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Abstract. — The table of coefficients and exponents of the power series f and g up to derivatives of the 20-th
order is the main achievement of this paper. The accuracy of the calculation of orbits has been tested by tracing the
motion of all planets of the Solar System. Special attention has been paid to high-eccentricity orbits in the two- or
three-body problem. Power series from 10th up to 20th order have been used instead of other integration methods.
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1. Introduction

Initial orbit determination in Gauss’ and similar methods
is based on the expansion of the solution of Newton’s laws
into the Taylor’s series known in celestial mechanics as
the f and g power series. These series can also be used to
integrate the equations of motion for two or more bodies.
We present here some remarks about application of the
high-order terms of these series, the table of terms, and
the results of some numerical experiments.

It is too big a task to mention here all the papers
related to this problem, so we have decided to mention
only such as have helped us in constructing the program
of tracking the motion of N bodies. Some examples of the
2- and 3-body orbit calculations with orbital eccentricity
near to or greater than unity have been exposed, because
the accessible literature leaves it difficult to formulate an
undisputed opinion about usefulness of these series when
e> 1.

Theoretical formulae for the radius of convergence in
time interval are given by Moulton (1903) and Taff (1985).
The highest-order series (up to 8th) given explicitly are
found in Escobal (1965). Tables demonstrating the con-
vergence of the f and g series as functions of: the time
interval ¢, the eccentricity e, the mean anomaly M, and
the number of terms (up to 13th order) were given by
Taff (1985). The recurrence formulae for power series ad-
justed to the restricted 3-body problem were given by
Steffensen (1956). Next, modified versions were applied
by Rabe (1961) to explore the periodic Trojan orbits; by
Deprit & Price (1965) to the restricted 3-body problem; by
Broucke (1971) and Black (1973) to the N-body problem;

*Table 2 is available electronically at the CDS via anonymous
ftp 130.79 128.5

by Sitarski (1979) to investigate the motion of comets; and
by Guyader (1993) to the Solar System planets. We used
tables from the latter paper to test our program.

2. Calculation of high order terms

To resolve the Newtonian equation

I =—ur (1)

in Taylor’s series form
r=rg9+ryT + %i‘m’2 + %rst + ... (2)
it is necessary to calculate the derivatives
LV V., 1" of sufficiently high order up to n. In-

troducing Lagrange’s variables

I‘o ‘i'o i'o
= = —= -1 3
rg b q r% ? ( )

and taking into account the following relationships
(Escobal, 1965):

W= —3up, p=q-—2p°, 4= —up—2pq, (4)

the successive terms of Taylor’s series (2) of order n take
the form:

L L
™ |t Y Rpw'p'd* +i0 »  Rpu'p’d® | /al (5)
1 1
and instead of (2), we can write the following equation:

r= I‘Of + i‘Oga
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where f and g are sums of terms (5) to a given order
n. In Eq. (5) R are integer numbers, the exponents the
integers 0 < 7,7,k < n — 2, 7 denotes the time interval,
and L and L' are related to n. The main series (2) was
divided into two series including terms connected with the
position vector r and the velocity vector r. The variables
u, D, q, are also functions of ry and ry, as seen from Eq.
(3).

Direct calculation of the derivative r"*! of series (2) is
difficult for the higher orders only because of the rapidly
increasing number of terms. Instead of the traditional al-
gorithm, (for example given by Escobal (1965) between
the formulae 3.213 and 3.229), we propose another algo-
rithm suitable for computers. The essence of the method
consists in calculation of the derivative of each term of
form (R u'p’q*r™) belonging to the derivative r"™ accord-
ing to the unified scheme. The derivatives t,%,p,¢ are
eliminated using as usual Eqgs. (1) and (4). Such an opera-
tion leads to the formal change of the 5-element vector W:

W(R,i,j,k,m) (6)
into the 4 x 5 matrix M:
—R(3i+2j+2k) i j+1 &k m
Ry i j—1k+1 m (7)
—Rk 1+17+1 k-1 m

R 1 7 k m+1

The element m of the vector W or the matrix M is a
symbolic exponent of the position vector r, where r™ de-
notes r, r, ¥ when m = 1,2,3 respectively. If, in the matrix
M, the exponent m+1=3, then with Eq. (1) the last line
becomes:

R 1+1 J k m— 1.

Generally, to obtain the derivative "1, we start from
the terms belonging to the derivative of order n given
by expression (5). To each term of this expression cor-
responds the appropriate vector W. Transforming W into
M according to (6) and (7), we get at most four new
terms described by the lines of matrix M, belonging to
the derivative of order n + 1.

To obtain the third-order derivative of r, we start from
Eq. (1) written in the form of expression (5):

# = —1 u'p®q°r!, to which corresponds the single vector
W(-1,1,0,0,1). Thus r'!! corresponds to the single ma-
trix M. Omitting in M the lines containing R =0 or
1,7,k < 0, we obtain:

'l = +3ulple®r! — 1ulp®q°r? = 3upr — ur.

There are two vectors corresponding to this derivative:
W;(3,1,1,0,1) and Wo(-1,1,0,0,2) . The matrices M;
and M;, associated with them give the terms of the deriva-
tive r'V. And so on until the desired r™.

Note that in Eq. (2), the coefficient 1/n! grows rapidly
with n and some of R in expression (5) even faster. So,
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for high-order derivatives, one can exceed the maximal in-
teger permissible for a given computer and obtain false
coeflicients of series (2). In our case, the maximal integer
is 2147483647 ~ 2 10°, and we can get derivatives with
integer numbers R only up to the eleventh order. To ob-
tain the derivative of order (n + 1) high enough, it is best
to change the integer numbers R into real R’ = R/n! in
expressions (5) and (6), and then in the matrix M instead
of R substitute the real numbers R’ = R'/(n + 1).

The number of terms included in (5) grows with the
order n of the derivatives like 472. The simple use of the
algorithm enclosed in conversion of (6) to (7) leads to a
gigantic quantity of numbers which must be saved in com-
puter memory: for example, if n = 16, then 5414 = 1.3 10°
numbers. After every conversion of (6) to (7), it is neces-
sary to use a procedure eliminating zero terms and gath-
ering similar terms, to minimize the growth of the series.
Even so, the number of terms in (5) increases undesirably
rapidly, see Table 1.

Table 1. The number of terms of the form R u'p’q* in the f
and g series as a function of a given order n of the derivative
used in Eq. (2). Columns Np and Nt are partial and total
number of terms, respectively

n Np Nt| n Np Nt| n Np Nt
—_-  — 11 30 21 110

2 1 12 36 22 121

3 2 13 42 23 132

4 4 14 49 24 144

5 6 13|15 56 308 |25 156 1378
6 9 16 64 26 169

7 12 17 72 27 182

8 16 18 81 28 196

9 20 19 90 29 210

10 25 95|20 100 715 | 30 225 2360

The coefficients R"” and the exponents ¢, j, k, included
in expression (5) for a given derivative of the order n up
to 20th are included in Table 2. Numbers of this table per-
mit writing both series f and ¢ explicitly, and their time
derivatives F' and G . According to this table these series
up to 4th order are:

f=1-0.5ur? + 0.5upr® + (—0.625up? + 0.125uq+
0.04167u?)74,
=7 —0.1667ut® + 0.25upt*,
F = —ut + 1.5upr? + 4(—0.625up? + 0.125uq+
0.04167u2)73,
G =1-0.1667u - 372 4 0.25up - 473,

where the modified time 7 = VGm(t — tp), t and to ex-
pressed in days (Escobal 1965).

The partial sums in Table 2 are ordered according to
the last column only, what leads to an approximate or-
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Table 2. (Sample page) The table contains: order of derivative n, number of terms L + L’ belonging to this derivative, and in
next L + L’ lines the coefficients R”, and exponents i, j, k, of each term. In the last column the number 1 or 2 denotes the term
to f or g series, respectively

2 1 .1289062500000000D+01 2 4 0 1
—.5000000000000000D4+00 1 0 0 1 .3906250000000000D—01 1 0 3 1
—.6093750000000000D+00 2 2 1 1
3 2 .2745535714285715D-01 2 0 2 1
.5000000000000000D+00 1 1 0 1 —.5468750000000000D—-01 3 2 0 1
.2901785714285714D—-02 3 0 1 1
—.1666666666666667D+00 1 0 0 2 .2480158730158730D—04 4 0 0 1
4 4 .1546875000000000D+01 1 5 0 _ 2
—.6250000000000000D4+00 1 2 0 1 —.1406250000000000D+01 1 3 1 2
.1250000000000000D+00 1 0 1 1 .2343750000000000D4+00 1 1 2 2
.4166666666666666D—-01 2 0 0 1 —.3125000000000000D+00 2 3 0 2
.7500000000000000D—01 2 1 1 2
.2500000000000000D4+00 1 1 0 2 .3125000000000000D—02 3 1 0 2
5 6 9 20
.8750000000000000D+00 1 3 0 1 .5585937500000000D+01 1 7 0 1
—.3750000000000000D+00 1 1 1 1 —.7820312500000000D+01 1 5 1 1
—.1250000000000000D+00 2 1 0 1 -3007812500000000D4+01 1 3 2 1
—~.2606770833333333D4+01 2 5 0 1
—.3750000000000000D+00 1 2 0 2 —.2734375000000000D4+00 1 1 3 1
.7500000000000000D—-01 1 0 1 2 .1776041666666667D+01 2 3 1 1
.8333333333333333D—-02 2 0 0 2 —.2049851190476190D+00 2 1 2 1
.1814236111111111D+00 3 3 0 1
6 9 —.3013392857142857D—01 3 1 1 1
—.1312500000000000D+01 1 4 0 1 —.7027116402116402D—-03 4 1 0 1
.8750000000000000D+00 1 2 1 1
—.6250000000000000D—-01 1 0 2 1 —.2606770833333333D+01 1 6 0 2
.2916666666666667D+00 2 2 0 1 .3007812500000000D+01 1 4 1 2
—.3333333333333333D-01 2 0 1 1 —.8203125000000000D+00 1 2 2 2
—.1388888888888889D—-02 3 0 0 1 .7161458333333334D+00 2 4 0 2
.3038194444444444D—01 1 0 3 2
.5833333333333334D+00 1 3 0 2 —.3072916666666667D+00 2 2 1 2
—.2500000000000000D+00 1 1 1 2 .1138392857142857D—-01 2 0 2 2
—.4166666666666666D—-01 2 1 0 2 —.1822016666666667D—-01 3 2 0 2
.6696428571428571D—03 3 0 1 2
7 12 -2755731922398589D-05 4 0 0 2
-2062500000000000D4+01 1 5 0 1
—.1875000000000000D+01 1 3 1 1 10 25
.3125000000000000D+00 1 1 2 1 ~.9496093750000000D+01 1 8 0 1
—.6250000000000000D+00 2 3 0 1 .1564062500000000D+02 1 6 1 1
-1750000000000000D4+00 2 1 1 1 —.7820312500000000D+01 1 4 2 1
.1250000000000000D-01 3 1 0 1 .5213541666666667D+01 2 6 0 1
-1203125000000000D+01° 1 2 3 1
—.9375000000000000D+00 1 4 0 2 —.4692187500000000D+01 2 4 1 1
.6250000000000000D4+00 1 2 1 2 —.2734375000000000D—-01 1 0 4 1
—.4464285714285714D-01 1 0 2 2 .9428571428571428D+00 2 2 2 1
.1250000000000000D+00 2 2 0 2 —.5213541666666666D+00 3 4 0 1
—.1071428571428571D—-01 2 0 1 2 —.2353670634920635D—-01 2 0 3 1
—.1984126984126984D—-03 3 0 0. 2 -1653273809523809D+00 3 2 1 1
—.4151785714285714D—02 3 0 2 1
8 16 .5820105820105820D—-02 4 2 0 1
—.3351562500000000D+01 1 6 0 1 —.1372354497354497D—03 4 0 1 1
.3867187500000000D+01 1 4 1 1  —.2755731922398589D—06 5 0 0 1

—.1054687500000000D+0t 1 2 2 1
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Table 3. Value of D indicator for Mercury near perihelion and near aphelion for time steps 0.05 to 20 days using 10, 14 and

18th order f and g series

Days  0.05 0.5 1.0 4.0 8.0 15.0 20.0
perihelion

fg10 610717 51077 21071 2107%7 2107% 1107® 1.4

fg14 61077 3107 1107 5107 8107% 4107%2 1.8

fg18 61077 51077 41077 11072 3107%7 2107 2.4
aphelion

fg10 41077 51077 3107 6107 5107% 2107% 2107%

fg14  4107Y 510717 3107 4107 7107 510797 2107%

fg18 4107 51077 4107'® 31077 2107 51071° 61070°

dering of the R column. To see the beauty of the simple
symmetry among the exponents, the table should be or-
dered according to ¢ or k expcnents, separately for each
order n and f and g terms. This symmetry enables us to
control the creation of these power series. Thus for the
derivative of order n, the relationships between the expo-
nents should be the following:

For the odd n :
i grows from 1, with step 1, up to (n — 1)/2,
k grows from 0, with step 1, up to (n —1)/2 -1,
and j=n—2(i+k)or j =n—1—2(:+k) for the f and
g series, respectively.
For the even n :
i grows up to n/2 for the f series and up to n/2 — 1 for
the g series,
k grows up to n/2 — 1 — i for both series.
The j exponents follow the same formulae.

3. Some properties of the f and g series

Using these series as an alternative method of integration
of the equations of motion of two or more bodies, it is
necessary to pay attention to some of their properties.
First, it must be stated that, for a sufficiently short
time interval, these series converge independently of the
value of eccentricity, position on the orbit and distance
from the central body. We use here the celestial mechan-
ical meaning of “convergence” defined by Poincaré (1993,
p. 317).
These series fulfil an interesting relationship f-G—g¢-F =
1, - see Taff (1985, p.260). So a good indicator of the trun-
cation error (which depends on the order of series) and the
accuracy of calculations (at any instant for a given time
interval) is the identity:

D=fG-g-F-1=0 (8)

where F' and G denote the time derivatives of f and g.
When we use the double precision mode of computer cal-
culations, the appropriate order of series and a sufficiently
short time interval, then fluctuations of D should not ex-
ceed 10716, As seen in Table 3, a one-day step at per-
ihelion is too large to use the 10th and the 14th order

series because D > 107!® | whereas at aphelion this step
is nearly acceptable. We do not improve accuracy by using
a step shorter than 0.5 day for both distances and differ-
ent lengths of series. In most cases, we have used the 14th
order series .

The time step has been adjusted by the condition:

(Fn+Fn1)/ F<CR 9)

The criterion CR has been fixed before calculations on
such a level that also D < 10718, Instead of the last par-
tial sum Fj,, it is better to use as numerator F, + F,_1,
because often the absolute values F,, > F,_; ,as can be
seen for the sequence of fs, ..., fig in Table 4. This saves
the trouble connected with calculation of the additional
series f,g,G when the time step is too large. The time
step is shortened when formula (9) is not satisfied, but
the program tries to make the step longer after several
(up to 9) shorter steps. When we proceed with the calcu-
lations in the positive and then in the negative direction
of the arrow of time, this procedure for changing the step
permits us to avoid duplicate calculations for a given in-
stant. For nearly-parabolic orbits, Taff (1985, p. 265) gives
the expression necessary for convergence:

(10)

which is well fulfilled by the above CR criterion, even
for extremely high differences between time steps and
distances. In example b) given below, for the distances
r1 = 0.000422 AU and ro = 19.975 AU, the CR = 10~20
criterion chooses the steps t; = 0.0000119 and ¢, = 100.0
days , which gives nearly equal values for expression (10):
0.032 and 0.022, respectively.

Table 4 contains the partial sums fs, fs, ..., fis, and the
total values f,g, F,G and D, for the Mercury orbit near
aphelion and perihelion for the 4-, 14-, and 20-day time
steps. It is easily seen that near perihelion the f series
converge very slowly and the D < 10716 criterion is not
fulfilled. It can be estimated from the rate of decrease of
the perihelion terms for a 4-day step that the order of
series should be about 25 for the last term to be equal to
the term fig in aphelion. This supports the 4-day interval

ut21‘_3 <1
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Table 4. The rates of change of the partial sums of f series for Mercury near aphelion and near perihelion for different time

steps
aphelion ] perihelion
days 4 20 4 14 20

f2 -26107°%2 —6.6107! | —8.1 10702 -1.010° —2.010°
3 7.5107% 9.31072 5.1 1079° 221073 6.4 1073
f4 3.5107% 2.21072 1.8 1073 2.7107} 1.1 10°
f5 —41107° -13107%2 | —34107° —-1810"% -—1.010"2
16 6.3 1077 991073 | —47107% —-8610°%2 -7.3107¢
f7 —49107% —38107% 1.7 1077 1.11073 1.31072
{8 3.6 107%° 1.410°3 1.5 107 3.4 1072 5.8 1071
f9 —-141071° -—27107%| -79107%° —6210"% —1.510"2
f10 -6.3107'% —-62107° | —5.2107°® —-1410"%2 -—5.110"!
11 2.3 10712 1.1 107* 3.710710 3.610°* 1.8 1072
f12 -3.2107 -—7810°° 2.0 107 6.6 1072 4.8 1071
13 3.2107 4 401075 | —1.7107  —21107% -—2.11072
fl4a -2.51071° 1.6107% | —7610711 —-3.2197% —47107?
f15 1.3 10716 3.910°¢ 8.2 10713 1.2107* 2.51072
16 2.5 10718 3.91077 3.110712 1.6 1073 471071
f17 -1.7107'® -13107°%| —3.9107'* —6.910"° -2.910"?
f18 2.6 1071° 1.0107¢ | —1.310°® —-79107* —4.8107!
f 9.7107% 451071 9.2 107 21107 -6.01071

g 68107 28107'| 67107°% 1.810°! 23107!
F -—-7310% -2.810° -2.310° -5.310° —2.010%
G 9.8 107 4.6 107! 9.2 1072 3.2107! 1.8 10°
D 3.0107Y7 5.6 1076 1.1 10712 5.2 1073 2.4 10°

and the 25th order recurrent power series used by Guyader
(1993). As seen from the last column, the series do not
converge for a 20-day time interval.

4. Examples

The power series f and g are usable in many cases also
when the eccentricity e of an orbit is near to 1 or even
much greater. It is hard to find such extreme cases in the
scientific literature, therefore some examples are presented
below. The tests have been carried out by using CR =
1072% and the 14th order series in examples a) and e) and
the 20th order series in other cases.

a) The N-body problem has been tested on the So-
lar System. The movements of all planets with reciprocal
gravitational action have been calculated from epoch ¢
to tp + 4000 days and then backwards to ¢y. This took
54000 steps, varied chiefly due to Mercury from 0.5 to
0.0625 d. The difference in coordinates for Mercury was
15 107° AU and 1 107° AU/d, whereas for the other plan-
ets the differences were ten times smaller. Comparison of
the results with the Astronomical Almanac are less favor-
able. Starting with coordinates of the planets given for JD
2446080.5 (1985), after 3840 days the differences in z, y,
and z between the Astronomical Almanac and our calcu-

lations are collected in Table 5. The backward calculation
to the initial epoch leads to beginning coordinates with
full accuracy.

Table 5. The differences between the Astronomical Almanac
(1995) positions and coordinates calculated by f and g series
on the basis of 1985 positions

Planet Az Ay Az
Mercury +0.0000633 —0.0000012 —0.0000073 AU
Venus —0.0000497 +40.0000084 —0.0000007
Earth +0.0000162 +0.0000087 +0.0000036 -
Mars +0.0000221 +0.0000223 —0.0000110
Jupiter +0.000001 +0.000000 —0.000001
Saturn —0.000002 +0.000006 +0.000004
Uranus —0.00000 +0.00000 +0.00000
Neptune —0.00000 +0.00000 +0.00000

Pluto —0.00001 —0.00000 +0.00000

b) The above N-body program acting for N > 2 was
used to test the drop of accuracy for a high-eccentricity
elliptic orbit with e = 0.999983. The indispensable third
body had very small mass, so it introduced negligible per-
turbations. The Jupiter-size point-mass test body, with
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the position vector and velocity vector r(0,0,50) AU,
£(0.00001,0,0) AU/d was tracked during the entire pe-
riod P = 45650 d. The steps at the beginning equaled
400 d, near perihelion (inside the Sun, r = 63300 km) de-
creased to 0.5 s. After the time interval 8P = 1000 years,
requiring over 900 steps, the differences were Ar =3 107°
AU,A7 =2 10713 AU/d and Ae < 5 10713,

¢) Changing in case b) the initial vectors into
r(0,0,500) and £(0.000003,0, —0.00111), we obtained e =
1.00000062 and a = —6157.6 AU. The beginning step
was 5000 days, but after 300000 days, near perihelion
(r = 570000 km), it shortened to 13 s. After 500000 days
from the beginning, when r = 375 AU, the motion was
reversed to the initial point. After 1 million days and
1800 steps: Ar = 7 107° AU, A7 = 3 10714 AU/d and
Ae < 510713,

d) A fast moving object. If we use in the above example
z = —0.11111, the initial velocity grows from 1.92 to 192.4
km/sec. This gives e = 1.1476 and a = —0.024 AU. The
body passes perihelion after 4500 days at distance 531000
km with step equal to 16.5 s. After 500000 days, the body
reaches 55000 AU with maximal step 6400 days. At the
starting point, after the reverse calculation, the differences
are: Ar =6 107° AU, A7 < 110712 AU/d, Ae =4 10712,
There appear some fluctuations of eccentricity of order
10712 at distance 500 AU and 10710 at distance 50000 AU.
These fluctuations do not vanish even when the maximal
step is limited to 100 days.

e) A small body placed near the L4 libration point,
at beginning is traced in the rotating coordinate system.
Adding to the velocity vector, which arises from the rota-
tion of the coordinate system, any small back components
calculated according to Rabe’s (1961) algorithm, the body
can be overtaken by Jupiter after 20000 days. The de-
tailed tracing of the path of the body has begun before
the encounter with Jupiter.in the jovicentric, nonrotat-
ing coordinate system. The influence of the four Galilean
satellites on the path of the body, tested in only a few
configurations, nevertheless the body passes between Io
and Europa, is not very large. So we neglect these de-
tailed investigations and for clarity take into account only
the Sun as a perturbing body. The shape of the path of
the small body in the vicinity of Jupiter is seen in Fig. 1.
For some of calculated orbits, take place a collision with
Jupiter during the second encounter. A similar problem
described in detail by Sekanina et al. (1993) is connected
with the motion of C/Shoemaker-Levy 9 on its collisional
orbit.

On the trajectory shown in Fig. 1, one may distin-
guish several significant dates. Counting from the begin-
ning signed on the curve by the arrow, at 415 days the
osculating orbits (counted after every ten steps) are trans-
formed from hyperbolic orbits into elliptic ones. At 1265
days, there takes place the first encounter with Jupiter at
distance 0.0088 AU, and at 1700 days the apojove is 0.4016

J. Bem and B. Szczodrowska-Kozar: High order f and g power series for orbit determination

AU. This is the top of the inner loop, where the eccentric-
ity reaches 0.999999999954. Next, at 2268 days, the second
encounter with Jupiter (0.0036 AU) takes place. At 2900
days, the elliptic progression of osculating orbits transfer
into hyperbolics ones.

1.20

0.80

0.40

-0.00

—0.40

per ey b b Loy v by )

—0.80
-0.50

LI R O D O I O O O O

0.00 0.50 1.00 1.50
X in AU

Fig. 1. The jovicentric motion of a body in the vicinity of
Jupiter during a time interval of 3200 days. The eccentricity of
osculating orbits changes very fast along the curve in a range
0.80 < e < 3.80 due only to perturbations from the Sun. The
integration step cannot exceed 0.5 day

After 3200 days, the calculations are carried out in
the opposite direction. The influence of the four Jupiter
satellites, in the absence of very close encounters, change
the above dates by less than ten days.

The position of the inner libration point L1 during
these 3200 days is marked in the figure as a circle of ra-
dius 0.3475 AU. The position of the Sun during this time
should be seen on an analogous circle of radius 5.2 AU.

The eccentricities of the osculating orbits along this
curve are in the range 0.80 to 3.80. The differences between
the position vectors and velocity vectors in the beginning
and after 2 - 3200 days in 15000 steps are: Ar = 1 108
AU, A7 <0.5107° AU/d, Ae=110"".

The step changes automatically from 11 minutes to the
a priori limited value of 0.5 day. This limit is necessary.
The final error grows rapidly when we use longer steps.
For example, a 1-day step leads to Ar = 15 1078 AU.
At maximum distance from Jupiter, the CR criterion de-
mands a maximal step that is over 10 days, so such a step
is wrongly adjusted to the rate of changes of the oscu-
lating orbit elements. Even in the short time interval of
2 -1000 days, the free step causes an error Ar = 4 1078
AU. The loss of accuracy takes place also at the top of
the inner loop. The use of the 20th-order series with the
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same CR = 10~2?° and 0.5 day maximal step leads to a
smaller number of steps and to worsening of the result
(Ar =1-10~°% AU). This effect is not obvious in the vari-
ant in which the four Galilean satellites also perturb the
body, together with the Sun. They, especially lo, restrict
the step to 0.5 day or less on the basis of the C'R criterion.
Thus far, we have not been able to restrict automatically
the step from the upper limit. Such a limit seems to be
very important when the attractive force of a central body
is approximately equaled by the forces of perturbing bod-
ies.

5. Conclusions

I) As stated by Taff (1985), the f and g series are compet-
itive to other methods of integration in the investigation
of the motions of celestial bodies.

II) A sufficiently small time step permits avoiding the
problem of convergence depending on the eccentricity and
the position of a body on its orbit.

IIT) When we use these series to the N-body problem, the
maximal step must be limited and adjusted to the rates of
change of the elements of osculating orbits of all bodies,
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whereas the minimal step should be generated according
to the minimal distance of two bodies.
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