr "dz d
and also at point P ( r_, , 0)
1 ‘a 1 G M G M
— —-(ra ) = —_— 2 = 3)
r “or gr r r r,
r=r, r =r,
. 2 a .
we solve Eq. (10) with respect to Az S92
D a 1
— 93 __ Té—— (r a )
“dz r dr gr

and finally

rba. G M
ﬁaz r?

r =r,

From the preceeding relationships we obtain

o j s BRI S

Comparing Egs. (9) and (11) we note that, also in vertical
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direction z, there is an harmonic motion with angular
frequency W , as before.

We can conclude that the new motion, after very short
impulse at P (figure 4), is the superposition, on original
circular motion, of two harmonics motions in r and =z
directions, calculated before.

Let us consider now the new position, in the space, of
the orbital plane with regard to the original plane of
circular motion. Starting from (1) we have

(P -0) A ¥=C8 ;

if A T is the small increment of angular momentum caused
by the impulse, we can write 8

P
(12) T +AE = (2-0) AT+ —

St

which holds for the transient duration S't. From Eqgs. (1)
and (12) we get S
P

AT = (P—O)/\"g—
t

This small vector A ¢ is lying in original plane and also
is tangent to the circumference of radius r, at point P
(Figure 5) and in opposite direction to the vector
velocity. The subsequent orbital motion will lie in a
tilted plane with respect to the previous one. The
Ac
inclination angle will be i ¥ tani =— (Figure 5). We
c
have considered A ¢ a small quantity of the first order
with respect to c.
From Celestial Mechanics we know that the new orbit of P
is an elliptic one with focus at point 0 and angular
momentum pratically equal to © .

trace of tilted plane '/i
L&
S
~ -4‘AE
T~ L |-
a) b) —————— s Tl

trace of original plane

Figure 5. % Circular orbit perturbated by impulse with an-
gular momentum A4&; b) inclination angle i bet-
ween original plane and tilted plane.
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[y

The subsequent keplerian motion is illustrated in Figqure 6
in which we note the dashed circular orbit of secondary
body (before the impulse).
The elliptical trajectory, in thick trace, is the
projection of real ellipse on original plane of circular
orbit (the ellipse plane is almost coincident with the last
plane since i is small).
Furthermore the ellipse equation
p
r = ’
1+ ecos®

.in which (Figure 6)

radius vector,
-¥ = true anomaly,
eccentricity

a (1 - e?) = semi-latus rectum,

oo QKR

owing to the smallmess of eccentricity (0,01 %+ 0,12) is’
rewritten so

I
H
=

1
[0}
Q
o}
0

<
el

Il
Q
-

1
(0]

[ 34

il
v}

Il

o

(13) r

Figure 6. - The primary body is at the origin 0, which is
the center of the dashed circle with radius r .
Let the origin 0 of a coordinate system (x,y,2)
move with constant velocity along the dashed
circle.In this coordinate system the point mass
m (secondary body) moves in an "epicycle" which
is an ellipse with the axis ratio 2:1. The epi-
cycle motion is retrograde.
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Let us imagine that the secondary body fellows around
0' , which is orbiting around 0 with constant angular
velocity w, (Figure 6), a small closed trajectory and let
us study if that is possible. The radius vector (m - 0) of
this particle has true anomaly €, whereas 0' has mean
anomaly w_  t (at general epoch t, being t = 0 the instant
of passage through pericenter). The we get the small angle

(14) E= V¥ -¥, - w t,

and also we assume cos € ¥ 1, sin g Y 0. Let us take a
frame of reference in uniform circular motion on the
circumference of radius r , with origin 0’ and axes x, y, z
as in Figure 6. With good approximation we have:

(15) X =r -r,

and then by Egs. (13), (14)

(16) r=1xr (l1-ecos ) =r|[ 1-ecos (Y—\Yp)]=
=r [ 1-e (cosw,t+ €)1 ¥ r, (1 -ecosw t) .
The second Kepler’s law gives:
d
PO
dt
and by (16)
d c c
(17) —if = — ¥ = (1l+2ecosw t).
dt r3 r* °

[

Multiplying Eq. (14) by r, we get

(18) g£r, = DY T R ot
d

dy
now, 1if we assume = (E.ro ) we can write by
dt dt
Egs.(5), (17) and (18)
dy d c c c
(19) — =r 4 — -w =r 43 t2 g ecoswt - —pg=
dt ° lat ° rt rt ° rx
. o [ Q
=2 e v cosw t .
o Q
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The simple differential equation (19) is readily integrated
giving

(20) y =2er sina% t ,

with integration constant assumed to be zero. From (16) we
have also

(21) X=r -r =-er cosw,t .
Starting from Eqgs. (20) and (21) we can affirm that the
particle moves on a small ellipse, with the axis ratio 2:1,
in retrograde sense (in the plane of Figure 6); but this is
not the only motion, since we have also recognized the
motion along 2z - axis provided by differential equation
(11).

We can conclude that the particle motion on keplerian
orbit is decomposable in the following way:

a) point 0’ moves, on the circumference of radius r, ,
c ,
with angular velocity Qﬁ = -_E '
r
b) the particle follows, in the x - y plane (the same of
point a), an elliptical epicycle having the same
angular velocity w_,

c) the particles performs an harmonic escillation along
z - axis with angular frequency o, .

On account of point c), at two apsides, the values z

max
and z will be
min
z = (1+e)r, 1 = 1r
max
z = =-(l-e)r 1 = -ir ,
min

always considering i and e as small quantities.
At general epoch t we will have

(22) z (t) = ir, sincw, (t - t, ).

In the relationship (22) t is the instant of passage at
point A (Figure 6). °
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4. - Concluding remarks

The elliptic epicycle or Chandrasekhar’s epicycle is
then completely explained. Let us consider now three
applications of this model to some topics of astronomy and
astrophysics. The first of them, on the part of same
Chandrasekhar, concerns the von Weizs3cker theory on the
origin of the Solar System (Reference 4). The improvement
of this theory, regarding the stability of vortexes array
within the gaseous primeval disk, is very interesting.
Another application deals with the intragalactic motion of
a star (Reference 5). Third application is connected to the
Alfvén's "jet streams theory" (Reference 6). As discovered
by Hirayama, there are families of asteroids with almost
the same values of a, i, and e. Arnold (Reference 7) has
confirmed the existence of all the Hirayama families;
asteroids orbits almost coincide and these heavenly bodies
are said to be members of a "jet stream". The explication
of forming of these streams is based on Chandrasekhar
epicycle.
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