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Abstract. The wavelet transform of monthly sunspot group
data from 1610 to 1994 is investigated. Only two pronounced
peaks corresponding to the Schwabe and the Gleissberg cycles,
are present in this transform. The wavelet analysis of the time-
series also shows the Maunder and Dalton minima as well as a
deviation in the cycle length around 1900. The variations in the
periodicity of the main 11 year cycle are studied. We show that
all the minima of this cycle occur when the derivative of cycle
length as a function of time is negative. Cycles of greater du-
ration are connected with periods of weak solar activity. While
the sunspot group number was periodic at the end of the Maun-
der minimum, it did not seem to follow any periodic behavior
during the main part of this minimum. The abrupt transition
between normal and Maunder minimum cycles is present in the
sunspot group data.
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1. Introduction

Solar activity is a quasi-periodic phenomenon, with a main pe-
riod of approximately 22 years. This periodicity may not be
constant, though. One way of studying the long-term behavior
of this cycle is to use the sunspot number as an index of the 11y,
or Schwabe, cycle. Wolf (1851) started such a reconstruction
last century, providing the so-called Wolf number. However,
Wolf did not look up all the existing archives and used different
indices (such as the magnetic aurora) to fill in gaps in sunspot
observations. Recently, Hoyt and Schatten (1992 a,b) have un-
dertaken a complete re-analysis of the archives, using sunspot
groups to reconstruct solar cycles. As a result, a fairly homoge-
neous sample of monthly sunspot groups is available spanning
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a 385-year period (Hoyt et al. 1994). The long-term sunspot
forecast started at the time of Galileo and became systematic
under the French Astronomical School (Picard and La Hire),
from 1660 to 1719. From the 18th century onward, this obser-
vational program has been pursued by an increasing number of
observatories. This long sunspot survey gives us the possibility
to analyze solar activity periodicities in detail, in particular, to
find out how stable the main period is, what additional period-
icities are present, and what connection there may be between
solar periodicities and the Maunder minimum.

The simplest technique for investigating periodicities in
sunspot data is obviously the Fourier analysis, i.e. the compar-
ison between the record and a sinusoidal signal of a given fre-
quency. However, this method is not best appropriate to correctly
interpret the data. The main (11-year) signal is pseudo-periodic,
and its amplitude changes by several orders of magnitude over
the time interval under consideration. There is another pseudo-
periodic signal, referred to as the Gleissberg cycle, the duration
of which (~ 100 years) is only a few times less than the time
interval spanned by the whole time-series (four centuries). Fur-
thermore, a straightforward application of the Fourier analysis
to such data set may lead to spurious periodicities, especially at
low and intermediate frequencies, due to the finite size of the
time-series (Ribes et al., 1989).

A few methods have been developed for studying local spec-
tral properties of quasi-periodic signals (time-frequency analy-
sis). The Wigner-Ville algorithm, for example, produces a spec-
tral analysis of an autocorrelation function (Altarac, 1995), and
the windowed Fourier transform of Gabor is based on a family
of harmonic functions with different frequencies but limited by
the constant size of the window. The wavelet technique is more
appropriate to the study of quasi-periodic signals. The wavelet
transform, in contrast to the Wigner-Ville technique, yields a
linear representation of the signal, and in contrast to the Gabor
transform, it uses a family of self-similar functions (for compar-
ison and discussion, see Toresanni, 1995). The wavelet analysis
is more appropriate than the Fourier technique for denoising the
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Fig. 1a and b. Examples of wavelets: a Mexican hat; b Morlet wavelet.

signal (see Donoho, 1994); this is appreciable when time-series
(like ours) contain observations of uneven quality.

The aim of our paper is to apply wavelet analysis to monthly
sunspot group data and discuss the physical results obtained
by this technique. Such an analysis was already performed by
Ochadlick et al. (1993) using the yearly sunspot data starting
from the year 1700. Our study differs from this previous one in
that: 1-) Our time-series starts in the early 1600’s, including the
remarkable event known as the Maunder minimum. 2-) We use
monthly sunspot groups rather than yearly means, which seem
to be too crude when the averaging time is only 11 times less then
the main sunspot period. Because of the time interval spanned,
Ochadlick et al. (1993) could hardly make out the Gleissberg
cycle. 3-) We also made use of the algorithms developed by
Torresani (1995), and applied to the wavelet technique to search
for frequency modulation laws in the signal.

Recently, Lawrence et al. (1995) examined daily sunspot
data over the last two decades. They obtained the fractal prop-
erties of solar activity indicating chaotic behavior at timescales
of the order of 1 year, which is much less then the basic period
of solar activity. They found that the chaotic behaviour seems
to be connected mainly with sunspot formation rather than with
solar activity itself. We are interested in longer timescales, so
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our analysis of monthly sunspot data over four centuries is com-
plementary to that of Lawrence et al. (1995).

2. Wavelets

An efficient multi-scale analysis is essential to studying solar ac-
tivity records. Fourier analysis fails when the time-dependence
of scale properties is to be considered. Wavelet analysis is more
appropriate to a local scale analysis with variable resolution.
Such a method was developed in the last decade and has already
been described in reviews, see e.g. Farge, 1992, and books, see
e.g. Meyer, 1992, Daubechies, 1992, Torresani (1995).

Wavelets, unlike sinusoidals, are localized near time ty and
decay if |t — tp| exceeds the characteristic scale a. The wavelet
representation can be compared to a kind of mathematical mi-
croscope with variable position and magnification. The wavelet
transform represents one-dimensional signals as a function of
both time and time-scale, and is similar to a local, filtered
Fourier transform obtained by expanding and translating the
wavelet, and then convolving it with the signal. The windowed
Fourier transform contains three parameters (position, scale,
frequency), while the wavelet contains two only.

As in the case of the Fourier transform, there are two basic
kinds of wavelet transforms: continuous and discrete, that pro-
vide orthonormal basis. In this paper we are dealing with the
continuous transform, although many of the properties will be
valid for both the continuous and the discrete transforms.

2.1. What is a wavelet ?

A wavelet’s family is generated from a mother wavelet function
1(t) by translations and dilatations,

Yash=a~ 2 (10) M

where a and b correspond to the dilatation and the translation
respectively.

There are certain requirements in order for the function v (¢)
to be a wavelet. First, the function must have a zero mean (the
admissibility condition)

/ - Y(t)dt = 0. )

Second, the function should be localized in both physical and
Fourier space (time and frequency), i.e. its time spread At and
its frequency spread Aw must satisfy the condition AtAw =
const > 2. In addition, at least one reconstruction formula is
needed for reconstructing the signal from its wavelet coefficients
and for deducing the energy (or other invariants).

2.2. Continuous wavelet transform
The wavelet transform w(a, t) of signal f(¢) is defined as

oo
w(a,t) = C;l/za—l/z/
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Fig. 2. Monthly mean number of sunspot groups (1610 - 1994).

where (t) is a real or complex valued analyzing wavelet, sat-
isfying conditions of subsection 2./. and * stands for complex
conjugate.

Cy = / || 7! [¢h(w)|*duw €
and 1/3(w) is the Fourier transform of (%)
der= [ wwe )

If Cy < oo the wavelet transform can be inverted (Gross-
mann and Morlet, 1984) as

o [ L gt ,dt'da
=0, /0 /_Ooa 1/)(—a )w(a,t)—a2 .

One important property of the continuous wavelet transform
is a generalization of the Parseval’s theorem (Grossmann and
Morlet, 1984)

(6)

h Y dtd
/ f1(t)f2*(t)dt=(j;1/0 / w1(a,t)w§(a,t)72a @)

as a consequence of which the equality is established between
energy in physical and wavelet spaces.

The wavelet transform can be also related to the Fourier
transform f(w) of a signal f(t) as

w(a,t) = C’;l/zal/z(Zﬂ')_1 /OO @*(aw)f(w)e”‘”dw 8)

for=c [7 [~ aPiwomene et o)

We also define the global wavelet spectrum, i.e. the energy
contained in all wavelet coefficients of the same scale a, as a
function of a:

M(a) = / lw(a, t)|*dt, (10
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Fig. 3a—c. Interpolated monthly mean number of sunspot groups (1610
—1994); a interpolated data, b indicator of gaps in data - small negative
values correspond to gaps less then 1 year, large ones correspond to
gaps longer then 1 year, ¢ one example of a statistical noise time-series
produced by a generator of white noise using the real dispersion of data

which is related with the Fourier spectrum E(w) = | f (w)|* as

0 2
M(a)w/E(w)de an
and is actually a smoothed version of Fourier spectrum. Due to
the normalization defined in (3), if the Fourier spectrum follows
a power law E(w) ~ w® the global wavelet spectrum displays
the same power law (M(a) ~ a~?), as long as the wavelet
presents enough cancellation (Perrier et al. 1995).

2.3. Some examples

It is evident that the wavelet representation depends upon the
choice of the wavelet . Two kinds of wavelets will be used
in this paper: the real-valued wavelet, called the “Mexican hat”
(Fig. 1a)

Y(t) = (1 — e /2 (12)
and the most widely used complex valued Morlet wavelet (Fig.
1b)

¢(t) — e—tz/Ze’iwot (13)
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Wavelet transform for solar activity 1610-1994.
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Fig. 4. Wavelet transform for solar activity 1610 — 1994; Morlet wavelet modulus.

with wy = 6 (chosen to approximately satisty the condition (1)).
The wavelet technique can be illustrated by canonical examples
(see Appendix).

3. Monthly sunspot group data

Our data set refers to the sunspot group time-series reconstructed
by Hoytetal. (1994). Details on the reconstruction, the compar-
ison between different observers, the comparison between the
Wolf sunspot number can be found in Hoyt and Schatten (1992
a,b) and Hoyt et al. (1994). Let us stress the advantage of using
sunspot groups rather than the Wolf number.

A sunspot group has a physical meaning: it is the manifes-
tation of an east-west magnet produced by the stretching of a
initial poloidal north-south field under the effect of non uniform
solar rotation. In the simplest case, a single magnet appears at a
given place, with two sunspots being the poles of the magnets.
The Wolf number is defined as ten times the number of sunspot
groups plus the number of individual sunspots, with a correc-
tion factor depending on the observer. This was done by Wolf
in order to smooth out fluctuations. It is evident that the activity
index established by Wolf is more empirical.

The time-series he reconstructed is not homogeneous: he
used compilations of magnetic aurorae to fill up certain obser-
vational gaps. In our case, we used only direct solar observations
and we included all 17th century data (Hoyt et al. 1994). Some
observational gaps still exist, especially in the mid 18th century.
However, our time-series is more complete and homogeneous
than Wolf’s reconstruction. One may argue that a bias will arise
in the time-series due to the improvment of the telescopes since
Galilei’s time. It has been shown that the bias, if any, would be
small and would not change the counts significantly (Ribes and

Nesme-Ribes, 1993). By extending the time-series back to the
Maunder minimum, we have included the only currently avail-
able example of a grand minimum in solar activity. Certain prop-
erties of the Maunder minimum have already been discussed by
Nesme-Ribes et al. (1994), in terms of the north-south asym-
metry of sunspot group number and sunspot rotation. These
authors surmised that the onset of the Maunder minimum was
fairly rapid. The updated time-series displayed in Fig. 2 clearly
shows that the beginning of the Maunder minimum was indeed
very abrupt.

Maunder minimum-type events have also been observed in
stellar activity by Soon et al. (1994). For those stars entering the
Maunder minimum phase, the activity decline is sharp (a tran-
sition time comparable with one period of activity). However,
stellar information is obviously much noisier than solar data.
For example, the contrast between a normal solar activity cycle
and the Maunder minimum is about 10? to 103. Such a large
contrast could hardly be observed by the stellar magnetic index.
Therefore, it is not always clear to what extent one can identify
stellar quiet episodes with the solar Maunder minimum. Stellar
Maunder minimum-type events should be rather compared with
the Dalton minimum observed on the Sun at the end of the 18th
century.

The choice of the time-averaging interval is also a relevant
question. The lifetime of each sunspot varies from a few hours
up to a full solar rotation. The leading sunspot (which appears
first on the east limb) is of longer duration than the following
one. So a 1-month averaging corresponds to the average lifetime
of a sunspot group.

There are a certain number of gaps in the available monthly
sunspot group record prior to the 19th century. Assuming that the
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lack of sunspot groups over this period was due to a lack of ob-
servations, we interpolated to fill these gaps: if isolated months
without observations are preceded and followed by months with
observations, we apply a linear best fit over four months apart
and prescribe the corresponding value to the month without ob-
servations. If there is only one month with observation in the
center of the gap, we extend the interpolation fit to the next three
monthly data. We interpolate gaps of greater than one year with a
linear best fit based on eight months of data. In the interpolation
process we go from short gaps to longer, basing longer-range
interpolations on the shorter.

The longest data gap is about 2.5 years, around 1750, i.e.
a period of normal solar activity. This gap is 4.4 times shorter
than the main period of solar activity. As similar long-lasting
observational gaps are relatively isolated, we believe that our
interpolation method does not lead to drastic artificial changes
in the data set.

The results of our interpolation are shown in Fig. 3a and
informations on time intervals of interpolation and durations
are shown in Fig. 3b. Although some uncertainties due to in-
homogeneous historical records and observing techniques, the
accuracy of the time-series is quite high. It has been shown by
Ribes and Nesme-Ribes (1993) that the Maunder minimum was
thoroughly observed by Picard and coworkers. So the rapid on-
set of the Maunder minimum (Figs. 2 and 3a) is likely to be a
real phenomenon.

4. Results of wavelet analysis

As discussed in Sect. 3, a one-month averaging chosen for per-
forming the wavelet analysis is not completely arbitrary as it
corresponds to the average lifetime of a sunspot group. We fo-
cussed our wavelet analysis on time-scales larger than the life-
time of individual sunspots.

4.1. General structure of solar activity 1610 — 1995

The general result of the wavelet analysis is presented in Fig.
4 for the whole period 1610-1994. The signal is shown on the
lower panel, and the spectral density (modulus of wavelet coef-
ficients) dependence for a given period (vertical axis) and epoch
(horizontal axis), in the upper panel. The spectral density corre-
sponds to the intensity of black. Let us consider a given epoch,
say 1850. We notice two black layers that are well-pronounced.
One corresponds to the Schwabe cycle (11-y cycle), the other
to the Gleissberg cycle (about 100 years).

Fig. 5a presents the global wavelet spectrum as a function
of the period T'. For comparison, we also give the Fourier spec-
trum (Fig. 5b). Because the absolute value of Fourier and Morlet
transforms is not very pertinent, we present the result in arbitrary
units so that they can be separated on the plot. Both curves show
amaximum thatis related to the 11-year period (the Schwabe cy-
cle). However, the Fourier transform contains many additional
maxima that are mainly data processing artefacts. Only one of
the additional maxima survives from the Morlet analysis. This
maximum corresponds to a time scale of about 100 years, i.c.
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Fig. 5a—d. Solar activity spectra; a Fourier spectrum, b wavelet Morlet
spectrum; ¢ spectra of errors series generated as white noise with the
dispersion of real data; d effect of inner frequency in Morlet function
on the wavelet spectrum

it can be connected with the so-called Gleissberg cycle. The
11-year power may be connected with a quasi-periodic change
of solar activity; the physical meaning of the Gleissberg cycle
will be discussed further, with the help of a more sophisticated
wavelet analysis.

The spectra in Fig. 5 are plotted on a log-log scale, in which
any power-law function produces a linear dependence. Out of
the peaks, the Fourier F'(T') and Morlet M(T') spectra can be
described by some power law functions, F' ~ T% M ~ T8,
where o and ( are estimated from the slope of the linear fit for
the corresponding part of the spectrum. One gets 3 ~ 1 between
maxima and 3 ~ 3/4 for T < 5 years; o ~ 1/2. Such power
law-dependencies are typical for stochastic, turbulent motions.
However, one should stress that the Fourier spectrum index, «,
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Wavelet transform for solar activity 1610-1994.
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Fig. 6. Wavelet transform for solar activity 1610 — 1994; Mexican hat.

is smaller than the corresponding index of the Morlet spectrum,
(. This is because the contribution of noise in the data reduces
the spectral index while wavelet transform tends to cleaning the
data. A pure white noise would produce a flat spectrum.

To assess the significance of the wavelet signal, we generated
several time-series of white noise with the same dispersion as
that of the real time-series (three of these time-series are denoted
in Fig. 5c as E1, E2, E3). Then we applied the wavelet analysis
to the statistical noise time-series. It is clear from Fig. 5c that
the wavelet signals present in the real time-series are significant
for timescales longer than 1 year.

In contrast with the Fourier analysis, the wavelet result de-
pends on the choice of the wavelet. We used the Mexican hat
(12), (see Fig. 1a), and the wavelet coefficients are shown in
Fig. 6. The corresponding global spectrum contains the same
two peaks, as in the Morlet spectrum. This confirms the robust-
ness of our global wavelet analysis. We also played with the
value of w, that characterizes the Morlet wavelet: no significant
difference is visible on the spectra (Fig. 5d).

4.2. Properties of the main cycles

The Schwabe cycle is visible for almost all epochs except during
the deep Maunder minimum (1650 — 1680). The deep Maun-
der minimum should be considered separately (see below). The
Schwabe periodicity is remarkably stable. While the intensity of
this 11-year cycle has changed by several orders of magnitude,
its duration has changed by several years only, i.e. by 10 % to
20 %. The black layer period corresponding to the Schwabe cy-
cle has finite thickness, i.e. the duration of a given cycle can be
estimated only with limited accuracy. However, there are three
pronounced deviations of the cycle length present in the time
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Fig. 7a and b. Length (a) and cycle strength (b) versus time. The thin
line on the panel a traces the local maximum of wavelet coefficients
on the phase plan, and the thick line is obtained by the ridge extraction
techniques.

series, one at the end of the Maunder minimum (1680 — 1712),
one during the so-called Dalton minimum (1790 — 1820), and
one at the beginning of the 20th century, near 1900; the latter
event can be compared with the example given in Appendix
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(Fig. 12) when there is a change in the length of the cycle. The
corresponding Schwabe cycles are also less intensive.

To investigate the time-behavior of the main solar activity
cycle in detail, we plotted the time-scale T', which corresponds
to the maximum spectral intensity ata given time ¢ in the wavelet
representation of the 8-16 year band (Fig. 7a). The layer is thick
enough but the position of the maximum varies with the cy-
cle length. This has been demonstrated in Appendix (Fig. 12),
where we give the wavelet representation of a signal for a small
frequency change. To check this result further, we calculated the
T(t) function using the ridge extraction techniques developed by
Torresani (1995), and obtained the same result (see Fig. 7a).

In the plot of Fig. 7b we show the intensity of the wavelet
transform (modulus of wavelet coefficients) tracing the max-
imum defined before. From Fig. 7 we distinguish several
episodes, one corresponding to the Maunder minimum (itself
divided in two parts - a deep minimum and the end of the min-
imum), another corresponding to the Dalton minimum and a
small event mentioned above near the year 1900. Within the
deep Maunder minimum, our algorithm detects a weak (though

P. Frick et al.: Wavelet analysis of solar activity recorded by sunspot groups

Fig. 8. Morlet wavelet transform for the
end of the Maunder minimum (1695 —
1737): modulus
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hardly significant) signal near 7' ~ 30 years. The three other
zones indicated on Fig. 7a correspond to an increase of 7'. There
is a time around 1750 where T increases without equivalent de-
crease of W (t) in Fig. 7b. However, when looking at the initial
data (Fig. 3), the first maximum in sunspot group number is
significantly smaller than its neighbours. This corresponds to
a single 11-year cycle, and thus does not show up in Fig. 7b.
We can conclude that before each solar activity minimum 7'
increases, and is accompanied with a low level of solar activity
that persists as long as 7" increases; the deeper the minimum,
the higher the T level before the event. Let us stress that the
variation of 7" near 1900 was also associated with a decrease in
the strength of the cycle.

The three events mentioned above follows a 100-year peri-
odicity, which produces the second intensive layer seen in Fig.
4 (and the peak in the spectrum on Fig. 5a): this corresponds
to the Gleissberg cycle. It is tempting to connect its duration
with the typical time intervals between the Maunder minimum,
the Dalton minimum and the event near 1900. This idea can
be illustrated by using the Mexican hat transform, where white
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Fig. 9. Morlet wavelet transform for the

vertical layers isolate epoch of the grand deviations from that of
normal activity (Fig. 6). The next deviation should be expected
soon since the last one occured about 100 years ago. But no
great minimum is to be expected because the level of T' cor-
responding to the present level is not high. Along this line of
thought, sunspots of new cycle (cycle 23) have been observed
in 1995 and do not exceed 20 degres latitude. This could be
an indication that cycle 23 would be weaker than the previous
ones.

Physical properties of the grand deviations in terms of
sunspot number, asymmetry, and rotation have been studied
(Nesme-Ribes et al. 1994), and a possible scenario for the
chaotic long-term magnetic evolution has been proposed by
Nesme-Ribes et al. (1994).

4.3. Wavelet analysis for Maunder minimum-type episodes

The intensities contrast between the Maunder minimum and
nearby epochs is very large (Fig. 4). So we assume that the
properties of the grand minimum is somehow reflecting the
characteristics of the nearby epoch. This is why we consider

Dalton minimum (1796 — 1845): modulus.

several time intervals: the whole Maunder minimum (1643 —
1712), and the end of the Maunder minimum (1695 — 1737).
For comparison, we also study the Dalton minimum (1796 —
1845). Results of the wavelet technique are shown for the end
of the Maunder minimum (Fig. 8), and for the Dalton minimum
(Fig.9). These events show strong similarities and are character-
ized by a small increase of the cycle length, with a substantial
decrease in the cycle strength. As we consider only monthly
sunspot group data, we cannot describe the main features oc-
curing at the end of Maunder minimum, namely the recovery of
the north-south symmetry which is typical of the normal state
of solar activity (Jennings, 1991; Sokoloff and Nesme-Ribes,
1994).

A quite different result was obtained for the deep Maunder
minimum (Figs. 10 and 11). There is no signal corresponding
to the Schwabe cycle. Such a specific feature does not appear
in any other wavelet transform domain. Suppose that we are
dealing with the modulus of a sinusoidal, one or two of the
period having a zero value (Appendix). The wavelet transform
would produce the same pattern as that seen on Figs. 10 and
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Fig. 10. Morlet wavelet transform for the
deep Maunder minimum (1643 — 1712):
modulus.

11. So our interpretation is that sunspot groups did not show
any clear 11-y periodicity during the deep Maunder minimum
(1670 — 1690). The sparse sunspots occuring at that time do
not follow any periodic process, and should be considered as
white noise. The 11-y periodicity was recovered after 1690, at
the end of Maunder minimum. Comparison of Figs. 10 to 11
hints that the culmination of events referred to as the Maunder
minimum occured near 1665-1670.

5. Conclusion and discussion

The properties of the solar activity were studied by means of
the wavelet technique. Two typical time scales can be obtained
in the wavelet analysis, the 11-year cycle and a 100-y cycle.
Furthermore, our analysis shows that there are three events
over the last four centuries which show deviations from the nor-
mal activity state. One of them results in the well-known Maun-
der minimum which is the largest minimum observed so far on
the Sun, while the other two show local deviations to a lesser
degree. These smaller deviations can be compared with the solar
activity observed at the end of the deep Maunder minimum (af-

ter 1690). Additional evidence of the recovery of solar activity
at the end of Maunder minimum is visible in other properties of
solar activity, namely the asymmetry of the butterfly diagram
and the extension of its wings, the solar rotation rate (Ribes and
Nesme-Ribes, 1993; Sokoloff and Nesme-Ribes, 1994). The
abrupt transition from active cycles to a grand minimum and
the recovering of solar activity have been investigated numeri-
cally in the framework of dynamo theory by Brandenburg et al.
(1989, 1991).

Other events that show up in the wavelet analysis are the
Dalton minimum and an event near 1900. Two of these minima
have been mentioned by Ochadlick et al. (1993). However, they
are much less visible in their wavelet analysis as they were using
yearly sunspot numbers.

One important finding is the existence of two parts within
the Maunder minimum: a deep minimum with no cyclic sunspot
production, and the end of the Maunder minimum with a re-
sumption of the Schwabe cycle. The transition between the
stages is abrupt.

We studied the length-strength correlations of the 11-y cy-
cle, and showed that the decrease in solar activity coincides with
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Fig. 11. Morlet wavelet transform for the
deep Maunder minimum (1643 — 1712):

the negative derivative of the cycle length (T'): the weaker the
amplitude the longer the period.

The absence of sunspot cycle during the deep Maunder min-
imum raises the question of whether or not the dynamo mech-
anism was operating during this period. An 11-year periodicity
was detected in the C'* data throughout the Maunder minimum
(Stuiver and Braziunas, 1993) as well as by wavelet analysis
of historical solar diameter data (Nesme-Ribes et al., 1995),
thereby suggesting that the periodic dynamo was still at work.
On the other hand, an oscillatory toroidal magnetic field em-
bedded deep in the Sun can produce sunspots provided the field
strength is large enough. So one possible explanation is that the
toroidal magnetic field was too weak to create sunspots.
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Appendix

The most popular canonical example (see e.g. Farge, 1992) is a
frequency doubling in a harmonic signal. Here, we present the
Morlet wavelet transform of a harmonic (11-y period) signal
with a relatively small frequency change (Aw/wy = 0.1) at
t = to (Figs. 12 and 13).

We also examine the Morlet wavelet transform w(a, t) for
a harmonic (11-y period) signal exhibiting a 1-y phase shift
(A¢ = 7/10) (Figs. 14 and 15).

The third canonical example aims at illustrating Maunder
minimum-type events. For that, we examine the modulus of a
periodic signal that contains a gap of two oscillations (Figs. 16
and 17).

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1997A%26A...328..670F

680 P. Frick et al.: Wavelet analysis of solar activity recorded by sunspot groups

FTO07A&A - ~32BC “670F

Fig. 12. Canonical example of a Morlet wavelet transform: the sinu-  Fig. 13. Canonical example of a Morlet wavelet transform: the sinu-
soidal period increases from 11 to 12 years. Modulus soidal period increases from 11 to 12 years. Phase

VW

phase-shift } phase-shift |

Fig. 14. Canonical example of a Morlet wavelet transform: the sinu-  Fig. 15. Canonical example of a Morlet wavelet transform: the sinu-
soidal phase is shifted by A¢ = —27. Modulus soidal phase is shifted by A¢ = —3T. Phase.
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Fig. 16. Morlet wavelet transform for an artificial example: modulus
of sinusoidal with a gap of two oscillations; modulus of wavelet coef-
ficients.
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