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ABSTRACT -

In stellar dynamical computer simulations, as well as other types of simulations using particles, time step
size is often held constant in order to guarantee a high degree of energy conservation. In many applications,
allowing the time step size to change in time can offer a great saving in computational cost, but variable-size
time steps usually imply a substantial degradation in energy conservation. We present a “meta-algorithm” for
choosing time steps in such a way as to guarantee time symmetry in any integration scheme, thus allowing
vastly improved energy conservation for orbital calculations with variable time steps. We apply the algorithm
to the familiar leapfrog scheme, and generalize to higher order integration schemes, showing how the stability
properties of the fixed-step leapfrog scheme can be extended to higher order, variable-step integrators such as
the Hermite method. We illustrate the remarkable properties of these time-symmetric integrators for the case
of a highly eccentric elliptical Kepler orbit and discuss applications to more complex problems.

Subject headings: celestial mechanics, stellar dynamics — galaxies: star clusters

1. INTRODUCTION

Time-symmetry is a desirable property of an integration
scheme because of its inherent energy conservation properties.
The simplest such scheme, known as the leapfrog or Verlet
method (Hockney & Eastwood 1988), gained extra popularity
when it was shown to be also the simplest example of the class
of symplectic schemes (Channel & Scovel 1990; Yoshida 1990;
Sanz-Serna & Calvo 1994). However, the time-symmetry of an
integrator is spoiled when the integration time step length is
allowed to vary during the calculation—indeed, Skeel & Gear
(1992) have shown that any integration scheme which is sym-
plectic for constant time step cannot retain its symplectic char-
acter when the time step is changed in explicit dependence on
instantaneous position and velocity. In this Letter, we report on
a practical means of circumventing this problem and describe
the construction of a very general class of time-symmetric inte-
gration algorithms with both arbitrarily variable time steps
and excellent energy conservation. As a specific example, we
present a simple fourth-order generalization of the leapfrog
scheme and show how the improvements due to time sym-
metrization carry over to this case.

The leapfrog integration scheme is a standard way of inte-
grating the equations of motion of interacting particles whose
interactions have no explicit velocity dependence. Examples of
such simulations are found in stellar dynamics, in plasma
physics, and in molecular dynamics (where the leapfrog scheme
is more commonly known as the Verlet method) (Hockney &
Eastwood 1988; Barnes & Hut 1986). Usually, the leapfrog is
written in a time-interleaved way, in which positions and
velocities are specified at alternating points in time, as follows:

(1a)
(1b)

where r can stand for the position vector of a single particle or
the combined vector ry, r,, ..., ry representing a system of N

ry =T+ vy,0t,

U3/2 = Ul/Z + a; 6t >
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particles. The quantity v =dr/dt is the velocity and
a(t) = a[r(t)] = dv/dt is the acceleration. The subscripts after
the various quantities indicate the time at which they apply, in
units of the time step, i.e., v;, = v(t + 3 t). One reason for the
popularity of this integration scheme is its simplicity and ease
of coding. Another is its often surprisingly high accuracy and
stability compared with other second-order schemes (e.g.,
Runge-Kutta methods). Note that the displacement of v with
respect to r and a is time symmetric, preventing any systematic
build-up of energy error in time.

For many applications the typical accuracy attainable by a
leapfrog scheme is not high enough. Specifically, the presence
of a large range in length and time scales may make the use of
constant step size impractical (Hut, Makino, & McMillan
1988 ; Makino & Hut 1988, 1990). In this Letter we present two
ways of generalizing the leapfrog scheme to deal with more
demanding applications, while preserving its main desirable
properties. First, we show how the time step length can be
varied from step to step; second we offer a version with fourth-
order accuracy (the leapfrog described by eq. [1] is only
second-order accurate). We then demonstrate the usefulness of
these symmetrized schemes t0 the integration of particle orbits
in the N-body problem.

2. THE LEAPFROG SCHEME WITH VARIABLE TIME STEPS

It is convenient to map the standard interleaved description
into a form in which all variables are defined at the same
instant in time:

rl = ro + vo 6t + %ao((st)z 9
bl =1y + "lz'(ao + a1)5t .

(2a)
(2b)

Starting from {r,, vy, ao}, one first computesr,, then a, (r,), by
evaluating the appropriate expression dictated by the system
under consideration, and finally v,. The velocity equation can
alternatively be written as a predictor step:

V1, = Vo + ao Ot , (3a)
followed by a corrector step:
Vi =V1p + 3(a; — a)dt . (3b)
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The position step is a pure predictor one and has no need for a 0004 £ 3
corrector so long as we require only second-order accuracy. .0003 £~ 3
While equation (2) looks as though it has lost its explicit time < .0002 E- 3
symmetry, it is still equivalent to the original equation (1), as < 0001 E 3
can be verified by direct substitution (Barnes & Hut 1989; ’ = 3
Tuckerman, Berne, & Martyna 1992). 0E | i et
From equation (2), the first generalization to time-dependent -5

time step sizes would seem trivial. At each new point in time, 4x10 s E 1 BRE
one can choose an appropriate value of §t depending on the 3x107 E- —=
requirements of the physical system being modeled (smaller o 2x10° & 3
time steps during close approaches of two or more particles, < 10° E- =
say). However, this strategy can easily fail miserably, not only E 3
in the case of the leapfrog (Skeel 1993) but equally in the case of OE T [ E
higher order symplectic integration schemes (Calvo & Sanz-

Serna 1993). The main problem is the fact that step size varia- gx10 T T =

bility destroys the explicit time symmetry of the leapfrog.

Our alternative approach does not affect the force calcu-
lations themselves, but instead is based on a prescription for
recovering time symmetry. The central idea is to change the
time step in such a way as to gudrantee time symmetry to the
level of accuracy required, using an implicit time step criterion
and iteration to reach convergence. Note, however, that iter-
ation, although convenient, is not an essential part of our
approach. If the necessary force evaluation were prohibitively
expensive, one could maintain a list of several previous time
step sizes, and use polynomial extrapolation to predict the next
time step in advance.

The implicit form of our time-symmetrized integration
scheme can be written in the leapfrog case as follows:

1 =S(o> 60, (4a)

ot = 3[h(Co) + h(¢,)], (4b)

where & = (r, v) is the 2N-dimensional phase space vector for a
system with N degrees of freedom, and the function f'is defined
through equation (2). Note that the presence of the a, term at
the right-hand side of equation for v, in equation (2) does not
introduce a ¢, dependence in the equation for £, above, since
in equation (2) a; may be obtained directly as a function of r,,
and v, through its functional form a,[r,(ry, vo)]. We solve
these implicit equations iteratively and simultaneously for all
particles in the system. There are many possible choices for the
time step criterion h. We have chosen one of the simplest: the
minimum overall particle pairs of the interparticle encounter
and free-fall times.

Figure 1 shows the result of an integration of the Kepler
two-body problem for an elliptical orbit with eccentricity
e = 0.9 for 10 orbital periods with 10 integration steps per
orbit. The motion is fully described by the four orbital ele-
ments: eccentricity e, semimajor axis a, time of pericenter
passage T,, and longitude of pericenter I. These four quantities
are plotted as osculating elements in Figure 1. Note the near-
constancy of a, apart from the nearly periodic errors, and the
linear drift in T}, (as opposed to the quadratic growth of phase
error typical of most integration schemes).

The same behavior is plotted for an integration over 103
orbits in Figure 2. The horizontal line in Figure 2 (top) shows
the results of our iterated solution (the first and higher iter-
ations are indistinguishable on this scale). The naive variable-
time leapfrog (diagonal line) can be seen to fail badly, growing

j to an error of nearly 1% after 1000 orbits. By comparison, our

algorithm gives a final error Aa/a < 10~ ° after 10 orbits, even
in the case of only one iteration per step. The maximum error
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Fi1G. 1—Variable-time step time-symmetric leapfrog integration (eq. [2])
of an elliptic Kepler orbit with eccentricity 0.9, for 10 orbital periods (20r time
units). Only one iteration step is used to provide an explicit approximation to
our implicit definition of a time-symmetric choice of time steps (eq. [4]). The
four panels show the variation of the four osculating orbital elements of this
two-dimensional problem: (top) semimajor axis a; (second) eccentricity e;
(third) time of pericenter passage T,; (bottom) longitude of pericenter I. There is
no significant drift in a (or in energy E oc 1/a), even though the per orbit energy
errors are significant near pericenter. The phase error remains constant per
orbit, resulting in the linear growth evident in the third panel.

per orbit remains at the level visible in Figure 1 (top), Aa/a < 4
x 10™4. Thus, the long time buildup, even for 1000 orbits,
would be invisible on the vertical scale used in Figure 1 (top).
In the second and third panels of Figure 2, the curves for the
time of pericenter passage T, show, at different scales, how a
second iteration per time step can further improve accuracy in
this particular application. A constant—time step leapfrog inte-
gration gives significantly worse errors than the naive
variable-time step scheme during a single orbit (a factor 20
larger than the vertical scale of Fig. 2 [top], for the same
number of steps per orbit), although its time-symmetric
properties still prevent the linear growth of energy error shown
by the latter scheme.

On the face of it, these results seem to conflict with the
theoretical analysis of Skeel & Gear (1992; see also Calvo &
Sanz-Serna 1993) showing that variable step size seriously
degrades the performance of symplectic integration schemes.
However, since Skeel & Gear considered only explicit time step
criteria based on information available at the beginning of a
time step, their approach precludes a time symmetrization of
the type proposed here.

3. FOURTH-ORDER GENERALIZATION

In simulations with a large range of length and time scales,
second-order integration schemes are often not sufficient, even
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Fi1G. 2—The same Kepler ellipse integration as in the previous figure,
extended to cover the first 10° orbits. Top: The long-term stability of the
energy is reflected in the stability of the semimajor axis a. The horizontal curve
is the extension of Fig. 1 (top) for a hundredfold longer time period. For
comparison, the diagonally slanted curve shows the result of applying the
leapfrog algorithm (eq. [2]) straightforwardly to a time-variable time step
scheme without time symmetrization (the uneven “fray” above the lines is due
purely to limited sampling frequency). Middle: The time of pericenter passage
T,. Note the quadratic build-up of phase error for the non-time-symmetric
scheme, as opposed to the near-constancy of T, for our iterative implementa-
tion of a time-symmetric scheme. Bottom: The same as the middle panel on a
larger vertical scale. The nonsymmetric scheme is now represented as a near-
vertical line. The diagonal line is the result of taking two corrector steps per
time step, while the intermediate line gives the result of single iteration.

with our time-symmetrized improvements. Fortunately, our
approach carries over smoothly and straightforwardly to
higher order. We first applied our iterative time-
symmetrization to the Hermite algorithm (Makino 1991;
Makino & Aarseth 1992), the state-of-the-art integration
scheme used in simulations of dense star systems.

The following truncated form of the Hermite scheme (a type
of Obrechkoff method [Lambert 1973, e.g., p. 201, eq. [4])
clearly brings out the fact that it is the natural generalization of
the leapfrog:

ry=ro + 3(v; + v)0t — 12(a; — ao)or)?, (52)
vy = vy + 3(a; + ag)dt — 15(j; — jol61)*, (5b)
where the jerk j = da/dt is calculated directly by differentiation
of the expression for the force (thereby introducing a depen-
dency on velocity as well as position in the case of Newtonian

gravitational forces). In this fourth-order scheme, equation (4a)
may be rewritten as

€1 =9(Co» €1, 01) (6

where the function g is defined by equation (5).

Figure 3 illustrates the remarkable properties of the sym-
metrized Hermite scheme in the integration of a Kepler ellipse
with e = 0.999. As in the second-order scheme, 103 steps were
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used per orbit integration. For comparison, we have used a |
second-order scheme for this nearly linear orbit in the standard
nonsymmetrized leapfrog way and found a disastrous error
build-up of more than 100%. Applying a single iteration per
step, this error was reduced to a drift of Aa/a ~ 5 x 1075, but
with spikes of Aa/a ~ 0.05. After two iterations, convergence
was reached to a level of Aa/a ~ 1077, and no further improve-
ment could be reached for 10° steps per orbit. For Hermite, a
single iteration resulted in a drift of Aa/a ~ 10~5, while two
iterations per step gave Aa/a ~ 2 x 107 !°, Three or more iter-+
ations quickly converged to a residual drift of Aa/a ~ 10719,
We have applied the scheme to more eccentric orbits, finding
similar stability properties even in the extreme case
e = 0.999,999.

4. DISCUSSION

The enormous improvement in long-term stabilbity of the
time-symmetric integration schemes shown here is partly due
to the strictly periodic nature of a Kepler orbit. However, the
advantages of our approach are not limited to periodic appli-
cations. Figure 4 shows a representative set of results for
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FiG. 3—A fourth-order generalized-leapfrog integration (eq. [S]) of a
Kepler ellipse with eccentricity e = 0.999. Top: The lowest, diagonal line
shows the linear drift in energy (and thereby semimajor axis) for the standard
PEC (Predict Evaluate Correct) Hermite integration scheme used in stellar
dynamics of star cluster simulations [14, 15]. The middle line shows how an
additional (Evaluate Correct) force calculation at the end of each time step
gives a modest improvement, but not enough to offset the extra cost (since we
could alternatively halve the time step and thereby improve the accuracy by a
factor ~ 16). The top line shows the result of using a once-iterated symmetric
time step implementation, leading to an improvement of a factor > 16. Middle:
These three lines correspond to the three schemes used in the top panel.
Bottom: An enlargement in the vertical direction of the middle panel, where
now the lowest two curves nearly coincide into one thick almost-vertical line.
The intermediate curve here is the result of a once-iterated symmetric time
step. The far more accurate line extending toward the right gives the result of
two iterations per time step. For our choice of overall time step size, leading to
103 steps per orbit, further iteration provides little extra benefit.
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FiG. 4—Six independent 100 body runs, starting from Plummer-model initial conditions, each taking roughly the same amount of computer time. The top three
lines show the growth of the relative energy error in each run as a function of time for the standard unsymmetrized variable-time step leapfrog scheme. The bottom

three lines show the same data for the symmetrized version of the code.

several 100 body systems integrated with exactly the same
leapfrog codes as were used in Figure 2, with a variable time
step size, shared by all particles. The greatly improved accu-
racy of the symmetrized scheme (as well as the nonsystematic
nature of its energy error) is clearly evident. Time steps were
chosen such that each run took roughly the same amount of
computer time, so the actual step sizes are twice as large in the
time-symmetric (one-iteration) runs than in the unsymmetrized
cases.

In all cases studied so far, we have found substantial
improvements, leading us to be optimistic that general N-body
integrations, in gravitational as well as other particle simula-
tion problems, will gain significantly from time-
symmetrization. A discussion of these simulations, including
the extension of the method to include individual (Aarseth
1985) and block (McMillan 1986) time steps, is beyond the
scope of the present Letter and will be reported elsewhere.
However, it is worth pointing out that had we included a
substantial fraction of initial binary systems, such as are found
in most (if not all) real star clusters, the unsymmetrized inte-
grator would have inherited all of the errors presented in
Figures 2 and 3 and fared even worse in comparison to the
symmetrized scheme.

To illustrate the stability of our algorithm, we have inte-
grated the well-known Pythagorean problem (Szebehely &

Peters 1967, hereafter SP), a complex three-body problem with
many close encounters. With three iterations per time step, and
with comparably many force evaluations as in SP, we reversed
the velocities at time ¢ = 62 (the value used by SP) and ran our
integration back to ¢t = 0, reproducing the initial positions with
errors in the third decimal place; a reversal at t = 32 gave an
error in the ninth place. These results compare well with those
obtained by SP, despite the fact that our scheme, unlike theirs,
includes no regularization of close encounters (for a regu-
larized extension of our method, see Funato et al. 1995). The
errors are quite consistent with the expected degradation in
accuracy due to the amplification of double-precision (64 bit)
round-off errors by close encounters, indicating that the time-
reversibility test is satisfied to as high a degree of accuracy as
can be expected.
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