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ABSTRACT

We present an analytical model for the nonspherical collapse of overdense regions out of a Gaussian
random field of initial cosmological perturbations. The collapsing region is treated as an ellipsoid of constant
density, acted upon by the quadrupole tidal shear from the surrounding matter. The dynamics of the ellipsoid
is set by the ellipsoid self-gravity and the external quadrupole shear. Both forces are linear in the coordinates
and therefore maintain homogeneity of the ellipsoid at all times. The amplitude of the external shear is
evolved into the nonlinear regime in thin spherical shells that are allowed to move only radially according to
the mass interior to them. The full dynamical equations then reduce to a set of nine second-order ordinary
differential equations, which reproduce the linear regime behavior but can be evolved past turnaround, well
into the nonlinear regime. We describe how the initial conditions can be drawn in the appropriate correlated
way from a random field of initial density perturbations. The model is applied to a restricted set of initial
conditions that are more suitable to the above approximations; most notably we focus on the properties of
rare high-density peaks (X2 o). By considering many random realizations of the initial conditions, we calcu-
late the distribution of shapes and angular momenta acquired by objects through the coupling of their quad-
rupole moment to the tidal shear. The average value of the spin parameter, (1) ~ 0.04, is found to be only
weakly dependent on the system mass, the mean cosmological density, or the initial power spectrum of pertur-
bations, in agreement with N-body simulations. For the cold dark matter power spectrum, most objects
evolve from a quasi-spherical initial state to a pancake or filament and then to complete virialization. Low-
spin objects tend to be more spherical. The evolution history of shapes is primarily induced by the external
shear and not by the initial triaxiality of the objects. The statistical distribution of the triaxial shapes of col-
lapsing regions can be used to test cosmological models against galaxy surveys on large scales.

Subject headings: cosmology: theory — large-scale structure of universe

1. INTRODUCTION

In the standard cosmological model, density perturbations grow by gravitational instability from their small initial amplitude to
the observed nonlinear structure, thus accounting for the galaxies, clusters, superclusters, filaments, and voids in the present
universe (Peebles 1993). Despite the simplicity of these initial conditions, the analytical understanding of the advanced stages of
gravitational instability, where the density contrast dp/p exceeds unity, is limited. Numerical codes are frequently used in an attempt
to uncover the nonlinear dynamics of collapsing regions and in order to predict the observational consequences of specific models
for structure formation. However, simulations are often expensive in computer time and are therefore limited in resolution or total
volume. An approximate extension of linear perturbation theory into the nonlinear regime is achieved by the Zel’dovich (1970)
approximation (see review by Shandarin & Zel’dovich 1989). Another approach which extrapolates the physics even further, up to
the virialization phase of bound objects, is the spherical collapse model (Gunn & Gott 1972; Peebles 1980, § 19). Under the
assumption of sphericity, the nonlinear dynamics of a collapsing shell is determined by the mass interior to it and described by the
parametric solution to the dynamics of a closed universe. Although the Zel’dovich approximation generically yields pancakes and
numerical simulations show that many collapsing regions are filamentary (e.g., Park 1990; Bertschinger & Gelb 1991; Cen &
Ostriker 1993), the spherical model became popular because of its simplicity. Most notably, it was integrated into the Press-
Schechter formalism (Press & Schechter 1974) for calculating the mass function of collapsed objects in the universe. In reality,
overdense regions in galaxy surveys of the local universe (e.g., Geller & Huchra 1989; Maddox et al. 1990; Saunders et al. 1991;
Shectman et al. 1992; Strauss et al. 1992) have complicated triaxial shapes with sheets and filaments being common features.
Moreover, recent work has demonstrated that the tidal shear plays an important role in the dynamics of collapsing regions
(Hoffman 1986b; Dubinski 1992; Bond & Myers 1994; Bertschinger & Jain 1994; van de Weygaert & Babul 1994) and therefore
requires a nonspherical analysis. Nonsphericity is also necessary in order to explain the origin of galactic rotation through the
coupling of galaxies to tidal torques during their collapse (Hoyle 1949; Peebles 1969; Doroshkevich 1970; Efstathiou & Jones 1979;
White 1984 ; Hoffman 1986a, 1988 ; Barnes & Efstathiou 1987; Ryden 1988; Quinn & Binney 1992; Warren et al. 1992).

In this paper we construct a new analytical model to study the nonlinear collapse of nonspherical regions in a Gaussian random
field of initial density perturbations. The collapsing system is approximated as a triaxial ellipsoid of constant overdensity that is
affected by its own gravitational field and by the external tidal shear. The external tidal force can be expanded as a multipole series,
with the quadrupole being the dominant relevant term for the internal dynamics of the ellipsoid. Since the quadrupole force and the
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ellipsoid self-gravity are linear functions of the spatial coordinates, they maintain homogeneity of the ellipsoid at all times. The
quadrupole shear from the external density field is calculated by dividing the background mass distribution into spherical shells that
move only radially. Under these approximations, we reduce the full dynamical equations of motion to a set of second-order
ordinary differential equations. The initial conditions can be derived from a Gaussian random field of density perturbations with
some power spectrum, and the initial peculiar velocities are chosen to be those of the growing mode. The equations of motion we
obtain reproduce the linear regime behavior of the density field. By integrating these differential equations we are able to describe
the collapse of a triaxial sheared region into a virialized object. In difference from the spherical approach, the ellipsoid model can be
used to study the influence of the external tidal shear on the triaxial collapse of overdense regions. Through many random
realizations of the initial density field the model can examine the statistical properties of collapsing systems, including their triaxial
shapes, orientation relative to the background density field, and total angular momenta, for different cosmological models.

The outline of this work is as follows. In § 2 we review the equations of motion for a self-gravitating ellipsoid and the
approximation (Icke 1973) that allows us to extend this treatment to a homogeneous ellipsoidal overdensity in the universe. We also
show that the quadrupole shear can be added to this formulation. In § 3 we present our approximation for the nonlinear evolution
of this shear. The restrictions placed upon the initial conditions for the model are described in § 4. Given a Gaussian random field of
initial density perturbations, we derive in Appendix A the joint probability distribution for the necessary initial conditions. In
Appendix B we describe our treatment of a collapse along a single axis, and in Appendix C we relate the magnitude of the external
shear to the amplitude of density fluctuations on a given mass scale in a fashion independent of the initial power spectrum. The
statistical properties of collapsing regions are then analyzed in § 5, by applying the above model to many realizations of random
initial conditions. Finally, in § 6 we discuss the applications and limitations of the model and indicate potential future work.

2. ELLIPSOID MODEL FOR A COLLAPSING REGION

We begin from a small density perturbation on top of a smooth background assumed to be a Friedmann-Robertson-Walker
(FRW) universe. We assume that the background is composed of collisionless cold particles and allow for a nonzero cosmological
constant. We pick the origin to be near the center of a region that has a sufficiently high density so that it collapses before its
environment. Since we are interested in the properties of the collapsing region, we separate the universe into two disjoint parts, the
collapsing high-density region and the rest of the universe. The boundary between these parts is taken to be a sphere centered at the
origin. We denote the background density by p, and let the density as a function of space be p(x), where x is the position vector. We
then define dp(x) = p(x) — p, and 8(x) = dp(x)/p,.

The gravitational force exerted on the spherical region by the rest of the universe can be calculated by expanding the external
gravitational potential as a multipole series (Binney & Tremaine 1987). Taking the sphere to have radius R, we find

4nG .
=Y —— 1
d)(x) LZ"'21+1alelmx ’ ()
where x = | x|, the Y, are spherical harmonics, G is Newton’s constant, and
Am = Pp J‘ dssYI.m 6(3)5_'— ! . (2)
Is|>R

The time-dependent magnitude of the external potential will be calculated in § 3. For now we consider the effect of this potential on
the inner region.

We are primarily concerned with the acquisition of angular momentum and the shearing of the inner region. For these purposes,
we focus on the quadrupole (I = 2) terms. The I = 0 term produces no force, and the dipole (I = 1) terms produce a uniform
acceleration that may move the whole inner region but does not alter the shape or induce any rotation. This motion can indirectly
affect the object because the surrounding material will have a new angular distribution relative to the displaced object, requiring a
recalculation of the multipole expansion coefficients. However, if the dipole is generated on large scales, then the object and its entire
neighborhood move together as a bulk flow and the changes in the angular distribution of matter will be very small, allowing us to
ignore the I = 1 terms. Previous work has found the quadrupole terms to dominate the higher (I > 3) terms (Quinn & Binney 1992),
and so we ignore all but the | = 2 terms.

We model the inner region as a homogeneous ellipsoidal overdensity (Lynden-Bell 1964; Lin, Mestel & Shu 1965; Zel’dovich
1965; Icke 1973; White & Silk 1979). By this, we mean that J(x) is a constant inside the ellipsoid and zero outside of it.
Homogeneous ellipsoids are advantageous because their gravitational potentials depend quadratically on the coordinates and
therefore preserve their homogeneity and because they have nonzero quadrupole moments which couple to the I = 2 terms of the
external potential. Obviously, this approximation ignores all the complexities of shapes and substructure actually present in the
central region. However, the object cannot be torqued by its subcomponents, and the time dependence of the quadrupole moments
may be well captured by the ellipsoid approximation.

A convenient way to analyze the motion of homogeneous ellipsoids was discussed by Peebles (1980, § 20). The position of the
ellipsoid is given by

r = A%x? 3)

where x is a vector inside the unit sphere and repeated indices are summed. The matrix A4 is constant in space but depends on time.
The mass is evenly distributed over this unit sphere and thus the ellipsoid has a uniform density. If the columns of A are orthogonal,
then they are the axes of the ellipsoid, with the lengths of the axes being the magnitude of the respective column. However, since in
general the columns of A are not orthogonal, the axes may be found from the relation defining the outer shell of the ellipsoid,
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x*x® = 1. The equation of the ellipsoid is therefore
rTA T4 Yy =1, @

To rotate to the principal axis frame we diagonalize the matrix AAT as QAQT, where Q is orthogonal and A is real and diagonal
because AAT is symmetric. Then we rewrite equation (4) as

@M'AT'Q@=1. )

Thus, the axes of the ellipsoid are in the columns of Q and the corresponding axis length is the square root of the corresponding
diagonal element of A. :

Since the gravitational potential of such an ellipsoid may be written as a quadratic function (Peebles 1980), we are prompted to
consider a general quadratic potential

1
o) = 3 Ok ©)
where the matrix ®* is a function of the matrix 4. Then the force per unit mass is just — V®(r), leading to the momentum equation,
d*r
= — @, 0
By substituting equation (3) in equation (7) we find
d2 Auﬂ
= —Q¥4" .
dt? ®

This is our basic equation of motion. It is crucial that the potential be quadratic in the coordinates, since this leads to forces that are
linear in space. The magnitude of r cancels out, so that all the similar ellipsoidal shells behave in the same way and the ellipsoid
remains homogeneous.

We now must construct this quadratic potential. First, we consider the contribution from the ellipsoid. For an isolated ellipsoid of
mass M,, the potential is given by elliptic functions (Peebles 1980) so that,

1
d’ell(r’) = 5 GMe[(rli)zRD(ag’ a§9 a%) + (r’Z)zRD(a‘i” a%; (l%) + (rl3)2RD(a§9 a%s ag)] ’ (9)

where a; are the lengths of the semiaxes and ¢’ is in the principal axis frame. The function R, is defined as (Carlson 1977; Press et al.
1992),

dt
t+ 2/t + )+ 9Nt +2)
Rotating to the original frame by means of r = Qr' yields the matrix
®.; = GM,{Q x diag [Ry(A?2, A3, A1), Ry(A!Y, A3, A22), Ry(A!Y, A?2, A3%)] x QT} . (11)

Although the potential inside a homogeneous ellipsoid is quadratic, the potential outside is rather complicated. This causes the
smooth background outside the ellipsoid to warp, producing a nonquadratic potential inside the ellipsoid and causing it to become
inhomogeneous. In order to avoid this problem, we assume that the background remains smooth, with a density equal to that of the
unperturbed universe (Icke 1973; White & Silk 1979). The mass of the ellipsoid, including the contribution from the background
density in the volume covered by the ellipsoid, is taken to be a constant denoted by M. We then compute the gravitational potential
as the sum of two pieces. The first piece comes from the smooth background of density p,, yielding ®,,,(r) = 27Gp, r*/3 and

3 o0
RD(x’ Ys 7) = 5 J; (10)

o =L Gpy 1%, (1)
where I is the identity matrix. The second piece is associated with the remaining mass of the ellipsoid, and is given by ®,,, in
equation (11) with the mass M, = M — p, V, where V = 4z det (A/?)/3 is the volume of the ellipsoid. This approximation agrees
well with N-body simulations (White 1993), because at early times the background is still smooth while at late times the background
has a much lower density than the ellipsoid.

The evolution of the background density p, oc a~ 3 in a matter-dominated universe can be obtained from the FRW equation for
the scale factora = 1/(1 + z),

da\? -1 2

& =Qa" ' +Qua* +Qp . (13)
We define Q = 8nGp,/3H3, Q, = A,/3H3, and Qg =1 — Q — Q, to quantify the contributions of nonrelativistic matter, the
cosmological constant A,, and the space curvature to the expansion of the universe. These quantities are evaluated at the present
time, and H, = d(Ina)/dt |, is the present Hubble constant.
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Next, we note that the [ = 2 terms of the external shear (eq. [1]) also produce a quadratic potential. Manipulating the spherical

ig1 harmonics in equation (1) we find

2./6 Re a,; — 245 —2./6 Im a,, —2./6 Re a,,
®,.,. =G | % —2/6Ima,;  ~2/6Reay, —2a, 2/6Imay |. (14)
~-2./6 Re a,, 2,/6 Im a,, 4az

Here the relation a,_,,, = (—1)"a%, was used to eliminate m < 0. We choose the real and imaginary parts of a,, and a,; as well as
a,o, which is always real, as the five independent real values in the | = 2 decomposition. We will discuss the time dependence of the
a,,, coefficients in § 3 and the issue of how to pick them initially in Appcndlx A.

With the equation of motion (8) and the potential matrix ®* = (<I)sph + @% + ®%£.,), we may evolve the system of a homoge-
neous ellipsoid on a smooth background undergoing a time-dependent quadrupole external shear as a set of nine second-order
differential equations. For a nonzero cosmological constant, one should also add: ®*, = — A, I1*#/3. In order to apply this approach
to a collapsing perturbation, we must relate the initial conditions of the ellipsoid and the time dependence of the external shear to
properties of the initial density field. As described above, we center the origin of the coordinate systems on a high-density region and
construct a sphere about this point to distinguish the collapsing object from its environment. We consider the system at high
redshift, so that 6 < 1. The coefficients a,,, that describe the external potential as a function of the initial density field are given in
equation (2). We pick the ellipsoid to match the average density, mass, and quadrupole moments of the inner spherical region at the
initial time. This choice is independent of initial time to leading order in the linear regime. We define the average overdensity of the
inner region at the initial time as

- 3 3
Oo(R) = <4nR3>jrl<Rd ro(r) . 15)
The mass of the region is M = (4n/3)p, R*[1 + 5(R)], and the quadrupole moments q,,, are defined as

9d2m = pr; | Rd3r 5(")7'2 Y;m . (16)

To match these quantities, we consider an ellipsoid with semiaxes ¢y, c,, and c; oriented at some angle relative to the coordinate
axes. We pick the overdensity of the elhpsoxd to be 5(R). Then the mass of the ellipsoid is (47/3)p,[1 + 6(R)]c, ¢, c; which, when
matched to the mass M of the inner region, gives

cic,c3 =R, a7n

Finally, the quadrupole moments of the ellipsoidal overdensity are chosen to match those of the actual inner region. First, we label
the points of the ellipsoid by r = QCx, where x is a point inside the unit sphere, C = diag (cy, ¢,, c3), and Q is an orthogonal matrix
whose jth column is the direction of the axis with length c;. We then define the matrix N = QC?Q” and note the following integral
over the volume of the ellipsoid,
S 3 5 6 3 M e
Pb i 'dd rrr; = pbécl C3C3 1< 1d x(le Cmmxm)(QJn Cnn xn) = Pp R le mejll nm = ? Nij s (18)
ellipsoi x|<

where M, = (47/3)p, S(R)R? is the mass of the ellipsoid above the background. Now we may find the g,,, of the ellipsoid in terms of
the matrix N ; for example,

= 1
Re g, = Pbéj d3r ("1 r%) =M, 160 (Nt — Ny (19)

ellipsoid 32

These relations may be inverted, so that given all the g,,, we find N to be

1
Re q;;, — % d20 —1Im q,, —Re g3,
40m 1 !
N= [=2F —Im g5, —Re gy ——=4q30 Imgy |+, (20)
3 M, \/3
—Re g, Im g,, 2

ﬁ 920

where the constant 7 in front of the identity matrix is unknown. We then diagonalize N to find Q and C?, the latter depending on 1,
and impose the condition in equation (17) to determine t. With this condition we find the lengths and directions of the axes of the
ellipsoid. We then set the initial value of A4 to be QC.

Since the equation of motion is second-order, one must specify the initial velocities. We pick the velocities so that the density field
is a pure growing mode, consistent with the fact that we normalize the power spectrum today when only the growing mode had
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survived. In linear theory the peculiar velocities are given by (Peebles 1980, § 14)

2fg
% =3na’

where g is the peculiar gravitational acceleration, H is Hubble’s constant, and Q = p,/p, is the cosmological density parameter. Here

o))

"' f=(a/DXdD/da) ~ Q°5, a is the expansion factor of the universe, and D is the linear growth factor. Since g = —®r = —®Ax, the

initial velocity field is

dA 2f
v_dtx_Hr—3HQ (22)
and so we find
ap
d;lt = HA* — % D47 . (23)

In this way we have related the initial conditions of the equation of motion to 4 and the five g,,,.
After evolving the ellipsoid through the matrix A, we wish to measure properties of the ellipsoid, such as its angular momentum

‘and energy. The axes of the ellipsoid are the eigenvectors of AAT and the lengths of the semiaxes are the square roots of the

eigenvalues. Labeling these lengths as c;, the potential energy of the ellipsoid is given by (Binney & Tremaine 1987)
dt

\/(1: +ct+ At +cd)

Here we have neglected the potential energy from the background density and from the tidal shear, both of which are small at late
times when this quantity is of interest and when M, =~ M. The kinetic energy equals (Peebles 1980, § 20)

W=-—2 GM2 (24)

1 2 p. det A dA™ dA* M A dAT
- Pr==re piketiadebali J = 25
T 2"6[" =T ,[,M ar ar X dat dr )
where p, is the ellipsoid density. The total energy is E = T + W. Next, the jth component of the angular momentum is
dA™ M dA™
= d3r =p, det A Jkm gkn "xP = —— A 26
Pe j(r x v);d°r = p, de Lqe A o 5 m , (26)

where €/*™ is the Levi-Civita antisymmetric tensor. The mass of the ellipsoid M is constant, and at late times the contribution from
the smooth background is small. With these definitions we can construct the spin parameter A that measures the amount of rigid
rotation acquired by the ellipsoid before virialization,

L/E]

A= M

@7

3. TIME DEPENDENCE OF THE EXTERNAL SHEAR

In the equation of motion (8) for the ellipsoid, one must specify the time dependence of the external shear. The model described in
§ 2 considers only quadrupole tidal forces and therefore requires a limited amount of information about the mass distribution
outside the ellipsoid boundary. In this section, we will try to develop a simple model for the time dependence of the a,,, coefficients.

The simplest approach is to treat the entire volume outside the spherical boundary of the inner region by linear perturbation
theory. The motivation for this approach is that because the inner region is a high-density peak, it is likely to be the first object in its
neighborhood to collapse. Other high peaks are sufficiently far away that their collapse does not substantially change the tidal force,
since such collapses do not move matter on large angular scales as seen from the origin. If the tidal field is determined by scales
much larger than the inner region, the evolution of the quadrupole moments would be well treated by linear theory.

In linear theory, the fractional overdensity d(x) scales by a uniform growth factor D(t) when considered in comoving coordinates
(Peebles 1980). From equation (2), we have

Aom = Po j; | RdSS nga (s)s"3 > (28)

where the s coordinates are in physical (nonexpanding) space. Rescaling to comoving coordinates, however, makes no difference
because the magnitude of s appears equally in the numerator and denominator. The density p, scales as (1 + z)?, where z is redshift.

Thus in linear theory,
3
o) = utt) g (1220, 9)

where t; is the time when we pick the initial conditions. In a flat matter-dominated universe, D oc (1 + z)~ ! and a,,, oc (1 + 2)*.
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The time dependence given in equation (29) can be substituted into the equation of motion for the ellipsoid. When this is done and
an ensemble of random ellipsoid realizations are integrated until full collapse, we find the average value of the spin parameter A to be
smaller than 0.01. Since N-body simulations typically find (1) =~ 0.05 (Barnes & Efstathiou 1987; Warren et al. 1992), the linear
approach apparently underestimates the external torque. It is not surprising that the external shear cannot be purely described by
linear theory, since the material just outside the boundary of the object has a density similar to that of the object. As the ellipsoid
collapses, the nearest shell surrounding it follows its infall. Since the contribution of a mass element to a,,, depends on the inverse
cube of its distance from the origin, the fact that material near the object tends to be closer than its initial comoving position means
that it should produce more torque than linear theory predicts.

Based on the fact that the material around the peak tends to be closer than linear theory predicts, we divide the external mass
distribution into N spherical shells, all centered on the origin, and evolve each shell according to the mass interior to it (Gunn &
Gott 1972). Each shell carries a fraction of the quadrupole shear, initially determined from the Gaussian random field, and this shear
is scaled according to the radial collapse of the shell. The essential aproximation is that we neglect the tangential redistribution of
the matter within shells. This approximation is justified so long as the motion of the matter subtends a small angle, as viewed from
the origin, which is always true for matter at large radius. Using growing mode velocities, we need to specify only the average
overdensity interior to the shell § in order to determine its motion.

To calculate the time dependence of the shear in this approximation, we first note that a,,, depends on dp(x) but not on rescaling
of the radial coordinate. We find dp by solving the spherical evolution from some initial overdensity 6(¢;) using the FRW equation
(13),

d*r 4nGp;, A,r
= +

az” " 32 T30 (30
with initial density p; = (1 + 8)p,(t;) and r(t) = 1. The initial velocity is to leading order H(t,(1 — §/3), with
H(t) = Ho /L + 2)* + Qg1 + 2)* + Q4 , 31

where z; is the redshift at the initial time ¢;. Thus for a given 5, we may integrate equation (30) to find r(¢). We then find a,,,(t) oc p by
consnderlng the difference between the top—hat density, pgp o777, 3, and the background density, p, oc (1 + z)*. Thus,

amlt) _ (L4 8)r(0)™> — {[1 + 2(01/[1 + 2.1}3
aZm(t ) 5i

For a sufficiently early initial time in the matter-dominated epoch, §; < 1 and Q ~ 1, so that equation (32) matches the linear theory
result of a,,, oc (1 + 2).

To implement this approach, we wish to consider N shells, with radial boundaries R,, for « = 0, 1,..., N. We take R, to be the
radius of the spherical boundary that separates the ellipsoid region from the external region and Ry = oo to indicate that the outer
shell includes everything outside the outermost spherical shell. Initially each shell carries a fraction of the quadrupole shear

(32

o, = py f B YA, 6652 3
Ra-1<|s|<Rn

wheren = 1,2, ..., N labels the shell. We pick the characteristic overdensity of each shell as
- 1 - -
o = 3 (O[R,-1] + O[R,]) . (34

For thin shells the differences between the definitions 5™ and §(R,) defined in equation (15) is small. The overdensity surrounding
the outermost shell Ry _, is negligible, so we set 6 = 0 and treat the tide of the outermost shell using linear theory.

The above model for the exterior region completes the necessary set of equations and allows us to evolve the ellipsoid beyond the
linear regime accordmg to equation (8). This approach requires a large set of initial data: the overdensities 5 for all the shells and for
the inner region, the quadrupole shears a3,, for all outer shells, and the quadrupole moments g,,, for the inner region. This set
comprises 6N + 5 real numbers, randomly drawn in a highly correlated way from a Gaussian random field of initial density
perturbations. By treating the random density field in spherical coordinates, as suggested by Binney & Quinn (1991), we can
separate this set of random numbers into six independent sets, each of which is distributed as a multidimensional Gaussian
distribution. We describe how to find these distributions in Appendix A. We may then draw the initial conditions from the proper
probability distribution by taking linear combinations of 6N + S random Gaussian deviates.

4. COLLAPSE AND CONSTRAINTS

If the ellipsoid is simply evolved forward in time, one soon reaches the obvious problem that the axes collapse at different times.
Typically, one axis turns shorter and collapses first, forming a pancake (Lin et al. 1965; ZeI’dovich 1970; Peebles 1980) in which the
baryons shock and the dark matter goes through violent relaxation. The computation of angular momentum should not end at the
time of the short axis collapse, since the other two axes are still extended and give the object a significant quadrupole moment with
which it couples to the tidal shear. Previous work on spherlcal objects (Ryden 1988) has shown that most of the angular momentum
is acquired near turnaround, since most of the time is spent at this phase. In the ellipsoid model, turnaround is not a single epoch
and it appears necessary to follow the system as long as the quadrupole moments are large, i.e., until the long axis turns around.
After the short axis collapses, it makes a small contribution to the quadrupole moment of the ellipsoid. The quadrupoles are
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proportional to the difference between the squares of the axis lengths and so the exact dynamics of the virialization process along the
short axis has little effect on the acquisition of angular momentum.

We therefore follow the approximation of Bond & Myers (1994) and impose a strict cutoff on the collapse of an axis, namely that
no axis may collapse below 40% of its maximum length. This keeps the dynamics from approaching the singularity at zero length
and simulates the virialization of the corresponding axis. The 40% cutoff was picked to allow the ellipsoid to be slightly flatter than
the spherical virial theorem would predict, but because the collapsed axis is much shorter than the noncollapsed ones, the exact
cutoff value does not affect the angular momentum acquisition significantly. The implementation of this constraint is nontrivial
because the ellipsoid may be rotating and the columns of the matrix A are in general not orthogonal. The details of this
implementation are presented in Appendix B. Note that the vorticity of the ellipsoid is conserved under the equation of motion (8),
but is not conserved through this treatment of the collapse of an axis. Also, since the kinetic energy of the ellipsoid is being altered,
energy is not conserved. Because the change in the total energy during the dynamics is usually small, we save the last value of the
energy before the first axis collapses and use it in the calculation of the spin parameter A.

In principle, we would like to evolve the ellipsoid until all three axes collapse, by which time the angular momentum gained by
tidal torques (i.e., not by accretion) will be complete. The first difficulty is that in some cases one or two axes do not collapse at all.
The existence of a high-density region does not guarantee that it will not be sheared by its environment to form a wide pancake. This
would be true even if we were to use linear theory for the shear, as can be seen from the Zel’dovich approximation (Zel’dovich 1970).
In this approximation, if a volume element begins with an outward peculiar velocity along one of its axes, then it will continue to
'move outward for all later times. Because the region is overdense, all the growing mode velocities resulting from the ellipsoidal
perturbation will be inward. But since the trace of @g,.,, is zero at least one eigenvalue of @, is negative, and therefore in at least
one direction, the peculiar velocity will be less inward than for the isolated ellipsoid. We wish to study regions that end as spatially
bounded objects. In Q = 1 cosmologies, following the Zel’dovich approximation, we require that the radial component of the initial
peculiar velocities inward in all directions. This corresponds to requiring that the potential matrix be positive definite. In Q < 1
cosmologies, however, this condition is not sufficiént because mildly overdense regions may still expand forever. Only regions which
exceed the critical density collapse, so we instead require that the inward radial component of the peculiar velocities exceed that of
the growing mode of a spherical top-hat perturbation at the critical density, which corresponds to an initial overdensity

< 31Q Q
écm=g[—95 (1+2)7 +8 0 +z,-)‘3]. (35)
Due to nonlinear effects of the external shear, our requirement is not a perfect discriminator as to whether an axis will expand
forever, but it at least matches the weakly nonlinear theory. The consequences of this constraint are examined analytically in
Appendix C.

Since we base the time dependence of the shear on the density of the spherical shell collapse, the shear force diverges as the shell
collapses to a zero radius. Because the average overdensity of the innermost shell is not so different from that of the ellipsoid, the two
objects collapse at similar times. But in most cases, the action of the shear causes the long axis to collapse significantly later than the
inner external shell. We must end the integration at some time before the collapse of the inner tidal shell. We therefore choose to end
at the time at which a sphere whose overdensity was that of the initial ellipsoid would collapse to a zero radius. We then constrain
the initial conditions so that none of the exterior shells has an overdensity 5™ greater than 95% of the initial density of the ellipsoid.
This ensures that the external tidal shells do not collapse before the integration ends. This condition has the important property of
tending to make the inner region a density peak; we do not explicitly require that it is truly a peak, but if the overdensity as a
function of radius is forced to drop as one moves away from the central region, only extreme variations as a function of angle would
allow the density to rise radially in a particular direction.

The last and most significant constraint we impose is that the inner region must have a high overdensity. This condition
underlines the separation between the collapsing region and the rest of the universe. We implement this constraint by requiring
d(Ro) > Vmin 0, Where v, = const and ¢ is the rms amplitude of mass fluctuations dM/M for such regions. As usual, the latter is

calculated to be (Bardeen et al. 1986)
- j dk P k)[3] l(kR°)] , (36)

0

where P(k) is the power spectrum and j, is a spherical Bessel function. In § 5 we will typically pick v,;, = 2, thus forcing the central
region to be rare.

The above three constraints—(i) §(R,) > Vyia 0; (ii) the overdensity of the surrounding shells being less than 95% of 8(R,); and (iii)
all pecuhar velocities being inward—are not implemented directly into the probability distributions for the initial conditions as
derived in Appendix A. Rather, we generate sets of the initial conditions and then reject cases that do not satisfy these constraints.
Since the strictest condition is 6(Ry) > V., 0, We set up the probability distribution so that 5(R,) depends on only one Gaussian
deviate, which allows us to reject a set of initial conditions on the basis of one random number. Then we can choose the overdensity
of the innermost shell to depend on only one more deviate, allowing another straightforward test.

We call the fraction of sets of initial data that meet the above conditions the acceptance rate A. Prior to imposing these
constraints, the Gaussian random field was unconstrained. Because the central region is at a mass scale M = (4n/3)R3, the number
density of such regions is ny = po/M, where p, is the mass density today of nonrelativistic matter (i.e., the matter making up the
ellipsoid). This means that after applying the constraints, the number density of accepted regions is An,. If we now construct an
ensemble of such regions and, after evolving each of them with our model, find that a given property occurs in some fraction f of
them, then the actual number density of such objects is predicted to be fAn,. We apply this approach elsewhere to predict the

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...439..520E

No. 2, 1995 COLLAPSE OF COSMOLOGICAL PERTURBATIONS 527

number density of black hole progenitors formed in the initial collapse of objects with very low values of angular momentum
(Eisenstein & Loeb 1995, hereafter Paper II).

This completes the description of our model. We next study the statistical properties of collapsing regions in specific cosmological
models, defined by the values of the cosmological parameters: Q, A,, and H,, as well as by the power spectrum of primordial density
perturbations. For a given mass scale, we consider many realizations of the random initial conditions, evolve each realization
separately, and then combine the results to analyze the statistical distribution of shapes and angular momenta of collapsing regions.

5. RESULTS

To illustrate the behavior of the model, we adopt a cold dark matter (CDM) power spectrum (Bardeen et al. 1986) of initial
density perturbations for two different universes: a flat universe with Q = 1, and an open universe with Q = 0.2; both cases
assuming A, = 0 and H, = 50 km s~ Mpc~!. We normalize the power spectrum by choosing the present rms amplitude of mass
fluctuations within an 84~ Mpc radius sphere to be 1/b, where b is the bias parameter. We pick the initial time to correspond to
redshift z; = 1000, and then scale the power spectrum using the growth factor D(t,)/D(t;).

The parameters of the model are the mass of the central region M, the minimum peak height v;,, and the radii of the external
shells. We consider a variety of mass scales between 10® and 10'°> M. As peak thresholds we use both v,,;, = 2.5 and 2.0. The radius
of the innermost spherical boundary Ry is fixed to match the mass scale being studied, and we pick all other radii to be multiples of
this inner radius. We choose 20 shells, with boundaries at 1, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5,6, 7,8, 9, 10, 12, 15,17, 20, and 30 times the
inner radius, as well as at infinity. The only important number in this list is the first one, which implied that the innermost shell is
thick. This is done in order to keep the acceptance rate reasonable, as the overdensity of the closest outer shell must be less than 95%
of that of the inner region. Were this shell to be thin, the overdensity constraint would only rarely be satisfied. The finite thickness of
this shell ultimately limits the radial resolution of the external shear profile.

We consider the flat universe with b = 1 for a variety of mass scales and for v,;, = 2.5. The average value of A increases slightly
with mass, from 0.034 at 108 M, to 0.038 at 102 M, and to 0.049 at 10'5> M. Figure 1 shows the probability distribution of the
spin parameter P(A) for the mass scales of 102 M, and 10!° M, in a flat universe. The histograms are based on samples of random
realizations that result in 2 x 10° accepted systems for each mass scale. The weak dependence of the mean values of (1) on the mass
scale is in good agreement with N-body simulations (Barnes & Efstathiou 1987; Warren et al. 1992).

The primary reason for the actual dependence of {(A) on M is the shape of the power spectrum. With the CDM power spectrum,
higher mass scales have larger average quadrupole moments (relative to M R?). This results in more elongated initial ellipsoids and
therefore in stronger couplings to the external torque. In addition, the fixed choice of shell boundary radii introduces a systematic
mass dependence because the higher mass systems have a steeper density profile and a larger fraction of the shear carried by the
inner shells (these two profiles are related, as shown in Appendix C). Consequently, the effective shell resolution appears coarser for
high-mass objects. The limited resolution results in a slight underestimate of the shear at late times, when the shear amplitude is
large.

For v,;, = 2.5 only a fraction 0.00621 of all regions satisfy the constraint 6(Ry) > v, 0. The remaining two constraints (shell
densities and inward velocities) are satisfied 64.2% of the time for 108 M and 89.7% for 10'*> M. Most of these additional
rejections are due to the inner shell having too high an overdensity; rejections due to the peculiar velocities not being inward occur
in less than 3% of the cases (cf. Appendix C). With peak threshold values of v,,;, = 2.5 and 2.0, the average values of v are 2.84 and
2.40, respectively, independent of mass scale.

0.6~y e e

IR

0.5

[ 1012 M, k 101 M,
3 <A> = 0.038 —> <«— <A> = 0.049
0.4k : _
=<
Soaf .
<
’. B
02 .
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ol

0.001 0.01 0.1 1

F1G. 1.—Probability distribution of the spin parameter P(1) for the mass scales of 10'*> M and 10'? M and v,,;, = 2.5 in an Q = 1 universe. Each histogram
includes 2 x 10° random realizations of the initial conditions. The average values (1) = [$AP(4)dA are also shown.
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For a flat universe, the model is strictly independent of the bias parameter or the Hubble constant. Both parameters rescale space
and time without altering the collapse dynamics. This does not hold in an open universe, where an intrinsic timescale appears at the
transition point to an open curvature-dominated expansion of the background.

The value of 1 is found to be anticorrelated with v = 6/, so that higher peaks tend to have lower angular momentum (see also
Hoffman 1986a, 1988). The linear correlation between the two is about 0.21. Therfore, the choice of v, affects the distribution of A.
For a flat universe and M = 10’2 M, we find <{A) = 0.038 for v, = 2.5 and (1) = 0.051 for v, = 2.0. For 10! M, we find
(A = 0.049 for v, = 2.5 and {A) = 0.069 for v,,;, = 2.0. If we use a particular v for all iterations, as opposed to the usual
requirement of v > v,;,, then for 10*5 M, we find (A = 0.089 for v = 2, (1) = 0.060 for v = 2.5,and (i) = 0.042forv = 3.

In all of the accepted objects, the shortest axis reaches collapse by the end of the integration (i.e., by the time a spherical
perturbation with the same initial density as the ellipsoid would have reached zero radius). For v > v, = 2.5, the middle axis
reaches collapse in 78% of all iterations, while the long axis reaches turnaround in 84% of the iterations and reaches full collapse in
1.5% of all cases. If we force v = 2, the corresponding numbers are 65%, 58%, and 0.6% respectively for M = 10'2 M, with a weak
dependence on mass. The failure of the long axis to collapse is expected; since it is being pulled out by the shear, it collapses later
than the unperturbed spherical case. The few times that the long axis happens to collapse result from the small window of
opportunity between the sphere reaching 40% of its turnaround radius (defined as axis collapse) and reaching a zero radius. The
failure to turnaround usually is the result of the shear leaving one axis with only a tiny inward velocity so that it undergoes a very
long excursion, but it can also result from extreme cases where the rapidly increasing shear toward the end of the integration causes
one axis to expand again after it had already been contracting. The dependence of the amount of collapse on v reflects the tendency
of the shear to pull lower peaks apart. Although we require that the velocities are initially inward, this may not be sufficient to
guarantee that the object remains bounded under the influence of the nonlinear shear. As suggested in Appendix C, the constraint to
have inward velocities is almost negligible for v > 2.5, with acceptances over 97%, but is important for v = 2, where the acceptance
drops to 82%. The drop means that more systems have one axis with a nearly zero peculiar velocity; these axes are very slow to
turnaround. Low-v systems therefore have larger-axis ratios resulting in larger couplings to the quadrupole torques. The correlation
between the peak height v and the axis ratios leads to the above dependence of A on v.

Let us now turn to discuss the axis ratios of the evolving ellipsoids. Figures 2-8 present the axis ratios b/a and c/a for various
ensembles of ellipsoids. The semiaxis lengths a, b, and c are ordered so that a > b > c. Panels (a)—(e) show the ensemble at different
times, while panel (/) shows the mean of the points in the previous panels.

Figure 2 presents the evolution of the axis ratios for a random ensemble of 10'5> M, ellipsoids with v = 2 in the Q = 1 cosmology.
We chose to fix v rather than use a threshold value v,;, so that the integration of each ellipsoid would end at the same time. The time
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slices in the plots show each ellipsoid at a constant fraction of the collapse time ¢,,,, for a spherical top-hat perturbation of the same
initial density. We track 5000 ellipsoids and show that axis ratios at the initial time and 25%, 50%, 75%, and 100% of't, We set
b = 1.3 so that the end time is close to z = 0.

The most significant aspect of this plot is the progression of the points from a quasi-spherical initial state to a prolate end state. At
early times (panels [a]-[c]) the short axis falls behind in the expansion so that the points move down the plot. At the time of panel
(d) the short axis has generally collapsed; however, the typical resulting shape is not an oblate pancake or a prolate filament but
rather triaxial. As the evolution continues the middle axis turns around and collapses, so that most objects become prolate by the
end time in panel (e). Note the slight regeneration of high c¢/a points between panels (d) and (e); this corresponds to the beginning of a
collapse along the long axis. Indeed, 37 of these 5000 ellipsoids reached long-axis collapse (i.e., the long axis reached 40% of its
maximum length).

In contrast to previous discussions on collapsing ellipsoids (Lin et al. 1965; Zel’dovich 1965; Icke 1973; White & Silk 1979), we
find that the collapsing region geometry is primarily determined by the external shear and not by the initial anisotropy of the
ellipsoids. To demonstrate this result, we alter the model and replace the initial ellipsoid by a sphere. The results for a mass of 10'°
Mg, Q =1, and v = 2, are shown in Figure 3. The evolution is very similar to Figure 2 despite the qualitative change in the initial
conditions, although the ratio of the long axis to the short axis is not quite as large at late times. Furthermore, even in the full
ellipsoid model, the direction of the long axis is dominated by the direction of the shear rather than the direction of the long axis of
the initial ellipsoid. This is particularly the case for low mass scales and for higher v, where the initial quadrupoles are weak and the
initial conditions are closer to the spherical example. Even an initially spherical object can gain angular momentum because the
shear direction changes as the relative weighting of the shells evolves with time. The resulting value of 4 is lower for the spherical
case, however, indicating that the anisotropy of the initial ellipsoid is important for the acquisition of angular momentum. For the
parameters in this paragraph, (A> = 0.089 when the initial object is the usual ellipsoid, but (1) = 0.028 when the initial object is
changed to a sphere. )

In Figure 4, we consider the mass scale of 10!2 M and v = 2 in the Q = 1 cosmology (the redshifts assume b = 1.3). Compared to
Figure 2, the initial ellipsoids are more spherical and have weaker quadrupole moments. However, the axis ratios at late times are
similar to those at the 10'° M o mass scale.

We next consider the open cosmology with Q = 0.2 and b = 1. For the 10'5 M mass scale we pick v = 2.2 so that the final
redshift of the calculation matches that of the flat universe case. The results are presented in Figure 5. Here we have chosen the time
slices so that the redshifts are the same as in Figure 2. The slices are no longer evenly spaced in time because of the different
cosmology. Due to changes in the power spectrum, the objects are initially more spherical in an open universe, but they end with
very similar axis ratios to those obtained in a flat cosmology.

A major difference between the open and the flat cases is that the constraint on the initial velocities is far more severe in the open
cosmology. In the open case we require that the peculiar velocities not only be inward but that they be larger in magnitude than
those induced by a critically bound sphere. For the above open cosmology and the above mass scale this condition (cf. eq. [35])
requires that a spherical top-hat perturbation have v > 1.1. Including the disruptive effects of shear (cf. Appendix C), we find that the
acceptance rate for this constraint drops down to 23% from its value of 83% for Q = 1. Thus most v = 2 peaks have one axis that is
not critically bound. In Figure 6, we relax the constraint on the velocities entirely so as to investigate how the general peak behaves
in this open universe. There are two notable differences between this plot and either Figure 5 or Figure 2. First, the collapse of the
shortest axis, as shown by the accumulation of the points near the horizontal axis, occurs in panel (c) rather than in panel (d). The
relaxation of the velocity constraint allows larger shears to enter. This not only tends to pull out the long axis but also tends to push
in the short axis, since the shear is a traceless matrix. The short axis in this sample therefore collapses faster. Second, at the final time
in panel (e), the objects are significantly more filamentary (note that small deviations in the plotted ratio c/a near zero correspond to
large changes in the filament shape a/c). This effect occurs because the long axis expands without bound and the short axis collapses
earlier than before. Comparing Figures 2 and 6, we see that when viewed at equal redshifts, open universes have significantly more
filamentary structure than flat universes. This occurs primarily because of the stronger influence of shear on the collapsing regions.

Next, we consider the low-spin tail of the population of collapsing regions (cf. Fig. 1). Because of its low angular momentum, the
gaseous component of the systems in this tail can collapse to small radii and form compact massive objects. The low-spin systems
therefore provide environments that may favor the formation of seeds for quasar black holes; we discuss this possibility in detail in
Paper II. For the present discussion, let us examine the qualitative properties of low-spin systems selected out of a population of
collapsing regions with v,;, = 2.5 on the mass scale of 10® M, in a flat universe (including the velocity constraint as usual). Figure 7
shows the full distribution of the ensemble of runs for this mass scale. The different panels show the ellipsoid axis ratios at fixed
fractions of the collapse time t,,,, of a spherical perturbation with the same initial density as the ellipsoid. Since v is not constant, the
collapse time is different for different ellipsoids. Thus, the panels in the figure are not equal time slices, but instead show each
ellipsoid relative to a measure of timescale for its development.

We now compare this full distribution to the distribution of the subset of low-spin systems. For the definition of a low-spin
system, we use the criterion developed in Paper II to determine whether the gas in a system can settle into a sufficiently compact disk
with a viscous timescale shorter than the star formation time ~107 yr (i€, y < 1.1 x 1073 in the notation of Paper II). This
condition translates to a maximum value for the angular momentum per unit mass of the system, J/M = 8.6 x 10*>* cm? s . Since
this threshold involves only the total angular momentum, it does not precisely correspond to a bound on the spin-parameter 4
(which depends on the energy as well); nevertheless, it is approximately the condition 4 < 1073. In a set of 2 x 10° accepted systems,
232 satisfy this limit. In Figure 8, we plot the axis ratio histories of these objects. Evidently, these objects evolve in a much more
spherical way than the typical cases shown in Figure 7; over half of the low-spin systems have axis ratios between 2:1 and 1:1 at the
end time. This striking result is a consequence of two correlated effects. First, the low-spin systems have closer to spherical initial
conditions, but second and more important, the quadrupole shear in their neighborhood is weak. One should also consider the

max"*
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existence of a background population of accidental low-spin objects. Because of the time dependence of the shear, it is possible for
the angular momentum of a filamentary object to be rapidly changing at late times and by chance be small at the end of the
integration. Such elongated objects are obviously not environments that would favor black hole formation. While some of these
background objects do occur, Figure 8 demonstrates that most of the low-spin events are indeed close to spherical during their
evolution.

We close this section by showing four individual cases for the collapse of a 10*5 M object in an Q = 1 universe with b = 1.3.
Figures 9a and 9b show two objects with v = 2, while Figures 9c and 9d show two objects with v = 3. In all cases, the first panel
shows the semiaxis lengths as a function of time (note the different timescales between the two values of v). The freezing of the axis
length after its collapse (cf. Appendix B) is evident. The second panel shows the evolution of the overdensity dp/p = 6 for the
ellipsoid (solid line), as well as for the spherical perturbation with the same initial density (dotted) and for the Zel’dovich approx-
imation when applied to the initial quadratic potential (dashed). The slope discontinuities in the ellipsoid density are a result of
halting the collapse of the axes; if this treatment was avoided the ellipsoid would have reached an infinite density slightly before its
spherical counterpart. The Zel’dovich approximation does well at early times but underestimates the density after turnaround. The
third panel shows the spin parameter as a function of time. While A grows roughly linearly with time, there are significant secondary
variations which are more pronounced at lower mass scales. The four different figures are shown to illustrate a variety of collapse
conditions. Figure 9a ends with relatively large values of A and the axis ratios. Figure 9b was picked because of the unusual wiggle in
its evolution; such wiggles result from a time-varying shear and are not uncommon in the v = 2 systems when the overdensity is not
high enough to dominate the shear. Figure 9c is a typical high-v object; its A and axis ratios are close to the mean. Finally, Figure 9d
has a relatively low A but a large ratio of its long-to-short axes.

6. DISCUSSION AND CONCLUSIONS

In this work we have developed a model for the nonlinear collapse of a triaxial overdense region out of a Gaussian random field of
primordial density perturbations. The model approximates the collapsing region as a homogeneous ellipsoid. We assume that the
collapsing mass originates in a spherical volume around a high-density peak? and select an ellipsoid that matches the mass, mean
overdensity, and quadrupole moment of the initial overdensity field in this volume. This choice is independent of redshift to leading
order in linear perturbation theory. The mass distribution outside the sphere exerts a tidal torque on the ellipsoid and spins it up.
We calculate the quadrupole moment of the external shear as a function of time by dividing the background density field into thin
spherical shells that move only radially according to the mass interior to them. The dynamics of the ellipsoid is determined by its
self-gravity and the external shear through a set of nine ordinary differential equations. Both forces are linear in the coordinates and
therefore maintain homogeneity of the ellipsoid at all times. In Appendix A we have developed the formalism necessary to randomly
determine the initial conditions for this model in the appropriate correlated way from a Gaussian random field of initial density
perturbations.

The above model was applied to a restricted set of initial conditions that are more suitable to its assumptions. In particular, we
studied the statistical properties of rare high-density peaks with a mean overdensity 5 2 2 o. In a bottom-up hierarchy of structure
formation, most objects evolve from a quasi-spherical initial state to a pancake or a filament and then to complete virialization. As
demonstrated by Figure 3 (where the initial conditions are spherical), this evolution history of shapes is primarily induced by the
tidal shear and not by the initial triaxiality of the ellipsoids. Thus, the existence of sheets and filaments in the universe is not a result of
the Lin-Mestel-Shu (1965) instability, but rather an environmental effect; namely, the ellipsoids are being sheared by nearby mass
concentrations. As shown in Figures 2 and 6, the redshift evolution of the triaxiality of systems on a given mass scale can be used to
discriminate between an open and a flat universe. However, the average value of the spin parameter (cf. Fig. 1) (1) = 0.04, is found
to be only weakly dependent on the object mass or the cosmological parameters in agreement with N-body simulations. There is a
modest dependence of A on the peak height v.

The ellipsoid model incorporates significant qualitative improvements over previous analytical investigations of 4. Other models
(Ryden 1988; Quinn & Binney 1992) considered spherical dynamics for the collapsing region and assumed zero initial peculiar
velocities rather than growing mode velocities. The latter assumption causes a significant overestimate of A since it makes the object
expand to a larger radius. Quinn & Binney (1992) considered the dipole term of the external potential to be most important, but
they worked in the instantaneous rest frame of the center of mass rather than in the actual accelerating rest frame of the center of
mass. This led to a nonzero torque even in a uniform gravitational field. In this work, we have ignored the dipole term because the
uniform gravitational field that it produces can only cause the object to move linearly and cannot directly induce any rotation.
However, this can still affect the dynamics indirectly, since the motion of the object relative to its exterior causes the angular
distribution of the exterior matter to change. This would require a recalculation of the multipole moments a,,, of the exterior
potential at each time step. We avoid this complicated procedure by assuming that the dipole field is predominantly generated at
large scales. Therefore, both the object and its immediate neighborhood feel the same force and move together, allowing the change
in the angular distribution of the torquing material to be small. To test this assumption quantitatively, we consider the rms value of
the dipole field generated outside a sphere of radius R as a function of R. Using the methods of Appendix A, we find that
81(R)D s < {[&dkP(K) jo(kR)]*}'/, where P(k) is the power spectrum and j, is a spherical Bessel function. Then, for the standard
CDM power spectrum we find that the dipole is indeed generated at large scales, with 96% of the field coming from mass scales
bigger than 10*2 M 5 and 50% coming from mass scales bigger than 8 x 10'°> M . Thus, especially on small mass scales, the neglect
of dipole terms seems justified.

2 As shown in Appendix C, only high-density peaks are likely to survive as bound systems under the influence of the external tidal shear from their environment.
This effect provides another reason for associating virialized objects, like galaxies or clusters, with high-density peaks.
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FiG. 9.—Four individual examples of ellipsoids evolved by the model (panel sets [a]-[d]). Left panel of each set shows the lengths of the three semiaxes as
functions of time. Middle panel of each set shows the overdensity of the ellipsoid (solid line) as a function of redshift z. Also shown are the overdensity of a spherical
top-hat perturbation of equal initial density (dotted line) and the overdensity predicted from applying the Zel’dovich approximation to the initial potential (dashed
line). Right panel shows the spin parameter A as a function of time.
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One limitation of the ellipsoid model is that a homogeneous ellipsoid cannot represent the substructure of the object, as described
by the multipole expansion of its mass distribution beyond the monopole and quadrupole terms. This means that we cannot treat
such interesting complexities as the distributions of matter and angular momentum within the collapsing object. We have instead
focused on global properties of the object, such as its shape and total angular momentum. The dominance of the quadrupole torque
over higher moments in linear theory (Quinn & Binney 1992) suggests that our global treatment of the angular momentum is sound.

In assessing the applicability of our model, we return to the initial ellipsoid. The matter inside this ellipsoid makes up the final
object. The ellipsoid is picked to match the mean overdensity and quadrupole moment of the inner spherical region. As it traces the
density, one may consider the boundary of the ellipsoid as an approximation to the smoothed isodensity contour of the inner region.
The model then follows the evolution of this contour and would therefore be useful for applications where the final object is indeed
associated with the initial high-density contours.

A potential example for such an application is the collapse of clusters of galaxies. Clusters correspond to high-density peaks on
the 10'4~15 M mass scale. In the bottom-up hierarchy of structure formation, the galaxies that inhabit the cluster form before the
cluster collapses. Since galaxies tend to form in high-density regions, the high-density environment of the cluster peak favors galaxy
formation. Galaxies therefore tend to trace the smoothed density field near the top of the peak, and the ellipsoid model could
describe their motion during the formation of the cluster. Obviously the model cannot describe the final virialization process of
clusters, where violent relaxation erases in part the signature of the initial conditions. The ellipsoid model predicts however that the
outer unvirialized parts of clusters which are still infalling today would be highly triaxial with the axes ratio distribution as shown in
Figures 2 and 5. This prediction can be tested by observations of the galaxy distribution around clusters or by deep X-ray imaging
of their surrounding gas distribution. In fact, the Virgo Cluster is observed to be elongated considerably along the line of sight based
on Tully-Fisher distances (Fukugita, Okamura, & Yasuda 1993). The existence of prolate systems allows for a systematic contami-
nation of optical samples of rich clusters by cases of a chance alignment between a prolate filament and the line of sight. Similarly,
clusters that are elongated perpendicular to the line of sight may not have been identified as clusters when examined by spherical
filters (e.g., Abell 1958). In addition, prolate clusters introduce a systematic bias into the Sunyaev-Zel’dovich (SZ) effect by favoring
low values of the Hubble constant when the data analysis is done using a spherical model for the cluster. Indeed, attempts to
determine the Hubble constant from SZ measurements tend to get relatively low values of H,, occasionally below the permitted
lower bound of 50 km s~ Mpc~! (McHardy et al. 1990; Birkinshaw & Hughes 1994, and references therein). Conversely, when the
value of the Hubble constant is eventually determined by other techniques, it would be possible to get constraints on the triaxiality
of clusters from their SZ effect.

In some other applications, the final object evolves from a region that has little to do with the density contours near the top of a
high-density peak. For example, the matter that forms a galactic halo may come from regions of low initial overdensity near the
peak. These low-density regions can be assembled into the halo not only by the gravitational attraction of the peak itself but also by
the external shear. Initially, the total densities of the “low ” and “ high ” density regions are similar because the background density
dominates in both cases. The actual boundary of a virialized object today is an equal collapse-time surface that maps into a
complicated surface in the initial density field according to the intervening action of the external shear. To illustrate this complicated
situation, consider a high-overdensity region acted upon by a quadrupole tidal shear. The initial region has a slightly anisotropic
shape, but this is quickly counteracted by the shear (cf. Figs. 2 and 3). The density contours are pulled into a strongly triaxial shape,
as one axis is pushed in by the shear and a second axis is pulled out; the third axis is somewhere in between. As the central peak
collapses along its short axis, which is more likely to be considered as part of the object: the high-density regions located far out on
the long axis or the lower density regions located nearby on the short axis? For the formation of a galactic halo, the nearby regions
are more relevant, since they are positioned closer to the center of mass and therefore undergo shell crossing earlier. Moreover, the
sections of the high initial density contours out on the long axis are susceptible to being separated from the halo by fragmentation or
other instabilities (Merritt & Hernquist 1991). Thus, the initial isodensity contours around the peak may not be appropriate tracers
of the volume that eventually makes up the halo.

An additional problem is that while a galaxy corresponds to the region surrounding a high-density peak, the peak itself collapses
at high redshifts and the surrounding matter accretes onto this seed. Hence, the properties of the collapsed peak do not reflect the
properties of the final halo. In a spherical collapse model, one hopes to remedy this problem by picking the radius of the object so
that the overdensity inside that radius corresponds to a collapse at present. However, when the effects of shear and nonsphericity are
included, this procedure is no longer valid.

For the above reasons, we feel that the ellipsoid model does not provide a fully satisfactory description of the dynamics of typical
galactic halos. However, the model does substantially better in describing low-spin objects at high redshifts (cf. Paper II). Such
objects are generally located in regions with low shear, so that their collapse is more spherical, as demonstrated in Figure 8. This fact
tends to reduce the concerns about the proper initial volume for the system. The population of low-spin objects is of particular
interest as potential environments that favor the formation of massive black holes, since in these systems the hydrodynamic collapse
of the gas is not inhibited by the centrifugal barrier as in typical systems (e.g., typical disk galaxies are larger than their Schwarzs-
child radius by 6-8 orders of magnitude because of rotational support). In Paper II we show that the existence of low-spin systems
at high redshifts can in principle account for the seeds of quasar black holes with masses 2 10° M, and a comoving density of bright
galaxies. Appendix A then shows that if a black hole forms in the initial collapse of a high-¢ peak on the ~ 108 M mass scale, it is
likely to be surrounded by a highly overdense region even on the mass scale of a galactic bulge. Due to the proximity of the centers
of mass of the two systems, the black hole will sink by dynamical friction to the center of the bulge system after it forms. The later
collapse of the surrounding region would fuel the black hole and result in the quasar activity (Loeb & Rasio 1994). In the
application of the ellipsoid model to the formation of quasar progenitors, we are free to consider only the inner part of the collapse
and to neglect subsequent accretion, since the formation of the black hole seed occurs on a short timescale relative to this accretion.
The main remaining uncertainty in this treatment is the omission of higher multipole torque couplings.
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Given a primordial power spectrum of Gaussian density perturbations, the ellipsoid model makes definite predictions about the
statistics of shapes and angular momenta of overdense regions in the universe. It would first be useful to compare the quantitative
predictions of our model to the statistical properties of collapsing regions in high-resolution simulations (Bertschinger 1993 and
references therein). Such a comparison would require large simulated volumes (2[100 Mpc]?) in order to obtain reasonable
statistical samples of rare objects that collapse today (M 2 10'°> M). The prominence of filaments and sheets relative to quasi-
spherical structures could also be tested observationally using galaxy surveys (e.g., Geller & Huchra 1989; Maddox et al. 1990;
Saunders et al. 1991; Shectman et al. 1992; Strauss et al. 1992; or the future Sloan Digital Sky Survey, Gunn & Knapp 1993) to infer
the smoothed mass distribution on scales larger than the virialized cores of clusters of galaxies. A nonspherical analysis of this type
can provide constraints which are complementary to the conventional results obtained by applying spherical filters to galaxy
surveys.

We thank John Dubinski and David Weinberg for useful discussions. D. J. E. was supported in part by a National Science
Foundation Graduate Research Fellowship.

APPENDIX A
PROBABILITY DISTRIBUTION FOR THE INITIAL DATA

Our model has 6N + 5 real numbers as its initial data, each of which is defined as some integral over the initial density field. In
this Appendix we derive the probability distribution for these initial data in terms of the properties of the Gaussian random field of
initial density perturbations.

We denote the radii of the boundaries between the shells as Ry, R;, ..., Ry, where Ry = oo. The values to be derived from the field
are(m=0, +1, +2):

i 3
5(R”)=<———)f #ro)  forn=0,1,..,N—1; (Al
47ER3 |r] <Rn )
9am = Po f dro(nr’Ys, ; (A2)
|r|<Ro
b = f d3sY%,6(s)s"* forn=0,1,...,N—1. (A3)
Rp<|s| <o

From these values, we can easily transform back to our model input variables in equation (34) and (33), noting
aP) =bg Vb forn=12..,N-1. (A9

Let us first switch to a multipole expansion of the Gaussian random field, as described by Binney & Quinn (1991). We replace the
random field (x) by a new set of random functions {& ,,,,(k)} :

o(x) = f K Oim(K)Kji(kr) Y0, @) , (A3)
I= o m——x o

where j, are the spherical Bessel functions and (r, 6, ¢) are spherical coordinates. Binney & Quinn (1991) show that the set of
functions {8,,,} is Gaussian distributed as

P[{6,,(k)}T oc T] exp[ f dk '5""(")'2] (A6)
m l,m 2P (k)

where P(k) is the power spectrum. This means that the functions J,,(k) are independent and that all of them have the same simple

probability distribution.

When we insert equation (A5) into equations (A1)—(A3), the angular mtegrals may be eas1ly done. The q,,, and b, coefficients
depend only on §,,(k), and &(R,) depends only on Jyo(k). All the other [ in the expansmn do not appear, so we do not need
to determine those J,,(k). Furthermore, the values we seek fall into six independent sets, since none of the integrals in equations
(A1)-(A3) mix different (I, m) sets.

We next perform the radial integrals by using the identities (Abramowitz & Stegun 1965)

d d
L) =2y a@s O] = —2 ) (a7
We thus find
5(R)=—3—ﬁrdkr"dra (rkjokr) = —— 2 wdkk'zé (k) mod 2
"E R\ 7 ), A 00 Jo R\ 7 00 z2%jo(2)
3 f2(> . , kR
=;,;,73ﬁ || awk2sutbrm. kR = - % f kool 27 (49)
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Similarly,
9om = Po R(S)\/z f dk 52m(k)h(£{‘o_) (A9)
T Jo R,
and
(n) — pbff dkézm(k)jl(kR") (AIO)

Each desired quantity has been written as an integral over the §,,(k), a property that will be used later in finding the relevant
probability distribution.

Before developing the joint probability for the full problem, we wish to illustrate the method by working a simpler example first.
We consider the average overdensities inside two different radii and ask: given a value for the overdensity inside the smaller radius,
what is the distribution for that at the larger radius? Denoting the radii R, and R,, we have from equation (A9)

Jj1(kRy) Jl(kRz)

- 3 ® -
= dk Soo(K . S, =—= | dkdy(k
nﬁL 00() Rl 2 n\/’ij; 00()

Because the functions §,,(k) are independent and because we need only consider one at a time, we will suppress the Im label. The
form of the integral in equation (A6) prompts us to consider d(k) as a vector in a function space and to define the inner product as

(Al1)

Calby = f T TAGALE (A12)
for two arbitrary functions a and b. Next, define
0t =20 py, 0,0 =25 pee. (A13)
Then we have
- 3
51 = n_ﬁ <Q1 | 500> (A14)

and similarly for &, ; note that the P(k) in the definition of Q cancels the P(k) in the inner product.
Now let us consider some basis n(k) that is orthonormal under our inner product. Then we may write (k) as a linear combination
of these basis vectors,

ok) =Y. Bnh) . (A15)

Substituting this form into equation (A6), we find the probability for a given set of f; to occur,

1 1 1
P(B) o< exp <— 5 T B2 n,->) = exp (— 5 m,-P) =T exp (— 5 |ﬂ,-|2) : (A16)
LJ J J
This means that each f is independently distributed with a uniformly distributed phase and a Gaussian distributed magnitude. For
an m = 0 function as we have here, f is real and is simply a Gaussian deviate, namely it is drawn from a Gaussian distribution with a
zero mean and a unit variance.
We would like to express Q; and Q, in terms of this orthonormal basis. Since we have not yet constructed the basis, we choose it
to be simple. The first vector n, will be @, normalized,

0
ny=—F—— (A17)
V<Q11Q1>
Then, we pick n, to be the normalized component of Q, orthogonal to n,, which is
0, —<ny|Q2Omy (A18)

T /02102 — <m0

We may then complete the basis any way we wish; none of the other vectors will include any component of Q, or Q,. Inverting
equations (A17) and (A18), we find

Q= vV Q11Qny Q, =<{n|Q>n; + \/<Q2|Q2> - <"1|Q2>2"2 . (A19)
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Putting equations (A9) and (A15) into equation (A14) and using the orthonormality of the basis, we find

51 = \/- vV <04l Q1 1 (AZO)

and

3
0, = 7!_—\/5 (ny Q2081 +/<Q21Q2> — <1y 1Q2>B2) = \/— V<Q21Q20(8: + /1 = VB2, (A21)

where v is the dimensionless overlap defined as

__ 0110
V<0110:0¢Q,10,)

To determine §1 and 6, randomly, we simply find two Gaussian deviates , and §, and combine them as indicated. Alternatively, if
we are given 0, and asked to determine 0, given this constraint, we fix the value of #, to produce ¢;. Despite this constraint, 8,
remains a Gaussian deviate since it is independent of f;, and so we may take a random value of §, along with our fixed value of 8,
to find the constrained distribution of 9,.

Equation (A20) can be expanded to give

(A22)

G =55 J dkP(k)[3"(kR"] 2, (A23)

the expectatlon value of which is the standard expresswn for {(6M/M)?) for a spherical top-hat window function of radius R,
(cf e 36]) Denoting this expectation value as (d,)? and similarly for (6,)%, we find v, = §,/6, = B, and v, = §,/d, = yB, +

1-— y 2B,,s0 a high-¢ peak on one mass scale will correspond to a high-¢ peak on the other mass scale if y is close to 1.

For the Q = 1 CDM model amd mass scales of 108 M and 10!° M, we calculate y & 0.74. This means, for example, that given a
3 o peak at 108 M, the surrounding 10'° M, region has an overdensity of v, = 2.22 + 0.678, where f is a Gaussian deviate. This
result has interesting physical implications to the problem of the origin of quasar black holes discussed in Paper II. If a black hole
forms in the initial collapse of a high-o peak on the ~10® M mass scale, it is likely to be surrounded by a highly overdense region
even on the mass scale of a galactic bulge.

We now need to generalize the above method to an arbitrary number of vectors. We seek p values from the field, denoted f3, 15, .. .,
f,» and each may be written as some integral over a particular §,,,(k); only one (I, m) is involved and so we suppress the index here as
well. Then, we define the Q (k) by the relations

® dk
fi= L PO o(k)Q k) , (A24)

where all of the Q; are real-valued functions; and define the matrix M,

M;=<0:ilQ» = J P 04k)Q (k) . (A25)
We now seek an orthonormal basis {n;} with the property that
Z Lyn;, (A26)

where L is a lower triangular matrix and the remaining n; are not used. Substituting equation (A26) into equation (A25) and using
the orthonormality property, we find

Z Ly Ly, - (A27)

Hence, our basis must be defined by M = LIT. Can we find such an L? In fact we can, for if M is positive-definite symmetric matrix,
this is the Cholesky decomposition (Press et al. 1992, § 2.9). M is obviously symmetric and must be positive-definite if P(k) > O for all
k, and so we may find a unique L.

Next, we take {n;} as the basis for 6(k). Then, as before, we decompose by equation (A15) and reach the probability distribution in
equation (A16). Substituting this result, as well as equation (A26), into equation (A24), we get

L =J; P(k) Z ﬂpnp ja Mg Z LB, - (A28)

This completes the solution. One needs only to specify p Gaussian deviates and combine them in the indicated way in order to get
realizations of the p values f;. To construct the L matrix, one must perform p(p + 1)/2 one-dimensional integrals as ngen in equation
(A25). This task can be made even simpler by doing the integrals together since they have many functional evaluations in common.
In the particular case of the initial conditions for the ellipsoid model, we have six sets of parameters to determine, one for I =0
and five for | = 2. But the five | = 2 sets are equivalent and will share one L matrix. Also, the integral forms for I = 0 in equation (A8)
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are identical to those for / = 2 as given in equation (A11). The only difference between the two sets is the one additional initial
condition presented in equation (A9). In order to compute L for the I = 0 set, we need not calculate any new integrals; we simply
take the required integrals as a submatrix of M from the / = 2 calculation and compute a new Cholesky decomposition.

Because the original field é(x) was real, the complex functions d,,,(k) have the usual spherical harmonic relation between them, i.e.,
Om(k) = (— 1)} (k). Thus, for m # 0 there are four real functions: the real and imaginary parts of §,,(k) and J,_,,(k), only two of
which are independent. Returning to equations (14) and (20), where | = 2, we choose to work with the real and imaginary parts of

= 1 and m = 2 as well as the real term m = 0 as the five independent real parameters. This means that instead of askmg for q,,,
and b$), as in equations (A2) and (A3), we compute Re g,,, Im q,,, Re g5, Im g,,, and g,,, and the same for b®. This is easy to do
by 51mply taking the quantities Re d,,(k), Im d,,, ..., as the independent random functions. The / = 2 values again fall into five
independent sets, each being treated as above. There is, however, one modification, as seen from the original multipole field
probability distribution in equation (A6):

|51m|2 2(Re 511)2 + 2(Im 511)2 + 2(Re 51(1—1))2 + -+ (510)2:|
z, 2P(k)] P [ 2 f &% 2P®) '

P[8(x)] oc exp [ (A29)

This indicates that the real and imaginary parts of the m # 0 terms actually are distributed with half the variance of the m = 0 term.
The simplest way to incorporate this fact is to compute all the | = 2 sets as for the m = 0 case and then take the f§; to have variance
of one-half rather than unity for m # 0.

Finally, there is a choice as to what order to place our f; in the vector. Since the matrix L is a lower triangular, the value f;
requires only one Gaussian deviate to be determined. As discussed in § 4, there are additional constraints that we place on the initial
conditions. Since these are imposed simply by rejecting any set of initial data that do not satisfy them, it is most efficient to pick the
most discriminating test to be f;. In particular, the test that 6(R,) > v, 0 is very stringent and we arrange the / = 0 functions so that
this condition is the first basis function. This way, we need only find one Gaussian deviate before applying this test.

APPENDIX B
TREATMENT OF AN AXIS COLLAPSE

The inclusion of a collapsed axis is complicated by the facts that the ellipsoid is rotating and that the columns of the matrix 4
need not be orthogonal. When we halt the collapse of an axis, we wish only to end the radial collapse and to leave the tangential
velocity unchanged.

First, we must identify that an axis has reached 40% of its turnaround value. At each time step, we dlagonahze AAT = QAQT to
find the axis lengths, which are in \/K We put these in ascending order and compare each to the previous maximum length for the
short, middle, and long axes. If the new length is longer, we save it as the new maximum. If the new length is less than 40% of the
maximum for that axis, we assume that the axis has collapsed and save the column number so as to be able to refer to it in Q and A.
This method of identifying the axes by sorting the lengths works well because the axes are well-separated soon after the beginning of
the integration and well before turnaround.

If a particular axis has collapsed, we remove the radial component of the velocity in that direction and we alter the right-hand side
of the equation of motion (8) so that there is no inward force in that direction. The steps for each alteration are equivalent, so we
only describe the first in detail. A

Suppose we begin from the diagonalization 44T = QAQT and want to fix the ath axis. The position of mass elements within the
ellipsoid may be written asr = Q\/Xs, where s is a vector on the unit sphere. Then the frozen axis is s | e,, the Cartesian basis vector.
The velocity field is v = AA”lQ\/Ks, where A = dA/dt. We now rotate this velocity to the principal axis frame of the ellipsoid,
which requires left-multiplying by QT. This is obtained by defining

= QTda"'Q /A, (B1)

where Vk is the jth component of the velocity at the point in the direction of the kth axis, and the axes are numbered according to the
columns of Q.

Now we can remove the ath component of velocity along the ath axis by removing the aa component of V. We therefore define a
new matrix W such that

0, ff=aandy=a,
U,, = { b v (B2)

Vs,, otherwise .

Then we need to connect this matrix back to the new velocity matrix A, We do this by solving equation (B1) for A after replacing
7 by U. Then we replace the old matrix for A with

Apew = QUJ/AT1Q7A. (B3)

If more than one axis has collapsed, we modify the definition of U to eliminate all diagonal elements corresponding to the collapsed
axes. This algorithm works equally well for the forces by substituting A = d>A/dt? for A everywhere. Since this procedure does not
modify the tangential velocities, it preserves angular momentum; however, it does change the vorticity.
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APPENDIX C
RELATION BETWEEN SHEAR AND OVERDENSITY

In this Appendix we present a calculation separate from the dynamical ellipsoid model, but yet based upon the formalism
discussed in this paper. As before, we begin by dividing the universe into two pieces through a spherical boundary of radius R
around the origin. We now wish to compare the statistical properties of the average overdensity in the interior region d(R) (cf. eq.
[15]) to those of the quadrupole shear resulting from the exterior region a,,, (cf. eq. [2]). We will show that these quantities are
drawn from independent Gaussian distributions whose variances are related by a constant of proportionality that is independent of
the power spectrum or mass scale. _

From equations (A1), (A3), (A8), and (A11), we can easily relate 6 and a,,, to integrals over the coefficients of the multipole
expansion of the Gaussian random field:

_ R
5o— dk&oo(k)"(k) 1)
/2 Jo
and
_ ji(kR) -
a2m_pb\/;J; dk 83m(K) R - (€2

Because each of these six quantities depends upon different é,,, they will be independent. By the methods of Appendix A, we find
that the six quantities are Gaussian distributed with a zero mean and the variances

(3 > J [Jl(kR)]
(5% (n 25) Jaer S50 ©)

<(a20)2>=<p,,f> f dkP(k)["("R)] , (C4)

{(Re az,)*> = {(Im a;,)*> = {(Re a,,)*) = {(Im a;,) =% (az0)*> . (C5)

and

The last equation follows from equation (A29) and the discussion around it.

The key result of this derivation is that the integrals in equations (C3) and (C4) are identical. We can therefore pull all of the
dependence on the power spectrum_into one constant. We define o as the rms amplitude of dM/M according to equation (36). We
may then write 6 = ov, a,y = (2\/_7Ep,,/3)azl, Re a5, = (\/2_7;;),,/3)022, Im a,, = (\/2_7rp,,/3)az3, Re a,, = (/2np,/3)0z,4, and Im
a,; = (ﬁp »/3)ozs, where v and the {z J} are all Gaussian deviates of unit variance.

We next consider how the inner region would evolve given these values as the initial conditions. In particular, we apply the
Zel'dovich approximation to find whether all the material of the interior region will turn around and form a spatially bounded
object or whether the region will expand forever in at least one direction. For an Q = 1 universe and under the Zel’dovich
approximation, this question is simply a matter of whether the initial peculiar velocities have inward radial components or not. This,
in turn, depends on the initial gravitational potential (as we assume growing mode velocities), which we may construct from
equations (12) and (14) to get the matrix

4nGp, 0
0, = ” 27 (WLg + Sp) (C6)
where [ is the identity matrix and
z 4 z z
2 _\/: 3 4
3
s= 2l : P U (C7)
= 5 3 2 \/5 5
2z,
A Zs

NG
We want @ to have positive eigenvalues, which means that the eigenvalues of S must be greater than —v. The probability that a
spherical region of overdensity v will expand without bound in one direction due to shear depends only on the distribution of the
random matrix S. All reference to the power spectrum has been removed.

Table 1 shows the cumulative distribution function for the most negative eigenvalue —u (u > 0) of the matrix S. This quantity
acts as a negative v, counteracting the actual v = /o that one normally identifies as the parameter controlling gravitational collapse.
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TABLE 1

PROBABILITY THAT MOST NEGATIVE
EIGENVALUE —pu OF S 1S GREATER
THAN THRESHOLD —

Ho

The importance of shear through the collapse is evident from the prevalence of large values of u. For low Q universes, one might
alter the peculiar velocity requirement as discussed in § 4 (cf. eq. [35]); this leads to the requirement that v — u > d.,,/0.

The above calculation provides insight to the acceptance rate for the velocity constraint that we use in the ellipsoid model. In this
model, there is an additional term in the potential coming from the anisotropy of the ellipsoid. This term tends to slightly increase
the acceptance (i.e., resist the shear) because the long axis of the ellipsoid tends to be aligned with the most negative shear axis. The
above calculation also has implications to the Press-Schechter formalism (Press & Schechter 1974), in which spherical regions with a
sufficiently high v are all assumed to turn into objects at the appropriate collapse time. However, as it stands the model can
eliminate objects only on the basis of shear, some of which would presumably be reintroduced through mergers of lower mass

systems or fragmentation of unbound filaments.
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