
19
 9

7M
N

RA
S.

28
7.
 .

83
3N

 

Mon. Not. R. Astron. Soc. 287, 833-847 (1997) 

Lensing by galaxy haloes in clusters of galaxies 

1 9 
Priyamvada Natarajan and Jean-Paul Kneib 
1 Institute of Astronomy, Madingley Road, Cambridge CB3 OHA 
2 Observatoire Midi-Pyrenees, 14 Av. E. Belin, 31400 Toulouse, France 

Accepted 1997 January 9. Received 1996 December 2; in original form 1996 September 3 

ABSTRACT 
Weak shear maps of the outer regions of clusters have been successfully used to map the 
distribution of mass at large radii from the cluster centre. The typical smoothing lengths 
employed thus far preclude the systematic study of the effects of galactic-scale substructure on 
the measured weak lensing signal. In this paper, we present two methods to infer the possible 
existence and extent of dark haloes around bright cluster galaxies by quantifying the ‘local’ 
weak lensing induced by them. The proposed methods are: direct radial averaging of the shear 
field in the vicinity of bright cluster members, and a maximum likelihood method to extract 
fiducial parameters characterizing galaxy haloes. The correlations observed for early-type 
galaxies on the Fundamental Plane are used to derive the scaling laws with luminosity in the 
modelling of cluster galaxies. We demonstrate using simulations that these observed local 
weak shear effects on galactic scales within the cluster can be used to constrain statistically the 
mean mass-to-light ratio, and fiducial parameters like the halo size, velocity dispersion and 
hence mass of cluster galaxies. We compare the two methods and investigate their relative 
drawbacks and merits in the context of feasibility of application to HST cluster data, whereby 
we find that the prospects are promising for detection on stacking a minimum of 20 WFPC2 
deep cluster fields. 

Key words: galaxies: clusters: general - gravitational lensing - large-scale structure of 
Universe. 

1 INTRODUCTION 

Clusters of galaxies are the most recently assembled structures in 
the Universe, and the degree of observed substructure in a cluster is 
the result of the complex interplay between the underlying cosmo- 
logical model [as has been demonstrated by many groups including 
Bird (1993), Evrard et al. (1993) and West & Bothun (1990)] and 
the physical processes by which clusters form and evolve. Many 
clusters have more than one dynamical component in the velocity 
structure in addition to spatial subclustering (Colless & Dunn 1996; 
Kriessler, Beers & Odewahn 1995; Bird 1993; West & Bothun 
1990; Fitchett 1988). Substructure in the underlying cluster poten- 
tial and specifically the subclumping of mass on smaller scales 
(galactic scales) within the cluster can be directly mapped via 
lensing effects. 

The observed gravitational lensing of the faint background 
population by clusters is increasingly becoming a promising 
probe of the detailed mass distribution within a cluster as well as 
on larger scales (super-cluster scales). We expect on theoretical 
grounds, and do observe, local weak shear effects around individual 
bright galaxies in clusters over and above the global shearing 
produced by the ‘smooth’ cluster potential. While there is ample 
evidence from lensing for the clumping of dark matter on different 
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scales within the cluster, the spatial extent of dark haloes of cluster 
galaxies is yet to be constrained. The issue is of crucial importance 
as it addresses the key question of whether the mass-to-light ratio of 
galaxies is a function of the environment, and if it is indeed 
significantly different in the high-density regions like cluster 
cores as opposed to the field. Moreover, it is the physical processes 
that operate within clusters, like ram-pressure stripping, merging 
and ‘harassment’, that imply re-distribution of mass on smaller 
scales, and their efficiency can be directly probed using accurate 
lensing mass profiles. 

Constraining the fundamental parameters such as mass and halo 
size from lensing effects for field galaxies was attempted first by 
Tyson et al. (1984) using plate material, the quahty of which 
precluded any signal detection. More recently, Brainerd, Blandford 
& Smail (1996) used deep ground-based imaging, and detected the 
galaxy-galaxy lensing signal and hence placed upper limits on the 
mean mass of an average field galaxy. Griffiths et al. (1996) used the 
Medium Deep Survey (MDS) and HST archival data in a similar 
manner to extract the polarization signal. Although the signal is 
unambiguously detected, it is weak, and no strong constraints can 
yet be put on the mean profile of field galaxies, but the prospects are 
promising for the near future. 

On the other hand, no such analysis has been pursued in dense 
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regions like clusters, and very little is known about the lensing 
effect of galaxy haloes superposed on the lensing effect of a cluster. 
Kneib et al. (1996) have demonstrated the importance of galactic- 
scale lenses in the mass modelling of the cluster A2218, where the 
effect of galactic-scale components (with a mean mass-to-light ratio 
~ 9 in the R band) needs to be included in order to reproduce the 
observed multiple images. Mass modelling of several other clusters 
has also required the input of smaller-scale mass components to 
explain consistently the multiple images as well as the geometry of 
the arcs, for instance, in the case of CL0024 (Kassiola, Kovner & 
Fort 1993; Small et al. 1995a), where the length of the three images 
of the cusp arc can only be explained if the two nearby bright 
galaxies contribute mass to the system. This strongly suggests that 
the dark matter associated with individual galaxies is of conse- 
quence in accurately mapping the mass distribution, and needs to be 
understood better, particularly if clusters are to be used as gravita- 
tional telescopes to study background galaxies. 

The observed quantities in cluster lensing studies are the magni- 
tudes and shapes of the background population in the field of the 
cluster. To reconstruct the cluster mass distribution, there are many 
techniques currently available which allow the inversion of the 
distortion map into a relative mass map or an absolute mass map if 
(i) multiple arcs are observed (Kneib et al. 1996) and or (ii) 
magnification effects are included (Broadhurst, Taylor & Peacock 
1995). Recent theoretical work (Kaiser & Squires 1993; Kaiser 
1995; Schneider 1995; Schneider & Seitz 1995; Squires & Kaiser 
1995) has focused on developing various algorithms to recover the 
mass distribution on scales larger than 20-30 arcsec, which is 
roughly the smoothing scale employed (corresponding to —100 kpc 
at a redshift of z ~ 0.2). These methods involve locally averaging 
the shear field produced by the lensing mass, and cannot be used to 
probe galactic-scale perturbations to the shear field. 

Our aim in this paper is to understand and determine the 
parameters that characterize galactic-scale perturbations within a 
cluster. In order to do so, we delineate two regimes: (i) the ‘strong’ 
regime where the local surface density is close to critical (k ~ 1, 
where k is the ratio of the local surface density to the critical surface 
density) and (ii) the ‘weak’ regime where the local surface density is 
small (k < 1). The ‘strong’ regime corresponds to the cores of 
clusters, and in general involves only a small fraction (typically 5- 
20) of the cluster galaxies, whereas the ‘weak’ regime encompasses 
a larger fraction (~ 50-200). We are restricting our treatment to 
early-type (Es & SOs) bright cluster galaxies throughout. 

We compare in this analysis the relative merits of our two 
proposed methods: a direct method to extract the strength of the 
averaged local shear field in the vicinity of bright cluster galaxies by 
subtracting the mean large-scale shear field, and a statistical 
maximum likelihood method. The former method affords us a 
physical understanding, helps to establish the importance and the 
role of the various relevant parameters and yields a mean mass-to- 
light ratio; the latter permits us to take the strong lensing regime and 
the ellipticity of the mass of galaxy haloes into account correctly. 
Both approaches are investigated in detail in this paper using 
numerical simulations. 

The outline of the paper is as follows. In Section 2, we present the 
formalism that takes into account the effect of individual galactic- 
scale perturbations to the global cluster potential. In Section 3, the 
direct method to recover these small-scale distortions is outlined, 
and in Section 4 we present the results of the application of these 
techniques to a simulated cluster with substructure. In Section 5, we 
examine the constraints that can be obtained on the parameter space 
of models via the proposed maximum likelihood method. We also 

explore the feasibility criteria for application to cluster data given 
the typical uncertainties. The conclusions of this study and the 
prospects for application to real data and future work are discussed 
in Section 6. Throughout this paper, we have assumed 
H0 = 50kms_1Mpc_1, Q = 1 and A = 0. 

2 GALAXY-SCALE LENSING DISTORTIONS 
IN CLUSTERS 

2.1 Analysis of the local distortions 

The mass distribution in a cluster of galaxies can be modelled as the 
linear sum of a global smooth potential (on scales larger than 20 
arcsec) and perturbing mass distributions which can then be 
associated with individual galaxies (with a scalelength less than 
20 arcsec). Formally we write the global potential as 

0tot = </>c + (!) 

where </>c is the smooth potential of the cluster and </>p. are the 
potentials of the perturbers (galaxy haloes). Henceforth, the sub- 
scripts c and p refer to quantities computed for the cluster-scale 
component and the perturbers respectively. The deflection angle is 
then given by 

0s — 0i ~ ^i^i) ; = W>c + E/V$Pi., (2) 

where 0j is the angular position of the image and 0S the angular 
position of the source. The amplification matrix at any given point is 

A-1 = I - VV4>C - E; VV0p¡. (3) 

Defining the generic symmetry matrix, 

cos 26 sin 26 
sin 26 — cos 26 ; 

J20 — 

we decompose the amplification matrix as a linear sum: 

A — (1 Kc ^/Kp) 1 Yc*^20c ^z (4) 

where k is the magnification and 7 the shear. In this framework, the 
shear 7 is taken to be a complex number and is used to define the 
quantity g as follows: 

   7 _ 7c + £z7p,   _ 
Spot - 1 _ K 

Tp°t ~ 1 (5) 
1 Kc ^p, 1 <?pot £pot 

which simplifies in the frame of the perturber j to (neglecting the 
effect of perturber i if i =£ j) 

(6) 

where gpot |7 is the total complex shear induced by the smooth cluster 
potential and the potentials of the perturbers. Restricting our 
analysis to the weak regime, and thereby retaining only the first- 
order terms from the lensing equation for the shape parameters (see 
Kneib et al. 1996), we have 

n = rs + tv pot» (7) 

where rj is the distortion of the image, rs is the intrinsic shape of the 
source, is the distortion induced by the lensing potentials or, 
explicitly in terms of in the frame of perturber y, 

7c , Tp,- 
£l — £s + ^potl; = gs + V 1" V ' 1 - /Cc - /Cp. 1 - Kc - Kp. (8) 

In the local frame of reference of the perturbers, the mean value of 
the quantity ¿h and its dispersion can be computed in circular annuli 
(of radius r from the perturber centre) strictly in the weak regime. 
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A 

-=»• 

image frame ellipticity vector diagram 

in the frame of the perturber 

  perturber shear 

«=£■  large scale shear 

Figure 1. Local frame of reference of the perturber: the vector diagram illustrating the choice of coordinate system. The total shear is decomposed into a large- 
scale component due to the smooth cluster and a small-scale one due to the perturbing galaxy. In the frame of the perturber, the averaging procedure allows 
efficient subtraction of the large-scale component as shown in the right panel, enabling the extraction of the shear component induced in the background galaxies 
only by the perturber as shown in the left panel. The background galaxies (shown in the left panel of this figure) are assumed to have the same intrinsic ellipticity 
for simplicity, therefore we plot only the induced components. 

assuming a constant value 7ce
10c° for the smooth cluster component 

over the area of integration (see Fig. 1 and Fig. 2 for the schematic 
diagrams). 

The result of the integration does depend on the choice of 
coordinate system. In Cartesian coordinates (averaging out the 
contribution of the perturbers) 

+ 1 - Kc - Kn 

: 7ce 

4 4 

1- Kc-Kp 
= 8c^ 

2 °8s i ~gP/ 
4 = t+^-> 

where 

o-i; 
4 8i 

2 
Pfts) ■ 8Pj 

2Nhg 2Nhg 

2 aPfts) 
2M 

(9) 

(10) 

(ID 
bg 

^pfts) being l*16 width of the intrinsic ellipticity distribution of the 
sources, Afbg the number of background galaxies averaged over and 
o|p the dispersion due to perturber effects which should be smaller 
than the width of the intrinsic ellipticity distribution. In the polar uv 
coordinates, on averaging out the smooth part, 

: £pj’ ^ \ 1 - Kc - Kp 

4 4 (aL\ =ni+nL VUSi/ud O T T 

(12) 

(13) 

where 

4^) i 4 
2iVbg 2Nbg ' 

(14) 

From these equations, we clearly see the two effects of the 
contribution of the smooth cluster component: it boosts the shear 
induced by the perturber due to the (kc + /cp ) term in the denomi- 
nator, which becomes non-negligible in the cluster centre, and it 
simultaneously dilutes the regular galaxy-galaxy lensing signal 
due to the a^/2 term (equation 11) in the dispersion of the 
polarization measure. However, one can in principle optimize the 
noise in the polarization by ‘subtracting’ the measured cluster 
signal and averaging it in polar coordinates: 

(¿ft 8c)uv (15) 

which gives the same mean value as in equation (11) but with a 
reduced dispersion: 

(4-icL=4’ (16) 

where 

4 
apfts) 
2Nbg- 

(17) 

This subtraction of the larger-scale component reduces the noise in 
the polarization measure, by about a factor of 2, when a|s ~ o|c, 
which is the case in cluster cores. Note that in subsequent sections 
of the paper, we plot the averaged components of r (the quantity 
measurable from lensing observations) computed in the u,v frame. 
We reiterate here that the calculations above assume that the cluster 
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in the image frame noise induced 
by the smaller 

£y scale component 

-H 

T induced by 
the perturber 
potential 

in the frame of the perturber noise induced 
by the smooth 

. . v cluster 
potential 

■»I 

T induced by 
the perturber 
potential 

Figure 2. A schematic representation of the effect of the cluster on the intrinsic ellipticity distribution of background sources as viewed from the two different 
frames of reference. In the top panel - as viewed in the image frame - the effect of the cluster is to cause a coherent displacement r and the presence of perturbers 
merely adds small-scale noise to the observed ellipticity distribution. In the bottom panel - as viewed in the perturber frame - the perturber component causes a 
small displacement t and the cluster component induces the additional noise. 

component is constant over the area of integration (a reasonable 
assumption if we limit our analysis to small radii around the centres 
of perturbers). These results can be easily extended to the case when 
the cluster component is linear over the area of integration, the 
likely case outside the core region. This direct averaging 
prescription for extracting the distortions induced by the possible 
presence of dark haloes around cluster galaxies, by construction, 
does not require precise knowledge of the centre of the cluster 
potential well. 

2.2 Quantifying the lensing distortion 

To quantify the lensing distortion induced by the individual 

galactic-scale components using a minimal number of parameters 
to characterize cluster galaxy haloes, we model the density profile 
as a linear superposition of two pseudo-isothermal elliptical com- 
ponents (PIEMD models derived by Kassiola & Kovner 1993): 

m) - 
Sprp 

1 - r0/rt v'ff+tf 
(18) 

with a model core radius r0 and a truncation radius rt r0. The 
useful feature of this model is the ability to reproduce a large range 
of mass distributions by varying only the ratio rj, defined as 
77 = rt/r0. It also provides the following simple relation between 
the truncation radius and the effective radius Re: rt ~ (4/3)Re. 
Furthermore, this apparently circular model can be easily generalized 
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Leming by galaxy haloes in clusters of galaxies 837 

to the elliptical case by re-defining the radial coordinate R as 
follows: 

Rz x2 

+ 
(1+e)2 (1-6) 

a — b 
a + b' 

(19) 

The mass enclosed within radius R for the model is given by 

M(R) : 2ttEo'o 
: l-7> L 

\fi + R2 - + (''t - ^*o) 

and the total mass, which is finite, is 
Moo = 2'TrEorort- 

Calculating /c, 7 and g, we have 

k(R) = Kq ro 1 

2ko — 0 

(1 - r0/rt) [^(^+^2) 

47rG As^ol 
c2 T>os 

(20) 

(21) 

(22) 

(23) 

where Dls, Dos and Dol are respectively the lens-source, observer- 
source and observer-lens angular diameter distances. To obtain 
g(R), knowing the magnification k(R), we solve Laplace’s equation 
for the projected potential fan, evaluate the components of the 
amplification matrix and then proceed to solve directly for yiR), 
g(R) and r(R): 

4*20 — 2/Co 

- r0\n 

To first approximation, 

t(R) « y(R) = k0 - 

1 

yJr^+R2 — +(r0 

rl + rQ^j Vq+R2 + rt In rt + rt 

rt)]iíR 

risJt + R2 

(24) 

+ 777 

Scahng this relation by rt gives, for r0 <R< rt, 

where a is the velocity dispersion, and, for r0 < rt < R, 
Mtr 

' ‘ y R2 R2 

(25) 

(26) 

(27) 

where Mtot is the total mass. In the limit that R > rt, we have 

7W = 2RÏ (r° - r'2) + "ör^rt _ r°)’ 

and, as R o, y(R) 
R2 

0, g(R) 0 and r(R) 

(28) 

0 as expected. 

3 RECOVERING GALACTIC-SCALE 
PERTURBATIONS 

In this section, we study the influence of the various parameters 
using the direct averaging procedure on the synthetic data obtained 
from simulations. The numerical simulations involve modelling of 
the global cluster potential and the individual perturbing cluster 
galaxies, and calculating their combined lensing effects on a 
catalogue of faint galaxies. We compute the mapping between the 
source and image plane and hence solve the lensing equation, using 

the lens tool utility developed by Kneib (1993), which accounts 
consistently for the displacement and distortion of images in both 
the strong and weak lensing regimes. 

3.1 Modelling the cluster galaxies 

3.1.1 Spatial and luminosity distribution 

A catalogue of cluster galaxies was generated at random with the 
following characteristics. The luminosities were drawn from a 
standard Schechter function with L* = 3 x 1010 L0 and 
<2 = —1.25. The positions were assigned consistently with the 
number density v(r) of a modified Hubble law profile, 

^0 v{r) 

l+k 

(29) 

with a core radius r0 = 250 kpc, as well as a more generic ‘core- 
less’ profile of the form 

vo v(r) = - a2- 
+ ^J 

(30) 

with a scale-radius rs = 200 kpc and a = 0.1 which was found to 
be a good fit to the galaxy data of the moderate-redshift lensing 
cluster A2218 by Natarajan & Kneib (1996). We find however, that 
the results for the predicted shear from the simulations are inde- 
pendent of this choice. 

3.1.2 Scaling laws 

The individual galaxies are then parametrized by the mass model of 
Section 2.2, using in addition the following scalings with luminos- 
ity (see Brainerd et al. 1996 for an analogous treatment) for the 
central velocity dispersion a0, the truncation radius rt and the core 
radius r0: 

a° - 00* g 

>0 = To* 

rt = ru 

These imply the following scahng for the rt/r0 ratio 77: 
a—1/2 Ct ¡ 1, f 

V 
ro To* 

The total mass M then scales with the luminosity as 

9 9 
M = 2'TrE0r0rt = — (a0)

2rt = — 
Ua 

(31) 

(32) 

(33) 

(34) 

(35) 

where a tunes the size of the galaxy halo, and the mass-to-light ratio 
T is given by 

, 2 / . x / L x *-1/2 

[il 
12 tfo* 

240 km s -1 30 kpc 
(36) 

Therefore, for a = 0.5 the assumed galaxy model has constant T for 
each galaxy; if a > 0.5 (a < 0.5) then brighter galaxies have larger 
(smaller) haloes than the fainter ones. 

The physical motivation for exploring these scahng laws arises 
from trying to understand the observed empirical correlations for 
early-type (E and SO) galaxies in the Fundamental Plane (FP). The 
following tight relation between the effective radius Re, the central 

© 1997 RAS, MNRAS 287, 833-847 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

7M
N

RA
S.

28
7.
 .

83
3N

 

838 P. Natarajan and J.-P. Kneib 

log (R/rt) log (R/rL) 

Figure 3. The effects of the assumed scaling relations are examined in a plot 
of the magnification log k versus \og(R/rt) and the shear logg versus 
\og(R/rt) for various values of (L/L*): 0.5, 1.0, 5.0 and 10.0. The curves in 
the left panels are for a = 0.5 and those in the right panels for a = 0.8. 
(i) Solid curves - (L/L*) = 0.5, (ii) dotted curves - (L/L*) = 1.0, (iii) short- 
dashed curves - (L/L*) = 5.0, (iv) long-dashed curves - (L/L*) =10. The 
magnification is normalized so that at r = 2 r0, /c = 1; the difference in the 
slope of k above and below log(r/rt) = 0 can be clearly seen for both sets of 
scaling laws. Note that a spike appears in the plots of log g versus log (R/rt) at 
the radius where the mean enclosed surface density is approximately equal 
to the critical surface density. For the mass models studied here (cuspy with 
small core-radii) the surface mass density has a large central value and hence 
a spike appears on a scale that is roughly comparable to the core-radius. 

velocity dispersion a0 and the mean surface brightness within Re is 
found for cluster galaxies (Jorgensen, Franx & Kjaergaard 1996; 
Djorgovski & Davis 1987; Dressier et al. 1987): 

log Re = 1.24 log a0 — 0.82 log (7)e + constant. (37) 

One of the important consequences of this relation is the fact that it 
necessarily implies that the mass-to-light ratio is a weak function of 
the luminosity, typically T ~ L0'3 (Jorgensen et al. 1996). In terms 
of our scaling laws, this imphes a = 0.8. Henceforth, in this 
analysis we explore both the scaling relations: for a = 0.5, the 
constant mass-to-light ratio case; and a = 0.8, corresponding to 
the mass-to-light ratio being proportional to L0’3- consistent with 
the observed FP. In Fig. 3, we plot the scaling relations for various 
values of (L/L+), ranging from 0.5 to 10.0 for a = 0.5 and a = 0.8. 
Additionally, for the constant mass-to-light ratio case, we also plot 
the iso-T curves in terms of the fiducial oq rt* in Fig- 4. The 
scaling laws are calibrated by defining an L* (in the R band) 
elliptical galaxy to have r0* =0.15 kpc, rt* =30.0 kpc and a 
fiducial <70+, then chosen to assign the different mass-to-fight 
ratios [<7o* = 100, 140, 170, 240, 340, 480 km s-1 corresponding 
to T =2, 4, 6, 12, 24, 48 respectively]. 

3.2 Modelling the background galaxies 

3.2.1 Luminosity distribution 

The magnitude and hence the luminosity for the background 
population were generated consistently with the number count 

Figure 4. The constant mass-to-light ratio curves are plotted in the (aQ^,r*) 
plane for an L* galaxy with r¡ = 200: (i) dot-dashed curve - T = 4, (ii) dotted 
curve - T = 6, (iii) solid curve - T = 12, (iv) short-dashed curve - T = 24 and 
(v) long-dashed curve - T = 48. 

distribution measured from faint field galaxy surveys like the 
MDS as reported in Glazebrook et al. (1994), as well as the more 
recent results of the number-magnitude relations obtained from the 
Hubble Deep Field data (Abraham et al. 1996). The slope of the 
number count distribution used was 0.33 over the magnitude range 
/ttfl = 18 — 26. This power law for the number counts implies a 
surface number density that is roughly 90 galaxies per square 
arcminute in the given magnitude range (see Smail et al. 1995b), 
which over the area of the simulation frame [8x8 arcmin2] 
corresponds to having ~ 5000 background galaxies. 

3.2.2 Redshift distribution 

The background galaxy population of sources was also generated, 
consistently with the measured redshift, magnitude and luminosity 
distributions (Model Z2 below), from high-redshift surveys like the 
APM and CFRS (Efstathiou et al. 1991 and Lilly et al. 1995 
respectively). For the normalized redshift distribution at a given 
magnitude m (in the R band) we used the following fiducial forms. 

Model Zl: 

N(z,m) = Ao<5fe-2), (38) 

corresponding to the simple case of placing all the sources at z =2. 

Model Z2: 

where ß = 1.5 and 

zo = 0.7 ¿median H (mR ~ mi?o) dmR 

(39) 

(40) 

© 1997 RAS, MNRAS 287, 833-847 
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Leming by galaxy haloes in clusters of galaxies 839 

R in kpc 

Figure 5. Demonstrating the robustness of the signal extraction by compar- 
ing the analytic prediction with the measured radially averaged shear from 
the simulation. The signal was extracted from a simulation run of a PEEMD 
model with rt* = 30 kpc, r0* =0.15 kpc and a velocity dispersion of 480 
kms-1: the solid curve shows the estimate from the analytic formula and 
overplotted are the measured values of the averaged shear. 

¿median being the median redshift, d^median/^i? the change in median 
redshift with R magnitude mR. We use for our simulations 
mR0 =22.0, dzmedian/d/n*=0.1 and zmedian= 0.58 [see Brainerd et 
al. (1996) and Kneib et al. (1996)]. 

3.2.3 Ellipticity distribution 

Analysis of deep surveys such as the MDS fields (Griffiths et al. 
1994) shows that the ellipticity distribution of sources is a strong 
function of the sizes of individual galaxies as well as their 
magnitude (Kneib et al. 1996). For the purposes of our simulations, 
since we assume ‘perfect seeing’, these effects are ignored and the 
ellipticities are assigned in accordance with the ellipticity distribu- 
tion p(rs) derived from fits to the MDS data (Ebbels, Kneib & Elfis, 
in preparation) of the form 

P(ts) = ts exp[-g)“]; a = 1-15, <$ = 0.25. (41) 

4 ANALYSIS OF THE SIMULATIONS 

We use the above as input distributions to simulate the background 
galaxies and bright cluster galaxies in addition to a model for the 
cluster-scale mass distribution. Analogous to the mass model 
constructed for the cluster Abell 2218 (Kneib et al. 1996), we set 
up an elliptical mass distribution for the central clump with a 
velocity dispersion of 1100 km s-1 placed at a redshift z = 0.175. 
The main clump was modelled using a PEEMD profile (as in 
equation 14) with an ellipticity e = 0.3, a core radius 70 kpc and 
a truncation radius 700 kpc; therefore the surface mass density of 
the clump falls off as r-3 for r rt. 

The lens equation was then solved for the specified configura- 
tions of sources and lenses set up as above and the corresponding 
image frames were generated. The averaged components of the 

Figure 6. Variation of the mean value of the signal in the first annulus with 
mass-to-light ratio T: for T= 2, 4, 6, 12, 24, 48; the cluster galaxies are 
plotted for Model Z1 (solid curve) and Model Z2 (dotted curve). 

shear binned in circular annuli centred on the perturbing galaxies 
were evaluated in their respective local («, v) frames. An important 
check on the entire recovery procedure arises from the fact that by 
construction [choice of the (m, v) coordinate system] the mean value 
of the ^-component of the shear < tv>ís required to vanish. 

In the following subsections, we explore the dependence of the 
strength of the detected signal on the various input parameters. First 
of all. Fig. 5 demonstrates the good agreement between the analytic 
formula for the shear derived at a given radial distance R produced 
by a PEEMD model as computed in Section 2.2 and the averaged 
value extracted from the simulation on solving the lensing equation 
exactly for the redshift distribution of Model Zl. In Fig. 6 the 
variation of the mean value of the signal in the first annulus is plotted 
as a function of T. In all subsequent plots (Figs 6,7, 8,9,10,12 and 
13) the annuli are scaled such that for an L* galaxy, the width of each 
ring corresponds to a physical scale of ~ 20 kpc at z = 0.175. 

4.1 Error estimate on the signal 

There are two principal sources of error in the computation of the 
averaged value of the shear aside from the observational errors 
(which are not taken into account in these simulations) arising from 
the effects of seeing, etc.: (i) shot noise (due to a finite number of 
sources and the intrinsic width of their ellipticity distribution) and 
(ii) in principle the unknown source redshifts. Therefore, we require 
a minimum threshold number of background objects to obtain a 
significant level of detection. The unknown redshift distribution of 
the sources also introduces noise and affects the retrieval of the 
signal in a systematic way: for instance, the obtained absolute value 
for the total mass estimate for cluster galaxies is an under-estimate 
for a higher redshift population for a given measured value of the 
shear. The mean (or alternatively the median) and width of the 
redshift distribution are the important parameters that determine the 
errors incurred in the extraction procedure. 

For the simulation, however, we need to obtain an error estimate 
on the signal given that we measure the averaged shear for a single 
realization. In order to do so, the simulation was set up with a 
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annulus 

annulus 

Figure 7. Recovering the signal for Model Zl, for various values of the 
constant mass-to-light ratio Ï of the cluster galaxies ranging from 2 to 48: 
(i) lower solid curve - the error estimate, (ii) upper solid curve - T = 2, 
(hi) dotted curve - T = 4, (iv) dashed curve - T = 6, (v) long-dashed curve - 
T = 12, (vi) dot-short-dashed curve - T = 24, (vii) dot-long-dashed curve - T 
= 48. Note here that < > is zero as expected by definition of the (w, v) 
coordinate system. 

constant mass-to-light ratio (T =12) for the 50 cluster galaxies 
with 5000 background galaxies, and on solving the lens equation 
the image frame was obtained. The averaging procedure as outlined 
in Section 2.1 was then implemented to extract the output signal 
with 1000 independent sets of random scrambled positions for the 
cluster galaxies (in addition to the one set of 50 positions that was 

annulus 

Figure 8. Recovering the signal for Model Z2, for various values of the 
constant mass-to-light ratio T of the cluster galaxies ranging from 2 to 48: 
(i) lower solid curve - the error estimate, (ii) upper solid curve - T = 2, 
(hi) dotted curve - T = 4, (iv) dashed curve - T = 6, (v) long-dashed curve - 
T = 12, (vi) dot-short-dashed curve - T = 24, (vii) dot-long-dashed curve - T 
= 48. 

actually used to generate the image); the results are plotted as the 
lower solid curves in Figs 7 and 8. This is a secure estimate of the 
error arising for an individual realization, since this error arises 
primarily from the dilution of the strength of the measured shear 
due to uncorrelated sources and lensed images. We found that the 
mean error in (tm) in the first annulus is 0.040 ± 0.0012 and the 
error in (rv) is 0.0048 ± 0.0047. 

4.2 Variation of the signal with mass-to-light ratio of cluster 
galaxies 

The simulations were performed for mass-to-light ratios (T) ran- 
ging from 2 to 48 (see Figs 6,7 and 8). The velocity dispersion of the 
fiducial galaxy model was adjusted to give the requisite value for T, 
keeping the scaring relations intact. The detection is significant for 
mass-to-light ratios T > 4 given the configuration with 50 cluster 
galaxies and 5000 background galaxies. The strength of the signal 
varies with the input T of the cluster galaxies, and increases with 
increasing T. As a test run, with T = 0 (i.e. no cluster galaxies) and 
only the large-scale component of the shear, we do recover the 
expected behavior for (rM). The signal was extracted for both 
background source redshift distributions Model Zl and Model 
Z2. While the amplitude of the signal is not very sensitive to the 
details of the redshift distribution of the background population and 
hence did not vary significantly, the error-bars are marginally larger 
for Model Z2. This can be understood in terms of the additional shot 
noise induced due to the change in the relative number of objects 
‘available’ for lensing: in Model Z2 a fraction of the galaxies in the 
low-z tail of the redshift distribution end up as foreground objects 
and are hence not lensed, thereby diluting the signal and increasing 
the size of the error-bars marginally. 

4.3 Variation with the number of background galaxies 

The efficiency of detection of the signal depends primarily on the 
number of background galaxies averaged over in each annulus, and 
therefore on the number that are lensed by the individual cluster 
galaxies. For a fixed value of T, the total number of background 
galaxies Vbg was varied, assuming a redshift distribution of the form 
of Model Zl. With increasing Vbg, 1000 —► 2500 —► 5000, the 
detection is more secure and the error does vary roughly as ^/Vbg as 
shown in Fig. 9. In principle, the larger the number of background 
sources available for lensing, the more significant the detection with 
tighter error bars; however, we find that a ratio of 50 cluster galaxies 
to 2500 background galaxies provides a secure detection for T > 4, 
while a larger number of background sources are required to detect 
the corresponding signal induced by lower mass-to-light ratio 
haloes. A secure detection in this case refers to the fact that the 
difference in the mean values of the detected signal in the two cases 
(with Vbg = 5000 and Abg = 2500 background sources) is compar- 
able to the mean estimated error per realization computed in Section 
4.1. The number count distribution used to generate the background 
sources corresponds to a background surface number density of 
~ 90 galaxies per square arcmin which we find provides a secure 
detection for T > 4. It is useful to point out here that for the 
standard Bruzual & Chariot (95) spectral evolution of stellar 
population synthesis models with solar metallicity, and a galaxy 
that is roughly 10 Gyr old (a reasonable age estimate for a galaxy in 
a z ~ 0.3 cluster), formed in a single 1-Gyr burst of star formation 
and having evolved passively, one obtains a stellar mass-to-light 
ratio in the R band of ~8 with a single-power-law Salpeter initial 
mass function (IMF) with a lower mass limit of 0.1 M© and an upper 
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annulus 

annulus 

Figure 9. Variation of the signal with the number of background galaxies for 
Model Zl: for a given mass-to-light ratio T= 12 of the cluster galaxies. We 
find that the error bars and hence the noise decrease as expected with 
increasing Nhg: (i) solid curve Nhg = 1000, (ii) dashed curve Nhg = 2500, 
(iii) dotted curve Nhg = 5000. 

mass limit of 125 M0. With the same ingredients but a Scalo IMF 
one obtains a mass-to-light ratio about a factor of 2 smaller (~4) 
since there are a smaller proportion of very low-mass stars. There- 
fore, an /?-band mass-to-light ratio of 4 for a cluster galaxy is 
consistent with the observed mass just in stars and does not imply 
the presence of any dark mass in the system. Therefore, if dark 

Figure 11. Variation of the signal with cluster redshift for Model Z2: for a 
given constant mass-to-light ratio T= 12 of the cluster galaxies, placing the 
lens at different redshifts. Right panel: (i) solid curve z = 0.1, (ii) dotted curve 
z = 0.2, (iii) dashed curve z = 0.3, (iv) long-dashed curve z = 0.4, (v) dot- 
dashed curve z = 0.5. Left panel: (i) solid curve z = 0.01, (ii) dotted curve z = 
0.02, (iii) dashed curve z = 0.05, (iv) long-dashed curve z = 0.07, (v) dot- 
dashed curve z = 0.10. 

haloes were indeed present around the bright cluster members, the 
corresponding inferred mass-to-light ratios would be greater than 4, 
and with 5000 background galaxies, we would be sensitive to the 
signal as shown in the plots of Figs 6, 7 and 8. 

Figure 10. Variation of the signal with cluster redshift for Model Zl: for a 
given mass-to-light ratio T= 12 of the cluster galaxies, placing the lens at 
different redshifts. Right panel: (i) solid curve z = 0.1, (ii) dotted curve z = 
0.2, (iii) dashed curve z = 0.3, (iv) long-dashed curve z = 0.4, (v) dot-dashed 
curve z = 0.5. Left panel: (i) solid curve z = 0.01, (ii) dotted curve z = 0.02, 
(iii) dashed curve z = 0.05, (iv) long-dashed curve z = 0.07, (v) dot-dashed 
curve z = 0.10. 

4.4 Variation with cluster redshift 

The lensing signal depends on the distance ratio Dls/Dos, the angular 
extent of the lensing objects, the number density of faint objects and 
their redshift distribution. We performed several runs with the 
cluster (the lens) placed at different redshifts, ranging from 
z =0.01 to 0.5. We scaled all the distances with the appropriate 
factors corresponding to each redshift for both Models Zl and Z2 
(Figs 10-12). For Model Zl (Fig. 10 and dotted curve in Fig. 12), 
we find that the signal (by which we refer to the value of (ru) in the 
innermost annulus) saturates at low redshifts; for 0.01 < zlens < 0.07 
the measurements are consistent with no detection but the strength 
increases as z\ens is placed further away and it remains significant for 
up to zims = 0.4, subsequent to which it falls sharply once again at 
0.5. On the other hand, we find that for Model Z2 (Fig. 11, and solid 
curve in Fig. 12), there is a well-defined peak and hence an optimal 
lens redshift range for extracting the signal. Thus, in general, cluster 
lenses lying between redshifts 0.1 and 0.3 are the most suitable ones 
for constraining the mean T of cluster galaxies via this direct 
averaging procedure. These trends with redshift can be understood 
easily: the shear produced is proportional to the surface mass 
density and scales as CDls/£>os); the saturation at high redshift is 
due to the combination of two diluting effects, (i) the decrease in Dls 

as the lens is placed at successively higher redshifts, and (ii) the 
effect of additional noise induced due to a reduction in the number 
of background objects for Model Z2. The drop-off at low z (for both 
models) is primarily due to the behaviour of the angular scale 
factors at low redshifts. Additionally, the shape of these curves is 
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Figure 12. Variation of the maximum value of the signal with redshift: for a 
given constant mass-to-light ratio T = 12 of the cluster galaxies, placing the 
lens at different redshifts for the two background redshift distributions for 
the sources, (i) Dotted curve: Model Zl; (ii) solid curve: Model Z2. 

independent of the total mass of the cluster (the total mass being 
dominated by the smooth component), therefore even for a sub- 
critical cluster we obtain the same variation with redshift. 

4.5 Dependence on assumed scaling laws 

In Section 3.1, we outlined the simple scaling relations that were 
used to model the cluster galaxies. The choice of the exponent a in 
equation (34) allows the modelling of the trends for different galaxy 
populations: a = 0.5 corresponding to a constant T and a = 0.8 
corresponding to T being a weak function of the luminosity. 
Simulating both these cases, we find that the mean value of the 
signal does depend on the assumed exponent for the seating law 
since it is a measure of the mass enclosed (Fig. 13). We find that the 
signal is stronger for a = 0.8; it is not possible, however, to 
distinguish between a correspondingly higher value of the constant 
mass-to-light ratio and a higher value of a. Therefore, the direct 
averaging procedure cannot discriminate between a = 0.5 and 
a = 0.8 which correspond to different detailed fall-offs for the 
mass distribution. 

4.6 Examining the assumption of analysis in the weak regime 

While our mathematical formulation outlined in Section 2 is strictly 
valid only for k C 1, we examine how crucial this assumption is to 
the implementation of the technique. For the output images from the 
simulations, the magnification k is known at all points. Prior to the 
averaging, we excised the high-/c regions successively, by removing 
only the lenses in those regions. The results are plotted in Fig. 14 for 
input T = 12, with the sources distributed as specified by Model Zl. 
While the mean peak value of the signal does not fluctuate much, on 
removing the high-/c regions, we find that the cluster subtraction 
does get progressively more efficient, as evidenced by the sharp 
fall-off to zero of the signal in the second annulus outward. There- 
fore, while the detectability and magnitude of the signal are robust 
even in the ‘strong regime’, the contribution from the smooth 

Figure 13. Examining the scaling relations - the two choices of a, the 
exponent of the scaling relation for the truncation radius, for T = 12. We plot 
the recovered signal: (i) solid curve, a = 0.8, (ii) dotted curve, a = 0.5. 

cluster component, which for our purposes is a contaminant, can 
be ‘removed’ optimally only in the low-x regions. 

5 MAXIMUM LIKELIHOOD ANALYSIS 

5.1 Limitations of the direct averaging method 

The simulations have enabled us to delineate the role of relevant 
parameters and comprehend the trends with cluster redshift, the 
redshift distribution of the sources and the mass-to-light ratio of the 

Figure 14. The effect of excising the high-* regions in the image (for T = 12 
of the cluster galaxies): (i) solid curve, k< 0.1, (ii) dotted curve, /c< 0.2, (iii) 
dashed curve, 0.3, (iv) long-dashed curve, 0.4, (v) dot-dashed curve, 

0.5. 
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Figure 15. The ellipticity distribution pTs : (i) solid curve - intrinsic input 
ellipticities of the sources, (ii) dotted curve - the ellipticity distribution on 
being lensed by 50 galactic-scale mass components and one larger-scale 
smooth component, and (iii) dashed curve - the ellipticity distribution 
induced by lensing only by the larger-scale smooth cluster component. 

cluster galaxies. The direct method suffers from the following 
limitations, especially in the cluster core: (i) being in the ‘strong’ 
lensing regime, the ‘cluster subtraction’ is not very efficient; and (ii) 
the probability of a background galaxy being sheared due to the 
cumulative effect of two or more cluster galaxies is enhanced, the 
core being a region with a high number density of cluster galaxies. It 
does, however, provide a robust estimate of the mass-to-light ratio 
modulo the assumed model parameters. 

We now explore application of a maximum likelihood method to 
obtain significance bounds on fiducial parameters that characterize 
a ‘typical’ galaxy halo in the cluster. Schneider & Rix (1996) 
developed a maximum likelihood prescription for galaxy-galaxy 
lensing in the field; here we develop one to study lensing by galaxy 
haloes embedded in the cluster. Schematically, we demonstrate the 
differences in the ellipticity distribution that we are attempting to 
discern in Fig. 15. Here we have plotted the intrinsic ellipticity 
distribution of the unlensed sources, sources lensed only by a 
cluster-scale component and sources sheared by both a cluster- 
scale component and 50 cluster galaxies; from this it is obvious that 
the effect that we intend to measure in terms of parameters that 
characterize the cluster galaxies is indeed small, hence recovery of 
the fiducial parameters in this case is considerably harder than in the 
case of purely galaxy-galaxy lensing. 

5.2 Application of the maximum likelihood method 

The basic idea is to maximize a likelihood function of the estimated 
probability distribution of the source ellipticities for a set of model 
parameters, given the functional form of the intrinsic ellipticity 
distribution measured for faint galaxies. We briefly outline the exact 
procedure below. From the simulated image frames we extract the 
observed ellipticity robs. For each ‘faint’ galaxy j, the source 
ellipticity can then be estimated in the weak regime by just 
subtracting the lensing distortion induced by the smooth cluster 
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and galaxy haloes given the parameters that characterize both these 
mass distributions: in other words, 

TSj = Tobs, - Efc Yp, - 7c (42) 

where Efc yp. is the sum of the shear contributions at a given 
position j from Nc perturbers, and the term yc is the shear induced by 
the smooth cluster component. In the strong regime, similarly, one 
can compute the source ellipticity using the inverse of equation (7). 
The lensing distortion depends on the parameters of the smooth 
cluster potential, on the perturbers and on the redshift of the 
observed arclet (lensed image), which is in general unknown. 
Therefore, in order to invert equation (7), for each lensed galaxy 
we need to assign a redshift, from a distribution of the form in 
equation (33) given the observed magnitude m,, and take the mean 
of many such realizations. In principle, one needs also to correct the 
observed magnitude for amplification to obtain the true magnitude 
prior to drawing a redshift from iV(z, m), but this correction in turn 
depends on the redshift as well. An alternative procedure is then to 
correct for the amplification using the median z corresponding to the 
observed magnitude from the same distribution. This entire inver- 
sion procedure is performed within the lens tool utilities, which 
accurately takes into account the non-linearities arising in the 
strong regime. As an input for this calculation, we parametrize 
both the large-scale component and perturbing galaxies as 
described in Sections 2.2 and 3.1 respectively. Additionally, we 
assume that a well-determined ‘strong lensing’ model for the 
cluster-scale halo is known. For our analysis, we also assume that 
the functional form of /?(rs) from the field is known, and is specified 
by equation (34); the likelihood for a guessed model can then be 
expressed as 

£(ffo*,/-,*,...) = n7Xrs> (43) 

However, note that we ought to compute L for different realizations 
of the drawn redshift for individual images (say about 10-20) and 
then compute the mean of the different realizations of zf, but it is 
easily shown to be equivalent to constructing the L for a single 
realization where the redshift Zj of the arclet drawn is the median 
redshift corresponding to the observed source magnitude. For the 
case when we perform a Monte Carlo sum over AMC realizations of 
Zj, the likelihood is 

£(<70*, rtt,...) = n^nfMCp(7Sf ), (44) 

where pr(rs0 is the probability of the source ellipticity distribution 
at the position j for k drawings for the redshift of the arclet of known 
magnitude mj. The mean value for AMC realizations gives 

(p(Ts,)) =^-fe(^)> (45) X ' 4VMC ; 

which written out in integral form is equivalent to 

ip[rSj{z)-\N(z,mj)àz 
f N(z, mj) áz 

— (^avg)J P^Sj (^median)]’ 

(46) 

Zavg being the average redshift corresponding to the magnitude mj. 
Therefore the corresponding likelihood L is then simply 

x = n,.(p(TS.)) (47) 

as before and the log-likelihood / = InX = T,(p(tSi)). The best- 
fitting model parameters are then obtained by maximizing this log- 
likelihood function / with respect to the parameters (Tq* and rt*, the 
characteristic central velocity dispersion and truncation radius 
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Figure 16. Log-likelihood contours for the retrieval of the fiducial parameters cr0* and rt* - the input values are indicated by the intersection of the dotted fines. 
Left panel: for the MDS ellipticity distribution, with assumed scaling a = 0.5; right panel: the same with a. = 0.8. 

respectively. The results of the maximization are presented in Figs 
16-18. For all reasonable choices of input parameters we find that 
the log-likelihood function has a well-defined and broad maximum 
(interior to the innermost contour on the plots). The contour levels 
are calibrated such that /max — l = 1,2,3 can be directly related to 
confidence levels of 63, 86, 95 per cent respectively (we plot only 
the first 10 contours for each of the cases in Figs 16-18) and the 
value marked by the dotted fines denotes the input values. In Fig. 16, 
we plot the likelihood contour for the MDS ellipticity distribution 
(equation 34). The left panel is for an assumed scaling law with a = 
0.5 and a constant mass-to-fight ratio T = 12. In the right panel, the 
corresponding contours for a = 0.8 are plotted. For the MDS 
ellipticity distribution, we find that the velocity dispersion a0* can 
be more stringently constrained than the halo size, and the contours 
are elongated along the constant mass-to-fight ratio curves and yield 
an output T very nearly equal to the input value. For narrower 
ellipticity distributions both the parameters can be constrained 
better and the inferred T is very nearly equal to the input value. 
We find that there is very little perceptible difference in the retrieval 
of parameters for the two cases with the different scaling laws. For a 
subcritical cluster (see bottom left panel in Fig. 18), we find that the 
parameters are recovered just as reliably, which is not surprising 
and in some sense illustrates the robustness of the maximum 
likelihood method. Thus, the physical quantity of interest that 
can be estimated best from the analysis above is the mass M* of a 
fiducial L* galaxy. 

5.3 Estimating the required number of background galaxies 

The largest source of noise in our analysis arises due to the finite 
number of objects in the frame. To estimate the required signal-to- 
noise ratio that would permit us to obtain reliable constraints on 
both a0* and rt*, we reduced the number of background sources to 
2500 keeping the number of lenses at 50 as before. We do not 
converge to a maximum in the log-likelihood, and consequently no 
confidence limits can be obtained on the parameters. Therefore, to 
apply this technique to the data we require the ratio r of the number 
of cluster galaxies to the number of background galaxies to be 
roughly r < 0.2, which can be achieved only by stacking the data 
from many clusters. Also, as found from the direct averaging 
procedure, we require —5000 lensed images in order to detect 
securely < T > >4. Although typical HST cluster data fields of the 
order of 3 x 3 arcmin2 have —700 background galaxies (with a 10- 
orbit exposure), of these the shape parameters can be reliably 
measured only for about 200 galaxies, therefore on stacking the 
data from 20 (10-orbit) HST cluster fields, we should be able to 
constrain statistically the mean mass-to-fight ratios as well as the 
two fiducial parameters. 

5.4 Uncertamties in the smooth cluster component 

In all of the above, we have assumed that the parameters that 
characterize the smooth cluster-scale component are very 
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Figure 17. Sensitivity of log-likelihood contours to the strong lensing input parameters: examining the tolerance of the significance bounds obtained on a0* and 
rt* with regard to the accuracy with which the cluster velocity dispersion needs to be known. All plots are for input T = 12, a = 0.5 and the MDS source ellipticity 
distribution. Top left panel: the exact value of the velocity dispersion is known (the value in this case is 1090 km s-1); top right panel: the velocity dispersion is 
known to within 2 per cent; bottom left panel: attempt to retrieve the incorrect scaling law - input cl = 0.5, log-likelihood maximized for ol = 0.8; bottom right 
panel: retrieval with fewer background galaxies. 

accurately known, which is unlikely to be the case for the real data. 
We investigate the error incurred in retrieving the correct input 
parameters from not knowing this central strong lensing model well 
enough. So we can now place limits on the order of magnitude of 
errors that can be tolerated due to the lack of knowledge of the exact 
position of the cluster centre and the velocity dispersion of the main 
clump. In Fig. 18, we see that an uncertainty of the order of 20 
arcsec in the position of the centre yields unacceptably incorrect 
values for <70* and ru. Conversely, if the centre is off by only 5 
arcsec or so, for both the critical cluster and the subcritical one, the 
results remain unaffected and we obtain as good a retrieval of the 
input r* as when the position of the centre is known exactly. 
Similarly, in Fig. 17, we demonstrate that an error of ~ 5 per cent 
in the velocity dispersion is enough to make the maximum like- 
lihood analysis inconclusive, but an error of ~ 2-3 per cent at most 
would still enable us to obtain sensible bounds on both parameters. 

6 CONCLUSIONS AND PROSPECTS 

We conclude this paper and assert that both the maximum like- 
lihood method and the direct averaging method developed in this 
paper can be feasibly applied to the real data on stacking a minimum 
of 20 WFPC2 deep cluster fields. These methods are well-suited to 
being used simultaneously as they are somewhat complementary; 

both yield the statistical mass-to-light ratio reliably and, while the 
averaging does not require the knowledge of either the centre or any 
details of the strong lensing model, it also cannot provide the 
decoupling of the two fiducial parameters, and hence no indepen- 
dent constraints on the velocity dispersion and the halo size can be 
obtained. Meanwhile the maximum likelihood approach permits 
estimation of the fiducial oq* rt* (^o* more reliably than rt+), but 
it necessarily requires knowledge of the cluster centre and the 
central velocity dispersion rather accurately. In offset fields, how- 
ever, where the gradient of the smooth cluster potential is constant 
over the smaller scales that we are probing, we expect both methods 
to perform rather well. 

In this paper, we have not investigated the likely sources of error 
in the real data, which we will do in detail in a subsequent paper 
(Natarajan, Kneib & Smail, in preparation), but our simulations 
have enabled the study of the feasibility of application to HST 
cluster data regarding a statistical estimate of the number of back- 
ground galaxies required for a significant detection, given the 
limitations in the accuracy to which the input parameters (like the 
strong lensing mass model and hence the magnification) are 
presently known. Our analysis points to the fact that the extraction 
of the signal would therefore be feasible if approximately 20-25 
clusters were stacked, and the enterprise is especially suited to using 
the new ACS (Advanced Camera for Survey) due to be installed on 
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Figure 18. Sensitivity of the log-likelihood contours to input parameters: examining the tolerance of the significance bounds obtained on a0+ and rt* given the 
accuracy to which the cluster centre needs to be known. All plots are for input T = 12, a = 0.5 and the MDS source ellipticity distribution. Top left panel: knowing 
the cluster centre exactly for the critical cluster; top right panel: knowing the centre to within 5 arcsec; bottom left panel: knowing the centre exactly for the 
subcritical cluster; bottom right panel: for the subcritical cluster, centre known to within 5 arcsec. 

HST in 1999. Additionally, since there exists a well-defined opti- 
mum lens redshift for signal detection (0.1 < zlens <0.3), it might 
be useful to target clusters in this redshift range in future surveys in 
order to apply the techniques developed here. In our proposed 
analysis with the currently available HST data, we intend to 
incorporate parameters characterizing the smooth cluster (main 
clump) along with those of the perturbing galaxies into the max- 
imum likelihood machinery. 

In summary, we have presented a new approach to infer the 
possible existence of dark haloes around individual bright galaxies 
in clusters by extracting their local lensing signal. The composite 
lensing effect of a cluster is modelled in numerical simulations via a 
large-scale smooth mass component with additional galactic-scale 
masses as perturbers. The correct choice of coordinate frame, i.e. 
the local frame of each perturber, enables efficient subtraction of the 
shear induced by the larger scale component, yielding the averaged 
shear field induced by the smaller-scale mass component. Cluster 
galaxy haloes are modelled using simple scaling relations and the 
background high-redshift population is modelled in accordance 
with observations from redshift surveys. For several configurations 
of the sources and lens, the lensing equation is solved to obtain the 
resultant images. Not surprisingly, we find that the strength of the 
signal varies most strongly with the mass-to-light ratio of the cluster 
galaxies, and is only marginally sensitive to the assumed details of 

the precise fall-off of the mass profile. We also find that there is an 
optimum lens redshift range for detection of the signal. Although 
the entire procedure works in the ‘strong lensing’ regime as well, it 
is less noisy in the ‘weak regime’. The proposed maximum like- 
lihood method independently constrains the halo size and mass of a 
fiducial cluster galaxy, and we find that the velocity dispersion and 
hence the mass of a fiducial galaxy can be more reliably constrained 
than the characteristic halo size. Examining the feasibility of 
application to real data, we find that stacking ~ 20 clusters 
allows a first attempt at extraction (Natarajan et al., in preparation). 
The prospects for the application of this technique are potentially 
promising, especially with sufficient and high-quality data (either 
HST images or ground-based observations under excellent seeing 
conditions of wider fields); the mass-to-light ratios of the different 
morphological/colour types in clusters, for instance, can be probed. 
More importantly, comparing with similar estimates in fields offset 
from the cluster centre would allow us to make the essential 
connections in order to understand the dynamical evolution of 
galaxies in clusters and the redistribution of dark matter within 
smaller scales within clusters. Application of this approach affords 
us the opportunity to probe the structure of cluster galaxies, as well 
as the efficiency of violent dynamical processes like tidal stripping, 
mergers and interactions which modify them and constitute the 
processes by which clusters assemble. 
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