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ABSTRACT

We perform for the first time time-dependent, two-dimensional, axisymmetric hydrodynamic simula-
tions using local adaptive mesh refinement of thermally driven rotating winds from X-ray—irradiated acc-
retion disks. The disk is assumed to flare in height with radius allowing direct exposure from the central
X-ray source. The heating and cooling are treated strictly in the optically thin approximation. We adopt
two spectra characteristic of active galactic nuclei (AGNs) which have Compton temperatures of Tjc
1.3 x 107 K and 10® K. We have computed a number of models which cover a large range in luminosity
(0.002 < L/Lgggington < 1) and radius (<20 Compton radii).

Our models enable us to extend and improve on the analytic predictions of Begelman, McKee, &
Shields (BMS) for Compton-heated winds by including non-Compton processes such as photoionization
heating and line cooling, typical of X-ray-heated winds. These non-Compton processes can be dominant
at low temperatures (<107 K), thus being important in the wind regions of AGNs. Our results agree
well with a number of predictions given by BMS, even when non-Compton processes dominate, suggest-
ing that their analytic approximations of the hydrodynamics of disk winds are applicable to the more
general area of X-ray-heated winds. In the regime in which Compton processes dominate (ie., T,c = 10®
K spectrum), we have used our results to improve the analytic predictions of BMS, providing a new
expression for the mass-loss rate and a modified view of the wind solution topology.

We find that beginning from a basically static state, the time-dependent flow which develops even-
tually settles into a steady wind, without any evidence of hydrodynamic instabilities. The solution topol-
ogy consists of a corona with an exponentially truncated wind at small radii, and a vigorous wind at
large radii which can be impeded by gravity for small luminosities. We have constructed radius-
luminosity parameter space plots of our numerical results in analogy to BMS for both the high and low
Tic cases, depicting the range of solutions. The plots are strikingly similar to the analytic predictions,
especially for high Tc. We find the radial extent of the corona to be independent of luminosity, as pre-
dicted by BMS, extending out to about 0.25R¢; this is a direct consequence of Compton heating. The
transition from an isothermal to nonisothermal corona occurs at a luminosity within about a factor of 2
of the critical luminosity (L., ~ 0.03Tc3/?Lg) predicted by BMS. The mass flux density in the corona
shows an exponential rise, peaking at around 0.2R,c nearly independent of luminosity. The wind solu-
tions can be characterized mainly by steadily heated, free winds (region B in BMS) and gravity-inhibited
winds (region C in BMS). Nearly isothermal winds with temperatures of the order Tic also exist (region
A in BMS) but require higher luminosities than was first estimated by BMS. A necessary condition for
the winds to approach isothermality is that the luminosity exceed the critical luminosity.

The change in wind solutions from regions B and C is characterized by a nearly discontinuous change
in the sonic point location from large heights in region C to small heights in region B. The mass-loss
rate, however, appears continuous across this boundary. For a streamline leaving the disk surface at a
radius R,, the sonic point distance along the streamline, s,,;, is such that s, ,;./R, = 0.6 in region B and
Seonic/ Ro > 1 in region C.

An unexpected conclusion from our numerical results is that the area of a flow tube can actually be
smaller at the sonic point than at the disk surface. This is because of the presence of an unbalanced
radial pressure gradient of the flow at low heights upon being heated. Incorporating this effect into the
simple analytical formulae for the mass-loss rate given by BMS yields results which are typically within
about a factor of 2 (3) of our numerical results over a wide range of luminosities and radii for the high
(low) Compton temperature models.

We provide fitting formulae of our numerical results which give the mass flux density as a function of
radius and luminosity. We also discuss briefly the implications of our results for the prediction of Fe Ka
lines which have recently been observed in AGNs.

Subject headings: accretion, accretion disks — galaxies: active — hydrodynamics — stars: coronae —
X-rays: galaxies — X-rays: stars
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1. INTRODUCTION

Accretion disks are thought to exist in a variety of
systems ranging from stellar mass type objects such as in
X-ray binaries, cataclysmic variables (CVs), and protostars,
to active galactic nuclei (AGNs) with a supermassive black
hole of the order of 108-10° M. The collapse of material
onto a compact object produces X-rays which can then
irradiate and heat the accretion disk (assuming the disk
flares with radius; Shakura & Sunyaev 1973), which can
lead to the existence of a corona and/or wind. Simply put,
the X-ray illumination results in a gradual rise in tem-
perature with height where photoionization heating is bal-
anced primarily by collisional losses and recombination.
Depending on the details of the spectrum, this may continue
up to a critical temperature (T ,,,,) above which the equi-
librium becomes thermally unstable; at this point, the tem-
perature rises quickly to the Compton temperature (Tic),
where there is a balance between heating from Compton
scattering and inverse Compton cooling (e.g., Krolik,
McKee, & Tarter 1981). If the coronal temperature attained
is large in comparison with the escape temperature from the
disk, we can expect a vigorous wind to form.

The effects of X-ray heating on the structure of accretion
disks is a subject of increasing popularity given the desire to
accurately predict spectra from these disks and their sur-
rounding corona and/or wind. This is necessary in order to
determine whether the observed emission lines can be
explained through X-ray illumination, or whether some
other heating mechanism, such as viscosity (e.g., Shaviv &
Wehrse 1986; Czerny & King 1989a, b), is necessary. Much
of the theory of Compton-heated coronae and winds for
accretion disks has been worked out in Belgelman, McKee,
& Shields (1983, hereafter BMS) and Begelman & McKee
(1983). More recently, detailed models of the vertical struc-
ture of X-ray-irradiated accretion disks have been devel-
oped for X-ray binaries (e.g, Hubeny 1990; Tuchman,
Mineshige, & Wheeler 1990; Ko & Kallman 1991;
Raymond 1993) and AGNs (Collin-Souffrin 1987; Collin-
Souffrin & Dumont 1990; Dumont & Collin-Souffrin
1990a, b; Mobasher & Raine 1990; Shimura & Takahara
1993). Typically, treatment of this inherently two-
dimensional problem is reduced to one dimension by
solving the vertical structure on cylinders at different radii,
thus ignoring the effects of radiative transfer in the corona.
The effects of scattering from the corona have been dis-
cussed by Begelman & McKee (1983). Ostriker, McKee, &
Klein (1991) have calculated the flux incident at the base of
the corona for an isothermal Compton-heated corona
above an accretion disk in the single-scattering limit, while
Murray et al. (1994) have solved the same problem using a
two-dimensional flux-limited radiative diffusion technique.
Vrtilek, Soker, & Raymond (1993) have performed two-
dimensional Monte Carlo simulations for the radiative
transfer to predict the iron K-shell feature for X-ray
binaries.

The modeling of winds from accretion disks is still some-
what in its infancy. The modeling has followed one of two
paths, one-dimensional analyses which presuppose a flow
geometry, and, more recently, fully two-dimensional calcu-
lations. BMS assume a flow geometry based on simple
physical arguments and parameterize it in such a way to
allow a comprehensive analytic treatment given the simple
form of the heating and cooling. The result was a prediction

Vol. 461

of the mass flux density coming off the disk as a function of
luminosity and radius which they found to be relatively
insensitive to the details of the assumed flow geometry; that
is, the mass flux density is rather robust. Czerny & King
(1989a) have made estimates of the mass-loss rate when an «
model for the viscosity is extended up into the wind region,
but their analysis was more approximate than that of BMS.
Fukue (1989) and Takahara, Rosner, & Kusunose (1989)
considered the behavior of polytropic winds from accretion
disks for a prescribed flow geometry. Vitello & Shlosman
(1988, 1993) and Shlosman & Vitello (1993) have considered
the effects of winds in CVs. Given the lower temperature of
these winds, thermal driving is insufficient to accelerate the
winds to observed velocities. As such, the work of Vitello &
Shlosman focuses on radiation pressure—driven winds from
line absorption of the continuum from the region near the
compact central object. Again, the treatment is reduced to a
one-dimensional treatment by presupposing a geometry of
the outflowing wind.

Although two- and three-dimensional simulations of acc-
retion disks have been performed for a number of years,
usually looking at the question of stability (e.g., Eggum,
Coroniti, & Katz 1987; Sawada, Matsuda, & Hachisu
1986a, b, 1987; Kaisig 1989a, b; Kley 1989, 1991; Kley &
Lin 1992), little attention has been paid to the multidimen-
sional modeling of the wind until recently (Melia, Zylstra, &
Fryxell 1991; Melia & Zylstra 1992; Balsara & Krolik
1993). Melia et al. have concentrated on modeling the inner
region (ie., r <5 x 10® cm) of low-mass X-ray binaries.
These calculations couple the equations of hydrodynamics
and flux-limited radiative diffusion, and they show con-
siderable time variability which the authors then try to
relate to observed X-ray bursts. However, this work suffers
from the use of an unrealistic boundary condition at the
disk interface, resulting in material being injected at highly
supersonic velocities (~Mach 30) at small radii where one
would normally expect the flow to be very subsonic (Basko
et al. 1977; London & Flannery 1982; BMS; Tavani &
London 1993) owing to gravitational deceleration (see
§ 6.2). The consequences of such highly supersonic inflow
are physically unrealistic solutions. Balsara & Krolik (1993)
have focused on the problem of predicting the wind from a
torus surrounding a supermassive black hole in an AGN.
The torus model is based upon a compilation of obser-
vations, the most compelling of which is the determination
that the nuclear region of some Seyfert 2 galaxies has a
spectrum similar to a Seyfert 1 when viewed in its polarized
light (Antonucci & Miller 1985; Miller & Goodrich 1990).
The work of Balsara & Krolik focuses on predicting the
structure of the wind produced from direct illumination of
the inner face of the torus at 1 pc from the central object in
the unphysical limit when the material has no angular
momentum. As such, this work is not directly comparable
to our models because of the differences in assumed
geometry and dynamics.

In this work we calculate, for what we believe to be the
first time, the two-dimensional structure of a thermally
driven wind from an accretion disk heated by X-rays from a
central source. There are several important features to our
simulations. First of all, we include part of the disk in the
calculation so that we may provide the correct boundary
condition. Melia et al. (as well as Balsara & Krolik 1993) do
not include any of the disk (or torus) in the computational
domain; instead they treat it as a boundary condition for
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which they specify the velocity normal to the boundary. In
both cases, the prescribed inflow is supersonic. Thus,
although their solution procedure is valid, their solutions
are dependent upon their assumed injection velocity.
Instead, we adopt the usual stellar wind condition that the
lower boundary is in the subsonic region so that the normal
velocity at the boundary is determined by the interior wind
solution. The result is that our boundary condition will not
affect our solution. Another important feature of our calcu-
lations is that we include a full array of heating and cooling
mechanisms thought to be important in the photosphere
and corona of an illuminated disk. That is, we include not
only the high-temperature mechanisms (ie., Compton
heating and cooling, bremsstrahlung), but also the processes
(i.e., photoionization heating, collisional and recombination
cooling) necessary to provide the stable equilibrium at low
temperatures (~few x 10* K). We emphasize, however,
that the heating and cooling are calculated in the optically
thin limit. We discuss this limitation in greater detail in
§ 6.3. Finally, our hydrodynamics incorporates local adapt-
ive mesh refinement (AMR; Berger & Colella 1989, Klein,
McKee, & Colella 1990, 1994, also see Appendix Al). This
procedure allows us to dynamically rezone those regions
which require the highest spatial resolution. This is impor-
tant not only at small radii where quantities are changing
rapidly, but also along the disk interface where the density
can change by orders of magnitude in going from the disk
temperature to the coronal temperature.

Our goal in this work is to understand the types of wind
solutions available for different luminosities and Compton
temperatures. Our models allow us not only to compare
with the analytic treatment of BMS, but also to extend it to
temperatures and radii for which BMS is not valid. As such,
the disks in our models extend out to large radii (possibly
larger than what may exist in observed systems), so that we
may identify the full range of wind solutions and be able to
compare them to BMS (who also determined the solutions
out to arbitrarily large radii). Another reason for comparing
our results with BMS is to allow us to understand to what
degree the approximations used therein can be applied to
the wider range of problems in astrophysical gasdynamics.
We do not attempt to model precisely any individual object
in this work. Such a quantitative comparison between
theory and observation will be dealt with in a later paper
(Murray et al. 1995).

The outline of this paper is as follows: in § 2 we present
the model equations solved, as well as a discussion of the
heating and cooling mechanisms included. The numerical
method is described in § 3 along with the geometrical setup
of the problem and the boundary and initial conditions. In
§ 4 we review briefly some of the highlights of the theory
developed by BMS. The results, as well as a comparison
with BMS, are described in § 5. A discussion of the effects of
spatial resolution, as well as the validity of the optically thin
approximation and the implications for Fe K« lines, is given
in § 6. Our conclusions are summarized in § 7.

2. MODEL EQUATIONS

2.1. Conservation Equations

In this paper we model the two-dimensional evolution of
a wind from an accretion disk surrounding a compact
central object (e.g., a black hole, neutron star, etc.) in the
plane perpendicular to the disk, assuming rotational sym-
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metry. The wind is thermally driven by the X-ray heating
from the central source due to the gravitational capture of
accretion disk material by the central object. The length
scale of the disk on which we model the wind is much larger
than the radius of the central object or the event horizon of
the black hole,” so the luminosity emanating from the
central object will simply be a parameter to our problem.
The mass of the central object is also a parameter, but it can
be eliminated when producing a dimensionless form of the
equations (§ 2.3). The conservation equations for mass,
momentum, and energy in vector form are simply

B o
L4V (=0, @.1)
o0+ V- (o) + Vo = pg 22)
LtV et =g H, )

where p is the total mass density, v = (vg, vz, vy) is the
velocity, p is the total gas pressure, and pe’ is the sum of
internal p/(y — 1) and flow 1pv? energy densities. The net
heating rate per unit volume is H, and because of our opti-
cally thin approximation, it is strictly a local function. We
neglect the gravity from the disk and wind, so that the
gravitational acceleration can be given by the gradient of a
scalar potential, g = —V®, which is stationary in time.
Thus, the energy equation (2.3) can be rewritten as

2 o)+ V e+ PRI =H, (232)

where
(2.3b)

is now the total energy density, and we have assumed that
the gas has an adiabatic index y = 5/3.

pe = 3p + 3pv* + p®

2.2. Heating and Cooling

The regions of interest in our simulations are nearly fully
ionized so that the equation of state p = pkT/u is applic-
able, with the mean mass per particle u & 0.61my;. The net
heating rate per unit volume, H(p, T, F), is computed using
G. Ferland’s photoionization code CLOUDY (Ferland
1991). CLOUDY is a multipurpose code designed to handle
photoionized plasmas in optically thick media (using escape
probabilities). However, we utilize it in the optically
thin, low-density regime to compute the total heating
n’I'(E, T) and cooling n*A(E, T) rate per unit volume,
where E = F/cp is the pressure ionization parameter, F is
the radiative flux, and c is the speed of light. Included in the
total heating is Compton scattering and photoionization
heating of all the ionization stages of hydrogen, helium, and
several trace metals (the most important of which are C, N,
0, Si, S, and Fe). The total cooling includes collisional exci-
tation of the most important lines from all the species listed
above, as well as recombination cooling, Compton cooling,
collisional ionization cooling, and free-free losses. The gas is
assumed to be free of dust.

7 In fact, the compact object producing the X-rays is actually located
outside our computational domain. See § 3.
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We have chosen two spectra for our models which yield 4.0 5.0 6.0 7.0 8.0

Compton temperatures of the order 107 and 10® K. These
spectra are given as piecewise-continuous power laws with
luminosity L, = Lfy(v/v;)*, where L is the total luminosity,
v;(i=1,..., N) are the frequency intervals of the different
power-law (s;) fits, and the f,,; values are defined so that the
luminosity per frequency interval is continuous and L =
[s¥ L, dv. The broken power-law fits are shown in Table 1.
Spectrum 1 is CLOUDY’s standard AGN spectrum. It is
similar to that described by Mathews & Ferland (1987),
with the exception that there is a submillimeter break at 10
um below which (in frequency) the spectrum has a power
law indicative of self-absorbed synchrotron emission (i.e.,
+2.5; Rybicki & Lightman 1979). This spectrum yields a
Compton temperature,

L[
T;C.EZIZJ hVLvdV N

of Tic~ 13 x 107 K. Equation (2.4) is inaccurate for
photon energies above m, c2, but this is only a small correc-
tion for the adopted spectrum. We note that even though
this spectrum is based upon observations of AGNs, it may
not be appropriate to attribute the entire spectrum to the
central source. Spectrum 2 in Table 1 is basically the same
as spectrum 1, only the slope between 26.8 ryd and 7350 ryd
has been reduced (arbitrarily) to provide a larger number of
high-energy photons. The Compton temperature for this
spectrum is 1.0 x 108 K.

In Figure 1 the relative contributions of the heating (I')
and cooling (A) are plotted as a function of temperature for
several values of the ionization parameter Z for spectrum 1.
Figure 2 shows the thermal equilibrium curve for the two
spectra. At low temperatures, there is near balance between
photoionization heating and cooling due to line excitation
and recombination. At large temperatures, the equilibrium
arises from a balance of Compton heating and cooling. The
solutions with positive slope, i.e., dT/dE > 0, are thermally
stable, whereas those with negative slope are thermally
unstable. Following the notation of BMS, we label the criti-
cal ionization parameter Z_ .. (E; i) to be the maximum
(minimum) ionization parameter in the cold (hot) phase for
which a stable equilibrium can exist. For these particular
spectra, there is also a small range of ionization parameters
(E, < E < E,)for which there exist stable solutions at inter-
mediate temperatures (T ~ 10° K). This state can cause
slight problems for the adaptive mesh refinement (see
Appendix).

2.4)

vi

Log Temperature(K)

FIG. 1.—Log of the heating ([/[kT]?; solid curve) and cooling (A/
[kT]?; dashed curve) functions as a function of temperature for different
ionization parameters (E = F/cp). Each curve represents a decade in ion-
ization parameter. The results were obtained from CLOUDY in the opti-
cally thin, low-density limit.

2.3. Dimensionless Form of the Equations

BMS showed that the steady state wind equations can be
written in a dimensionless form which eliminates the mass
of the central object as a parameter. With some care, we can
also accomplish this for the time-dependent equations. We
define a length scale, the Compton radius (R;c), to be the
distance at which the escape velocity equals the isothermal
sound speed at the Compton temperature, i.e.,

GoM.pu 9.8 x 10V
kTic Tics

where Mg is the mass of the central object in units of 108
Mg, and Ticg = T;c/10%. The velocity is scaled by the
Keplerian rotation velocity at the Compton radius, so

ve = (Go M,/Ri)M? = 1.165 x 10°TX2 km s™*, (2.6)

where the second equality arises from the use of equation
(2.5). (We have used the subscript “IC” for the Compton
temperature and radius to be consistent with BMS, but for
the remaining characteristic Compton parameters we
simply use the subscript “C.”) The timescale can then be
defined as

tC = Rldvc = 8.4 X IOQT[_Cg/2Mc8 S, (2.7)

so that 2zt is the rotation period at the Compton radius.
Alternatively, tc can be thought of as the time it takes to
traverse R;c traveling at the isothermal sound speed for
T = Tic. A characteristic pressure can be defined as the
pressure at the Compton radius which a gas in thermal
equilibrium would have at its maximum temperature in the
cool stable phase. Thus, we write

L/(47IR2 s L - Ec max !
=——FC -11x%x10 3L—MC81T,2C8( 20 )

:c,max E
x ergscm ™3, (2.8)

Ry =

M, cm 2.5)

C

where the Eddington luminosity is

Lg =15 x 10*M_g ergs s™! . (2.9)
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FiG. 2—(a) Thermal equilibrium curve for spectrum 1 in Table 1 which has a Compton temperature of 1.33 x 10’ K.E_ ., is the maximum ionization
parameter in the cool stable phase; &, ;. is the minimum 1omzat|on parameter in the hot stable phase. There is an intermediate temperature solution around
~ 10® K for which a stable equilibrium can also exist (£, < E < E,). (b) Same as (a), except that spectrum 2 in Table 1 is used which has a Compton

temperature of 108 K.

Given the pressure, we can define a density from the equa-
tion of state

— -1
pC -20 -1 '—‘-'c,max
= PPc _ ) L
pc_knc 8.1 x 10 EMcslm< 40>
xgem 3. (2.10)

We can also define a characteristic gravitational potential,
(DC = Go Mc/RlC =1.35 x 1016’I;C8 ergs g_l N (2.11)

where G, is the gravitational constant. Finally, writing the
characteristic heating rate as p/tc, we can define

Pc 2373 B L\™!
[c=———=21x10"2T <“""“‘)<—>
" tdpdm)? e\ 40 \Lg
1
. (212

Using these scaling parameters, we can define the following
dimensionless quantities:

x ergs cm3 s~

Vg, Uz, Ug)
p*Eﬁ, (v}, vk, )E(__R_Z_'L,
Pc Uc
(R*, Z*) (R, Z), t*:—:i, p*:ﬂ,
Ric tc Pc
q)*=2, **EE’ T*_l,
0% Pc Tic
= I, A
o2F = — , (T A% = ( ) (2.13)
c‘c,max IqC

(In these units, the radial variable ¢ used by BMS is R,
where R§ is the dimensionless radius at the footpoint of a
flow tube.) Given these definitions, we can write the conser-
vation equations (egs. [2.1], [2.2], [2.3a]-[2.3b]) in cylin-
drical geometry, assuming axisymmetry, as

op* 1 0

a_ + 5% R* aR* (R* *DR) + 62* (p*l’;) = 0 s

(2.14)

6t* o P70+ g g (RTPTOE)

0 op* _proy? 0%
1
6t* (p*vP) + o5 R* OR* (R*p*vk v3)
0 oo*
+ % (") + a;* —p* e (216)
1
2 (0% + 7oz (R¥p*005)
6 *pk vX
+ 5w (o) = =X 1)
1
6t* (Pe*) + 7w w (REPTETR)
a k% 1 R* J— %
= p*’[TXE*, T*) — A*E*, T¥], (2.18)
where
D AN PP S *
€ —5—* i(vR + vz +U¢)+(I) , (2.19)
and the equation of state is now
p* = p*T* . (2.20)

In deriving these equations, we have made use of the defini-
tion of t¢ (eq. [2.7]) and the relations pc/pc v = 1 = Oc/vi.
Equations (2.14)—(2.20) do not explicitly involve the
compact object mass M, provided the functions ®*, T'*,
and A* are also independent of M,. The heating/cooling
functions I' and A are pretabulated functions of E and T.
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Therefore, I'* and A* are independent of M, since I'¢ (eq.
[2.12]) is independent of M, and E, ,,, and Tjc are param-
eters determined by the shape of the spectrum. Finally, the
gravitational potential has the modified form

O* = {R*? + [Z* + Z54(RM]? + R}V, (221)

where R% is a softening radius of the potential in units of
the Compton radius, and Z¥ (R*) is a vertical offset (in
units of R;c) which is a function of radius. The necessity for
and description of these two terms is given in § 3. The
important point is that equation (2.21) is also independent
of M,. Therefore, once a spectrum has been selected, there is
only one free parameter, namely, L/Lg (see also BMS). Con-
sequently, our discussion will focus on the behavior of our
wind solutions as a function of luminosity.

3. PROBLEM SETUP AND COMPUTATIONAL METHOD

We begin by defining our computational domain. Our
calculations are performed in R—Z geometry, with the
Z-axis coincident with the rotation axis; however, the
R-axis is not coincident with the disk midplane. We take the
R-axis to represent a surface approximately one-half a pres-
sure scale height below the disk/corona interface. Thus,
there is an offset as a function of radius, Z,,(R), which
gives the height of our R-axis above the disk midplane. A
schematic representation of this is shown in Figure 3. There
are several reasons for adopting this offset. First of all, we
do not wish to model the entire disk given the uncertainties
of the physics (i.e., viscosity) associated with o disk models,
and given the need to include radiative transfer effects.
Second, it was desirable to remove the origin from the com-
putational domain because of its singular nature in provid-
ing the radiative flux and gravitational attraction for our
model. Finally, even with the advantage of adaptive mesh
refinement (see below and Appendix) and the softening
radius on the gravitational potential (eq. [2.21]), it was
necessary to drop the disk out of the computational domain
at small radii to avoid having to resolve small gravitational
scale heights in the cool disk. Therefore, we have adopted
an offset which is approximately the height of an o disk
model (Shakura & Sunyaev 1973):

Z;is(R) _ 0.02(R/Ryc)''%*
Ric - 0-02(Rhm/R1c)1'125

R > Rhot s

1
R<Ry,. OV

/ Compact Thsal
Object ~
Accretion AN
Disk

FIG. 3—Schematic diagram depicting the computational domain
(R- and Z-axes) in real space. Z g, (R) gives the offset of the R-axis of the
computational domain from the disk midplane. The R-axis for R > Ry, is
prescribed as being one-half of a pressure scale height below the disk
surface. Diagram is not to scale.
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Inside Ry, the offset is constant and the cool disk material
can drop out of the computational domain; only hot
coronal material is found at R < R,,. Typically, we take
Ryo < Ry,. Our computational domain in real space is not
orthogonal (Fig. 3), but we approximate it as such in the
computational domain because the offset represented by the
alpha disk is small. The offset is used in only two places in
the calculations: (1) computation of the gravitational poten-
tial (eq. [2.21]) and (2) computation of the radiative flux
used in the heating and cooling. Given the small magnitude
of the offset, it tends to have a minimal effect in calculating
the gravitational potential because typically Zg4,(R) <
max (R, R). The offset at small radii is at most the size of a
computational cell in our most highly resolved calculations.
Therefore, it will affect the computation of the radiative flux
in only a few zones near the origin.

We solve equations (2.14)—(2.21) using a two-dimensional
second-order Godunov method based on the method of
Colella & Woodward (1984). To this two-dimensional
hydro scheme, we have added the effects of rotation,
gravity, and heating and cooling represented by the terms
on the right-hand side of equations (2.15)—(2.18). We have
devoted considerable time and energy in the pursuit of an
acceptable means of including these terms in a Godunov
method. We give in the Appendix a brief summary of the
algorithm of the hydrodynamics and our conclusions for
including the source terms, as well as a description of some
test problems to which it has been applied. Our hydrody-
namics is supplemented by local adaptive mesh refinement
(Berger & Colella 1989; Klein et al. 1994), which allows us
to select and refine an arbitrary region of the computational
domain. By tying in the generation of refined grids with an
automatic estimate of the local truncation error, we can
obtain the desired resolution at the necessary locations in
space and time. Consequently, the number of unnecessary
cells, and therefore the computer memory and time require-
ments, can be kept to a minimum. Even still, it was not
uncommon for a highly resolved calculation to take over
100 hr of CPU time on a Cray YMP.

The boundary conditions (BCs) are as follows. The Z-axis
(rotation axis) is treated as a line of symmetry. That is, the
scalar (p and pe) and tangential vector (pv;) quantities are
continuous at the boundary, while the vector quantities
normal to the rotation axis (pvg and pv,) go to zero at the
boundary. The goal for the outer surface (i.e., top and right-
hand) BCs is that they have as little effect on the interior
solution as possible. In general, we take these BCs as free
flowing, i.e., all the quantities are continuous across the
boundary. Such simple BCs will be acceptable provided the
flow is supersonic before passing through the boundary,
since the interior solution will be independent of the BCs
because the v — ¢, characteristic speed is positive, i.e., the
characteristics transmit information only out of the grid
(here c, is the adiabatic sound speed). Thus, in choosing our
computational grid it is necessary to include a large enough
domain to guarantee that the velocities have become super-
sonic before reaching the outer boundaries. Implementation
of these BCs shows that they work well with two caveats.
The first caveat is that our calculations start from a static
state (except for rotation), so the BCs are not valid until the
wind has developed. This seems to pose a problem only for
low-luminosity models in which a significant amount of
matter may enter from the outer boundaries. Consequently,
we extrapolate BCs which preserve steady momentum con-
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FI1G. 4—Initial pressure and temperature configuration. In region I, radial momentum balance is not satisfied initially. In region II, thermal equilibrium
dictates that the temperature should drop back down to the cool phase. However, we have artificially set the temperature in this region to be T, ,,;, to start.

See text for further details.

servation normal to the boundaries using the nearest inte-
rior solution. This procedure prevents the inflow from
gravitational attraction and appears to provide a smooth
transition to flow-dominated regimes as the wind forms.
The second caveat is that even after the development of the
wind, the flow exiting the right-hand boundary is not super-
sonic at low heights. Therefore, we must be mindful of the
fact that the solution at large radii and low heights may be
affected by our outer BCs. Indeed, we sometimes see some
fluctuation in this region (see § 5). However, we find the
effects to propagate inward only minimally. Also, we can
assess the influence of the boundary conditions by compar-
ing the results to a problem calculated on a larger domain.
In general, we find the results to be similar, so that the effect
of the BCs appears to be minimal.

Finally, as stated above, the R-axis is treated as a surface
located one-half of a pressure scale height below the disk/
corona interface (except for radii inside R;,). The BCs are
presumed to be appropriate for vertical subsonic inflow.
That is, we specify all but the normal momentum com-
ponent (pv,). We define the disk/corona or disk/wind

— —

interface to be the surface on which Z* = 5/= =18

dary can be specified by p*(R*, Z* = 0) = exp (0.5)/[R*?
+ Z¥2(R*)]. The temperature along the boundary is
obtained by solving the thermal equilibrium equations with
an ionization parameter =* = exp (—0.5). The density is
obtained from the equation of state, and the radial velocity
is set to zero. The rotational velocity is determined by
requiring radial momentum balance, ie., the centrifugal
force along the R-axis is computed from the difference
between the inward gravitational attraction and the

8 In reality, this is not true for the disk/corona interface. Begelman &
McKee (1990) and McKee & Begelman (1990) have shown that in the
corona, where winds are weak, thermal conduction dictates that E, ;, may
be the more appropriate ionization parameter. For spectrum 1, there is
little difference between E, ., and E, .., so this effect should be minimal.
The effect is more pronounced for spectrum 2. This deficiency can be
eliminated by including thermal conduction, but this is beyond the scope
of our paper. In the wind region, however, the temperature gradient is
often small enough that thermal conduction is relatively unimportant, and
our assumption that the surface of the disk is at Z_ ,,, is valid.

outward pressure gradient. Inside the disk, this results in the
rotational velocity being nearly Keplerian because the pres-
sure gradient is small owing to the low temperature of the
disk. Finally, the Z component of the momentum at the
boundary is extrapolated from the solution in the computa-
tional domain. Note that we are allowed to extrapolate one
boundary condition in the case of subsonic inflow because
there is one characteristic (v — ¢,) that is directed from the
computational domain back onto the boundary. This
extrapolation is essential to guarantee that the solution we
obtain is not a result of the velocity BC. If we had placed
our boundary above the disk interface, our assumptions of
thermal equilibrium and subsonic inflow at the boundary
would be less certain.® This procedure is different from pre-
vious investigations (e.g., Melia et al. 1991; Balsara &
Krolik 1993) in which the material is injected at supersonic
velocities. As such, their wind solutions are determined by
the prescription of the inflow velocity boundary condition,
rather than being a natural consequence of the computed
solution (see § 6.2).

The initial condition for our calculations is that the gas is
static (except for rotation) and in thermal equilibrium. We
assume in our calculations that the disk spans the computa-
tional grid in radius. That is, we do not consider the case in
which the disk is truncated at a given radius. Such models
are considered by Murray et al. (1995). Our procedure for
calculating the initial state is to set vg ; = 0 and integrate
the vertical (Z-direction) hydrostatic and thermal equi-
librium equations together simultaneously, starting from
the base. Once this is performed for the entire grid, we can
then calculate the radial pressure gradient from centered
finite difference expressions and thus solve for the rotational
velocity satisfying radial momentum balance. There are two
exceptions to this procedure. The first is that it can be
impossible for the corona to be in radial momentum
balance with v, = 0 if the gas is in the thermal equilibrium.
That is, for R* 2 1 the outward pressure gradient in the
corona can be larger than the inward gravitational attrac-

° This is not a problem inside R,, where, although the boundary
material is coronal, the velocities are decidedly subsonic and structure is
nearly hydrostatic.
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tion, thus requiring an imaginary v,. An example of this
initial state is shown in Figure 4, (left panel), where we show
contours of pressure for the case of L/Lg = 0.1 using spec-
trum 1. Region I outlines the domain in which the R
momentum equation cannot be satisfied. In this domain we
set v, to some small positive value. The second exception
deals with thermal equilibrium at high altitudes. Consider
the variation of the ionization parameter with height in
hydrostatic equilibrium. At heights that are large in com-
parison with the radius, the change in ionization parameter
with height can be written as

dlnE* [(T*Z% ' -2]
0z* = Z* ’

where the first term inside the brackets results from the
hydrostatic decline in pressure with height, and the second
term is from the % dependence of the optically thin radi-
ative flux. From equation (3.2), we see that when Z* is large,
the ionization parameter can decline with height. If the ion-
ization parameter drops below the minimum value possible
in the stable hot phase (£, ;,), thermal equilibrium dictates
that the temperature must drop down to the cold phase.
This region of cold material has an upper limit in height
because once it drops back to the cold phase, the gravita-
tional scale height becomes smaller, thus enabling the pres-
sure to once again decline faster than the effects of
geometrical dilution. This eventually leads back to = =
E. max> and thermal equilibrium dictates the temperature
should jump back up to coronal temperatures. We have
performed simulations with this pocket of cool material at
high altitudes (Fig. 4, right panel). We find that as the wind
starts to form, both Rayleigh-Taylor and Kelvin-Helmholtz
instabilities can be induced in and around this pocket. But
inevitably this cold material is pushed out of the grid by the
wind. This behavior is a transient response to our initial
conditions and serves only to slow down the calculations, so
we have decided to remove this feature by setting the tem-
perature to T, ., initially.

(3.2)

4. ANALYTIC THEORY OF BMS

We review briefly some of the characteristics of optically
thin, Compton-heated winds as described in BMS. In par-
ticular, we focus here on the prediction of the mass-loss rate
per unit area as a function of radius. We describe also some
simple improvements in the theory based upon our numeri-
cal results.

As described earlier, the Compton radius defines the
radius at which the isothermal sound speed is equal to the
escape velocity from the system for material which is heated
to the Compton temperature. We define R, to be the radius
in the disk midplane from which a given streamline arises.
We expect that for £ = Ry/R,c < 1 there will be a nearly
hydrostatic corona with a small mass flux density, while for
large radii (¢ 2 1), a vigorous wind may develop.

Let us consider for a moment the behavior in the wind
region. The magnitude of the wind will depend on the lumi-
nosity, and in particular on the ratio of the heating time-
scale to gravitational timescale. Because of the finite heating
time, one can define a characteristic temperature to which a
parcel of gas can be heated in a time required to rise a
height R, above the disk, namely,

H(p’ Tch’ L/4TCR%)

k h = 5
Lo = = o hNea/Ro)

@4.1)
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volume heating rate, and u, ~ 2u is the mass per electron
(n, = p/u,). We note that this is an implicit relation, since
the right-hand side of equation (4.1) is also a function of T,,,.
For the rest of this section only, we follow BMS and take
the net volume heating rate to be Compton heating only, so
that

P kTicor L

H ~
U, m,c’nR3’

4.2)

where o is the Thomson cross section. Solving for T, using
equations (4.1) and (4.2), we can write the characteristic

temperature as

T, L3 _, "

= =(— e 43

T;C (Lcr> é ( )
where the critical luminosity is

L"El & 1/2 mec2 1/214E
8\ u kTic
~ 2.88 x 107 2T 4Ly . 4.4

Note that for spectrum 1, L., = 0.080Lg. Using this tem-
perature, we can then define a heating timescale

th = kTen/(1e H/p) = Ro/Cen ; 4.5)

with the normalization introduced in § 2, this corresponds
to t¥ = t,/tc = (L/L.,)” "3¢*3. Similarly, a gravitational
timescale can also be defined as

t, = Ro/v, = RY*/(Go M,)'? , (46)

where v, = (GM_/R,)"/? is the Keplerian velocity at R,; the
normalized value is t} = ¢,/tc = £*2. Using these defini-
tions, we can write the ratio of the gravitational timescale to
heating timescale as

Egz & 1/2= L 1/351/6
th 7; Lcr ’

where the gravitational temperature is T, = Gy M, u/(R, k).
From equation (4.7), we can see that the critical luminosity
can be interpreted as being the luminosity required for the
heating and gravitational times to be equal for flow ema-
nating from the Compton radius. When heating takes place
on a short timescale compared with gravitational deceler-
ation, the wind can heat to escape temperatures quickly
without feeling the effects of gravity, and the wind should be
vigorous. Similarly, when the gravitational timescale is
short compared with the heating timescale, gravity can
impede the wind significantly, even at R, > R,c. We note
also that equation (4.3) implies that a wind region exists in
which T, > Tic for L > L. Clearly this is incorrect
because of our neglect of Compton cooling, which will tend
to regulate the temperature at T,c. Thus, we can identify
another region [ie., 1 < & < (L/L,,)*] for which we expect
the heating to be rapid enough that the wind is nearly iso-
thermal at Tjc.

We can now identify the various solution regimes as a
function of disk radius for different luminosities. Following
BMS, these regions have been identified as A-E in Figure 5.
The solutions are separated into wind solutions for R, >
0.1R,c and gravitationally bound coronae with weak winds
for Ry < 0.1R,c independent of luminosity. The transition is
independent of luminosity due to the Compton temperature

@4.7)
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F1G. 5—Radius-luminosity parameter space plot for the Compton-
heated wind theory of BMS. The dashed line represents the theory as
presented originally by BMS, while the solid line is a slightly modified form
of the theory inspired by our numerical results. Throughout the text, this is
the assumed form of the BMS theory. See text for details.

being determined by the hardness of the spectrum and not
by the magnitude of the luminosity. We note that the exact
locations of the regions in this figure are slightly different
from that in BMS (dashed line in Fig. 5), and we discuss the
reasons for the modifications shortly. But first, we sum-
marize some of the characteristics of the different regimes,
including the mass-loss rate per unit area (i1 = pv, where v
is the velocity along the flow tube). Results that are simply
quoted without justification are described in more detail in
BMS.

Region A represents the nearly isothermal wind regime in
which T, < Tic S T, for £ > 0.1. In this region, the heating
time is short so that T ~ T at low heights. The rapid
heating also produces large acceleration which results in the
flow passing through the isothermal sonic point at low
heights. At heights ~R,, the flow goes through the adia-
batic sonic point, and adiabatic losses cause departures
from isothermality. Gravity is unimportant in this region,
and the pressure at the isothermal sonic point assuming
nearly vertical flow is ~0.5p,, where po, = L/(47RE CE, 1nax)
is the critical pressure of the cool phase at a radius R,.
Therefore, the mass flux per unit area in this regime is given
approximately by 11 & 0.5p,/(kTic/p)'/, so rir oc Rg 2.

Region B is a steadily heated, free wind in which T, <
Thw s Tic and & > 0.1. The heating time is still small in com-
parison with the gravitational time, but the heating is not
rapid enough to allow the temperature to reach the
Compton temperature. Instead, T ~ T, at a height ~R,,.
The flow passes through the adiabatic sonic point at this
height, and the flow pattern has become spherically diverg-
ing. In the supersonic regime at larger heights, the flow
velocity becomes nearly constant, and the temperature
declines inversely with distance due to adiabatic losses.
Since the temperature at the sonic point is ~ T, and the
pressure is ~ po due to the negligible effect of gravity, the
mass flux is estimated to be m = po/cch From equation (4.3),
we see that T, oc Ry /3, s0 that ri1 oc Ry /3

In region C, a gravrty -inhibited wmd we have T, <
T, < Tc for £ > 0.1. The heating timescales are now long
compared with the gravitational timescales. Gravity

ACCRETION DISK X-RAY-HEATED CORONAE, WINDS 775

decreases the flow velocity, which allows the gas to be
heated over longer times. This results in the temperature
T~T,> Tch at a height of ~R,. (Our numerical results
show that in fact the maximum temperature is typically
only ~0.1T,.) At these heights, the flow velocity approaches
a constant, and it goes through an adiabatic sonic point
only at large distances because of the decline in temperature
from adiabatic losses. Gravity greatly reduces the pressure
at the sonic point so that the mass flux in this region is also
greatly reduced; BMS estimate 11 = 6(T,,/T,)*po/Cen- Using
equatrons (4.3) and (4.7), we see that m oc Ry q.

In region D (¢ < 0.1 and L < L_,), the mass flux in the
wind is small because gravity is strong and heating is weak.
As in the case of region C, the sonic point occurs at large
heights [ ~(T,/T, “»)°Ro], and the resulting mass flux is small
due to the exponentlal decline of the pressure at low heights
where the atmosphere is nearly hydrostatic Under the
assumptlon that the flow is nearly vertical in this 1nner
region, i & 0.5(L/L¢;)[po/(kTic/w)"/*] exp (=0.5¢ 1) oc Ry 2
exp (—0.5R,c/R,). (Note that the numerical expressions of
BMS assumed a spherically diverging outflow, which is
appropriate for a truncated disk. For an infinite disk, such
as we consider here, vertical outflow is a better approx-
imation.)

In region E (£ < 0.1 and L > L), both the heating and
gravity are strong. The isothermal sonic point occurs at
large heights, but the heating is strong enough to maintain

~ Tic. Assuming the flow is nearly vertical, we find
the mass flux density to be rt=x0. 5[p0/(dey)”2]
exp (—0.5¢71). Thus, rioc Ry? exp (—0.5Ri/R,) has the
same radial dependence as in region D but differs by the
ratio L/L.. Comparison of this expression with that for
region A shows that the wind is strong by the time it reaches
¢ ~ 0.1. Indeed, Shields et al. (1986) found that m peaks near
E~0.15.

As mentioned earlier, Figure 5 differs from the equivalent
figure in BMS (Fig. 1 in BMS). First of all, the corona/wind
boundary has been moved in Rjc to 0.1Ryc. The primary
reason for doing this is that the analytic expressions for the
mass flux density indicate that the wind is strong outside of
this radius. In BMS, they noted that their solutions were
most uncertain in the range 0.1R,c < Ry < Ric. In fact,
BMS decided it was best to extrapolate the wind solutions
inward from R,c down to 0.1R,c. We endorse this policy by
moving corona/wind interface to this same location. In
addition, the boundaries between the wind regions A, B,
and C in Figure 5 are also slightly different from those in
BMS. In BMS, the division between regions A and B was
defined by T, = Tic, and the division between regions B
and C was defined by t, =t,. Although such a division
makes sense on physical grounds a consequence of these
definitions is that the mass flux density is discontinuous at
reglon interfaces. Instead, we define the wind boundaries by
requiring that the mass flux density be contmuous The
mass flux densny for the three wind regions'® are rin% =
0.5(L/L/&)'3, f =1, and ¢ = 6.4[¢(L/L,)*1*7, where
m* = m/m,, and tgy, = po/Cep- Thus the A-B boundary is
given by ¢, =0. 125L/Lc,, and the B-C boundary is given
by &pc = (64)” 3%(L/L,,)"?. Notice that a consequence of
moving the corona/wind interface to 0.1Rc is that the new

10 In BMS m§ =~ 1.2 + 0.2, with uncertainties associated with the posi-
tion of the sonic point and the flow tube geometry. Based upon our
numerical results, we find the lower limit to be more applicable.
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A-B and B-C boundaries meet near L ~ L, at the corona/
wind interface, just as in BMS.

There can also be a discontinuity in the mass flux formu-
lae between the coronal region and the wind region. This is
because the rates derived by BMS are correct only in the
extreme limits of each region. BMS estimate that their for-
mulae are inappropriate in the range 0.1 < ¢ < 1. Shields et
al. (1986) have produced formulae for the mass flux density
which analytically connect the mass flux density between
the different regimes. We also provide such a formula given
by

o {1 + [(0.125L/L,, + 0.00382)/6]2}“6
= Meh) 1 ¥ [(L/L)*(1 + 26287)] 2

x exp {—[1 — (1 + 0.25¢72)"1212)2¢} . (4.8)

This formula provides the correct asymptotic dependence
for each of the regions A-E. In the wind regime, equation
(4.8) provide rapid transition between the different wind
solutions at the interfaces ,5 and &g, being in error by at
most x10% at these boundaries. As an example, we have
plotted in Figure 6 the predicted mass flux density as a
function of radius for different luminosities assuming a
Compton temperature of 1.3 x 107 K (L., = 0.08Lg) and a
mass of the central object of 10 M. To summarize, then,
our expression for the theoretical mass flux density (eq.
[4.8]) differs from that of Shields et al. in three respects: (1)
since our models focus on disk radii that are much larger
than the coronal region, the coronal mass flux density is
altered because the flow is nearly columnar rather than
spherically diverging; (2) the interfaces between the three
wind regions are based on the condition that mass flux
density be continuous; and (3) n} = 1.0 rather than 1.2 (see
footnote 10). Throughout this paper, when presenting the
results of BMS we use this formula to represent the predict-
ed mass flux density.

Our numerical work generalizes the results of BMS in
two important respects: first, we include a full treatment of
optically thin X-ray heating and radiative cooling, whereas
BMS consider only Compton heating and cooling. Second,

1.0E-10 p——T——— 71—

T T T
Tie=1.3x107K ]

—108 1
M.=10°Mg E

1.0E—11:
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F1G. 6.—Theoretical prediction of the mass flux density from the disk
surface as a function of radius (eq. [4.8]) for several different luminosities
assuming a Compton temperature of 1.3 x 107 K and a mass of the central
object of M, = 108 M.
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we give a self-consistent treatment of the structure of the
upper layer of the disk (in the optically thin approximation),
whereas BMS assumed that the disk was geometrically thin.
The approximations made by BMS are quite good for the
case of high Compton temperature that they focused on
(Tic ~ 10® K), but these approximations restrict signifi-
cantly the range of validity of the solutions for the softer
spectrum characteristic of AGNs (Tic ~ 1.3 x 107 K; spec-
trum 1).

We can estimate the restriction placed on the BMS solu-
tions by their assumption that the heating and cooling are
primarily caused by Compton scattering as follows. Inspec-
tion of our numerical results for spectrum 1 shows that, as a
rule of thumb, Compton processes exceed non-Compton
processes for T 2 4 x 10° K. This is not a problem in
regions A and E, since Compton processes dominate by
definition (so long as Tjc > 4 x 10° K). Next, consider
region B, in which BMS estimated that the sonic point
occurs at a temperature T; ~ (0.16-0.33)T,,. If we adopt
T, ~ 0.25T,, and require T, to be several times the 4 x 103
K minimum for Compton heating, we obtain T, 2 4.8
x 106 K, so that

L 1.3 x 107
L, ™~ 02 6( Tic

cr
from equation (4.3). Hence, for spectrum 1 (T;c = 1.3 x 107
{), much of Region B is not accurately described by the
BMS theory. For spectrum 2 (Tic = 10® K), however, very
little of the parameter space we consider here is incompati-
ble with Compton heating and cooling. Finally, we consider
regions C and D. Here we find that the temperature is of
order 0.1T, = 0.1T;¢/¢ at distances ~ R, from the footpoint.
This temperature is at least several times the critical tem-
perature of 4 x 10° K only for ¢ < 1 (spectrum 1) or & < 10
(spectrum 2). Hence, the analytic theory for region C should
be useful only for spectrum 2.
The thin-disk approximation is only marginally valid for
spectrum 1. The scale height of an isothermal corona is

3\ 1/2 1/2
e ) ()
GMpu Tic

For spectrum 1, the temperature at the base of the corona is
T, ~ 1.7 x 10° K (Fig. 2a), which gives H,(T;)/R ~ 0.16&/2,
Thus, the disk is not very thin even at R ~ Ry, and it
rapidly becomes thick at larger radii. However, the BMS
theory does not rely on the thin-disk approximation in an
essential way, so we do not expect the disk thickness to lead
to significant errors.

Finally, we wish to note some other approximations
made in BMS which, although less significant, may also
contribute to a discrepancy between the numerical results
and the theory. In order to make the general two-
dimensional problem amenable to a one-dimensional
analytic theory, BMS parameterized the shape of the flow
geometry, as well as its orientation. BMS discussed a range
of tube shapes and orientations and found that although
certain quantities, such as the location of the sonic point,
were sensitive to the details of the geometry, the mass flux
density was rather insensitive. (In addition, we note that the
flow geometry of our numerical results is not really rep-
resented by the parameterization of BMS; see § 5.) Conse-
quently, any comparison with the BMS theory will
necessarily focus on the prediction of the mass flux density.

3/2
> (region B) 4.9)

(4.10)
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The predictions in BMS also involved the assumption that
the heating time be either much larger (region C) or much
smaller (region A, B) than the gravitational timescale. This
ratio is a slowly varying function of radius and luminosity
(eq. [4.7]). Thus, unless the parameters for our numerical
models place them deep within a given region, we may well
be sampling the transition from one solution to another, in
which case we might not expect good agreement with the
theory.

5. NUMERICAL RESULTS

The majority of our calculations have been performed
using the standard AGN spectrum 1 with Tc ~ 1.3 x 107
K). These models are discussed in § 5.1 and span a lumi-
nosity range 0.0025 < L/Lg < 1. A smaller set of models has
been calculated using the ad hoc spectrum (spectrum 2 with
Tic ~ 10® K). These models are presented in § 5.2 and com-
pared with the lower Compton temperature models and the
predictions of BMS.

5.1. Tc = 1.3 x 107 K Models
5.1.1. Typical Model Result

We describe here a model calculation in which L/Lg =
0.3 on a 5R,¢ square grid using spectrum 1 in Table 1. Given
that Tc & 1.3 x 107 K, the critical luminosity, L., &~ 0.08Lg
(eq. [4.4]), so that L/L, ~ 3.8. From Figure 5, we expect the
primary constituent of this model solution to be a heating-
dominated wind. We have taken R, =0.1R;c = Ry,
(standard values for our simulations, but see also § 6.1). The
calculation was performed on a 200 x 200 coarse grid with
one additional level of refinement by a factor of 4 in each
dimension so that the maximum spatial resolution is 160
cells per Compton radius. The refinement is limited mainly
to the disk/corona interface and near the rotation axis, since
this is where the gradients are largest. In § 6.2 we discuss in
greater detail the effects of spatial resolution on our calcu-
lations. For now, we regard this resolution to be adequate
to identify the important characteristics of our models.
Because our hydrodynamics are explicit, the time step in
our calculations is controlled by the Courant condition
At(|v| + ¢)/AX < 1, where At is the time step, AX is the
spatial resolution, and v = vg(v;) when X = R(Z). The cal-
culation is performed with a Courant number of 0.5 (as are
most of our calculations), so that At = 0.5AX/(1v]| + Comaxs
where the subscript “max” signifies that we look for the
largest signal propagation speed in the grid. There is also
time step control associated with heating and cooling (see
Appendix). As discussed in § 2, all our calculations are
dimensionless. Since we are using an AGN spectrum, for
presentation purposes we have converted the numerical
results into dimensional form by assuming a mass of the
central object of M, = 108 M.

We dispense with a detailed discussion of the evolution,
instead limiting ourselves to a qualitative description, for
two reasons. First and foremost is the fact that our calcu-
lations produce, in the end, a wind pattern which is basically
steady in time. A more precise definition of steadiness is
given in § 6.2. Second, given that there is nothing particu-
larly unique about our initial conditions, there seems little
reason to describe in detail its evolution to a steady state.

The development of a wind proceeds almost immediately
in our simulations. As noted in § 3, the static initial condi-
tions in the corona do not always satisfy radial momentum
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(region I of Fig. 4a); this provides an immediate impetus for
the wind. The coronal material being accelerated radially
draws cooler disk material upward, where it is then heated
and accelerated due to the overpressure. The material at
large heights (region II of Fig. 4b) begins to cool slowly
because it is out of thermal equilibrium. However, this
material is eventually pushed out of the grid by the rising
material from the disk wind. For the material which leaves
the grid at low heights and large radii, the final flow pattern
is established rather quickly compared with the time it takes
for the entire flow pattern to develop. The flow emanating
from near the origin which travels upward along the rota-
tion axis is the last to reach a steady state. This is to be
expected, since this material has to overcome the largest
gravitational potential in order to escape from the system.
Eventually, the simulation tends to a steady state. The time-
scale on which this occurs depends on the spatial extent of
our grid and the luminosity. For this particular model, the
mass flux density coming off the disk surface is within about
a factor of 2 of the final result by ¢ & 10t., while the overall
structure is fairly well established in the wind by t ~ 25¢.
The results shown have been evolved to t = 65¢..

Figure 7 shows the steady state total density, total gas
pressure, Mach number, and temperature distribution of
this simulation. Superimposed on these figures are velocity
vectors giving an indication of both the magnitude and
direction of the flow. The boxes shown in this figure outline
the regions for which we have allowed mesh refinement to
take place.!' The refinement has been confined primarily to
the disk/corona interface and along the rotation axis, since
it is there that we expect the largest gradients. In the final
configuration, the flow leaves the grid supersonically every-
where along the upper boundary, even along the rotation
axis (the dark solid line in the Mach number plot indicates
the location of the adiabatic Mach surface). Whether or not
supersonic flow is achieved along the rotation axis is ulti-
mately governed by the flow geometry. It is well known that
the flow geometry must be diverging for a flow, with no
external momentum source, to go through an adiabatic
sonic point (e.g., BMS). The flow along the rotation axis in
our simulations tends to be well collimated; consequently
the divergence is weak and the adiabatic sonic point occurs
at large height. In general, the flow at large heights tends to
a constant velocity. But the Mach number continues to rise
with height due to the drop in temperature from adiabatic
losses. The most interesting feature is the location of the
adiabatic sonic surface (M =v/c,=1) as a function of
radius. Excluding the flow very close to the rotation axis,
the bulk of the flow within about R, < 0.2R,¢ goes super-
sonic at a height ~ R,c. This behavior was in fact predicted
by BMS for the nearly isothermal corona (region E, Fig. 5).

11 Qccasionally the contours appear discontinuous at coarse/fine inter-
faces, especially when the contours are oriented nearly parallel to the
interface. Some of this discontinuity is real in the sense that the contour
location will be predicted more accurately in the fine cells than in the
coarse ones. However, most of the discontinuity is a function of the method
of plotting patches. The coarse cells overlying the fine cells are “blacked
out”; thus, in plotting the coarse data the contouring routine must
extrapolate from the center of the last coarse cell to the interface. If the
quantity plotted varies primarily in the direction normal to the surface, this
extrapolation is poor, and an apparent discontinuity is seen. If the varia-
tion is primarily parallel to the interface, i.e., contours oriented normal to
it, then the extrapolation is accurate and the apparent discontinuity
is minimized. We thank the referee for bringing this problem to our
attention.
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plots.

For Ry 2 0.3R|c, the flow goes supersonic at a much lower
height. The height then increases almost linearly with
radius. This distinct change in the solution topology is seen
in all our models. As such, it is tempting to associate this
near discontinuity in the location of the sonic surface with
the transition from a gravitationally bound corona with a
weak wind to a vigorous wind. For this particular model,
this is justified, but in the lower luminosity models we find
such a distinction inappropriate. It is interesting, however,
that we see no signature of this discontinuity when looking
at the mass flux density, as we will see shortly.

The final pressure distribution has changed significantly
from the initial state (Fig. 4a) at large heights due to the
effects of flow. The pressure gradient in the final state is now
primarily in the Z-direction, whereas initially it was in the
R-direction. Also, the minimum pressure along the rotation
axis is more than an order of magnitude smaller in the final
equilibrium than in the initial state. This is because of a
combination of two effects associated with the flow: (1) the
final temperature is smaller due to adiabatic losses, thus
producing smaller gravitational scale heights; (2) at large
heights, where gravity is unimportant, the pressure declines

from conservation of p + pv? as the nearly vertical flow
goes supersonic. For Ry 2 0.2R,c, the final pressure dis-
tribution looks similar to the initial state up to a height of
~0.5R;c because the flow is very subsonic.

The temperature distribution when the wind develops is
vastly different from the initial static state, except near the
origin, where the low velocities and rapid heating rates are
able to keep the temperature nearly isothermal at approx-
imately the Compton temperature. The flow can cause the
transition from disk to corona (i.e., the transition region) to
become spatially extended when flow times become compa-
rable to heating times. Also, the adiabatic losses from the
flow serve to keep the maximum temperature along a
streamline well below the Compton temperature as the
wind goes supersonic. For this particular model, the disk
interface is typically a discontinuous change in density and
temperature. However, at R, 2 3.5Rc, the disk interface
becomes irregular because of the slowing of the heating rate.
At small radii the heating rates are fast and the transition to
coronal temperatures takes place over a single cell. Con-
versely, at very large radii the heating rates are slow and the
transition region is spread over many spatial cells (examples
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of this will be shown for lower luminosities). It is at interme-
diate resolution that the disk interface starts to take on this
irregular appearance. In addition, the flow from Ry 2
3.5R;c also exits the grid subsonically (see Fig. 9). Thus,
there could be a possible feedback from the boundary con-
ditions on this part of the flow leading to some instability
(Nakagawa & Steinolfson 1976). We have verified this by
performing the calculation on a larger grid, and we found
similar, but slightly reduced, structure in the disk interface.

Figure 8 shows the velocity vectors for a small region
0.5Rc on a side around the origin. The transition between
the gravitationally bound corona and wind is apparent near
Ry ~ 0.2Rc. It is interesting that there is such a marked
division between these two regimes. We find this division to
be rather insensitive to R, and Ry, for Ry, Rye < 0.1Ryc.
Also, once this region is well resolved, we see little move-
ment in this division as a function of spatial resolution.
In fact, the division location appears to be insensitive to
luminosity for L/Lg < 0.1. Given the rather large velocity
shear between the weak coronal wind and the large heating
dominated wind, it was not a foregone conclusion that the
solution would be hydrodynamically stable to the Kelvin-
Helmholtz instability. However, as stated before, our simu-
lations tend to a steady state with no evidence of
hydrodynamic instabilities.

In Figure 9 we show the streamlines and adiabatic sonic
surface of the final configuration. Also shown in this figure
is the location of the disk surface defined by the contour
T = T, pax- An important feature of the flow geometry is the
immediate turning of the streamlines from vertical to radial
upon reaching temperatures above T; ... This is a result of
the radial pressure gradient becoming important. At disk
temperatures, radial force balance involves primarily
gravity and rotation. Upon being heated, the pressure
gradient becomes large and the flow turns radial and
becomes compressed. The pressure at T, ,,,, will go roughly
at R~ 2 if the flow velocity is small because it will satisfy the
condition E = F/cp = E_ .., With the flux going as R~ 2 for
our optically thin calculations. The net acceleration due to
gravity and centrifugal force is g, ~ (GM /R*)(1 — y~ 1),
where (y — 1)R,, is the distance along a streamline (BMS).
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FiG. 8.—Velocity vectors of the inner 0.5R, region for the model in Fig.
7. Note the sharp increase in velocity near R = 0.2R .
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which the mass flux density presented in Fig. 12 is measured. The lower
solid lineis the T = T, ,,, isotherm indicating the disk surface.

The ratio of the pressure gradient to the net gravitational
acceleration is then
2p/R H: y

ap/aR__ _ _H y
PGnet (pGM /R*(1 -y~ R*y—1°

where the scale height H, is given in equation (4.10). The
two forces balance at y — 1~ HZ/R* =2T*¢ =2T/T,.
Therefore, we expect significant outward motion once
the temperature approaches the Keplerian value T, =
GM_ /(R k). As a result, it is possible for the area of a flow
tube at the sonic point to actually be smaller than it is at the
base of the transition region (ie., at T, ,,). This parameter
range of flow tube geometries was not explored in BMS.

We turn now to the prediction of the mass flux density as
a function of radius. The mass flux density along the disk
surface is shown in Figure 10 along with the analytical

(5.1)
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FiG. 10—Mass flux density (solid line) as a function of radius for the
model in Fig. 7 measured along the T = T, ., isotherm depicted in Fig. 9.
The small-scale oscillations arise from the unresolved structure of the disk/
corona interface. See text for detailed discussion. The dashed line is the

analytic prediction from eq. (4.8).
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prediction of § 4. Again, for our purposes we define the disk
surface to be T = T, .. (but see also footnote 8). Ignoring
for the moment the fine-scale oscillation, overall there is
excellent agreement with the analytic prediction, although
there may be a systematically lower prediction of the mass
flux density for R < 3.5R¢. This is certainly a striking result
considering that there were no adjustable parameters in the
analytic theory to scale it to our numerical results. Given
the caveats discussed in § 4 on the differences between the
numerical simulations and the analytic theory of BMS, it is
a little surprising that there is such good agreement. This
lends support to the assertion of BMS that the mass flux
density is a rather robust quantity. At small radii there
appears to be an exponential rise, but the amplitude of the
oscillations has increased there, making it difficult to
discern.

The small-scale oscillations are basically stationary in
time, i.e., they are spatial, not temporal oscillations. The
oscillations are a result of the finite resolution of the disk/
corona interface; that is, when the transition from disk to
corona is spatially unresolved, the disk interface is rep-
resented by a sequence of stair steps. Each stair step induces
clockwise vorticity, much like flow over a corner. On the
inner edge of the step, the induced vorticity accelerates the
overall wind flow pattern, while on the outer edge of the
step the vortex serves to inhibit the flow, causing the mass
flux density to oscillate across the step. As evidence of this
vortex, Figure 11 shows the velocity vectors for the inner
0.3R|¢ region with the magnitudes all normalized. Obvious
vortex structures are seen which are associated with steps in
the disk/corona interface. There is no evidence of any such
vortex structures at radii greater than about 0.2R,c, where
the vigorous wind begins. Vorticity is being produced by the
steps at larger radii, but the magnitude of the overall flow
pattern is larger, thus masking the vorticity pattern from
the step. This also explains why the magnitude of the oscil-
lations in Figure 10 is so much larger at small radii; namely,
the vortical structures produce velocities which are of the
order of the weak flow pattern in this gravitationally bound
region.
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normalized to unity so that they only indicate direction. Note the large
vortex structure centered at a radius of ~0.18Rc.

Vol. 461
1.06-12 T T . T . ; . . .

F/ NUMERICAL
o b — — — ANALYTIC

I
n
t}lE 1.0E-13 ::-'
3 i
w f
= 1.0E-14
=
n
Z
= Il
8 1015 4
b i E
j it
'_'l L
[ Il

|
B2 1.0e-16 E 3
< E
= i

It

1.0E-17 . L . L L 1 L L
0.0 1.0 2.0 3.0 4.0 5.0

R/Ryc

FiG. 12—Mass flux density measured along the fiducial surface
depicted by the dashed line in Fig. 9. This surface is far enough above the
disk interface that the mass flux is smooth here.

As further evidence that the oscillations are strictly a disk
interface phenomenon, we have measured the mass flux
density as a function of radius along an arbitrary surface
slightly above the disk. This surface is represented by the
dashed line in Figure 9. The mass flux density (Fig. 12) is
much smoother than that measured near the disk, indicat-
ing that the effect of the vortexes dies out rather quickly
with height. The slight increase in graininess for R 2 3Rc
arises both because the measuring surface closes back in on
the disk/corona interface so that vorticity effects become
important, and because the disk interface takes on a more
irregular structure. At small radii there is clearly evidence of
an exponential rise, but there is a large dip near 0.2R,c due
to the large vortex structure pictured in Figure 11. Because
of the weakness of the wind in the inner corona, the vor-
ticity produced from the disk interface extends to larger
heights. Notice that the magnitude of the flow no longer
agrees as well with the analytic curve for R 2 0.5R,c. The
mass flux density measured along this new surface must be
adjusted since (1) the flow tubes have been compressed since
leaving the disk, and (2) the mass flux is plotted as a func-
tion of its present location in R, not its original location R,
(Fig. 9). Thus, in order to compare the mass flux density
along this new surface with the analytic results, the magni-
tude should be reduced by the amount of flow tube com-
pression and shifted to smaller radii. The combination of
these effects would then bring it back into agreement with
the overall behavior of the mass flux density in Figure 10.

Finally , we can add one more argument in favor of our
interpretation of the oscillations in the mass flux density:
the behavior as a function of luminosity. Given our hypoth-
esis, we would expect in the low-luminosity cases, where the
heating time and length scales are larger, that the disk/
corona interface can be spatially resolved, and the oscil-
lations should disappear. We find this to be true (§ 5.1.2),
and therefore we are confident in our conclusion as to the
origin of the oscillations.

5.1.2. Luminosity Dependence
5.1.2.1. Overall Structure

We present calculations for L/Lg = 1.0, 0.08, and 0.01,
which for Tic = 1.3 x 107 gives L/L , ~ 13, 1.0, and 0.13,
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F1G. 13.—Same as Fig. 7 for the case of L/Lg = 1.0

respectively. The hope here is to be able to identify the three
different wind regimes depicted in Figure 5. The three calcu-
lations presented in this section were performed with a
maximum spatial resolution of 160 cells per Compton
radius;'? we assume R,, = 0.1R;c = Ry,

Consider the high-luminosity case, L/Lg = 1.0. This
simulation is inaccurate due to our neglect of radiation
pressure, but we discuss the results to identify the behavior
in the high luminosity regime. (Note that for spectrum 2 in
which T = 10® K, a similar value of L/L., would exist for
L ~ 0.35Lg, in which case radiation pressure effects would
be less important.) The steady state structure is shown in
Figure 13. Qualitatively, the density, pressure, and Mach
number are very similar to those in Figure 7. Quantitat-
ively, the densities and pressures are higher approximately
in proportion to the increased luminosity. The maximum
Mach number is 3 for this calculation compared to 2.9 for
L/Lg = 0.3; the maximum velocity is ~930 km s™! com-
pared to ~720 km s~ ! in Figure 6. The maximum Mach
number in this simulation is smaller than the simple

12 This resolution is sufficient for adequately viewing the overall struc-
ture. A discussion of the spatial convergence as related to the mass flux

increase in velocity would dictate because of the larger tem-
perature associated with the enhanced heating rate in the
L/Lg = 1.0 model. For L/Lg = 1.0, there is a much larger
region which is nearly isothermal at about the Compton
temperature. Also, the irregular fine-scale structure along
the disk/corona interface is not apparent until a larger
radius in the present model. Given the identical spatial
resolution of the two models, this is to be expected because
of the larger heating rate. The adiabatic sonic surface is very
similar in shape to the L/Ly = 0.3 case, especially in predict-
ing a weak flow originating from R, < 0.25R,c, which goes
supersonic at a height ~ R;c.

In Figure 14 we present the results for L/Lg =
0.08(L/L., = 1). The most notable difference between this
calculation and previous models is the shape of the adia-
batic sonic surface. The sonic surface is much noisier, since
the vortices associated with the stair step representation of
the disk interface have a more noticeable effect on a weaker
overall flow pattern (maximum velocity ~484 km s~ %)
Another important difference is that the sonic surface for
flow from small radii (R, < 0.5R,() is at even larger heights
than the previous models. This is consistent with the BMS
prediction that in changing over from a nearly isothermal
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FI1G. 14—Same as Fig. 7 for the case of L/Lg = 0.08

to region D in Fig. 5), the height of the sonic point would
increase with decreasing luminosity. In addition, the loca-
tion of the minimum height of the sonic surface has moved
outward in radius. The dramatic increase in velocity at low
helghts seen in previous models between 0.2R;c S Ry S
0.3R,¢ is now located between 0.5R;c < Ry < 0.75R,¢. For
flow from R, = 0.75R,c, the adiabatic sonic surface is basi-
cally at the same height as the previous two models. The
temperature throughout most of the wind region is cooler
than in the higher luminosity models, and the hot, nearly
isothermal corona (T 2 107 K) extends to less than 0.5R¢
above the disk. Between 4R, < R < 5R,c, the disk/corona
interface has become noticeably ‘smoother, a result of the
heating scale heights being spatially resolved. As we will see
shortly, the mass flux density from this region also becomes
noticeably smoother.

Finally, in Figure 15 the results for a low-luminosity
model L/Lg = 0.01(L/L,, ~ 0.13) are shown. This calcu-
lation is performed on a larger grld (12R;¢ % 12R,C) because
the maximum height of the sonic surface keeps increasing
with decreasing luminosity. This calculation has a coarse
grid of 120 x 120 zones with two additional levels of refine-
ment, each with a factor of 4 (i.e., maximum resolution of

the wind should represent a gravity-inhibited wind
(region C), while the outer part is a steadily heated, free
wind (region B). The height of the sonic surface is greatly
increased for streamlines emanating from R, < 2Rc. From
other calculations, we find that for L/Lg < 0.02, the sonic
surface height increases approximately as L~ ! for flow from
small radii. The minimum in the sonic surface height occurs
at Ry = 3R,c. Given that the near discontinuity in the
height of the sonic surface has moved to large radii for this
low-luminosity model, it seems inappropriate to identify it
as the transition between corona and wind (although such
as identification is appropriate for L/Lg 2 0.1). Instead, this
feature indicates the transition from a gravitationally inhib-
ited flow, which only goes supersonic at large heights, to a
vigorous free wind which goes supersonic at low heights.
This identification is consistent with the prediction of BMS
at low luminosities (Fig. 5). For R, 2 3.5R,c, the adiabatic
sonic surface is similar to the higher luminosity models, i.c.,
height increasing almost linearly with radius. The
maximum velocity within the grid is ~230 km s~ !. Thus,
the wind speed in the nearly constant velocity regime scales
roughly as L~ '3, The temperature throughout the wind
region is much cooler than in previous models. In fact, the
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FIG. 15—Same as Fig. 7 for the case of L/Lg = 0.01. The dashed-line boxes shown near the R-axis for R < 2Ry is the region for which a third level of

refinement has been used.

a maximum temperature of less than 10° K. The disk inter-
face at these radii is spatially well resolved and extended.
This, combined with the fact that the temperatures are only
marginally larger than T, .., makes, it difficult to define
where the disk ends and the corona/wind begins.

5.1.2.2. Mass Flux Density

The primary quantitative prediction from our models is
the mass flux density as a function of radius. We report here
on an extensive grid of models as a function of luminosity
covering the range 0.0025 < L/Lg < 1.0 which, given L, &
0.08Lg, corresponds to 0.03 < L/L., < 13. All of the compu-
tations reported in this section are on a larger spatial grid
(20R,c square grid) than the previously discussed calcu-
lations. This is necessary to better identify the slope of the
mass flux density at large radii and to try to pinpoint the
transitions (if any) between the different regimes. Even with
AMR, it is necessary to reduce the maximum spatial
resolution down to 40 cells per R, because of the long
timescales involved in arriving at a steady state. In compar-
ing our results with the higher resolution calculations, we
find this resolution to be insufficient to measure accurately
the exgo

(Ro < 0.2R,c). However, at large radii the coarser resolution
seems to have a minimal effect on the magnitude of the mass
flux density, except, of course, for the small-scale oscil-
lations (see also § 6.2). As such, the discussion here will
focus primarily on the solution in the wind region R =
0.5Rc. In Figure 16 the mass flux density as a function of
radius is presented for selected luminosities. The mass flux
density is measured along the disk/corona interface given
by the T = T, ,, surface. Also, we have plotted for refer-
ence in this figure the analytic prediction for Compton-
heated winds from § 4 (eq. [4.8]), although non-Compton
heating and cooling are expected to be significant at low
luminosities and large radii.

Before discussion the overall shape of the curve, consider
the behavior of the small-scale oscillations. At large lumi-
nosities, the small-scale oscillations are pronounced at all
radii in our simulations. As the luminosity is decreased, the
amplitude of the oscillations decreases. Smooth curves exist
at large radii for L < 0.1Lg. This is the result of spatially
resolving the transition region due to increased heating
scale lengths. Thus, the luminosity dependence of the mass
flux density supports our contention that the small-scale
spatial oscillations are the result of vortices set up by insuffi-
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L/L= 0.3
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FI1G. 16—Mass flux density as a function of radius for the low-T,¢ case (spectrum 1 in Table 1). All calculations were performed on a 20R,c x 20R,. grid
with a maximum resolution of 40 cells per R,c. Models span a luminosity range 0f0.0025 < L/Lg < 1.0. The dashed line is analytic prediction of the mass flux

density given by eq. (4.8).

As for the overall shape of the mass flux density, least-
squares fits to our results indicate two regimes. At high
luminosity, the mass flux density is well described by m oc

2, where a is in the range —1.9 2 a 2 —2.0. At low lumi-
nosities, a two-component fit is more appropriate with
—192az2 —20 for RSR, and —102az —12 for
R = R,,, where R, is the radius representing the transition
between these two solutions. The shallower slope solution is
evident only for L/Lg < 0.1. R,, decreases with decreasing

luminosity for L/Lg 2 0.01 and is nearly constant for
L/Lg < 0.01. Because this transition is not always sharp,
our estimate of R, is, of course, approximate. The slope of
the mass flux density for R, 2 R,, is somewhat uncertain
due to the limited dynamical range of the region, and
because the flow at large radii leaves the grid subsonically.
By computing models on different size grids, we have found
the slight rise in mass flux density in the range 18R;c <
R, < 20R ¢ to be a boundary condition effect, most likely

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...461..767W

=

2

vy

|'3_|
(5q
(<]}
(=]

!

No. 2, 1996

associated with the exit of material subsonically. The mass
flux density varies rather simply with luminosity;m oc Lis a
fairly good approximation to our results (although for
L/Lg 2 0.1, rnoc [2-®° is a more accurate representation).
We can summarize our results through a fit of the mass flux
density of the form

-2
= Co Li (—R—> F(Lg(Ry)

Ric
-0-@a+ 0.25R,2C/R3)"1/2]2}
X ex , (5.2a
P { 2Ro/Ric 2
where the functions fand g are given by
1, for L/Lg < 0.1,
= 2
U {(O.IL,.;/L)O‘15 for L/Lg > 0.1, (5.2b)
1, for Ry <R,,
= 5-2
6(Ro) {RO/R,, for Ry > R,, , (5-2¢)
and the transition radius, R,,, is given by
L/Lg L/Lg\ |
. — ]+ 4 —_—
R, 6+54Iog<0'01>+ 1|:log<0.01
R¢ for L > 0.01Lg,
6, for L <0.01Lg . (5.2d)
A value of Cy = 5 x 10713 gcm ™2 s~ ! provides the best fit

to the data in Figure 16 to within ~25% (ignoring the
small-scale oscillations). However, as we will discuss in
§ 6.2, there is some variation in the mass flux density with
spatial resolution. The calculations presented are rather
coarse (a maximum of 40 cells per R,c). Based upon con-
vergence studies, we extrapolate that in the limit of excellent
resolution

-t (5.2¢)

(see § 6.2). As for the exponential term in equation (5.1a), we
have found this form, suggested by Shields et al. (1986), to
be consistent with our data. In the limit of small radii, it
yields 71 oc exp (—0.5R,c/R,), reflecting the influence of
gravitational stratification in the nearly hydrostatic corona.

As described in § 4, a direct comparison with BMS is not
appropriate for many of these low Compton temperature
models because of our inclusion of additional heating/
cooling mechanisms which are important at the low tem-
peratures reached along streamlines at large radii or low
luminosities. However, we discuss some of the global com-
parisons of these solutions. The first point is that the
numerical results agree to within a factor of 3 over all lumi-
nosities studied. This is a striking result considering there
were no adjustable parameters to the theory by which to
scale the results. For large luminosities (L/Lg 2 0.3), our
numerical results agree very well with BMS. As the lumi-
nosity decreases, disagreement begins to appear first at
large radii. At L/Lg = 0.1, we can begin to see the Ry
behavior in the numerical results at large radii (Ry 2 14Rc).
This solution works its way inward with decreasing lumi-
nosity until at L/Lg = 0.01 it is at Ry & 6R,c. This point
(L/Lg = 0.01, Ry ~ 6R,¢) represents the maximum disagree-
ment between our models and the analytic results of BMS.
From Figure 5 we see that at this luminosity the gravity-
inhibited wind (region C) extends out about 4R,c. The BMS
theory predicts that the mass flux density in this region goes

Cor3x1073 gem™?s
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as R, ', whereas the numerical results indicate a slope in
this region of roughly R; 2, thus leading to the BMS theory
predicting a larger mass flux density than what is indicated
in our numerical results. Conversely, at larger radii (Ry 2
6R,c), the numerical results show a mass flux density with a
radial dependence of R, !. In the BMS theory the wind is in
the steadily heated, free-wind regime (region B) with a mass
flux density of Ry */3. Thus, for R, 2 6R,c the two solutions
close back in on each other with increasing radius.

Finally, consider the lowest luminosity model L/Lg =
0.0025. The BMS theory predicts that the wind is gravity
inhibited (region C) out to about 64R,c with the mass flux
density going as R, !. For Ry < 5Ryc, the numerical results
are higher than that of BMS because the mass flux density is
going as Ry 2. However, for R, 2 5Rc the agreement is
exceptional, with both the numerical and the analytic going
as R, !. However, we believe this extraordinary agreement
to be fortuitous based upon their luminosity dependences.
That is, the mass flux density of BMS has a luminosity
dependence of I?, which is different from our numerical
results which go roughly as L. We suspect that at lower
luminosities the BMS prediction will yield a smaller mass
flux density than our numerical result at these radii.
However, we could not verify this computationally because
of the large computational time required of the low-
luminosity models based on the need for a large problem
space and long evolution time.

To summarize, then, the mass flux density of our numeri-
cal models agrees best with the predictions of BMS at large
luminosities. This is not surprising, since it is at large lumi-
nosities that the effects of the additional heating and cooling
mechanisms included in our numerical models will be least
important. In addition, we have found that in the outer part
of region B (R, = R,,), the mass flux density goes as Rg!,
where R,, is given by equation (5.2d). Although this radial
dependence is characteristic of region C, the gravity-
inhibited wind, we are confident that the solution in the
outer region is not gravity inhibited for two reasons. First of
all, the movement of this region with luminosity is inconsis-
tent with the prediction of BMS for region C. That is, it
shows up first at large radii for intermediate luminosities
(L/L,, ~ 1) and moves inward with decreasing luminosity.
Contrast this to region C in Figure 5. Second, the wind in
this region possesses a low sonic point location (x0.6R,),
whereas the region C sonic point should lie at large heights.
In addition, as we will see in § 5.2, this region does not exist
in the high T case. Therefore, we conclude that this region
is attributable to the additional heating and cooling mecha-
nisms included, and/or to the fact that the maximum tem-
peratures are not much larger than T, ... We would not
have expected BMS to have predicted this behavior.

5.1.2.3. Radius-Luminosity Parameter Space

We now present a radius-luminosity parameter space
plot of our simulations similar to that of BMS shown in
Figure 5. In order to discuss the transitions between the
various corona and wind solutions, we need a few working
definitions. We begin by defining a coronal solution using
the following criteria: (1) the flow velocities must be pre-
dominantly subsonic throughout the region, going super-
sonic only at large heights (i.e., 5,,n;c/Ro > 1, Where s,p; 1S
the distance measured along the streamline from the base of
the transition region to the adiabatic sonic point), and (2)
the maximum temperature along a streamline should be at
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least T, ., (see Fig. 2). Using these two criteria, the corona
is found to extend out to about the same radius indepen-
dent of luminosity, the mean radius being roughly 0.25R,.
As mentioned earlier, the nearly constant radial extent of
the corona is a prediction of BMS and is related to the
dominant heating term in the corona being Compton
heating, which regulates the temperature in terms of the
quality of the spectrum (i.e., T;c) rather than the quantity (i.e.,
L). For L/L., 2 2, it is criterion (1) which sets the coronal
boundary, while for L/L_ < 2 criterion (2) is the relevant
constraint. We find, in fact, that for L/L_, = 2 the shape of
the adiabatic sonic surface is nearly independent of lumi-
nosity. For L/L_ <2, the height at which the flow goes
supersonic and the radial extent of the subsonic region
increase with decreasing luminosity. However, the flow
from R, = 0.25R,c for L/L_ <2 does not reach a tem-
perature of Tj ..., and as such it is not considered part of
the corona. We label this instead as the gravity-inhibited
wind region. Similarly, in order to identify the transition
between an isothermal (region E) and nonisothermal
corona (region D), we use the criterion that a region is
isothermal if the temperature at the isothermal sonic point
is larger than 0.5Tc. Using the same definition, we can also
separate out the isothermal wind solution (region A) from
the steadily heated wind solution. Finally, for the gravity-
inhibited wind (region C), we identify it through the loca-
tion of the sonic point. That is, the transition from region B
to region C is taken to be the radius at which the adiabatic
sonic surface makes the quick transition from a low sonic
point to a high sonic point.

Given these definitions, we can now summarize our
models in terms of the radius-luminosity plot shown in
Figure 17. It should be remembered that the divisions
drawn in this figure are approximate. We concentrate ini-
tially on the coronal regions. The corona is divided into an
isothermal and nonisothermal part. The division in lumi-
nosity between these two regions is uncertain due to a lack
of models; however, we estimate it to be at about L/L, ~ 2.
There is plenty of uncertainty in the form of the mass flux
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FiG. 17.—Radius-luminosity parameter space plot for the numerical
solutions to the low-Tc (1.3 x 107 K) models. The luminosity is scaled
relative to the critical luminosity (eq. [4.4]) which for this spectrum yields
L., ~ 0.08L,. The dashed line outlines that part or region B for which the
mass flux density changes from i oc Ry 2 to i oc Ry ' See text for details.
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density in the corona due to the softening radius and the
effect of the vortexes from the stair step representation of
the disk interface. However, our results seem consistent
with a mass flux density at small radii of the form 1 oc Rg 2
exp (—0.5R,c/R,). Note that this form provides a peak in
the mass flux density at R, = 0.25R,c, which is reasonably
consistent with our data. Within the corona the sonic point
lies at a height of ~ R, in the approximately isothermal
corona, whereas the sonic point height increases with
decreasing luminosity as roughly L~ ! in the non-isothermal
corona. Many of these characteristics are in agreement with
those predicted by BMS. This seems reasonable since the
additional heating/cooling mechanisms included in our
models are unimportant in the corona in which Compton
heating and cooling dominate. Two noticeable exceptions
to this rule are that the analytic prediction of the corona/
wind interface is at 0.1R,, and the sonic point height in the
nonisothermal corona should be proportional to L™ 2. As for
the location of the corona/wind interface, this is not a major
discrepancy, since it was mainly a qualitative prediction. As
we mentioned in § 4, the original version of BMS placed this
interface at R,c based upon the simple interpretation of the
Compton radius. However, we have moved it into 0.1Rc
because the mass flux formulae of BMS show that there can
be an appreciable wind at this radius. Thus, there is con-
siderable uncertainty about where the interface should lie,
and it is not surprising that the particular definition of the
corona we have chosen (a very reasonable definition) might
result in a different location. Also, BMS indicated that their
analysis is most uncertain in the range 0.1R,c < Ry < Ryc-
However, their decision to extrapolate wind solutions in
from R,c down to 0.1R,c seems to have been appropriate
and provides the best agreement. On the second point, since
the location of the sonic point in the nonisothermal corona
is governed by the details of the flow geometry, it is not
surprising that the predicted sonic point location differs
from our numerical results. In addition, in the nonisother-
mal regime more of the flow is at temperature significantly
below the Compton temperature, where the additional
heating/cooling mechanisms may have a significant effect.
In the wind regime (R, 2 0.25R,¢), we have identified the
three primary solutions identified by BMS, namely, the iso-
thermal wind, the steadily heated free wind, and the gravity-
inhibited wind. At large luminosity (region A), the wind is
nearly isothermal at the Compton temperature out to the
isothermal sonic point, with a mass flux density varying as
R;?, and the adiabatic sonic point located at low heights
(typically 0.6R,). By comparison with Figure 5, we see that
the boundary between regions A and B (R,p) is virtually
identical to that predicted by BMS, with R zoc L. Of
course, a different criterion would have yielded an altered
location for the A-B boundary. For example, if we had
chosen the criterion that the temperature at the isothermal
sonic point be larger than e ! Tj¢, then the boundary would
have been shifted downward in luminosity but still given by
R 5 oc L. Thus, the correct slope for this boundary appears
to be a fairly robust result. At large radii for all luminosities,
we find the steadily heated free wind (region B) solution.
The wind here is characterized by a low sonic point (sp;c &
0.6R,) and a mass flux density going as R; %. These charac-
teristics compare favorably with the predictions of BMS.
For region B, BMS find that 1 oc Ry °/>. This difference is
probably not significant, but it does help explain why the
numerical results tend to show a smaller mass flux density
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than the analytic prediction in region B, especially for
L/L., < 1. We have outlined with a dotted line (see eq.
[5.2d]) that part of region B for which riroc Ry, as
described earlier. We feel that although the functional
dependence of the mass flux density has changed, the wind
solution is still part of the steadily heated regime. The posi-
tion of the sonic point is still at sy, = 0.6R,. The non-
Compton heating and cooling mechanisms, as well as the
fact that the peak temperature in this part of the wind is not
significantly higher the disk temperature T, ..,, may have a
hand in producing the altered form for the mass flux
density, since we do not find this behavior in the higher Tic
case (see § 5.2, where we address this question in greater
detail). Finally, at low luminosity and intermediate radii, we
have found the gravity-inhibited wind (region C). This solu-
tion is characterized by a sonic point at large heights, the
location of which increases with decreasing luminosity.
Also, the mass flux density is proportional to Ry 2. Com-
parison with Figure 5 shows that there are some differences
between the analytic predictions of BMS in the spatial
extent of region C as a function of luminosity. In addition,
the mass flux density is inconsistent with the region C pre-
diction of BMS of m oc Ry!. Given that the BMS theory
may not be applicable at low luminosities for these low
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Compton temperature models, these differences are not sur-
prising. This is further evidenced by the fact that the higher
Compton temperature models (§ 5.2) show a B-C boundary
which is closer to the prediction of BMS. However, we still
find in the higher Compton temperature models that the
mass flux density in region C tends to favor a Ry depen-
dence, although this is somewhat uncertain due to the large
spatial fluctuations of our numerical results in the gravity-
inhibited regime. Overall, we can say that where we expect
the numerical results to be applicable to the theory of BMS,
the results compare quite favorably.

5.2. Tc = 108 K Models

We now present results using spectrum 2 in Table 1. As
mentioned earlier, spectrum 2 (Tic ~ 108 K, L, = 0.03Lg)
provides a better approximation to the conditions assumed
in BMS because much of the wind region is dominated by
Compton heating and cooling, and the temperatures are
appreciably larger than T, ,,,. Overall, these models are
very similar to the lower Compton temperature models for
high luminosities (L/L,, 2 1) but do show differences at low
luminosities (L/L,, < 1). Most notably, we do not find an
i oc Ry ! solution at low luminosities and large radii, as we
did in the low Compton temperature models.
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In Figure 18 we present the steady state structure
obtained for L/Lg = 0.1 (ie, L/L ., ~ 3) on a 5R,c square
 grid. This calculation employed a grid of 200 coarse cells in
E-: each direction and one level of refinement by a factor of 4
£ (i.e., maximum resolution of 160 cells per R;c). This model is
21 compared with a similar L/L . model in the low-T;. case
- (L/Lg = 0.3; Fig. 7). The Mach surface possesses the same

general shape as in the lower Tic model. That is, at small

radii Ry < 0.25Rc, the flow goes supersonic at a height Rc
above the disk, while at R, 2 0.25R, the Mach surface rises
nearly linearly with radius. The Mach number contours
show more noise than in the lower Tic case, for flow ema-
nating from R, < Ryc. This is because of the stronger vor-
tical structures produced from the larger density jump at
the disk interface owing to the higher Compton tem-
perature. We note also that the disk is thinner in the higher

Tc model. This is a result of the smaller gravitational scale

heights in the disk. At small heights, the hydrostatic drop in

pressure behaves like a Gaussian with a scale height

H? oc TR®. Thus, the scale height measured in Compton

radii goes as H/Ryc oc (T/Tic)"*(R/R,0)*? (eq. [4.10]). The

thinner disk is a result not only of the Compton tem-
perature being raised, but also of the fact that the tem-
perature in the disk is lower (T, .., ~ 5 x 10* K). The
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maximum velocity in the wind is 22000 km s~ !, which is
up by the square root of the Compton temperature ratio, as
one would expect based upon the velocity scaling (eq. [2.6]).
The maximum Mach number is slightly larger in the higher
Tic case because the temperature at large heights increased
less than linearly in Tic, due to the enhancement of adia-
batic losses from the higher velocities.

Figure 19 shows the steady state structure of the wind for
L/Lg = 0.005 (ie., L/L . ~ 0.17). The calculation was per-
formed on a 20R,¢ square grid with a 100 x 100 coarse grid
and two additional levels of refinement, both employing a
refinement factor of 4 (i.e., maximum resolution is 80 cells
per Ryc). This model is best understood when comparing it
with the lower T,c model of L/Lg = 0.01 (L/L,, ~ 0.13) in
Figure 15. Other than the thinner disk, the most noticeable
difference is in the shape of the Mach surface. For the higher
T;c model, the Mach surface shows appreciable variation in
the flow from small radii. More importantly, the minimum
in the Mach surface location is not reached until Ry = 6R,c,
as can be seen in Figure 20, where the streamlines are
plotted. In general, we find for low luminosities that the
radius of the minimum height of the Mach surface (R,
goes roughly as L™*/3. This is in contrast to the low-T;. case,
where we found it to go roughly as L !/? for L/Lg < 0.02.
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FiG. 20—Streamline plot for the model in Fig. 19. The upper solid line
is the sonic surface. The lower solid line is the T = T, ., isotherm indicat-
ing the disk surface.

The maximum velocity reached at large heights is 720 km
s~ !, again consistent with the Ti? scaling. Perhaps the
most significant difference is in the shape of the mass flux
density curve (Fig. 21). A least-squares fit shows that 1 oc
R;? for Ry S 6Rc and rioc Ry’ for Ry 2 6Rc. An
important point here is that we see no region at large radii
in which i1 oc Ry !, as we did in the low-Tjc case. A closer
examination reveals the reason for this change. At the sonic
point, both the high- and low-T;c: models show a radial
dependence of (pv)sonic ¢ R§, with a in the range
—1.4 = a = —1.5. Thus, the different radial dependence ri
must be a flow geometry issue. That is, the ratio of the area
at the sonic point to the area at the base differs appreciably
between the two models. Taking the area ratio to vary as
R}, we find that b is in the range —0.3 2 b 2 —0.4 for the
higher Tic model, and 0.3 < b < 0.4 in the lower Tjc model.
For comparison, we show in Figure 22 the streamlines for
the case of L/Lg = 0.01 with Tjc = 1.3 x 10" K on a 20R¢
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FiG. 21.—Mass flux density as a function of radius for the model in Fig.

19 (solid line) measured along the T = T, ..., isotherm depicted in Fig. 20.
Dashed line is the theoretical prediction from eq. (4.8).

R/Ryc
FiG. 22—Streamline plot for the low-T. (1.3 x 107 K) model with
L/Lg = 0.01. Note the large flare in the disk at large radii. This is typical of
the behavior in the low-T, case, where the gravitational scale heights can
become large at large radii.

square grid. Note the large flare in the disk due to the
gravitational scale heights becoming large at large radii. An
artifact of the pronounced flare is that the flow pattern is
not essentially vertical below the disk interface at T =
T. max = 1.7 x 10° K. Consequently, the radius at which we
are measuring the mass flux does not coincide with the
radius from which the flow is emerging and the area of the
flow tube does not match the area of the flow tube at the
point at which the flow enters our grid through the bottom
boundary. This fact can lead to an additional ambiguity in
comparing the mass flux densities between the high- and
low-T;c models. Ideally, one could remedy this problem by
simply measuring the mass flux density along the bottom
boundary. However, this turns out to be impractical, since
we would have to evolve the problem long enough for the
flow pattern inside the disk to have settled down to a steady
state, i.e., a few flow times. The flow inside the disk is at such
low velocities that this takes a very long time. In general, we
find the computational requirements for this criteria to be
prohibitive.!3 So we are limited to measuring the mass flux
density at the disk interface, ie., along T =T, ... We
emphasize here that although the flow measured along the
bottom boundary is not yet in a steady state, the flow mea-
sured at the disk interface is basically steady in time. This is
because the conditions in the wind are determining the mass
flux density at the disk interface, while the disk itself serves
only as a mass source.

We can understand the change in the flow pattern in
Figure 22 from vertical to radial before reaching the disk
interface by comparing the magnitude of the radial pressure
gradient and the gravitational attraction. Evaluating the
ratio at the disk interface and using the fact that p, ... =
L/(c4nR*E, ,,.,), We can write

6pc,max/aR T

C, max R
—Pe,max Go Mc/R2 - Tic Ry .

(5.3)

13 We have performed one such calculation for a high-T. case, and
indeed the mass flux density measured along the bottom bounary is in fact
comparable to that measured at the disk interface.
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Of importance here is the increase in pressure gradient force
relative to gravity with radius. Thus, at large enough radii,
the radial pressure gradient dominates and the flow turns
radial. Since T; .../Tic = 0.01 for the low-Tj. case, we see
that the ratio is unity at R ~ 50R,, although the flow in
fact turns radial at smaller radii because of rotation.
Another important point concerning equation (5.3) is that
in the higher Compton temperature models the pressure
gradient force is reduced not only because T is higher, but
also because T, ., is reduced. Thus, we expect the flow in
the disk to remain essentially vertical up to the disk inter-
face (as is seen in Fig. 20). However, above the disk interface
the temperature increases greatly, thus increasing the radial
pressure gradient (relative to gravity) and causing the flow
to turn radial.

Regardless of the mechanism, the significance of a radial
dependence in the ratio of the area at the sonic point to that
at the base should not be overlooked. It implies, given that
the sonic point height scales linearly with the radius, that
the tube shapes are changing with radius. In other words,
the flow tubes are not homologous. For the high-T,. case in
which the area ratio decreases with radius, the flow tube
compression at the sonic point increases with increasing
radius. For the low-Tj case, the tubes are also not homolo-
gous, as evidence by the fact that the flow tubes could turn
radial before even reaching the disk surface (T = T ..,
isotherm). Thus, an accurate description of the flow topol-
ogy would involve not just a single description for the diver-
gence of a flow tube, but rather must include a
parameterization which changes with radius.

Figure 23 shows the mass flux density as a function of
radius for the high-Tjc case for luminosities in the range
0.002 < L/Lg < 0.3. These models were all calculated with
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the same resolution (maximum 40 cells per R;c) on a 20R,c
x 20R,c grid, with the exception of the lowest luminosity
case (L/Lg = 0.002), which was calculated on a 40R,c
x 40R,c grid with a maximum of 20 cells per R, resolution.
As in Figure 16, we have also plotted the analytic prediction
for Compton-heated winds from § 4 (eq. [4.8]). In general,
the mass flux density shows greater small-scale oscillation
for the higher T, case because the density jumps at the disk
interface are larger, thus enhancing the production of vor-
ticity. In comparing with the analytic theory, we find even
better agreement than in the low T;: case, as we might have
expected. Typically the mass flux density (ignoring the
small-scale oscillation) agrees to within about a factor of 2,
with the worst agreement occurring for the lowest lumi-
nosity models. In performing least-squares fits to our
results, we find that ri1 oc Ry 2 is a good fit for Ry, < 20R,¢
for L/Lg 2 0.03 ~ L, /Lg. At low luminosities, the mass flux
density shows an i oc R, 2 dependence at small radii (R, <
Ryc) and rinoc Ry *7 at large radii (R, > Rpc), where Ry is
the radius of the minimum height of the Mach surface
which we take to be the division between regions B and C.
We note that this differs from the low-Tjc case in which the
radius at which there was a change in the mass flux density
(R4, €9. [5.2]) did not correspond with the B/C interface.
We can describe the fit to the mass flux density with the
same form as the low-Tj. case using equation (5.2a), only
now the functions f (L) and g(R,) are given by

_ f(0.03Ly/L) for L/Lg <001,
= {1 for L/L, =001, %
1 for Ry < Rge
- 4b
9(Ro) {(RO/RBC)°-3 for Ry = Rye, 1)

1.E-09

1.E-10

L/Le=01 { [ L/Lg= 0.03

Mass Flux Density(g cm™s™!) Mass Flux Density(g cm™2s7!)

L/Le= 0.002 ]

3

o 4 8 12 16 200 4
R/RIC

8 12 16 20 O 8 16 24 32 40

R/Ryc R/Ryc

FIG. 23.—Mass flux density as a function of radius for the high-T;. (10® K) case. All calculations were performed on a 20R,. x 20R,. grid (with the
exception of the L/Lg = 0.002, case which is calculated on a 40R square grid) with a maximum resolution of 40 cells per R,.. Models span a luminosity
range of 0.002 < L/Ly < 0.3. The dashed line is the analytic prediction given by eq. (4.8).
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and the transition radius, Ry, can be represented by

0.25(0.05Lg/L)** for L < 0.05L; ,

R =
sc/Ric {0.25 for L > 0.05L .

(5.4¢c)

The best fit to the data is provided by C, = 1.4 x 107! g
cm ™2 571, Again, we find that the mass flux density does
decrease somewhat with spatial resolution (see § 6.2). We
estimate, based upon convergence studies, that the appro-
priate value in the limit of excellent resolution would be

Cox 107t gem™ 2571, (5.4d)

There is an exception to this fit for the lowest luminosity
model, L/Lg = 0.002, which shows a slightly reduced slope
(h oc Rg %) for Ry < Rpc. Thus, our analytic fit somewhat
overpredicts the mass flux density at small radii for this
model, but the fit is accurate at large radii (R, > Ry().

Comparing our results with the analytic prediction of
BMS, the main discrepancy appears to be in the gravity-
inhibited wind. Assuming this solution regime is bounded in
radius by the minimum in the Mach surface height at low
luminosities (i.e., Rgc, €q. [5.4c]), we find that 71 oc Ry ? at
L/Lg = 0.005. whereas theory predicts ri1 oc R, . However,
at this luminosity region C is restricted to such a narrow
range of radii that the BMS theory may not be valid. There-
fore, we consider a lower luminosity, L/Lg = 0.002, at which
region C spans over a decade in radius, with Rzc/R;c = 14.
Again we find a discrepancy in the slope, i oc R, !-6. For
Ry > Ry, this difference in slope is small enough that the
numerical results agree with the theory to within about a
factor of 2. At smaller radii, the difference between our
results and the theory is larger, approaching an order of
magnitude at 0.25R,c. Both the theory and our numerical
results are uncertain in this region: the theoretical estimate
of the mass flux density is based on an interpolation of the
theory developed for Ry, > Ry¢, and that for R, < 0.1R,,
whereas the numerical results are subject to large-amplitude
fluctuations arising from the vortices just above the disk
interface. Because of the large computational demands of
the low-luminosity problems, it is not feasible at the present
time to provide the very high-resolution simulations that
would be needed to determine an accurate value for the
mass loss in this case. It would be of some interest to do so,
since the higher mass-loss rate we find could have impor-
tant observational consequences.

At large radii (R, 2 Rp), the numerical results possess a
slope similar to what is predicted by the analytic results
(~Rg *?3), but the magnitude is smaller in the numerical
result; it is down by about a factor of 2 for L/Lg = 0.002.
This is not surprising at low luminosities since equation
(4.9) indicates that for this model non-Compton processes
should be important in the heating the cooling outside of
~TRc.

In Figure 24 we present the luminosity-radius parameter
space plot for these high Compton temperature models. We
have used the same criteria as in the low-Tic case in dis-
tinguishing the different solution regimes. We find the char-
acteristics of the coronal region to be practically identical to
that of the lower Tjc case. The width of the coronal region is
again a constant with luminosity at about 0.25R,, and the
transition from isothermal to nonisothermal corona is near
L/L,, ~ 2. The isothermal wind region (region A) occupies
the same location in parameter space as the lower Tjc
models, with the boundary radius increasing with lumi-
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FI1G. 24.—Radius-luminosity parameter space plot for the numerical
solutions to the high-T; (10® K) models. The luminosity has been scaled
relative to the critical luminosity (eq. [4.4]) which for this spectrum is given
by L., ~ 0.03Lg. Note that this figure is similar to the analytic prediction
shown in Fig. 5. See text for detailed discussion.

nosity. These two results are an important confirmation of
the BMS theory, in that when Compton processes domi-
nate, the solution characteristics scale in a predictable
manner as a function of Compton temperature. The
primary difference between the high and low Compton tem-
perature models is in regions B and C. In region B we do
not find the r oc Ry * solution at large radii in the high-T;c
case; this is consistent with BMS. Also, for L/L, < 1, the
region B mass flux tends to favor ri oc Rg !, in agreement
with the BMS prediction of R 33, although the significance
of this result can be debated given the similarity of the
Rg 31 to Ry 2. As for region C, the spatial extent is larger in
the high-T;c case. The B/C boundary is given by equation
(5.4c) with Ry oc L~ #3. Contrast this to the low-Ti case in
which Rpcoc L't for L/Lg 2 0.02, and Rpcoc L2 for
L/Lg < 0.02. Although still not in agreement, the high-T;c
case is closer to the analytic prediction of Ry oc L™ 2. Still,
the overall similarity of Figure 24 to the prediction of BMS
in Figure 5 is quite striking.

To summarize the high-T;c models, at high luminosity
(L/L,, 2 1) the results scale in a predictable manner with
the low-Tj: models and agree extremely well with the pre-
dictions of BMS over all radii. At low luminosities, the
high-T¢ results do not show the ri1oc Ry ' dependence at
large radii seen in the low-Tjc case; instead, rioc Ry !,
Also, the radius at which the transition from gravity-
inhibited wind to free wind (i.e., Rpc) increases with decreas-
ing luminosity faster in the high-Tj. case than in the low-Tj¢
case. The agreement between the analytic mass flux density
and the high-T. results becomes worse with decreasing
luminosity, presumably because of the influence of non-
Compton processes in the heating and cooling. Still, the
analytic mass flux density of BMS is typically within a
factor of 2 over the range of luminosities and radii studied
in our models. The most significant difference between the
analytic theory and the high-T,. models appears to be the
form of gravity-inhibited solution (region C). Here we find
that the scaling of the mass loss with radius (1 oc
Rg °-Ry ?) is consistent with that found in the low-T; case
but is much steeper than predicted by theory (rir oc Ry ).
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This difference in slopes results in a significant difference in
the value of m only inside R;c, where our numerical results
are subject to large fluctuations. We leave it to future calcu-
lations to determine whether the high mass-loss rates indi-
cated by our numerical results for these small radii are
valid; if so, accretion disk winds from low-luminosity X-ray
binaries should be more readily observable than previously
thought. We note also that the discrepancy between our
results and the theory in region C may be attributable to the
ratio of the gravitational timescale to heating timescale
being a slowly varying function of luminosity. Thus, the
transition to the gravity-inhibited wind may not be attained
until a lower luminosity than has been sampled so far. The
slight decrease in the measured slope of region C for our
lowest luminosity model is suggestive along these lines.

6. DISCUSSION

6.1. Effects of Ry, and R, at Small Radii

All the calculations presented in this paper have assumed
the values of R, = 0.1R,c = Ry, where R, is the radius
inside of which the gravitational potential is softened, and
R, is the radius inside of which the cold disk drops out of
the computational domain so that there is only hot coronal
material. Here we comment on the effect of these param-
eters upon our solutions. We present the results of two
calculations for which Tjc = 1.3 x 10’ K and L/Lg = 0.3,
which differ only in their value of R (0.1R,c and 0.05R,().
Both calculations are performed on a spatial grid which is
5Ric x SRyc with a 100 x 100 coarse grid and two levels of
refinement, both a factor of 4 (i.e., maximum resolution of
320 cells per Ry¢). Figure 25 shows the mass flux density as a
function of radius measured along a surface slightly above
the disk/corona interface, as we did in Figure 12. We have
chosen this surface for comparing the mass flux density
because the effect of the vortices near the disk is reduced,
allowing us to get a much clearer picture of the mass flux
density at small radii. Notice that when the softening radius
is reduced by a factor of 2, we are able to obtain a much
better delineation of the exponential rise of the mass flux
density because it is occurring over the inner 0.1-0.2R;c. In

1.0E-12 — . . . - . . T

NUMERICAL, ]
R,,=0.1R,c 1

— — — ANALYTIC

1.0E-13

1.0E-14

1.0E-15

1.0E-16

MASS FLUX DENSITY(g cm™3s™!)

B = R 0 | e g g m i .11

1.0E=17 L 1 L 1 L 1 L 1

R/Ric

FiG. 25.—Mass flux density curves showing the effect of R,,. Both models have identical model parameters (L/Lg = 0.3 using spectrum 1 with R
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theory, we would like to be performing all our calculations
with a softening radius at least this small. However, in prac-
tice, this is not always feasible for several reasons. First of
all, there is the need to have sufficient spatial resolution to
resolve adequately the smaller gravitational scale heights
induced by using a smaller softening radius. Second, and
what seems to be more important, the smaller softening
radius produces a highly evacuated region near the rota-
tion axis. This region is a source of numerical difficulty
because small perturbations from denser regions become
amplified as they travel into the rarefied region, thus yield-
ing strong shocks which heat the region and slow down the
calculations through the Courant condition. To understand
the source of the evacuated region, consider the solution to
the vertical stratification in an isothermal hydrostatic atmo-
sphere. The vertical momentum equation yields

dlnp*  —1do*
0Z* ~ T* dZ*’ 61)
so that
p*(Z*) = p(0) exp { —[D*(Z*) — *(0)]/T*} . (6.2)

Evaluating this expression along the rotation axis and
taking the temperature equal to the Compton temperature
(ie., T* = 1) and using equation (2.21) for the gravitational
potential, we have the expression

p*(Z*)/p*(0) = exp {[(Z* + Z%,)* + R¥F] 12
—(Z35 + R;kpz B (6.3)

Evaluating equation (6.3) at large heights and using the fact
that R > Z¥,, the minimum density in the evacuated
region at large heights is

p*(Z* = 0)/p*(0) ~ exp (— 1/RY) . (6.4)

Thus, the density contrast for R% =01 is e !~
4.5 x 1073, while for R¥ =0.05 it is e 2® ~ 2.1 x 107°.
By simply reducing the softening radius by a factor of 2, the
density in the evacuated region along the rotation axis has
been reduced by another 4 orders of magnitude. This allows
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0.05R,c) and the same resolution. The mass flux density is measured above the disk surface (see Fig. 12) to show off the exponential rise, which is much better

defined in R, = 0.05R,c.
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lower amplitude sound waves propagating into this region
to steepen into strong shocks, which end up heating this
region to high temperatures. Although Compton cooling
will attempt to cool the region back down to Ti, it is vastly
inferior to the strong shock heating. Therefore, in practice
we find it necessary to keep RE = 0.1.

We find our calculations to be much less sensitive to the
value of Ry,,. R, controls the radius at which the cool disk
enters the computational grid, and as such it indicates the
radius at which vortices arising from the stair step configu-
ration of the disk are induced in the calculation. If the mass
flux at small radii is measured above the region (as was
done in Fig. 25), then changing this radius has a fairly
minimal effect on the calculations outside of this region.
Consequently, it was only necessary to keep R, large
enough so that the gravitational scale heights in the cool
disk did not become too small. Typically, we have set
Ry, = R, to keep the area of influence for this parameter of
the same size as the softening potential.

6.2. Spatial Resolution and Time-dependent Behavior

We discuss here in more detail the effect of spatial
resolution on our solutions and the significance of the state-
ment that “our calculations produce, in the end, a wind
pattern which is basically steady in time.” In this section we
make frequent references to the terms high, low, and inter-
mediate resolution; they apply to our ability to spatially
resolve the disk-corona transition region with the use of
adaptive mesh refinement. Given that this is a function of
radius and luminosity, we defer to these qualitative state-
ments rather than endeavor to provide the exact resolution
required.

Although we describe our final solutions as being in a
steady state, there may be (depending upon resolution)
some slowly evolving features. These features are usually
confined to two regions. The first region we have identified
previously; it is the disk interface at large radii as seen in
Figure 7. For Ry = 3.5R, the disk interface changes slowly
with time. We have verified that this is mainly a resolution
issue. That is, this slow evolution occurs once the spatial
resolution becomes, in a sense, intermediate. At low
resolution, there is time-steady behavior in this region
because the disk interface is represented by essentially a
discontinuity in density. The Godunov hydrodynamics does
an exceptional job at handling and maintaining the discon-
tinuity. At high resolution, the transition region is resolved
and once again there is no problem; the disk interface is
stationary in time. This can be seen in Figure 14 for the case
of L/Lg = 0.08 between 4R S R < 5R ¢ where, because of
the reduced luminosity and therefore an increase in the
heating timescale, the transition region is starting to
become spatially resolved. Note coincidentally, we also see
no evidence of fluctuations in the disk interface of the final
state in this region. There are, however, some small fluctua-
tions at slightly smaller radii where again the resolution has
become intermediate. Experience has shown us that the
fluctuations are larger when the intermediately resolved
transition region occurs near the outer boundary condition.
When it is situated well in the interior of the computational
domain, the outer regions seem to provide a damping of the
fluctuations. This is the basis for the earlier statement that
the boundary conditions are providing a possible feedback
in enhancing the fluctuations.

The second region which may show time-dependent
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behavior is the inner corona just above the disk interface.
We isolate this time dependence from that described above
because although it is related to spatial resolution, it is not
associated with resolving the transition region. The tran-
sition region here is completely unresolved and is represent-
ed by a discontinuous surface which has a stair step
appearance. We remarked earlier that the stair steps give
rise to vortex structures which are easily seen in the inner
corona due to the overall flow being weak from gravita-
tional attraction. As long as these vortices are well separat-
ed in space, the flow will still be nearly stationary in time.
However, as the spatial resolution is increased, the stair
steps move closer together, and the vortices start to interact
with each other, resulting in nonstationary behavior. Thus,
the inner corona has the rather interesting behavior that as
the spatial resolution is increased, the weak wind of the
inner corona can become time varying. This would continue
until the resolution becomes large enough to start to resolve
the transition region in the inner corona. For the case of
L/Lg = 0.3, the inner corona is limited to R < 0.25R;c. To
spatially resolve this region requires a spatial resolution
which is orders of magnitude higher than what is currently
feasible given our computational resources, even with
AMR.'* We find that the time dependence of the inner
corona begins at a lower spatial resolution as the luminosity
is decreased because of the slower overall flow velocities. In
addition, the extent of the time-dependent region increases
as the luminosity is decreased as a result of the increasing
domain of the gravity-inhibited wind.

We wish to emphasize here that time-dependent behavior
in the final state of our calculations is numerical, not physi-
cal. This is of importance because there has recently been a
series of papers by Melia and coworkers (Melia et al. 1991;
Melia & Zylstra 1992; Melia, Zylstra, & Fryxell 1992) in
which, in modeling the inner corona of a disk typical of
X-ray binaries, they found extreme time-dependent behav-
ior. Our calculations differ from theirs in several ways. First,
their calculation is performed for only the extreme inner
corona. Their outer boundary is at a distance of 5 x 108 cm
which, given their Compton temperature of 2 x 107 K, cor-
responds to 0.01R,c. Thus, their entire grid is contained
within just a few of our innermost zones. Second, they have
included flux-limited radiative diffusion in their calculation,
whereas we have assumed optically thin radiative heating
and cooling. Third, and most importantly, the material is
injected upward from the disk with highly supersonic
velocities (Mach 27 in the corona). Melia and coworkers do
not include any of the disk inside the computational
domain but rather use it as a boundary condition. This
contrasts greatly from our model, in which we do not
specify the velocity in the Z-direction at all but rather have
it determined self-consistently by the hydrodynamic evolu-
tion. As we mentioned in § 3, this is the appropriate bound-
ary condition if the flow is rising subsonically. Given that
our computation includes the disk in which we can safely
assume that flow to be subsonic, our boundary condition is
the appropriate one. Melia and coworkers are correct in
prescribing the velocity normal to the interface for all time,
provided it is supersonic. The question then comes down to

14 1t is really the Courant time requirement of the inner zones which
makes this calculation prohibitive. The number of zones used in resolving
the transition region is tolerable, but the number of time steps taken will be
prohibitively large.
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whether or not the highly supersonic boundary condition
should be believed. The large velocity (Mach 27) they use
arises from making the incorrect argument that most of the
incident flux at the disk comes out as kinetic energy of
material rising from the disk. This is completely inapprop-
riate, since most of the radiation is either directly scattered
or absorbed and reradiated at other wavelengths (Basko &
Sunyaev 1973; Basko et al. 1977; London & Flannery 1982;
Tavani & London 1993). Thus, the injection velocity they
use is greatly overestimated. This large injection velocity
results in the presence of a high-density, optically thick
sheath above the disk as the material slows down due to
gravity.!*> The time-dependent behavior they find results
from the radiation presssure force on this unphysical high-
density sheath and is therefore suspect.

Let us turn briefly to a different aspect of time depen-
dence: the assumed constancy of the luminosity of the
central source. In our calculations, we have evolved the
wind to a steady state from an initially static condition
assuming the luminosity to be constant. If the luminosity
varies on timescales less than the characteristic flow time
tc = 5700 Mg yr (for the typical case of T,c = 1.3 x 107 K),
the variations will be averaged out, and our results should

!5 Although the velocity is high, at radii less than about 2 x 108 cm it is
still gravitationally bound.
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be applicable. Similarly, if the variations occur on large
timescales, then our results show that the flow reaches a
steady state and our results apply again. For example, the
mass flux density is within about a factor of 2 of the final
result after about 10t for the case of L/Lg = 0.3 (see
§ 5.1.1). Thus, for variations in the luminosity longer than
about 10¢., we expect this model to be applicable. Without
carrying out the calculation, we cannot say what the effect
of variations of the luminosity on a timescale of order
1-10t. would be. We note, however, that Shields et al.
(1986) showed that the flow should be stable except in the
unlikely case that the mass loss in the wind is substantially
greater than the accretion rate.

Finally, we should address the question of spatial con-
vergence in our models. For our purposes, we will measure
convergence through the mass flux density at the disk inter-
face. In Figure 26 we show the mass flux density as a func-
tion of radius for four different models (L/Lg = 0.1 and
Tic # 1.3 x 107 K) which differ only in their spatial
resolution (40, 80, 160, and 320 cells per R,c). Also shown in
this figure for reference is the fit (eqs. [5.2a]-[5.2d]) with
Co=5x10"13 g cm™? s™!, the adopted value for the
spatial resolution of 40 cells per R;c over a wide range of
luminosities. Note that the increased resolution provides a
better depiction of the exponential rise in the mass flux
density at small radii, thus providing confidence in our fit at

1. -1 — T

40 Cells/Ryq

1.E-12

Mass Flux Density(g em™2s7?)

80 Cells/Ry¢

! L 1 1 1 ) 1

1E-1B b

Mass Flux Density(g cm™2s™!)

R/RIC

2 3 4 5
R/Ryc

F1G. 26.—Mass flux density as a function of radius for the identical problem (L/L = 0.1 using spectrum 1) calculated on four different spatial resolutions
from 40 to 320 cells per R,c. The dashed line is the numerical fit (eqs. [5.1a]-[5.1d]) with the fitting coefficient assumed to have the best-fit value
Co=5x 10713 g cm™2 s™!. Note the overall decrease in mass flux density with increasing resolution. Also note that as the resolution increases, the
exponential rise at small radii becomes better defined.
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1‘05—12- —— T TABLE 3
ELECTRON COLUMN DENSITY (L/Lg = 0.08)
Angle  (m 2 fr<R,) f>Ro
=~ X 50...... 24 (22) 094 0.02
K2 x 150...... 28 (22) 0.86 0.05
! x 300...... 3.7(22) 0.73 0.08
g x 450...... 53(22) 0.63 0.09
w 700...... 10 (23) 0.53 0.10
;5 750...... 1.1 (23) 0.49 0.11
800...... 1.3(23) 047 0.13
820...... 1.7 (23) 0.46 0.15
840...... 2.8 (23) 0.36 0.26
86.0...... 6.3 (23) 0.23 0.41
2 a(b) = a x 10°.
1.06-13 PO :
10 100 1000 TABLE 4
Cells/Ryc ELECTRON COLUMN DENsITY (L/L; = 0.01)

FiG. 27.—Convergence plot showing the change in the mass flux
density fitting coefficient C,, with spatial resolution. The curve is “turning
over” for large numbers of cells. In the limit of infinite resolution, we
predict a value of Cy = 3 x 1073 gem™2s7 %

small radii. From this figure, we see that there is a reduction
in the mass flux density as the spatial resolution is
increased. It is not large, but it is noticeable. We have fitted
each of the curves to the functional form in equations
(5.2a)—(5.2d) and tabulated the values for C, in Figure 27.
We see that although C, is decreasing with resolution, the
result is converging. A rough estimate indicates that Co =
3 x 107!3 gecm ™2 s ! is probably a better estimate of the
mass flux density in the limit of infinite resolution. Mean-
while, for the case of Tic ~ 10® K, we estimate that C, =
107! gcm™2 s~ ! is probably a better estimate in the limit
of infinite resolution than the value 1.4 x 107 ** gem~2s7!
found for the models with a resolution of 40 cells per R;c.

6.3. Optically Thin Approximation

Now we examine the validity of the optically thin
assumption in our calculations. The primary sources of
opacity in our models are electron scattering and bound-
free absorption. We consider first the electron scattering
contribution. In Tables 2—-4 we show the optical depth from
Thomson scattering for the three models shown in Figures
7, 14, and 15 (L/Lg = 0.3, 0.08, and 0.01, respectively). The
Thomson depth has been computed for rays originating
from the origin with different inclination angles relative to

TABLE 2
ELECTRON COLUMN DENSITY (L/Lg = 0.3)

Angle (cm™2?  f(r<R,) f(r>Ry)

50...... 9.1 (22) 0.94 0.02
150...... 1.0 (23) 0.87 0.04
300...... 14 (23) 0.75 0.05
450...... 1.9 (23) 0.65 0.07
700...... 3.5 (23) 0.57 0.06
750...... 4.0 (23) 0.53 0.07
80.0...... 4.5 (23) 0.52 0.09
820...... 4.7 (23) 0.50 0.10
840...... 5.7(23) 0.42 0.21
860...... 1.8 (24) 022 0.46

a(b) =a x 10

Angle m™*  fr<Ry) f0r>Ry

50...... 3121 0.93 0.02
150...... 3521 0.84 0.08
300...... 49 (21) 0.69 0.13
450...... 7.4 (21) 0.58 0.16
700...... 1.5(22) 0.46 0.20
750...... 17 (22) 0.41 0.23
800...... 24 (22) 0.31 0.35
820...... 3.0(22) 0.25 0.44
840...... 4.2 (22) 0.18 0.56
86.0...... 7.8 (22) 0.10 0.70

2 a(b) = a x 10°.

the rotation axis. As expected, the optical depth is smallest
for rays nearly parallel to the rotation axis and largest for
rays nearly tangent to the disk surface. The large jump in
optical depth at large inclination angles is from rays
actually intersecting the disk. For example, for L/Lg = 0.3,
this occurs near 4R,c (2R,¢) for a ray inclined at 84° (86°) to
the rotation axis. We have also computed in these tables the
quantity f(r > R,c), which represents the fraction of the
total scattering optical depth which results from distances
greater than R,¢ from the origin. For L/Lg = 0.01, thereis a
large contribution from r > R,c for smaller inclination
angles because of the extended nature of the disk in this
calculation. We have also tabulated in Tables 2-4 the frac-
tion of the scattering optical depth which comes from radii
inside the softening radius, f(r < R,,). Since our models are
inappropriate inside R, it is only the contribution outside
R,, which should be treated with confidence. Inside the
softening radius, the flow is gravitationally bound and
nearly hydrostatic, in which case analytic models such as
those of Ostriker et al. (1991) would give a more accurate
prediction of the structure than our models. However, we
note that the optical depths we obtain from inside the
softening radius are of the right order. Using our model
parameters (L/Lg = 0.3 and T~ 1.3 x 10’ K) in the
analytic work of Ostriker et al., we find the vertical optical
depth at the softening radius (R = Ry, = 0.1R;¢) to be
~0.07. Our numerical results give an optical depth for a
nearly normal ray (inclination angle of 5°) of 0.06. Certainly
this degree of agreement is fortuitous, but we note that the
model calculation performed with R¥ = 0.05 = Ry, gives
an optical depth for a nearly normal ray of 0.07. Thus, there
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appears to be some precedent for the normal optical depths
being relatively insensitive to the softening radius.

The optical depths in Tables 24 tend to scale approx-
imately with L, as one would expect from equations (2.5)
and (2.10). Also, although the models discussed assume
M, = 10® M, the optical depths are independent of the
mass scaling. Thus, it appears that the optically thin
approximation at least for Thomson scattering, is valid in
the wind region of our models using the AGN spectrum
with L/Lg < 0.3. The approximation is debatable in the
corona inside the softening radius and in the disk itself, but
even then it is only questionable for the high luminosity
models (L/Lg > 0.3).

The other source of opacity to consider is bound-free
absorption from species which have not been completely
stripped of their electrons. To estimate this opacity, we have
used our simulations to obtain the run of density and tem-
perature as a function of distance along rays inclined at
different angles to the rotation axis. We then use CLOUDY
to calculate the ionization stages of the different species
along the ray and sum up the results to obtain the total
bound-free opacity. In Figure 28 we show the bound-free
optical depth as a function of photon energy for two of our
models (L/Lg = 0.3 and 0.01; Figs. 7 and 15, respectively).
Each curve in this figure represents a ray with a different
inclination. The sequence of inclination angles is exactly the
same as that listed in Table 2, with the highest optical depth
corresponding to the largest inclination angles. We note
that the only rays for which there is appreciable optical
depth are those which intersect the disk (i.e., inclination
angles less than ~84° for L/Lg = 0.3 and ~80° for L/Ly =
0.01). Thus, in the wind region the material is sufficiently
ionized and/or of small enough column density to present
little optical depth. The fact that there is large bound-free
opacity inside the disk, especially at photon energies
between 102 eV and 10 keV, is not unexpected since the
material is denser and cooler. Most of the opacity is caused
by incompletely stripped stages of C, N, and O for photon
energies between 100 eV and 1 keV and of Fe at around 10
keV. The dashed line in Figure 28 shows the bound-free
optical depth obtained by ignoring the contribution inside
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of the softening radius. The importance of the region inside
the softening radius is rather minimal except at small incli-
nation angles, where most of the material is located at small
heights. For the rays which intersect the disk, the contribu-
tion from inside the softening radius is insignificant, so that
the dashed lines lie right on top of the solid lines.

To summarize, then, it appears that the optically thin
assumption is valid for all our models in the corona/wind
region outside the softening radius. This is acceptable, since
we do not claim validity for our models inside the softening
radius. We would also predict that the wind and outer
corona (R* > 0.1) will not be seen in continuum absorption.
Bound-free absorption is important in the disk, as one
would expect.

To this point, we have concentrated on the opacity seen
by the central X-ray flux; however, it is also important to
consider whether the lines which provide the collisional
cooling are effectively thin. It was pointed out by London,
McCray, & Auer (1981) for the case of X-ray—illuminated
stellar atmospheres that when the lines are effectively thick
so that line photons will be collisionally quenched before
escaping the system and can no longer provide a net
cooling, the thermal equilibrium curve can be altered drasti-
cally. One example cited by London et al. exhibits a change
in the pressure at the bottom of the transition region (p, .,
in our notation) by a factor of 5 depending upon whether
the line losses were included in the optically thin limit or
ignored as is appropriate in the effectively thick limit. This
change in base pressure can directly affect the magnitude of
the mass flux generated by the wind.

Let € = n,C,/(A, + n,C,) represent the probability per
absorption that a line photon is thermalized through a col-
lisional de-excitation, where C,, is the collisional deexcita-
tion rate coefficient and A,, is the spontaneous emission
rate. Taking 7, to be the line center optical depth, then we
say that if ety > ()1, then the line is effectively thick (thin).
The optical depth at line center can be written as

7lzl/zerlu

m,c Avp

Ny, (6.5)

To

T —TTTT
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F1G. 28—Bound-free opacity as a function of energy along different rays for the case of L/Lg = 0.3 and L/L; = 0.01 (both spectrum 1). .Each curve is
labeled by its inclination angle as given in Tables 2 and 4. The largest opacity rays have the largest inclination angles relative to the rotation axis. The dashed
line is the contribution excluding the material inside of the softening radius, R, = 0.1Ryc.
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where f}, is the oscillator strength, Avy, is the Doppler width,
and N; is the column density of atoms in the lower state L
Using the expression C, = 8.63 x 107%Q/(w, T'?) cm?
s~ 1, where w, is the statistical weight of the upper state, and
Q s the collision strength, then

neQ f;u '10
Ay, T? 2kT/m)/?

where we have assumed n, C,; < A, (a good approximation
for the lines of interest here). Also, in equation (6.6) we have
written the Doppler width as Avp = vym/A0, Where A is
the wavelength of the transition, and v, = (2kT/m)*/? is
the thermal velocity of the ion in question.

We evaluate equation (6.6) for an important line, selecting
conditions appropriate to the bottom boundary of our
computational grid in order to assess the ability of the disk
to trap this line. Along the bottom boundary, the ionization
parameter is constant and given by E=ZE_ . e %~ 24.
In thermal equilibrium under the optically thin approx-
imation, the equilibrium temperature is T ~ 4 x 10* K for
the case of T,c = 1.3 x 107 K. For these conditions, line
cooling is dominated by a resonant transition of O vi
located at 1035 A contributing approximately 48% of the
total cooling. Taking 4,, = 4.1 x 103571, Q = 5.05, 0w, = 6,
and o, =2, the oscillator strength f,, = A, 43w,/
(0.667w,) = 0.198, and equation (6.6) becomes

_ —30 __MeNi
€7o =42 x 10 T/4 x 10°°

Given the definition of the ionization parameter E=F/cp,
the electron density in the disk along the bottom boundary
can be written as

T 2(L R\?
- (-] . (CHR Y il | Rkl
ne= 200 102 (1) )

T -1 = -1
X (W) (ﬂ) Mc_s1 cm 3. (68)

Let us consider the model shown in Figure 7 in which
L/Lg =03 and T,c = 1.3 x 10’ K. Evaluating equation
(6.8) at a radius of 4R, the electron density at T = 4 x 10*

€1y =129 x 1077

N,, (6.6)
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K and E = 24 is 5.6 x 10* cm 3. In estimating the column
density N,, we consider a vertical column in the disk
(contribution from corona and wind to the line opacity is
negligible) and assume that all the oxygen is in the ground
state of O vi with an abundance relative to hydrogen of
8.51 x 10™*. The height of the disk is h ~ 0.4R,c (Fig. 7), so
that N, = ngy;h ~ 1.2 x 10*° cm 2. From equation (6.7),
we see that €7, & 2.8 x 107> < 1, so the disk is effectively
thin in this important radiator. Both n, and N, are functions
of radius, and therefore so is €z,. If we take the height of the
disk to be a constant fraction of the gravitational scale
height, then hoc R3? (see eq. [4.10]), and ety oc R™25.
Therefore, the disk becomes increasingly thicker to lines at
smaller radii. In fact, ety ~ 1 for R ~ 0.06R,c, which is
inside the softening radius of 0.1R,c. Therefore, we can be
confident that our use of the optically thin line cooling in
determining the net radiative loss is valid. However, given
that n,oc M3' and column density is independent of
central object mass (see earlier discussion), a 1 M object
would possess €ty ~ 2.8 x 10° > 1. Therefore, the disk
would be effectively thick in the lines, significantly reducing
the contribution from line cooling and increasing the base
pressure from that determined in the optically thin limit.

6.4. Iron Ka Lines

It has been recently found in some AGNs that iron Ko
emission is observed (see Koyama et al. 1989; Marshall et
al. 1993; Ueno et al. 1994). We compute the column density
of iron along rays to the central object which are inclined at
different angles to the rotation axis. The calculation is per-
formed by taking the density and temperature structure of
the wind and using CLOUDY to perform ionization equi-
librium calculations at every point in the model, assuming
the radiation is unattenuated from the central source. We
have performed this calculation assuming a solar abun-
dance of iron of 4.68 x 1073 (Grevesse & Anders 1989).
Column densities are calculated for two models with T =
1.3 x 10" K, L/Lg = 0.3 (Fig. 7) and L/Lg = 0.01 (Fig. 15).
No attempt has been made to extrapolate a contribution to
the column density from regions outside the computational
domain. The results are summarized in Figure 29, where we
show the column density as a function of ionization state for

.BE+19 Er T T T T T

LI R B B B B NN B N B BN B B

L/Lg=0.01

LBE+18

LBE+17 B

LBE+16 E

BE+15 |

Fe Column Density (cm™?)

BE+14 E

.PE+13

5 7 9 11 13 15 17 19 21 23 25 27

Ionization Stage

FI1G. 29.—Column density of different ionization stages of iron for L/Lg = 0.3 (see also Fig. 7), and L/Lg = 0.01 (see also Fig. 15). Each curve is labeled by
its inclination angle as given in Tables 2 and 4. The dashed lines show the column density excluding the region inside the softening radius, Ry, = 0.1R,c.
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rays with various angles of inclination. We find that the
column density of the highly ionized ions depends critically
on the density structure at small radii. Given that our
results must be considered suspect at small radii due to our
use of the softening radius for the gravitational potential, it
is necessary to identify the magnitude of our uncertainty. To
delineate this region, we have also plotted in this figure
(dashed line) the column density obtained when one ignores
the contribution inside the softening radius. Thus, the
results excluding the inner region can be viewed as lower
limits to the true column density. Our results suggest that
H-like and, to a lesser extent, He-like Fe are probes of the
inner (R < 0.1R,¢) corona. Thus, we cannot make any pre-
dictions for these ions using our models. It appears, though,
that for Li-like and above, the contamination from the
inner corona is probably minimal, and our results should be
valid.

At small inclination angles (i.e., looking nearly down the
rotation axis), we see only the high ionization state material
because most of the material is at the Compton tem-
perature. As the inclination increases, contributions from
lower ionization stages arise as the line of sight runs
through the vigorous wind region. Finally, at large inclina-
tions (i.e., 86° for L/Lg = 0.3 and 2 75° for L/Lg = 0.01), the
line of sight intersects the disk, giving rise to large column
densities of low ionization state material.

Comparing the results from the two luminosities, we find
that the column density of the high ionization stage
material goes down nearly linearly with the luminosity. This
is because the density at the base of the corona is pro-
portional to the luminosity through the ionization param-
eter [ie., p = L/(4nr’E, ,,)]- The low-luminosity case also
has an appreciable fraction of C-like and N-like material at
intermediate inclinations. In particular, for an inclination of
45° there is an N-like column density of ~2 x 10 ¢cm 2
for L/Lg =0.01, while it is only ~2 x 10'* cm~2 for
L/Lg = 0.3. Thus, there is the potential for discerning infor-
mation on the luminosity from the presence of N-like ions
at low luminosity.

In theory, one would like to calculate line profiles from
our models to make predictions of line shifts and/or asym-
metries which would identify the presence of a wind. This is
outside the scope of the present paper. We can, however,
make some simple predictions. First of all, since the K-shell
photoionization cross section is roughly 2 x 1072° for
Li-like through Na-like ions of Fe (Band et al. 1990), the
column densities predicted are insufficient to produce a
noticeable K-edge in the spectrum. A possible exception to
this statement may be the H-like and He-like ions at small
radii, R < R, = 0.1R;c. Another prediction to consider is
that of Ka emission lines which Band et al. have shown to
arise from not only fluorescence following a K-shell ioniza-
tion, but also from resonant scattering of the continuum
from the central source. The line center cross section is
n12e2f, /(m, c Avp), where f;, is the oscillator strength and
Avp, is the Doppler width. Assuming an oscillator strength
of fi, = 0.4 (Band et al. 1990) and a temperature of 107 K,
one obtains a cross section for absorption of 2.3 x 10~!7
cm?. Thus, for column densities of order 4 x 10'® cm~2, an
ion will be an efficient scatterer of the continuum. Given our
computed column densities, we see that there is ample
depth for resonant scattering of the radiation from the
central source for many ionization states. We will address
the problem of predicting detailed line diagnostics for our
models in a later paper.

Vol. 461
7. SUMMARY

We have performed two-dimensional, axisymmetric
hydrodynamical calculations of X-ray-heated winds from
accretion disks for a range of luminosities. In our calcu-
lations we have used two spectra indicative of AGNs pos-
sessing Compton temperatures of 1.3 x 107 K and 10® K.
Radiative heating and cooling is taken to be optically thin.
We have provided detailed discussions of our solutions,
particuarly in terms of the shape of the Mach surface and
the mass flux density at the disk surface. Typically, the
Mach surface is at large heights (X R,¢) for flow emanating
from small radii, indicative of gravitationally inhibited flow.
At larger radii there is a nearly discontinuous change in the
Mach surface to low heights (S R,), which then increases
linearly with radius; the details of this transition are a func-
tion of luminosity and Compton temperature (e.g., eq.
[5.4c]). At high luminosities, both the high and low
Compton temperature models yield a mass flux density
which varies as Rg 2, while at low luminosities there are
differences between the two sets of models. For the higher
(lower) Compton temperature case, rit oc Ry *7 (i oc Ry'?)
at large radii and low luminosities. We find that the flow
geometry may play an important role in the difference
between the high- and low-Tjc behavior. In addition, our
definition of the disk interface (i.e., T; ,,,) may contribute to
this difference, since for the low-T,. case the maximum tem-
perature reached along a streamline is only a few times
T, max at low luminosities and large radii.

We have found the flow topology in the wind to be differ-
ent than expected in that flow tubes could become com-
pressed and turn radial at small heights above the disk. This
is the result of increased importance of the radial pressure
gradient at high temperatures. Because the magnitude of
the radial pressure gradient relative to gravity increases
with radius, we can see evidence of increased compression
with radius. Thus, the flow geometry is not homologous in
the sense that the flow at large radii cannot be represented
through a simple rescaling of a tube at smaller radii.

We have compared our results to the analytic predictions
of Begelman et al. (1983) for Compton-heated winds. We
have provided in § 4 a slightly modified version of the BMS
theory as represented by the radius-luminosity parameter
space plot in Figure 5. The primary difference is that the
boundaries between the different wind regimes are provided
by a continuity of the mass flux density argument, rather
than the simple physical arguments of BMS (namely, T, =
T for the isothermal wind, and heating timescale equal to
gravitational timescale for the gravity-inhibited wind). We
have also provided a new mass flux density formula (eq.
[4.8]) for the analytic theory which provides for rapid tran-
sition between the different solution regimes depicted in
Figure 5. Because of our inclusion of non-Compton pro-
cesses in the heating and cooling, and the implicit assump-
tion of BMS that the coronal temperatures are significantly
larger than the disk temperatures (ie., T, ..,), we found a
direct comparison inappropriate for our low-T;. model,
except at high luminosities and small radii, while for the
high-Tj case the restrictions were much less severe.

We have constructed radius-luminosity parameter space
plots of our numerical results similar to that in Figure 5 for
both the high- and low-T,. cases (Figs. 24 and 17,
respectively). Overall, these plots compare quite favorably
to the analytic predictions, especially the high-T;: case. We
feel that we have identified the five solution regimes dis-
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cussed by BMS. For the high-T;. case, there appear to be
only three noticeable differences between our numerical
results and the analytic prediction, namely, (1) the location
of the corona/wind interface, (2) the boundary between
region B (steadily heated free wind) and region C (gravity-
inhibited wind), and (3) radial dependence of the mass flux
density in region C. Of these three, the last is most signifi-
cant, but there are several caveats to consider. Numerically,
we find a radial dependence in region C of rioc Rg?,
however, this is somewhat uncertain in the high-T;. case
because of the large amplitude of spatial oscillations in the
mass flux density owing to the presence of vortex structures
near the disk interface. The lowest luminosity models
provide the largest baseline by which to measure the slope
of this region; however, computational demands of low-
luminosity models make a definitive calculation prohibitive
at this time, even with adaptive mesh refinement. In addi-
tion, the lowest luminosity models allow the influence of
non-Compton heating and cooling terms. So even if a lower
luminosity model could be performed, it is not clear that the
resulting mass flux density should agree with the analytic
prediction of i1 oc Ry !. However, we note that in the low-
T;c models in which the extra heating and cooling terms are
already operative, our results also favor a i1 oc Ry 2 behav-
ior. Finally, there is also the possibility that, due to the slow
variation with luminosity of the ratio of gravitational time-
scale to heating timescale, the analytic prediction of region
C may not be evident until much smaller luminosities than
we have sampled. The slight change in slope to r1 oc Rg *®
in our lowest luminosity model (L/Lg = 0.002) in region C
is suggestive. As such, the numerical results at lower lumi-
nosities sampled in this work may still show the ri oc Ry!
dependence predicted by BMS for region C.

We have provided numerical formulae for the mass flux
density as a function of radius and luminosity (eqs. [5.2]
and [5.4]). The total mass flux can be predicted by inte-
grating over the surface of the disk, provided one knows the
radial extent of the disk and assuming that edge effects
associated with the truncation of the disk are unimportant
so that smaller disks are approximated by our simulations.
In comparing with the analytic prediction, we find excellent
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agreement in the mass flux density at large luminosities in
both the high- and low-Tc cases. The agreement becomes
worse as the luminosity is decreased. Even still, over our
range of luminosities (0.3 > L/Lg > 0.002) we typically find
the numerical result to be within about a factor of 2 of the
analytic prediction for the high-Tc case. For the low-Tic
case, the agreement is a little worse but is still within about
a factor of 3 for the luminosities studied (1.0 > L/Lg >
0.0025). This level of agreement for the low-Tj¢ case seems to
indicate that the mass flux density is rather insensitive to the
details of the heating and cooling mechanisms. We find also
that the peak in the mass flux density occurs near a radius
of 0.25R,c, which is near the corona/wind boundary and is
very similar to the prediction of Shields et al. (1986) that it
would occur at approximately 0.15R,c.

Finally, we emphasize that our models evolve to a steady
wind pattern, in contrast to the work of Melia and
coworkers. Their work suffers, however, from the use of an
unphysical boundary condition whereby highly supersonic
material is injected into the region in which the material is
gravitationally bound and should be extremely subsonic. In
either case, the instability they find is the result of radiative
transfer effects (presumably shadowing) which have not
been included in our model. However, in the work of
Murray et al. (1995) we have also removed the optically thin
approximation by including flux-limited radiative diffusion.
These calculations of finite-size disks were made in order to
make specific comparisons with low-mass X-ray binaries
and showed no signs of radiative instabilities.
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APPENDIX

We describe in this Appendix some of the features of our numerical method used in solving the system of equations
(2.14)-(2.21). We utilize a two-dimensional second-order Godunov method which employs local adaptive mesh refinement.
To this two-dimensional hydro scheme we have added the effects of rotation, gravity, and heating and cooling. Since including
source terms in a Godunov method can be rather involved, we discuss below some of the aspects of the hydrodynamical
method and our prescription for including momentum and energy sources. We also describe briefly some of the test problems
to which we have applied our code.

Al. ADAPTIVE MESH REFINEMENT

Owing to the hyperbolic nature of the equations of hydrodynamics, it is possible to solve these equations in one part of the
grid, which could be finely zoned, nearly independent of the solutions in other parts of the grid, which could be coarsely
zoned. Recently, Berger & Colella (1989) have developed a method known as adaptive mesh refinement (AMR) that takes
advantage of this finite propagation speed of the characteristics. This method has recently been implemented for astrophysics
by Klein et al. (1990, 1994) and is used in our calculations. By using AMR, we can focus in on arbitrary regions to obtain
unprecedented detail while keeping the total computation time at manageable levels. The first part of the algorithm estab-
lishes the criteria for grid refinement using a Richardson-type error estimation of the local truncation error. The results on a
given grid are first coarsened in space to form a grid with cells twice as large as the original grid. The larger cells are then
advanced one time step, which is twice as large as that taken on the original grid. These results are then compared to those
obtained on the original grid by integrating two time steps. Those cells which are deemed to be poorly resolved are tagged,
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and a boxing algorithm is employed to form efficient rectangular grids encompassing the tagged cells. A new set of grids is
then generated through conservative interpolation on to nZ; new fine cells for each coarse cell, where 7, is the refinement
factor in a given spatial direction.

The advancement of a coarse time step for the entire grid can be described as follows. First, all the cells on the coarsest level
are advanced one time step. The next level grids are then advanced n,, time steps using the current boundary value data that
exist at that time. Once the fine cells have been advanced to the same time as the coarser cells, some fix-ups are performed on
the coarser mesh. That is, those coarse cells which overlie finer cells have their values replaced by the conservative average of
the finer cells. This then destroys conservation across a coarse/fine interface, since the flux across this interface was not the
same on both levels. Using the fine-level data, the conservatively averaged flux on the coarse level across the coarse/fine
interface is then computed, and the correction to bordering coarse cells is applied to maintain conservation. The same
procedure can then be applied recursively to finer levels.

Typically, in our calculations three levels are employed with a refinement factor between levels of n . = 4 in each linear
dimension. This means that there are 256 level 3 cells for each level 1 cell that is refined. Since the time step goes down because
of the Courant condition with each refinement, there are n%; level 3 time steps required to advance each level 1 cell one time
step. Consequently, there are 4096 level 3 cell advancements required of a single coarse cell time advancement, for n,. = 4.
Obviously, it is imperative to keep the level 3 cell count to a minimum in order to provide both reasonable time and memory
limits for the calculation.

There is a word of caution to using AMR on our particular problem which should be discussed. This has to do with the
existence of the intermediate-temperature stable equilibrium solution in Figure 2. Since AMR must at times introduce finer
solutions from coarser solutions through conservative linear interpolation, there could be times when performing refinement
around the disk/corona interface will produce temperatures in the finer cells corresponding to the stable intermediate solution
in Figure 2. When the disk/corona interface is much smaller than a fine cell (i.e., at small radii in the static corona), this can
lead to a spurious result. What happens is that an intermediate temperature is initially assigned to a cell because of the
interpolation process which may be close to the intermediate stable equilibrium. As a result, the numerical solution will tend
to stay at this intermediate solution rather than going to either the cool disk temperature or the Compton temperature, which
a more accurate means of interpolating on to the finer mesh would have ensured. To prevent this from happening, we make it
a rule to always refine the inner parts of the disk/corona interface from start of the calculation. This allows us to assign the
correct temperature to these fine cells without relying on an interpolation procedure.

A2. HYDRODYNAMICS

The two-dimensional hydrodynamics is solved using the time-splitting technique of Strang (1968). That is, we perform
one-dimensional explicit hydrodynamics in each direction separately in a given time step and then reverse the order in the
next time step. This provides second-order accuracy in time when the two time steps are equal. To facilitate the discussion of
our method for including sources in the hydrodynamics, we will necessarily describe some of the aspects of thé Godunov
method. The advantage of the Godunov method is in its ability to preserve jump conditions around shocks without diffusing
the jump over many computational cells. More detailed discussions can be found in Van Leer (1979), Colella & Woodward
(1984), and Colella & Glaz (1985). The discussion below applies only to the solution of the hydrodynamic equations
(2.14)—(2.18) excluding the source terms on the right-hand sides of these equations.

The essence of the Godunov technique is to advance volume-weighted averages of the conserved quantities (i.e., mass,
momentum, and energy densities) by conservatively differencing fluxes located at cell interfaces which represent accurate
values at the half-time step. The unique part of this technique is in the method by which the fluxes at the cell interfaces are
determined. The state of the gas at a zone edge at the half-time step is obtained from the solution of a Riemann problem in
which the left- and right-hand states are determined from “appropriate ” averages over the time step. These states require the
construction of piecewise linear interpolants (second-order; the piecewise parabolic method [PPM] constructs parabolic
interpolants). The slopes for the linear interpolants are calculated using values from nearby cells to construct a central
difference approximation which is fourth-order accurate in regions of smooth flow. The slopes are also subjected to mono-
tonicity constraints (Van Leer 1979) to help reduce numerical ringing near points of local maxima and minima. The effective
left and right states for the Riemann problem are constructed by averaging the quantities over the spatial domains which can
interact with a zone edge over a given time step. In an Eulerian calculation, the number of characteristics which intersect a
zone edge from a given side can range from zero to three, depending on the flow velocity. Following Colella & Woodward
(1984) and Colella & Glaz (1985), we have included the corrections to properly account for only those characteristics which
cross a zone edge in a given time step. The Riemann problem is solved using the approximate Riemann solver described by
Colella & Glaz (1985). Once the interface values are computed from the Riemann solution, the fluxes and pressure gradient
force are differenced conservatively to advance the conserved quantities to the next time step.

In the spit version of the two-dimensional problem, the one-dimensional sweep ignores those terms which involve differ-
encing in the orthogonal direction. That is, during an R(Z) sweep all terms involving 0/0Z*(8/0R*) are ignored. Thus, the
momentum equation for the orthogonal components in a given one-dimensional sweep is simple advection. The rotation
equation (eq. [2.17]) is correctly handled then (except for the source term) by simple advection in the direction of each sweep.

A3. INCLUSION OF MOMENTUM AND ENERGY SOURCES

We experimented with a number of different methods for including the source terms in the momentum and energy
equations. These source terms arise from rotation, gravity, and various heating and cooling mechanisms. The simplest way to
treat these terms is to split them off from the rest of the hydrodynamics. That is, perform an R-sweep followed by a Z-sweep
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ignoring the source terms, then update the momentum and energy densities by the source terms using a second-order method
such as a simple predictor-corrector scheme. On the next time step, the order is reversed with the updating of the source terms
performed first followed by the hydrodynamical sweeps in the Z and R directions. This is the simplest method to implement,
but unfortunately it can yield undesirable results in both our test problems and the real problem. We discuss the comparison
of our numerical simulations to test problems below, but we note from our experience that the rotation source terms do not in
general present a problem, except in trying to obtain accurate solutions near the rotation axis. That is, they appear to work
equally well whether or not they are split off from the hydrodynamics.

A3.1. Gravity

Including gravity accurately was found to be difficult, particularly when a goal of our numerical solution is to have a region
which is in near hydrostatic balance between the outward pressure gradient and the inward gravitational acceleration. Given
this fact, it was necessary to include the effects of gravity in the same hydrodynamic sweep which was computing the pressure
gradient. There are a number of different ways one could do this, including that discussed by Colella & Woodward (1984).
However, we have chosen a slightly simpler procedure which seems to work well for our problem. First we calculate the
gravitational acceleration at cell centers for a given one-dimensional sweep. Slopes are then computed across each cell
following the same procedure we use for the hydrodynamic variables, i.e., using fourth-order central differences. Then we
include gravity for the prediction of the pressure of the left-hand state of the interface between the j and j + 1 cell by adding
the quantity 0.5 Atp;c;{g; + Ag;[1 — max (v; + c;, 0)At/(2 Ax;)]}, where the time step is At, v; is the velocity in the direction of
the one-dimensional sweep, c; is the adiabatic sound speed, g; is the cell-centered gravitational acceleration in the direction of
the sweep, Ag; is the computed slope of the gravitational acceleration, and Ax; is the width of the cell in the direction of the
sweep. Similarly, for the right-hand state we add the term —0.5Atp;. c;y1{g;+1 — Agj+1[1 + max (v;4; — cj4y, 0)AL/
(2Ax;.,)]}. Since the primary requirement is that the addition of the source term be included in a way that will satisfy the
characteristic equations (du + dp/pc = gdt; see Colella & Woodward 1984) at the half-time step, we could have added the
gravity to either the velocity or the pressure prediction. We chose to include the gravitational source in the pressure in a desire
to obtain hydrodynamic solutions which would be nearly hydrostatic in regions in which the gravitational force was strong.
However, as we discuss below, we have also tried putting the gravity in the velocity prediction and have found comparable
results. Gravity must also be included in the corrector step where the fluxes of the mass, momentum, and energy densities at
cell interfaces at the half-time step are differenced. Therefore, we increment the momentum density by the quantity
Atp}*12g;, where p* /% is the cell-centered density at the half-time step. Here again we have some freedom in that the p*1/?
can be obtained to second-order accuracy by space averaging the cell edge densities at the half-time step obtained from the
Riemann solution or time averaging the densities at cell center. We have tried both but have found the time averaging of the
densities at cell center to give noticeably better results near the disk interface.

Finally, we note that since we have defined the total energy density by including the gravitational potential, there is no
gravitational source term for the energy equation. Including the gravitational potential in the total energy density can,
however, lead to numerical problems in regions in which the gravitational energy is dominant over thermal energy. This is
particularly true with the adaptive mesh refinement capability of our code. If during the course of a calculation a fine mesh
must be generated from a coarse mesh in a region in which gravitational energy dominates, the thermal energy density may be
poorly determined, leading to spurious results. Therefore, we required that in this region the finest mesh exist from the
beginning of the simulation.

A3.2. Rotation

The rotation source terms in the R and ¢ momentum equations have been included in the Godunov method. However,
unlike the gravitational term, we have found that splitting off the rotational terms works nearly as well as including them in
the Godunov method directly. As such, the precise manner in which they are added is less important. For reference, we have
followed the same procedure as we did for gravity, where we replace the force term g; with —v3;/R; for the R-momentum
equation and —vg;v,;/R; for the ¢-momentum equation. The propagation speed is the advection velocity, rather than v + c.
The predictor part is added to the left- and right-hand states of the pressure rather than the velocity. This preference is based
upon wanting to achieve a balance between rotation and gravity in the cool disk. In adding the source term to the corrector
step, we update the density first and multiply the time-averaged density at cell center by the time-averaged centrifugal and
centripetal force terms in the R- and ¢-momentum equations. It is best again to avoid the space averaging in the corrector
because of the problems produced around the disk interface when two cells can differ by orders of magnitude in the density.
Finally, we note that the ¢-momentum equation could have been cast in an angular momentum form and avoided the
necessity of worrying about a source term. We have found that this formulation produced inferior results near the rotation
axis. We believe this is caused by piecewise linear interpolants formed of the conserved quantities. When the quantity is Ro,
this indicates that v, is really approximated by a zeroth-order function. This can be a very poor approximation near the
rotation axis, where v, may be changing rapidly with radius. Thus, it is best to treat the ¢-momentum equation in the form
shown in equation (2.17).

A3.3. Energy

The heating and cooling are split off from the hydrodynamics in the following sense. First, the hydrodynamics is solved,
without heating and cooling, first in the R-direction, followed by the Z-direction. Then we perform an energy update by
computing the change in the thermal energy density due to heating and cooling for each cell. On the next time step, the order
is reversed with energy addition performed first, then the hydrodynamics is computed in the Z-direction, followed by the
R-direction. Over two equal time steps, this provides a second-order accurate method of incorporating the energy addition. In
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the energy addition step, it is only the thermal energy density which is allowed to change. Thus, the version of equation (2.18)
which is actually solved during this step is

d_T_* = 2 *[T*(=* T* *(Tk T

where we have used the fact that p* is constant during the energy update. We solve this energy equation implicitly to correctly
handle the stiffness one expects at both disk and Compton temperatures, where the heating and cooling can balance to high
degrees. We perform a backward Euler integration and solve the nonlinear finite difference equation using a Newton iteration.
As described in § 2, the heating (I') and cooling (A) functions are taken from CLOUDY. As such, we tabulate these terms as
functions of ionization parameter and temperature. We use piecewise bicubic Hermite polynomials to perform interpolation
in the table and to calculate the partial derivatives required in the Newton iteration. In theory, the backward Euler solution of
equation (A1) need not be solved on the same time step as the hydrodynamics. Rather, we have the option to solve, if
necessary, this equation on a finer timescale. We have experimented by subdividing the energy update into a sequence of
smaller steps to improve accuracy. We find this improvement to be negligible for our simulations; therefore, we routinely take
the time step here to be the same as the hydrodynamic time step. (In other words, changes in the thermal energy density are
usually small over a hydrodynamic time step.) Another way of guaranteeing an accurate energy solution is to institute control
over the entire time step (i.e., hydro plus energy update) associated with the fractional change of the thermal energy density.
However, given that we usually end up refining around regions which are changing quickly and therefore have smaller time
steps, this control usually does not come into play.

A4. TEST PROBLEMS

We have compared our code to three different test problems, the first of which is a quantitative comparison, while the other
two problems are more of a qualitative test. The first problem tests the addition of rotation in our code by comparing our
results with the similarity solutions of Low (1985) for adiabatic, axisymmetric, rotating gases. Low has found a class of
solutions based on the similarity variable { = r/F(t), where r is the spherical radius and F(t) is the evolutionary function
F(t) = [c(t — to)* + a/c]*/?, where c, a, and t, are constants. Interpretation of the similarity solutions indicates that the
constant c controls the magnitude of the late-time (asymptotic) speed, while « dictates the radial acceleration of the flow. For
a, ¢ > 0, t, represents the point of maximum compression. For t < t, (¢t > t,), the flow is radially inward (outward). (See Low
for a more detailed discussion of these parameters.) In testing our code, we have focused on a particular subset of the solutions
described by Low, namely, the case of solid-body rotation and uniform-entropy density (i.e., the entire flow is characterized by
a single value of the entropy density). The solid-body rotation description applies to the rotational velocity in terms of the
similarity variable. Assuming an angular velocity w,, the azimuthal velocity is given by

Vg = Wy R/F¥(1),

where R is the cylindrical radius coordinate. Note that this implies that the rotation is solid body at any given instant in time
but that the magnitude changes with time due to the evolutionary function F(t). Because F(f) is a minimum at t = t, for a,
¢ > 0 (the parameter regime investigated here), at the time of maximum compression the gas is spinning fastest, and v, — 0 at
t = + co. After some manipulation, the solution of Low can be converted to cylindrical coordinates and nondimensionalized
to elicit the essential parameters to the problem. This solution has the form!®

v} = R*F(t*), (A2)
vk = R*c*(t* — t§)F ~(t*), (A3)
vy = Z*c*(t* — th)F (1Y), (A4)

. e (a* — 1) FX0) (., Z*a*\|1??

p* = {FZ(O)F 2(t*) + 0.6 PO [1 ~ (R 2+ 1 1)}} , (A5)
. . (a* — 1) FX0) (.,  Z*%a*\||*?

p* = {FZ(O)F (t*) + 0.6 PO [1 ~F (R 2 + 1)}} ; (A6)

where the spatial coordinates have been scaled relative to the fiducial radius R,; time is scaled relative to the rotation time
T, = w, '; velocity is scaled relative to the rotation velocity at R,, i.e., vy = Ry y; density and pressure have been scaled
relative to their value at the fiducial radius R,, i.., Pr, and pg , respectively, and y is a parameter representing the ratio of
rotational kinetic energy to thermal energy density at the fiducial R,, i.., y = [(1/2)pg, RS wé]/[(3/2)pRo]. The evolutionary
function F(t*) is now given by

F(t*) = [c*(t* — t§)* + a*/c*]'2, (A7)

where c* = ¢/w}, and a* = a/w3. The constant t¥ = t,/T, is set by the specification of the velocity vg, at the fiducial radius R,

16 There appear to be typographical errors in this paper: equations (33) and (34) for uniformly rotating, isentropic flow should be of the form
P =2/5s532[(ay — W)/2]°* and D = s5 ¥*[(a, — W)/2]/2, respectively.
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Note that if vg, < 0 (vg, > 0), then t§ > 0 (¢4 < 0), and the point of maximum compression is in the future (past). There are
two solutions for t¥ because a given velocity can occur at late time as the overall flow slows down, or near the point of
maximum compression. Thus, we find that the similarity solution given by equations (A2)—(A8) is completely specified by the
four parameters a*, c*, vk, = vg,/(Ro @), and x. We note that for a* > 1 the density and pressure contours form ellipses, while
for a* < 1 they appear as hyperbolae.

As a test of our code, we have performed a simulation whereby the initial conditions are given by equations (A2)—(A8) at
time t* = 0. The calculation is performed in cylindrical coordinates using reflecting boundary conditions along the R and Z
axes and the similarity solution as the outer boundary conditions. In Figure 30a we present the measured error from a
calculation in which o* = 4, ¢* = 1, x = 0.5, and vk, = —0.01. We have chosen the plus sign in equation (A8) so thatt§ ~ 100.
The error plotted in Figure 30 is for the five conserved quantities, namely, y = (p, pvg, pvz, pe, pvy). The quantity plotted is a
relative error given by

so that

N 1/2
Error [y(0)] = «{; Lyfem(e) — y?““‘(t)]z} / YmanlD) »

where the sum is over the N cells of the calculation, and y,,,, is the maximum absolute value of that quantity over the grid.
Admittedly this underestimates the error somewhat, but it gives a better measure of the accuracy than summing relative
errors, since near the rotation axis the radial and azimuthal velocities become small. This calculation was performed on a
50 x 50 grid. We see that the agreement is exceptional, especially for the density. The worst component, as expected, is pv,,
where the error is fairly constant in time and several orders of magnitude higher, but still acceptable. This model has been
evolved up until the point of maximum compression (t* ~ 100). Over this time, density has grown by over 5 orders of
magnitude, while pv, has increased by over 8 orders of magnitude. Thus, we seem to provide good accuracy over a large
dynamic range. There is a problem, however, during the expansion phase. An example of this is shown in Figure 30b, where
we have let vk = 0.1 and t§ ~ — 9.6 (all other parameters are as they were in Fig. 30a). For this model, the point of maximum
compression is in the past and the gas is now in its expansion phase. Note that the errors are again very small and are fairly
constant with time except for the error in pv, which, although small, is growing in time. This appears to be a general problem
in the expansion phase. That is, regardless of whether the rotational source term is split off from the rest of the hydrodynamics
or is incorporated into the Godunov package, the error in pv, grows in time during this part of the calculation. Different
implementations of the rotation inside the Godunov hydrodynamics package all seemed to show growth in the error of pv,,
although the magnitude of the error varied among our various attempts. An important characteristic of our best models is the
manipulation of the rotational source term (right-hand side of eq. [2.17]) included in the predictor and corrector parts of the
Godunov method. Some simple analysis has shown, and our numerical results agree, that we obtain superior agreement if the
1/R part of the source term is written as (1/R),+y2 = Ry Ry+1/Ri+ 12, where R, , ., are the locations of the cell interfaces, and
Ri+1/2 = (Ry + Ry41)/2 is the midpoint of the cell. Although this implementation reduces significantly the error in pv, over
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F1G. 30.—Logarithm of the relative error between our numerical results and the analytic prediction of Low (1985) as a function of time (in scaled units) for
each of the five conserved quantities; namely, density, three components of momentum density, and energy density. Both models assume o* =4,c* =1,and
x = 1. (a) The compression phase with v}, = —0.01 and the point of maximum compression in the future at § ~ 100 is showq. (b) The expans?on phase with
v}, = 0.1 and the point of maximum compression in the past at t§ = —9.6 is shown. After initial transients, all errors are relatively constant with time except
for pv, in the expansion phase. See text for discussion.
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other more simplified treatments, it still grows in time during the expansion phase. We believe it is because of the fact that the
numerical solution is worse near the rotation axis. During the expansion phase, the inferior solution is then advected outward
as the gas expands, thus causing the error to grow in time. Although our implementation is unsatisfactory from this point of
view, it seems to be a general characteristic of the expansion phase. We have also learned from our experience with this
problem that the results near the rotation axis are better if we consider the rotation equation in the form shown in equation
(2.17), rather than a conservation of angular momentum form, even though the latter form does not have a source term. Given
the difficulty of this problem, we believe it to be well suited for the testing of hydrodynamic codes. Even though our results are
unsatisfactory for the expansion phase, we do not believe it to be an important issue with our wind solutions, since they have
tended toward a stable equilibrium.

The second problem tests gravity and the stability of the code by asking it to calculate the structure of a gravitationally
stratified, isothermal sphere. This is a rather simple but important test to verify that the method will behave correctly in
near-static situations. That is, given the inherent nature of the Godunov method, it is vital to verify that a static object with
density and pressure gradients (such as the gravitationally stratified ball) will not generate significant velocities. We find that
the velocities generated are very subsonic and do not grow in time after the initial transients, provided we use a softening
radius in the gravitational potential. The magnitude of the softening radius required depends upon the resolution. It is
necessary thazt the softening radius be well resolved (2 8 cells) to keep the velocities very subsonic (typically Mach numbers of
less than 107 2). ;

Finally, the third test is to start with an isothermal, constant-density ball with a large overpressure relative to the ambient
medium and watch the evolution under the influence of gravity. The point of this exercise is twofold. First, one can watch the
initial shock wave traveling out to see if it remains spherical. We found this to be true always. Second, a shock travels inward
as the ball collapses due to the lack of pressure gradient support (ball is constant density and isothermal to start). This shock
then rebounds when it hits the center. An important test is to see again if the rebounded shock still possesses spherical
symmetry. We found this particular test to be particularly sensitive to the use of the softening radius in guaranteeing the
sphericity of the rebounded shock. This is to be expected, since without a softening radius the emergence of the rebound shock
is dominated by the results of one cell, which would tend to put a square on the rebounded shock.

None of the tests described above included any aspects of the heating and cooling. However, some simple observations can
be made as to the accuracy of our incorporation of the heating and cooling terms from our model results. First of all, we find
the final evolutionary state of the low corona to be very similar to the prescribed initial condition that the gas should be in

thermal equilibrium. Second, tests utilizing the time step for energy advancement (which may be subcycled relative to the

hydrodynamics) indicate that we are solving the equations accurately. That is, we have subdivided the energy time step by up
to a factor of 10 relative to the hydrodynamic time step and found no discernible differences in either the overall structure or
the mass flux density coming off the disk surface. Thus, we believe our solution procedure for including the energy source
terms to be adequate.
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