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Abstract. We recall the main features of TASS, a new theory of
high precision (about ten kilometers), for the satellites Mimas,
Enceladus, Tethys, Dione, Rhea, Titan and Japetus. It is analyt-
ical with respect to the dynamical parameters of the Saturnian
system, allowing to adjust them by fitting TASS to observations.
In this paper TASS is compared to the Earth based observations
of these satellites found in the catalogue compiled by Strugnell
& Taylor (1990). These observations have been put in a form us-
able by the theory. We have built the corresponding equations of
condition (= 50, 000). A least square procedure has been done
with a discussion about the estimation of the errors on the dy-
namical parameters which we have determined. The determina-
tion of the physical parameters of the dynamical Saturnian sys-
tem is in good agreement with other determinations when they
exist. Furthermore, the precisions of the oblateness coefficients
J> and J4 reach those based on Pioneer and Voyager space-
craft. The position of the equatorial plane is also found in good
agreement with other determinations. Besides, the root-mean-
square residuals between theory and observations are slightly
improved. So, we can consider now that the reduction of the fu-
ture observations of high precision (mutual events in 1995-1996
and spacecraft observations) should be done with this new tool
to improve again our knowledge of the dynamical parameters
of the system. TASS is now ready to give accurate ephemerides
of the major saturnian satellites.

Key words: celestial mechanics, stellar dynamics — Satellites
of Saturn — planets and satellites

1. Introduction

Recently Vienne & Duriez (Duriez & Vienne 1991; Vienne &
Duriez 1991, 1992) have developed a new theory which we
called TASS (as “Théorie Analytique des Satellites de Sat-
urne”). These three papers are referred to as Paper I, II and
III respectively. This theory concerns the motion of the follow-
ing satellites : Mimas (1), Enceladus (2), Tethys (3), Dione (4),
Rhea (5), Titan (6) and Japetus (8). Hyperion is not considered
in this work because its theory is still in progress. Inclusion of
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Hyperion is expected nextly. Nevertheless, because of its small
mass, it has no significant effects on the motion of other satel-
lites.

First we recall the main features of TASS : it is analyti-
cal with respect to the dynamical parameters of the Saturnian
system. There are 55 parameters :

{m;} i=1...6,3 masses of the satellites

Ja, J4 and Jg the oblateness coefficients of Saturn

6 initial conditions per satellite

iq and €1, the inclination and node of the equatorial plane

of Saturn on the ecliptic plane in the J2000 system

Mg the mass of Saturn

Then we present the observations used and the transforma-
tions done on them. After some remarks about the least square
procedure, we present the results. They concern the physical
parameters of the Saturnian system and the residuals of the ob-
servations.

At last, the adjustment leads to a new version of the solu-
tion : TASS1.6. This version is presented in the Tables 1 to 8
and allows to produce ephemerides of the major Saturnian satel-
lites (the series and the fortran routines are available by E-mail:
Vienne @gat.univ-lillel.fr or Duriez@gat.univ-lille1.fr).

2. TASS: a precise theory of motion for the major satellites
of Saturn

In TASS, all motions are referred to a cartesian coordinate sys-
tem whose origin is the center of Saturn, and referred to the
equatorial plane of Saturn and the node of this plane with the
ecliptic 2000. Each satellite is then located in this reference
system by the osculating elliptic elements p, A, z and ¢ :

n
=2
P=x

A=Nt—+/—-1gq
z=eexpvV—1lw

¢= sin% expv—19

(M

where N is the mean mean motion such that the linear part in
time of the mean longitude A is exactly Nt, and n, A, e, i, w, Q
are the classical elliptic elements corresponding to the constant
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Table 1a. Solution for the variable p; (mean motion of Mimas). The series is expressed in cosinus

n° amplitude phase frequency period identification ~ amplitude
Dol (rad) (deg) (rad/year) (years) (km)
1 0.0051969 180.000  0.00000000 644.5

Table 1b. Solution for the variable \; (mean longitude of Mimas). A\; = 0.1822485 +2435.14429644 x t + 61 + A\,. The series is expressed

in sinus
n° amplitude phase frequency period identification amplitude
¥ (rad) (deg) (rad/year) (years) (km)
1 0.7574073 39.325 0.08904538 70.56  w 140892.1
2 0.0124330 117.974 0.26713613 23.52 3w 2312.8
3 0.0022664 126.606 10.19765304 062 ¢ 421.6
4 0.0010599  267.281 10.10860767 062 ¢ —w 197.2
5 0.0010228 165.931 10.28669842 0.61 d1 +wi 190.3
6 0.0007266 78.649 0.17809075 35.28 2wy 135.2
7  0.0005061 259.757 0.05765338 108.98  ¢3 +2®; +w; 94.1
8  0.0003590 196.624 0.44522688 14.11 5wy 66.8
9  0.0002628 3.120 0.06492496 96.78  ¢1 +4P +w; 48.9
10 0.0002459 178.892 0.12043737 52.17 —¢3 — 21 +w, 45.7
11 0.0002237 47.956 10.01956229 0.63 ¢1 — 2wy 41.6
12 0.0002097 205.255 10.37574380 0.61 é1 + 2w 39.0
13 0.0001970  255.529 0.11316579 5552 —¢1 — 4P +w 36.6
14 0.0001276 312.080 5.02184135 1.25 —2®; —wy 23.7
15 0.0001164 210.730 5.19993211 1.21 —2®1 +w 21.7
A (rad) (deg) (rad/year) (days) (km)
16 0.0001456 13.921 2428.76308172 0.94 Aot +p1 — &1 27.1

GM(1+m/Mj,) (G is the gaussian constant of gravitation, M
and m the masses of Saturn and of the satellite).

In Paper I, we have given the general method used to re-
solve the equations in these variables. It consists in a separation
of the short-period perturbations (which have been presented
in Paper II) from the long-period ones, solutions of a critical
system describing the long term evolution of the motions. This
system has been built in an exhaustive way: the critical terms
(secular, resonant and solar terms) have been expanded up to
the degree 6 in eccentricities and inclinations at the first order
in the masses and in the oblateness coefficients, up to the degree
4 at the second order and to the degree 1 at the third order in
J>. A numerical evaluation of each term allows us to retain only
those which lead to perturbations greater than one kilometer.
In Paper III we have presented the numerical integration of the
complete critical system. Because it contains no short period
terms, such a computation is possible for a long time (several
centuries) with a rather large integration step (several days). To
obtain a formal solution from this discrete numerical solution,
we have used the techniques of Fourier analysis, and then we
have identified the frequencies as integer combinations of the
fundamental frequencies of the system. This solution (Tables
1to 4 and 7 to 9 of Paper III) depends on the numerical val-
ues adopted for the constant physical parameters (masses, Ja,
Js and Jg) and for the initial conditions; these are also given
in Paper I (Table 1). It is called “nominal solution”. The first

order variations of this solution with respect to each constant
have been obtained by integrating the variational equations in
the same way. The nominal solution and its variations form the
theory which we called TASS.

In Tables 1 to 8, we present the solution of the elliptic el-
ements p, A\, z and ¢ obtained after the present adjustment. To
compute the corresponding saturnicentric cartesian coordinates
X,Y and Z, we have used the masses of Saturn and its satel-
lites given in Tables 10. This solution is referred to as TASS1.6.
The corresponding Fortran routine which computes the coor-
dinates X, Y and Z in the J2000 system for a given satellite
and a given date, is available from the authors. In the Tables 1
to 8, each solution is presented as a series of periodics terms
(expressed with sinus functions for A, with cosinus for p, and
with complex exponential for z and (). We present here only
terms whose amplitude is greater than 20 km (the complete se-
ries grows up to include terms greater than 1 km). The series are
given with the long period terms in first place, followed by the
short period terms (for example we have z; = 2,1 + Az with 2,1
and Az for long period and short period terms respectively).
The time ¢ is expressed in Julian years from J1980 (¢ = (Julian
date —2444240)/365.25). In most cases we have identified the
argument of each term as integer combinations of fundamental
arguments. For these fundamental arguments, we have used the
following notation :
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Table 1c. Solution for the variable z; (eccentricity and pericenter of Mimas). The series is expressed in complex exponential

o

n amplitude phase frequency period identification amplitude
Zol (rad) (deg) (rad/year) (years) (km)
1 0.0159817 356.521 6.38121472 0.98 —p1 + ¢ 2972.9
2 0.0073147 137.197 6.29216934 1.00 —p1 + 1 — wy 1360.7
3 0.0071114 35.846 6.47026010 0.97 —p1+ P +wi 1322.9
4 0.0015115 277.872 6.20312396 1.01 —p1 + ¢1 — 2w 281.2
5 0.0014622 75.171 6.55930547 0.96 —p1+ @1 + 2w 272.0
6 0.0003336 58.547 6.11407859 1.03 —p1+ ¢1 — 3wi 62.1
7 0.0003307 114.496 6.64835085 0.95 —p1 + ¢1 + 3w 61.5
8 0.0001607 229.918 —3.81643833 1.65 —p1 29.9
Az (rad) (deg) (rad/year) (days) (km)
9 0.0026027 10.442 2435.14429644 0.94 Aol 484.2

Table 1d. Solution for the variable ¢; (inclination and node of Mimas). The series is expressed in complex exponential

n° amplitude phase frequency period identification amplitude
o (rad) (deg) (rad/year) (years) (km)
1 0.0118896 234213  —6.37188169 099 —pi+P 2211.7
2 0.0053177 14.888 —6.46092707 097 —p1+®—wi 989.2
3 0.0053017  273.538  —6.28283631 100 —p1+®1 +w 986.2
4  0.0010922 155.563  —6.54997244 096  —p1+® — 2w 203.2
5 0.0010741 312.862  —6.19379094 1.01 —p1 + @1 + 2w 199.8
6  0.0002328  352.187  —6.10474556 1.03  —pr+ P + 3w 43.3
7 0.0002224  296.239  —6.63901782 095  —p1+P — 3wy 41.4

Aoi © = 1,8 the long period part of A;. We have \,; =
N; x t+ A9+ 6, the linear part is given in the title of the
table of the corresponding mean longitude.

P1 = Aot — 2X03 (resonance Mimas-Tethys)

P2 = Aoz — 204 (resonance Enceladus-Dione)

@1, so that ¢; — p; is close to the proper pericenter of Mimas.
®,, so that ®; — p; is close to the proper node of Mimas.

wy is the libration argument of the resonance Enceladus-
Dione. This argument takes the place of ¢, corresponding
to the proper pericenter of Enceladus whose frequency is
zero (see the Table 4 of Paper I).

®,, so that @, — p, is close to the proper node of Enceladus.
@3, so that ¢3 — py is close to the proper pericenter of Tethys.

wy is the libration argument of the resonance Mimas-Tethys.
This argument takes the place Qf <I>3.corresponding to the
proper node of Tethys because ®; + 3 = 0.

@4, so that ¢4 — p, is close to the proper pericenter of Dione.
®4, so that &4 — p;, is close to the proper node of Dione.

¢; and ®; 1 = 5,6 and 8 which are close to the proper
pericenters and the nodes respectively for Rhea, Titan and
Japetus.

Ao, @y, and Qg are respectively the saturnicentric mean lon-
gitude, the longitudes of the pericenter and of the node of
the Sun.

 is the fundamental argument of JASON84 (Simon & Bre-
tagnon 1984).

We recall that in JASON84, 194 corresponds to the great
inequality between Jupiter and Saturn —2 \j + 59, 880 cor-
responds to the synodic inequality between Jupiter and Saturn
AJ — Ao, and 287y corresponds to the inequality A; — 2MXo.
So, the argument y in our series represents indirect perturbations
from Jupiter.

The arguments p; and p, are redundant. Because of the res-
onances, they correspond to long period arguments. So we have
preferred not to replace them by the corresponding combination
of mean longitudes in order to recognize easily the pure short
period terms. For example, the argument \,; + p; — ¢ (the last
term in the mean longitude of Mimas) can be written also as
2X01 — 2Xp3 — ¢1. But, according to the d’ Alembert rule, the
inequality 2,1 — 23 has a characteristic C; = 0, associated
to monomes in z and ¢ with characteristic Cp; = 0 (see Paper I).
We then deduce that the argument 2\ ,; — 2,3 — ¢b; cannot cor-
respond to the inequality 2A,; — 2A,3. It corresponds in fact to
the inequality A, for which the main contribution comes from
the monome proportional to z;; this is why the best writing is
Aot +p1 — ¢1. In this example, only one writing has a sense but it
is not always the case; for example, in the solution 2;, consider
the inequalities A,y and 2)A,4. The characteristic of the first is
1, so the main contribution has the argument \,,. The second
has the characteristic 2, so it can be associated with the variable
225 in that case, according to Table 2c, the development of the
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Table 2a. Solution for the variable p; (mean motion of Enceladus). The series is expressed in cosinus

[e]

n amplitude phase frequency period identification  amplitude
Do2 (rad) (deg) (rad/year) (years) (km)
1 0.0031471 180.000  0.00000000 500.2

Table 2b. Solution for the variable A\, (mean longitude of Enceladus). A2 = 0.7997717+1674.86729850 x t+6A2 + AX,. The series is expressed

in sinus
n° amplitude phase frequency period identification ~ amplitude
5 (rad) (deg) (rad/year) (years) (km)
| 0.0044964 134242  0.56590952 11.10 w2 1072.0
2 0.0033546  263.436  1.61701655 389 —¢u 799.8

Table 2¢. Solution for the variable 2, (eccentricity and pericenter of Enceladus). The series is expressed in complex exponential

o

n amplitude phase frequency period identification  amplitude

202 (rad) (deg) (rad/year) (years) (km)
1 0.0048038 182.741 2.15444222 2.92 —p2 1145.3
2 0.0001098 316.982 2.72035174 2.31 —p2+wy 26.2

Az (rad) (deg) (rad/year) (days) (km)
3 0.0015768 45.824 1674.86729850 1.37 Ao2 375.9

Table 2d. Solution for the variable (> (inclination and node of Enceladus). The series is expressed in complex exponential

n° amplitude phase frequency period identification ~ amplitude
(o2 (rad) (deg) (rad/year) (years) (km)
1 0.0001281 113.626  —2.65919659 236 —p+ D 30.5

inequality 2),4 would produce the argument p; + 2,4 equal
to Agz. In fact, the argument of the third term in Table 2c has
been written )\, because this inequality is far more significant
than the other. However, the cases of redundance are very few
in our series, and in these cases there is generally no ambiguity
to recognize the inequality.

The fundamental arguments given above are linear with re-
spect to the time ¢, except the mean mean longitudes \,; (also
present in p; and p,). The non linear part of A,; is noted ;.
To compute the position of a satellite at a given date from
these tables, the amplitude, the phase and the frequency of
each term do not suffice. In fact each term of the series is de-
fined by its amplitude (second column), and its argument of the
form:wt+ ¢ + Eil k;6)\; where ¢ and w are given in the
third and fourth columns respectively. The integers k; are taken
from the identification column. Thus the procedure to compute
the saturnicentric elements of the satellite & is :

computation of 6; ¢ = 1, 8 for the given date.

computation of Pok, Aok Zoks Coks APks Ak, Azk, Alk,
taking into account the combination of 6 A; present in each
argument.

For example, the 16*" term in A\ (Table 1b) with argument
Aoi + p1 — ¢1, must be computed by

0.0001456 x sin(13°921 +2428.76308172 x t
o1 + (5/\1 — 25)\3))

(the contribution of —¢; in the argument is already in the am-
plitude and the phase of the term), where

8y =0.7574073 x sin(39°325 + 0.08904538 x t)
+0.0124330 x sin(117°974 + 0.26713613 x t)
+...

and where A3 is computed in the same way from Table 3b.

Taking into account the combination of é); is important
specially for 6\, and g in which the main terms have a great
amplitude. Because of the truncature level (20 km), the preci-
sion obtained over one century by using the Tables 1 to 8 does
not exceed one hundred kilometers, even two hundreds kilome-
ters for Mimas and Japetus. So, it is better to use the routines,
available from the authors, which use the complete series.

The partial derivatives of the solution with respect to the
initial conditions and to the physical parameters do not appear
in these tables because they are too voluminous. But they are
present in the complete series of TASS. If we note o the ampli-
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Table 3a. Solution for the variable p; (mean motion of Tethys). The series is expressed in cosinus

n° amplitude phase frequency period identification ~ amplitude
Po3 (rad) (deg) (rad/year) (years) (km)
1 0.0020480 180.000  0.00000000 402.7

Table 3b. Solution for the variable A3 (mean longitude of Tethys). A3 = 5.2391094 + 1215.66392906 x t + 63 + A)s. The series is expressed

in sinus
n° amplitude phase frequency period identification ~ amplitude
53 (rad) (deg) (rad/year) (years) (km)
1 0.0359719  219.325 0.08904538 70.56  w 10610.8
2 0.0005892  297.974 0.26713613 2352 3w 173.8
3 0.0001050  306.606  10.19765304 0.62 ¢ 31.0

Table 3c. Solution for the variable z3 (eccentricity and pericenter of Tethys). The series is expressed in complex exponential

o

n amplitude phase frequency period identification amplitude
203 (rad) (deg) (rad/year) (years) (km)
1 0.0001565  261.754 1.26305641 497  —pi+¢s 46.2
2 0.0000868 42.429 1.17401103 535 —pi+h—w 25.6
3 0.0000817  340.403 1.44114716 436  —pi + ¢+ 2w 24.1
4 0.0000810 183.104 1.08496566 579 —pi+¢3 — 2w 239
5 0.0000708  301.078 1.35210179 4.65 —pi+d3twr 20.9
Az (rad) (deg) (rad/year) (days) (km)
6  0.0010264  300.179 1215.66392906 1.89 Aax 302.8

Table 3d. Solution for the variable {3 (inclination and node of Tethys). The series is expressed in complex exponential

o

n amplitude phase frequency period identification amplitude
Co3 (rad) (deg) (rad/year) (years) (km)
1 0.0079790  225.618  —1.26099496 498 —p; — @ 2353.6
2 0.0035868 6.293  —1.35004034 465 —p1— P —w 1058.0
3 0.0035786  264.943  —1.17194958 536  —p1— D1 +w 1055.6
4  0.0007456  146.969  —1.43908571 437  —p1 — P — 2w 219.9
5 0.0007269  304.268  —1.08290421 580  —pi — P+ 2w 214.4
6 0.0001634 343592  —0.99385883 632  —p1— P +3w 48.2
7  0.0001629  287.644  —1.52813109 4.11 —p1 — @1 — 3w 48.1

tude, the phase or the frequency of any term in these tables, we
have in fact :

55 30
o=0,+ — ) 6z
o+ (7)o

where o, is the value given in Tables 1 to 8 and where zj, is one
among the parameters defined above (Sect. 1). This represen-
tation is very different from what is done in previous theories
(Dourneau 1987; Harper & Taylor 1993). In these works, the
parameters are not linked directly to physical constants and are
adjusted independently from each other. These parameters are
for example, the semi major axes, the mean mean motions (see
Sect. 5.2), and the precession rates of each orbit : these val-
ues are not independent from each other; the same thing occurs

@

for the amplitudes and phases of some terms such as libration
terms. Thus, we emphasize that in the present work the param-
eters we have adjusted are independent from each other : the
coherent representation of the satellites’ motions is one of the
main features of TASS.

Another feature of TASS is the internal precision which
reaches a few kilometers. This precision has been estimated by
comparing the positions of the satellites computed with TASS,
with positions issued from a direct numerical integration. The
physical model used in the numerical integration is the same as
that we have used to build TASS, that is : Saturn’s oblateness,
intersatellites mutual perturbations and solar perturbations. But
in the numerical integration, the equations have not been devel-
oped, so they are not affected by any truncations. In Table 9,
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Table 4a. Solution for the variable ps4 (mean motion of Dione). The series is expressed in cosinus

o

n amplitude phase frequency period identification ~ amplitude
Dod (rad) (deg) (rad/year) (years) (km)
1 0.0012450 180.000  0.00000000 313.5

Table 4b. Solution for the variable A4 (mean longitude of Dione). As = 1.9945926 + 838.51087036 x ¢ + 64 + A)q. The series is expressed
in sinus

o

n amplitude phase frequency period identification ~ amplitude

P (rad) (deg) (rad/year) (years) (km)
1 0.0001253  314.242  0.56590952 11,10 ws 47.3
2 0.0000947 83.436 1.61701655 389 —¢s 35.8

Table 4c. Solution for the variable z; (eccentricity and pericenter of Dione). The series is expressed in complex exponential

o

n amplitude phase frequency period identification ~ amplitude

Zod (rad) (deg) (rad/year) (years) (km)
1 0.0022034  279.304 0.53742567 11.69 —p2+ P4 832.1
2 0.0001172 153.666 0.00893386  703.30  ¢s 44.3

Az (rad) (deg) (rad /year) (days) (km)
3 0.0006246 114.282  838.51087036 274 Ao 235.9

Table 4d. Solution for the variable ¢4 (inclination and node of Dione). The series is expressed in complex exponential

o

n amplitude phase frequency period identification ~ amplitude

Cot (rad) (deg) (rad/year) (years) (km)
1 0.0000591 184.579 0.00000000 22.3
2 0.0001655 89.189  —0.53763153 11.69 —p2+ Dy 62.5

we give the maximum difference observed in this comparison
over two time spans. Over 3 years, we are near the precision
of 5 kilometers which is required for the CASSINI mission.
We have also given the precision over one century because the
Earth-based observations cover approximatively this time span.
As we will see in Sect. 5.3, the precision of these observations
are about 0.15 second of degree, which represents 1000 kilo-
meters on positions. So the internal precision is sufficient for
our analysis. We have already noted in Paper III that the repre-
sentation of the motion of Japetus is not as good as that of the
other satellites.

At last, to obtain an absolute position of a satellite in the
sky of the Earth, we have used the ephemerides of the Earth and
of Saturn elaborated at the Bureau des Longitudes in Paris and
based on VSOP82 (Bretagnon 1982). These ephemerides are
referred to the J2000 system like TASS. When it was necessary,
the angles of precession and nutation were computed from the
formulas given in the “Connaissance des Temps” (1990).

3. The used observations

TASS is able to compute positions of the satellites Mimas, Ence-
ladus, Dione, Rhea, Titan and Japetus, as well as the partial
derivatives of these positions with respect to the parameters we
want to adjust. So, in order to build equations which allow such
adjustment, it is necessary to compare the position of a given
satellite measured in the sky at a given date, with the corre-
sponding position computed with TASS.

The first step is then to gather all the available observations.
We have been efficiently helped by using the catalogue of obser-
vations compiled by Strugnell & Taylor (1990) which contains
the majority of observations in a consistent format. We have also
included in our analysis the observations made by Pascu at the
U.S. Naval Observatory between 1974 and 1980 which are not
published, and the observations made by Veillet & Dourneau
(1992) at Mauna Kea, at Pic du Midi and at European Southern
Observatories between 1979 and 1985. Note that the Voyager
observations are not yet available in a usable form.

The second step is to put these observations in a form usable
by TASS. Many observations are given in the system B1950.
We have put them in the J2000 system with a routine made
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Table 5a. Solution for the variable ps (mean motion of Rhea). The series is expressed in cosinus

o

n amplitude phase frequency period identification  amplitude

Dos (rad) (deg) (rad/year) (years) (km)
1 0.0006263 180.000 0.00000000 220.1

Aps (rad) (deg) (rad/year) (days) (km)
2 0.0000650  327.198  728.17054577 315 25 —2X06 22.8

Table Sb. Solution for the variable As (mean longitude of Rhea). As = 6.2213409 + 508.00931975 X t + 6As + AXs. The series is expressed in

sinus
n° amplitude phase frequency period identification ~ amplitude
6As (rad) (deg) (rad/year) (years) (km)
1 0.0004983  273.022 0.00192554  3263.07 —&3 262.7
2 0.0003255 189.303 0.00893124 703.51 —& 171.6
3 0.0000639  164.150 0.42659824 1473 2N\ 33.7
4 0.0000615  210.089 0.17546762 35.81 —&s 324
5 0.0000469  252.650 0.21329912 2946 M 24.7
Ads (rad) (deg) (rad/year) (days) (km)
6 0.0000927  327.198  728.17054577 315 205 — 206 48.9
7  0.0000523  253.599  364.08527289 6.30  Aos — Ao 27.6

Table Sc. Solution for the variable 2zs (eccentricity and pericenter of Rhea). The series is expressed in complex exponential

o

n amplitude phase frequency period identification  amplitude

205 (rad) (deg) (rad/year) (years) (km)
1 0.0009713 154.007 0.00893386  703.30 ¢ 512.1
2 0.0001672 3.070 0.17554922 3579 o5 88.1

Azs (rad) (deg) (rad/year) (days) (km)
3 0.0003116  356.456 508.00932017 452 Ao 164.3
4 0.0001108 209.258 —220.16122560 10.42 — o5 + 206 58.4

Table 5d. Solution for the variable (s (inclination and node of Rhea). The series is expressed in complex exponential

o

n amplitude phase frequency period identification  amplitude
Cos (rad) (deg) (rad/year) (years) (km)
1 0.0004207 184.578 0.00000000 221.8
2 0.0029705 150.509  —0.17546762 35.81 o} 1566.2
3 0.0001788 355495  —0.00893124  703.51 P 94.2

by Rapaport (private communication). This routine is based on
the expressions derived by (Aoki et al. 1983). This transforma-
tion is possible directly if the coordinates are o and 8. If only
differential coordinates are given, the transformation has been
done in three steps : first, we compute with the representation of
Dourneau (1987), the absolute position of the reference object
only (Saturn or a satellite) in order to obtain a.g1950 and 8 g19s0
of objects; then, we transform them in the J2000 system; finally,
with 000 and 6 y2000 We compute the coordinates in the same
form as the initial one. At the precision level of the observa-
tions, the measurement is not affected by this transformation.

Other observations are given in the equinox and the ecliptic of
the date. We have kept them in this form and we have done the
appropriate rotation on the computed positions.

The third step is to transform the catalogue in order to have
as much as possible intersatellite coordinates. This method elim-
inates the effects of errors on the computed position of Saturn
and on its observed position, as well as the effects of system-
atic errors in the absolute positions of the satellites. When we
have N satellites observed at the same date (generally they cor-
respond to a photographic plate), we have made the difference
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Table 6a. Solution for the variable ps (mean motion of Titan). The series is expressed in cosinus

n° amplitude phase frequency period identification  amplitude

Dob (rad) (deg) (rad/year) (years) (km)
1 0.0001348 180.000 0.00000000 109.8

Aps (rad) (deg) (rad/year) (days) (km)
2 0.0000251 253.599  364.08527289 6.30  Aos — Aos 20.5

Table 6b. Solution for the variable \¢ (mean longitude of Titan). A¢ = 4.9367922 + 143.92404785 x t + 66 + AX¢. The series is expressed in

sinus

[e]

n amplitude phase frequency period identification amplitude
6 (rad) (deg) (rad/year) (years) (km)
1 0.0014892  256.852  0.00192554  3263.07 —®3 1819.7
2 0.0006278 9.406  0.00893124 703.51 —®6 767.1
3 0.0002065 164.777  0.42659824 1473 2 252.3
4 0.0001840  253.966  0.21329912 2946 Mo 224.8
5  0.0000321 138.716  0.00686799 914.85 19u/d6 — s/ — @6 + Pg 39.2
6  0.0000291 236.833  0.63989736 9.82  3Xk 35.6
7  0.0000278 119.512  0.01786773 351.65  2¢s 34.0

Table 6c¢. Solution for the variable zs (eccentricity and pericenter of Titan). The series is expressed in complex exponential

n° amplitude phase frequency period identification  amplitude
206 (rad) (deg) (rad/year) (years) (km)
1 0.0289265 153.988 0.00893386 703.30 ¢ 35346.6
2 0.0001921 34.663 —0.00893386 703.30 — o6 234.8
3 0.0000745 199.650 0.41766438 15.04 —p6 +2XN9 91.0
4 0.0000243 257.661 0.00700832 896.53 d6 + g 29.7
5 0.0000239 229.451 0.01085941 578.59 d6 — D3 29.2
6  0.0000172 196.134 0.00197469  3181.86 ¢ 21.0
Az (rad) (deg) (rad/year) (days) (km)
7 0.0000669  282.857 143.92404729 15.95 Ao 81.7

Table 6d. Solution for the variable (s (inclination and node of Titan). The series is expressed in complex exponential

o

n amplitude phase frequency period identification ~ amplitude
Co6 (rad) (deg) (rad/year) (years) (km)
1 0.0056024  184.578 0.00000000 6845.8
2 0.0027899  355.503 —0.00893124 703.51 b6 3409.2
3 0.0001312  289.015  —0.00192554  3263.07 s 160.4
4  0.0001126  348.599 0.42659824 1473 22X 137.6
5 0.0000192  291.921 —0.21329912 2946  —Xo 23.4

between the absolute positions of each possible combination
of pairs of satellites. So, we obtain Mz—"ﬁ ”observations” but
only N — 1 of them are independent. To take into account this
redundance, we have included in the weight of the correspond-
ing equations of condition the factor % Of course, the case
N =1 corresponds to an absolute position of one satellite (o
and 6), so we cannot do such a transformation. In fact, as Taylor

et al. (1991) have shown, these observations are better analysed

if they are considered as observations of Saturn itself. So, such
observations have been omitted from our analysis. For most of
them, they concern the satellites Titan and Japetus and come
from the Carlsberg and Bordeaux automatic meridian circles.
Note that the observations involving the angle of position p are
transformed into cos p and sin p. The corresponding equations
of condition have the factor % in order to take into account the
redundance. They have also the factor s. in order to normal-
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Table 8a. Solution for the variable ps (mean motion of Japetus). The series is expressed in cosinus

[e]

n amplitude phase frequency period identification amplitude
Dos (rad) (deg) (rad/year) (years) (km)
1 0.0004932 180.000 0.00000000 1171.1
Apg (rad) (deg) (rad/year) (days) (km)
2 0.0014226 93.339 114.99552496 1996 Ao6 — Ao 3377.9
3 0.0000128 168.918 114.99745050 19.96  Aog — Aog — P 30.5
4  0.0000117 17.760 114.99359941 19.96  Aos — Aog + D 27.9
5 0.0001039  206.479 57.43044643 3996 2Xos — 2A9 246.7
6  0.0000132  206.473 57.43044643 3996  2Xo8 — 2X09 + Qo 31.3
7  0.0000482  278.307 86.06897732 26.66  Aog — 208 + P 114.4
8  0.0000379  222.187 258.91063838 8.86  2Xos — Ao — 6 90.0
9  0.0000348 166.938 479.08079784 479 dos — Aos 82.6
10 0.0000211 353.466 28.92654764 79.34  Aog — ¢ 50.1
11 0.0000118  215.851 28.91958847 7936 Ao — s 28.0
12 0.0000204  136.858 57.21714732 40.11 2208 — 3oy + oy 48.3
13 0.0000187  284.764 809.58234803 2.83 Dot — Aos 44.4
14 0.0000164  178.797 172.85449516 1328 Ao+ Aog — Ps 38.9
15  0.0000153  283.216 172.85256962 13.28 o6 + Aos 36.3
16  0.0000156 186.678 229.99104991 998  2Xo6 — 23 37.0
17 0.0000123 9.883 57.85704466 39.67 2X8— 29.2
18 0.0000118 189.889 57.85704466 39.67 2o — 2 27.9
19 0.0000113 110.661 1186.73540673 193 Aoz — A 26.8
20  0.0000089  213.013 28.50389879 80.51 Aog — 209 + g 21.1

ize the units (s, is the computed angle of separation). It would
had been simpler if we had transformed the two observed co-
ordinates p and s into scos p and s sin p, but it is not possible
because p and s are not given at the same date since they are
visual observations.

At last, we have performed the correction of refraction in
the differential coordinates for the data recorded before 1966
except those from the U.S. Naval Observatory. As it was said in
Strugnell & Taylor (1990), in all other data sets this correction
is supposed to be already made by the observers.

In conclusion, we can say that the set of observations used
in the present work is almost the same as the set used by Harper
& Taylor (1994) in their similar work using their representation
of the motion of the satellites. Furthermore, we have used the
same rejection leve] : observations which have residuals greater
than 1’/ are not retained. That is why in Sect. 5. we may compare
both results. Note that the very few and very precise observations
made by Aksnes et al. (1984) are included in the present analysis
while they are not in that of Harper & Taylor. On the contrary,
observations listed in Table 1 of (Harper & Taylor 1994) are not
considered in our analysis.

Remark. About the 14 observations made by Aksnes et al., we
have to indicate here an error in the catalogue of Strugnell &
Taylor. These observations are very accurate because they cor-
respond to mutual events (see Table 10). We obtain for these
14 observations a root-mean-square residual equal to 0/015.
To reach this value it suffices to interchange in the catalogue
the “reference object” and the “observed object”. This correc-

tion agrees with the definitions given in the paper of Aksnes et
al. from which these observations have been taken to be put in
the catalogue. This inversion was detected by Rapaport (private
communication) when computing the root-mean-square resid-
uals of these observations with the representation of Harper &
Taylor (1993). He obtains 0"/030. But in a recent paper Harper
& Taylor (1994) find 0”705 in Acccos§ and 0’14 in A§. So, it
seems that Harper & Taylor have not yet made the correction.

4. Method to estimate the parameters

We are then able to compare the observations to TASS. From
this comparison we want to give an estimation of the parameters
on which TASS depends. We have done this estimation by the
least square procedure. This method is well-known and exten-
sively used. This fact is due to its simplicity and because it is
easy to compute. It is not our purpose to present here all the the-
ory of the least square method, but we want to emphasize some
points. More precisely, we want to recall the hypothesis of the
method and then to discuss whether the choice of weights veri-
fies them. This discussion would lead to a better understanding
of the results.

4.1. The least square procedure
Most of the formulas of this sub-section have been written with

the help of the theory presented by Eichhorn (1993). The reader
can find in this paper more details and more references.
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Table 8b. Solution for the variable Az (mean longitude of Japetus). Az = 0.1661250 + 28.92852233 x ¢ + 6\ + A)z. The series is expressed
in sinus

FTY9O5ACA - Z797- 7588

o

n amplitude phase frequency period identification amplitude
&g (rad) (deg) (rad/year) (years) (km)

1 0.1928387 75.444 0.00192554 3263.07 —Pyg 686837.3

2 0.0011977 166.491 0.00385109 1631.54 —2®g 4265.9

3 0.0011258 252.911 0.21329912 29.46 A9 4009.8

4 0.0007466 195.470 0.00893124 703.51 — &4 2659.3

5 0.0003004 239.655 0.42852378 14.66 —®Pg + 29 1070.0

6 0.0002400 167.668 0.42659824 14.73 2)9 855.0

7 0.0001785 223.291 0.00691978 908.00 19u/¢6 — ¢ps/ — P + Py 635.9

8 0.0000739 315.313 0.43044933 14.60 =2z + 2\ 263.3

9 0.0000528 356.302 0.21137358 29.73 Dy + Ao 188.2
10 0.0000408 216.372 0.01083538 579.88 unkown 145.2
11 0.0000403 62.796 0.20646793 30.43 Ao — 19 143.5
12 0.0000381 312.253 0.64182290 9.79 —Pg +3)N 135.8
13 0.0000362 35.395 0.01282203 490.03 unkown 128.9
14 0.0000359 139.576 0.21522466 29.19 —®g + Ay 127.7
15 0.0000349 238.299 0.63989736 9.82 3o 124.3
16 0.0000238 185.596 0.10318689 60.89 287u 84.7
17 0.0000215 190.457 0.02002818 313.72 unkown 76.5
18 0.0000202 306.111 0.01786773 351.65 206 72.1
19 0.0000160 142.421 0.42264886 14.87 —2¢5 +2)9 57.1
20 0.0000131 336.536 0.31639186 19.86 880u 46.8
21 0.0000099 26.889 0.64374845 9.76 —2d3 +3)9 35.2
22 0.0000075 234.190 0.22013031 28.54 Ao+ 194 26.6

Adg (rad) (deg) (rad/year) (days) (km)
23 0.0007283 273.339 114.99552496 19.96 Ao6 — Aog 2593.8
24 0.0001227 206.479 57.43044643 39.96 2X08 — 209 437.0
25 0.0000144 206.473 57.43044643 39.96 2X08 — 209 + 29 514
26 0.0000073 102.053 57.43237198 39.96 2X08 — 2200 — Pg + Qo 26.0
27 0.0001170 166.266 0.71654053 3202.80 — o6 +5Aos — 2¢p3 — Dy 416.6
28 0.0001078 270.966 0.71461498 3211.43 —MXo6 + 5Aos — 2¢8 384.1
29 0.0000888 180.525 0.72048991 3185.24 —Xo6 + 508 — Py 316.3
30 0.0000808 25.895 0.70958135 3234.21 —Xo6 +5Xo8 — 6 — Pz — Ds 287.6
31 0.0000729 130.724 0.70765581 3243.01 — Mo + 508 — P6 — 3 259.5
32 0.0000727 77.569 0.72241545 3176.75 — o6 + S5Aog — 2P3 259.0
33 0.0000353 282.813 0.71856436 3193.78 — o6 + 508 125.8
34 0.0000302 64.357 0.71846607 3194.21 —Xo6 + 5Xos — 2003 — 2&3 107.5
35 0.0000233 333.142 0.72434100 3168.31 —Xo6 + SAos — 3P4 82.9
36 0.0000219 114.321 0.70370643 3261.21 —MXo6 + 5Aos — P6 — 3¢bg 77.9
37 0.0000167 278.826 0.71150690 3225.45 =MXo6 + 508 — P — g — 2Py 59.6
38 0.0000148 327.720 0.69674725 3293.78 —Xo6 + 508 — 2¢06 — 2¢h8 52.5
39 0.0000140 242.920 0.70262218 3266.24 — o6 + SAog — 2006 — Py 49.8
40 0.0000118 347.311 0.70069664 3275.22 —MXo6 + 5Aos — 206 42.0
41 0.0000088 67.941 0.71851522 3193.99 —Xo6 + S5Aos — g — Pg 314
42 0.0000085 172.701 0.71658967 3202.58 —Xo6 + 5Aos — P8 30.3
43 0.0000062 188.530 0.72942115 3146.24 —MXo6 + 5Aog — P — Dy 22.1
Let us consider Np equations of conditions from which we Np =~ 50000 and np =355

want to compute the most probable values of n, parameters
(gathered in p) :
A D b
(Np,np) (np, 1) (Np,1)

This equality is matricial. The dimension of each matrix is given
under it. In the case of the present work we have :

©)

A is given by the theory, and the matrix b is estimated by b, as
follows :

b=b,+6b “

b, is issued from observations and contains the classical
observed-minus-computed residuals. So, each component of §b
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Table 8b. (continued)
n° amplitude phase frequency period identification amplitude

Adg (rad) (deg) (rad/year) (days) (km)
44 0.0000060 50.154 0.70573027 3251.86 — o6 +5Aog — P — ¢pg + Dy 21.3
45 0.0000264 268.343 143.92207259 15.95 Ao — @8 93.9
46 0.0000240 136.858 57.21714732 40.11 2X08 — 309 + w9 85.6
47 0.0000222 42.195 258.91063838 8.86 2X06 — Ao — g 79.2
48 0.0000218 346.938 479.08079784 4.79 Aos — Aos 71.7
49 0.0000204 211.225 28.50389879 80.51 Ao — 200 + 3 72.6
50 0.0000177 186.678 229.99104991 9.98 206 — 208 63.0
51 0.0000138 189.889 57.85704466 39.67  2Xog — 28 49.2
52 0.0000134 9.883 57.85704466 39.67 208 — §29 47.7
53 0.0000068 265.464 57.85897020 39.66 2X08 — Pg — Qo 24.1
54 0.0000118 104.764 809.58234803 2.83 Aod — Aos 42.2
55 0.0000103 178.797 172.85449516 13.28 X6 + Aog — Pg 36.7
56 0.0000095 283.216 172.85256962 13.28 Ao6 + Ao 33.8
57 0.0000073 290.661 1186.73540673 1.93 Aoz — Aog 25.9
58 0.0000060 99.874 86.06897732 26.66 Aob — 2A08 + P 21.4

is a noise, that is the difference between the true value and the
observed value.

The components of b, are correlated and have varied preci-
sions, so, we have to consider the Np x Np covariance matrix
of the observations V5. Note that in the theory of the least
square, V,; is supposed to be known.

Then, the condition is : the density of probability of §b must
be maximum. We deduce an estimation of p :

po= (A5 A) " AV b, ©)
and the corresponding covariance matrix is :

—1
V(po) = (A'Vy, 4) ©®

In practical cases, the main problem is to estimate the matrix
Viops- First, it is too large to be well used in (5) and (6). Second,
most of its elements are not really known. A drastic way is
to suppose that all observations have the same precision € and
are not correlated. In this case Vip, = €21, where I is the unit
Np x Np matrix; then Egs. (5) and (6) become :

po=(A'4)"" A'b, @)
Vip) =< (A'4) " ®)
and € may be estimated by :
Np
2 1 2 .
€= T with (rg) = Apo —b, ©
ND — Ny P

Another simple case but more realistic, is to suppose that
the observations are independent but with varied precisions. So,
we have :

e 0 ... 0
2
e ... 0
Vovs = S :
0 0 X

We can still use the formulas (7) and (8) (with € = 1), but before

that, we must divide each line k& of A and of b, by &;. The
number Lz is then called the weight of the k** observation.
€k
In the present work, as in most of the similar works, we have
considered the last case : we have supposed that the correlation

between the observations is negligible.

4.2. The choice of the weights

The used formulas need us to know each ey, (which represents
the precision of the k" observation). But usually observers do
not give the value of € explicitly. So, we have to choose a way
to estimate it.

We have divided the whole set of observations into different
data sets. Each set is defined by its author, the used instrument
and the observed satellite. For such a set we determine, with a
formula like (9), the root-mean-square of the residuals €; ; (¢ is
the reference used by Strugnell & Taylor to indicate the observer
and the instrument, and j represents the satellite). We assume
that the precision of an observation made by an observer with a
particular instrument does not depend on the observed satellite
(except Mimas). So, the equations of condition of a given refer-
ence ¢ are divided either by €, ; if Mimas is observed, either by
min;y &; ;. To avoid that this minimum corresponds to a satel-
lite insufficiently observed, we impose that the observations of
this satellite represent at least 20% of the observations in that
reference.

Harper & Taylor (1994) have shown that the precision de-
pends on the type of the observation (p, s, Aacos 8, Ad, .. .).
Then, we have used different weights for the different types of
observations. For example, in the sets containing position angles
and separations, we have computed a weight for the measures
of separation and another for the measures of position angle.
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Table 8c. Solution for the variable zg (eccentricity and pericenter of Japetus). The series is expressed in complex exponential

n° amplitude phase frequency period identification amplitude
208 (rad) (deg) (rad/year) (years) (km)

1 0.0010161 292.601 0.00000000 3619.0

2 0.0293565 192.436 0.00197469 3181.86 o 104559.5

3 0.0009954 334.126 0.00893386 703.30 b6 35452

4 0.0007357 345.828 —0.00197469 3181.86 —¢s 2620.4

5 0.0006699 272.328 —0.00390023 1610.98 —¢g + Dy 2386.0

6 0.0004152 271.809 0.00390023 1610.98 ¢s — Dy 1478.8

7 0.0003789 157.294 0.42462355 14.80 —¢g +2X9 1349.6

8 0.0001992 256.999 0.00700832 896.53 @6 + Dg 709.4

9 0.0001900 201.542 —0.00582578 1078.51 — ¢ + 2Dy 676.7
10 0.0001235 49.578 0.01085941 578.59 ¢6 — D3 439.8
11 0.0001012 214.593 —0.00893386 703.30 — s 360.4
12 0.0000693 319.489 —0.01085941 578.59 — ¢ + Dy 246.8
13 0.0000489 230.042 0.63792267 9.85 —¢s + 39 174.2
14 0.0000208 67.258 —0.01278495 491.45 — g +2Pg 74.2
15 0.0000204 262.710 0.21132443 29.73 — g + Ao 72.6
16 0.0000180 13.416 0.41766438 15.04 —¢6 + 2N 64.1
17 0.0000160 357.207 0.21329912 29.46 Ay 56.8
18 0.0000134 266.386 0.21527381 29.19 bs + Ao 47.8
19 0.0000129 302.968 —0.21132443 29.73 Ps — Xg 459
20 0.0000113 262.106 0.42264886 14.87 —2¢8 +2X9 40.3
21 0.0000107 0.201 0.42852378 14.66  —®Pg+2) 37.9
22 0.0000066 66.486 0.43049847 14.60  ¢g — Dg +2X9 23.5

Az (rad) (deg) (rad/year) (days) (km)

23 0.0005938 282.857 143.92404729 15.95 Ao6 2114.8
24 0.0002739 96.179 —86.06700263 26.66 —Xo6 + 208 975.4
25 0.0002533 9.518 28.92852233 79.33 Aos 902.1
26 0.0001049 343.040 —28.50192410 80.52 —Xog + 200 373.7
27 0.0000133 343.046 —28.50192410 80.52 —Ao8 + 209 — 29 47.3
28  0.0000067 87.465 —28.50384965 80.51 —Xog + 200 + Pg — Qo 23.8
29 0.0000206 52.660 —28.28862499 81.13 —Xog + 300 — w9 73.3
30 0.0000172 51.705 287.83916071 7.97 206 — P 61.3
31 0.0000165 356.456 508.00932017 4.52 Aos 58.6
32 0.0000130 269.645 —57.14045499 40.16 —Xos + 308 — P8 46.1
33 0.0000125 175.103 0.71851522 3193.99 —Xo6 +5Aog — g — Pg 44 .4
34 0.0000114  279.526 0.71658967  3202.58  —MXo6 + S5hos — ¢g 40.7
35 0.0000123 179.635 —28.92852233 79.33 — Ao + o 43.7
36 0.0000118 359.629 —28.92852233 79.33 —Xog + 28 41.9
37 0.0000062 284.055 —28.93044787 79.33 —MXos + Dy + 9 22.0
38 0.0000115 35.997 86.35896876 26.57 308 — 200 41.1
39 0.0000105 10.722 —143.92597283 15.95 —Xog + Pg 37.4
40 0.0000098 266.302 —143.92404729 15.95 — o6 34.9
41 0.0000105 2.840 —201.06252758 11.41 =206 + 308 37.3
42 0.0000103 102.714 —114.99355026 19.96 —MXo6 + Aog + P 36.8
43 0.0000090 114.282 838.51087036 2.74 Aot 32.2
44 0.0000080 182.984 57.85506997 39.67 2X08 — P8 28.6

Most often, as it was explained in Sect. 3, we have inter-
satellite coordinates and thus, such an observation involves two
satellites. To define which satellite is concerned, we use the or-
dered following list : Rhea, Titan, Dione, Tethys, Enceladus, Mi-
mas and Japetus. For example, an observation involving the pair
Titan-Japetus is considered for the computation of the weight
as an observation of Japetus.

Another remark concerns the computation of the root-mean-
square residuals. According to (9), we have to know the values
of the parameters p,. Because p, is the result of the least square
procedure, these values are unknown the first time we want to
compute the weight. In fact, the weights are defined by implicit
equations. We resolve them by iterations. Starting with p, =0,
convergence occurs in two iterations. We have verified that the
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o

n amplitude phase frequency period identification amplitude
Azg (rad) (deg) (rad/year) (days) (km)
45  0.0000071 326.988 —229.98211605 9.98 =206 + 208 + 6 25.2
46 0.0000063 22.580  —450.15227551 510 —Xos+2Xo8 22.3
47  0.0000057  300.179 1215.66392906 1.89 o 20.2

Table 8d. Solution for the variable (3 (inclination and node of Japetus). The series is expressed in complex exponential

o

n amplitude phase frequency period identification amplitude
Cos (rad) (deg) (rad/year) (years) (km)
1 0.1320165 184.580 0.00000000 470205.8
2 0.0679455  289.223 —0.00192554  3263.07 Pg 242002.8
3 0.0006892 80.102 0.00192554  3263.07 —3 2454.9
4 0.0002731 176.129 —0.00893124 703.51 D 972.6
5  0.0002641 348.659 0.42659824 1473 2X 940.7
6  0.0001817 64.344 0.42852378 1466  —®s+2X) 647.1
7  0.0000457  209.876 —0.00385109  1631.54  2&3 162.8
8  0.0000449  291.806 —0.21329912 2946  —N 160.1
9  0.0000337 61.433 0.63989736 9.82 3 120.2
10 0.0000301 247.712 0.21329912 2946 o 107.2
11 0.0000287 64.768 0.00390023 1610.98 ¢ — Py 102.3
12 0.0000283  216.316 —0.21522466 29.19 Pz — X 100.9
13 0.0000283 182.190 0.21137358 2973 Bs+ X 100.8
14 0.0000235 137.055 0.64182290 9.79  —®g+3X 83.7
15 0.0000192 95.511 0.00587493 1069.49  2¢g — D3 68.2
16 0.0000139  355.208 —0.00683119 919.78  —19u 49.5
17 0.0000136 90.131 —0.01085678 57873 &g+ Dy 48.5
18  0.0000112  121.717 0.01786773 351.65  2¢s 39.7
19 0.0000099 173.180 0.21522466 29.19 =Pz + Ao 35.3
20 0.0000099  204.432 0.00893124 703.51 — P4 35.1
21 0.0000066  337.999 0.01090856 57599 @6+ s 234
22 0.0000059 128.157 —0.00592407 1060.62  —3¢3 21.1
Al (rad) (deg) (rad/year) (days) (km)
23 0.0000299 91.241 —114.99552496 1996  —Xos+ Aos 106.4
24 0.0000160 195.660  —114.99745050 1996 —Xos + Aog + Dg 56.9
25  0.0000201 287.796 172.85256962 1328 o6+ Aot 71.6
26 0.0000108 183.376 172.85449516 13.28  Apg + Aog — P 38.5

process converges to the same weight if we give, at the first step,
equal weight for the whole set.

4.3. The probable errors and precisions

‘We have seen that the estimation of the weight of each equation
of condition results from a choice. Although our procedure is
close to that of Dourneau (1987) or Harper & Taylor (1993) in
their similar works, this choice is not the only one possible and
may be criticized. Furthermore, we have neglected the corre-
lations between the observations (the matrix Vs is supposed
to be diagonal). So, we think that the choice of the matrix V,,
does not really respect the hypothesis of the least square theory.
It seems that there is no influence on the determination of the

parameters but there are sometimes some difficulties to consider
their probable errors as good indicators of the precision of the
parameters.

For example the Figs. 2 in Harper & Taylor (1993) illus-
trate this purpose. For each parameter they have determined,
they have plotted its value and its probable error bar. They have
also plotted for comparison the similar results obtained by other
authors. In some cases, error bars are far from one another (usu-
ally one considers three times the probable error). So, assuming
zero mean Gaussian measurement errors, the probability to find
the parameter in the intersection of error bars is very small. Of
course, for most of the cases we can explain this fact. For ex-
ample, the difference between their determinations and those
of Taylor & Shen (1988) is certainly explained by the fact that
Taylor & Shen use only the observations made after 1966. But,
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Table 9. Maximum difference in kilometers, over the indicated time-
span, between positions computed with TASS and those issued from a
numerical integration. The physical models are the same in both case:
Saturn’s oblateness, intersatellites and solar perturbations. The initial
conditions used in the numerical integration are given by TASS

body over 100 years over 3 years
Mimas 27 10
Encelade 60 14
Tethys 23 10
Dione 30 5
Rhea 10 6
Titan 13 4
Japetus 173 37

in both cases, if the hypothesis of the least square theory were
respected, error bars should be closer.

So, we conclude that the least square procedure as it is used
here, leads to a good estimator of the parameters but most often
overestimates their precision. This precision has to be estimated
in another way. This fact was also observed by Campbell & An-
derson (1989). Following them we have measured the sensitivity
of the determination with respect to the method used. For that,
the adjustment has been done with the weight described in Sect.
4.2. A second adjustment has been done by squaring the weight
normally used. Then, our estimation of the standard error is
computed so that the corresponding error bar contains both de-
terminations. This standard error is denoted in Tables 10 by £
and it is given in addition to the probable error o.

This way for estimating the precision is not really objective
but we think that it is more realistic. Another way would be to
find a good evaluation of the matrix V,. It would be neces-
sary to analyse again all the observations to obtain errors on
measures. But that seems to be very difficult to do.

5. Results

We present, in this section, the results of the comparison between
TASS and the Earth-based observations. There are three kinds
of results :

First, we present the values obtained for all the parameters of
TASS (i.e. p, of the preceding section). The part of p, concern-
ing the initial conditions cannot be easily compared to previous
works because the variables and the reference frame we use are
different. On the contrary, because of their physical meaning,
the part of p, concerning the masses and the oblateness coeffi-
cients may be compared with previous works. We emphasize the
mass of Saturn which gives the scale of the dynamical system.

Second, we give the residuals of the observations (7, in (9)).
Third, we discuss the new solution obtained. Because of
the value of p,, the solution is slightly different from the one

presented in Papers II and III. We will comment about the main
differences.
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The results of two adjustments are presented : TASS1.5 and
TASS1.6. In TASS1.5, all the parameters are fitted except the
oblateness coefficient Jg which is fixed at the value determined
by Campbell & Anderson (1989).In TASS1.6, all the parameters
are fitted except the masses of Saturn and Titan, the coefficients
J, and Jy, and the position of the equatorial plane. These fixed
parameters are also taken from Campbell & Anderson (1989).
These values come from spacecraft determinations (Pioneer and
Voyager) and are well determined. Thus, TASS1.6 is up to now
the best solution of our equations (Tables 1 to 8). It is ready to
produce ephemerides of the satellites. TASS1.5 allows to see
how TASS is able to determine all the parameters. It is also an
indicator of the sensitivity of the parameters in the adjustment.

5.1. Physical parameters of the Saturnian system

The determination of the gravity field of the Saturnian system,
presented in Tables 10, agrees very well with almost all other
determinations.

Our determination of the masses of Mimas, Tethys, Dione
does not differ from those obtained by Harper & Taylor (1993)
and our probable errors are slightly smaller.

The mass of Enceladus is not well determined: TASS1.5 and
TASS1.6 do not agree for this parameter and the standard error
(opposed to the probable errors, see Sect. 4.3) is large. Note
that both determinations by Harper & Taylor and by Dourneau
are not really independent, because the representations of the
motions they use are very similar. Then, we have not enough
determinations of this mass to decide which of them is the better
one. If we suppose the radius of Enceladus equal to 250 kilome-
ters (from the Explanatory Supplements 1994), the value from
TASS1.6 leads to a density of 0.6 g/cm?, from TASS1.5 to 1
g/cm? and from Harper & Taylor and Douneau to 1.9 g/cm?.
The three other inner satellites have the approximate folowing
densities: Mimas, 1.2 g/cm? (radius ~ 200 km); Tethys, 1. g/cm3
(radius ~ 530 km); Dione, 1.5 g/cm? (radius ~ 560 km).

Our values for the mass of Rhea are in good agreement with
the determination by Campbell & Anderson. Both determina-
tions have the same precision.

The mass of Titan has a great influence on the motion of
Hyperion, but the work which consists in including Hyperion
in the present analysis is still in progress. So the present deter-
mination comes mainly from the motions of Rhea and Japetus
only.

Although the precision of our determination of the mass of
Japetus is not very good, it agrees well with the determination
by Campbell & Anderson.

Concerning the oblateness coefficients .J, and Jy, our deter-
minations agree very well with all other determinations. Note
that our precisions (probable error and standard error) and those
of Campbell & Anderson are very similar. Despite the fact that
these two coefficients are correlated (99%), we have obtained a
good determination of J4 and the probable error is significantly
smaller than that quoted by Harper & Taylor.
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Table 10. Determination of some parameters of the Saturnian system. TASS 1.6 is a fit in which the masses of Saturn and Titan, the coefficients
J> and Jy, the position of the equatorial plane, are not adjusted but are fixed to the values determined by Campbell & Anderson (1989). TASS 1.5
is a fit in which only Jg is not adjusted but is fixed to the value determined by Campbell & Anderson. We also give the determinations (when it
is possible) by Harper & Taylor (1993), Dourneau (1987), Campbell & Anderson and Simpson & Tyler (1983) (line Pioneer & Voyager’), Null
et al (1981, line "Pioneer”), Sinclair & Taylor (1985), Elliot at al (1993, line ”Hubble”) and the value recommended by IAU. a Determination

FTY9O5ACA - Z797- 7588

of the masses of Mimas (1), Enceladus (2), Tethys (3), Dione (4), Rhea (5), Titan (6) and Japetus (8), in units of Saturn’s mass

parameters x 10° m my ms o ms me mg
TASS 1.6 0.0634 0.069 1.060 1.963 432 — 3.1
TASS 1.5 0.0640  0.107 1.068 1.950 3.68 235.36 5.1
o 8 21 13 21 38 18 5
+ 25 88 42 121 64 62 23
IAU 241.
Harper & Taylor 0.0646 0.213 1.076 1.916
o4 11 46 18 36
Dourneau 0.0648 0.206 1.088 1.954 3.7
o 21 55 31 58 1.7
Pioneer & Voyager 1.186 4.059  236.638  2.79
o 105 53 8 8
+ 263 105 26 26
Pioneer 4.0 238.8 34
o 1. 3. 1.3

Table 10b. Determination of the oblateness coefficients of Saturn J,, J4 and Jg, of the inclination of the equatorial plane ¢,, and of the longitude
of its node 2, referred to the J2000 system, and of the Saturn’s mass by ﬁ—f. The coefficients J, and J4 from Dourneau (1987) were calculated
by Harper & Taylor (1993) from the nodes rates determined by Dourneau. In the same way we have calculated the Saturn’s mass from the semi

major axes determinated by Harper & Taylor and Dourneau (see Sect 5.2)

parameters 1087, 1060, 10875 ia Qq MM%
TASS 1.6 — - 95. - - —
TASS 1.5 16285. —959. —.  28%0665 16995339 3497.2
o 5. 17. 11. 14 29 .1
+ 12. 39. 70. 06 48 2
1AU 16270. —980. 3499 .4
Sinclair & Taylor 16508. 3498.2
o 900. 3
Harper & Taylor 16298. —1076. —  28°0588 169°5357 (3491.)
o 38. 274. 16 35 3.
Dourneau (16326.) (—841.) —  28°%0752 16995082 (3496.)
o 54. 401. 35 89 4.
Pioneer & Voyager 16298. —-915. 103.  28°0512 16995291 3498.790
o 5. 26. 41. 3
+ 10. 40. 50. 10 25 20
Pioneer 16299. -917. -
o 18. 37.
Hubble 280541 16995252
o 51 100

About Jg, we cannot say that we have determined its value
because, for computing it, J, and Js were fixed to the values
given by Campbell & Anderson. Nevertheless, we can say that
Earth-based observations analysed with TASS confirm the value

from spacecraft observations.

Our determination of the position of the equatorial plane is
in good agreement with those based on the motion of the satel-
lites (Harper & Taylor and Dourneau) and with that based on a
stellar occultation observed by the space telescope Hubble. But

asignificative difference subsists with the precise determination
obtained from the Voyager missions (Simpson & Tyler 1983).
This difference occurs mainly in i,.
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Table 11. Root-mean-square residuals (x 100 in seconds of degree) for several major data sets and compared to those obtained by Harper &
Taylor (1993, column "HT”). The last line of this table represents the mean value of the other lines, weighted by the corresponding root-mean-
square residual. The column "weight” gives the influence of the corresponding data set : the value is the sum of the weight of each observation
in that data set. So, the data sets presented in this table represent 72% of the whole set of observations used in the analysis

HT  TASS TASS (by satellite)

Ref Observer Nb. obs. weight (%) 1 2 3 4 5 6 8
1 USNO (1877-1887) 1080 1.6 40 36 35 33 30 31 34 36 40
3 USNO (1911) 3720 9.6 27 24 32 28 21 18 21 26 34
4 USNO (1929) 2390 8.2 18 15 17 15 14 14 15 15 22
5 USNO (1954) 2520 6.2 22 20 24 22 20 19 19 18
6 Struve (1933) 2790 5.4 30 24 24 24 22 24 24 33 35
9 Struve (1898) 1780 7.4 14 12 15 9 11 12 12 23 20
10 Alden & O Connell (1928) 590 32 12 12 39 6 6 11 24
18  Kisseleva et al (1977) 360 1.5 16 17 38 27 17 15 6 7 17

26 Sinclair (1974,1977) 860 1.8 12 13 14 11 12 12 12

31 Pascu (1982) 2330 12.7 13 13 19 14 10 10 8 8 15

33 Tolbin (1985) 720 2.1 14 12 14 15 12 11 6 7 19

42 Aksnes & al (1984) 14 0.7 3.0 1.5

46  Dourneau et al (1989) 950 14 28 27 31 29 27 26 24

47 Veillet & Dourneau (1992) 300 1.7 18 11 15 10 10 9 8 9

48 Veillet & Dourneau (1992) 1400 8.4 13 12 18 13 12 10 9 10 14

mean value 17 15 18 14 13 13 12 13 19

5.2. Mass of Saturn and the semi major axes

The mass of Saturn is well determined from the spacecraft mea-
sures (Campbell & Anderson 1989). From Earth-based obser-
vations of the satellites, it is difficult to obtain such a precise
determination (Table 10b). The best comparable determination
is that of Sinclair & Taylor (1985). They have adjusted the mass
of Saturn (with other parameters) from a numerical integration
of Titan, Hyperion and Japetus fitted on observations of these
satellites made after 1966. Despite this relatively good value,
they think that there is a systematic scale error in the observa-
tions of the satellites of Saturn. Taylor & Shen (1988) have con-
firmed this scale error. They have compared the observed semi
major axes with the values derived from the observed mean
motions using Kepler’s third law. Vienne (1991) emphasized
the possible confusion between the observed semi major axis”
and the mean radius of the orbit. He was not able to find which
correction must be applied to find the observed value. This is
because the semi major axis and the mean motion are fitted in-
dependently and then one or both values may be affected by a
default in the theory. This is not the case with TASS : the mean
motion is adjusted (more exactly the mean mean motion) and
the semi major axis is a computed value. In TASS1.6 we have
used the mass of Saturn determined by Campbell & Anderson,
and the residuals are presented in Table 11. We will comment
these residuals in the next section, but we can see that our resid-
uals are at least as good as those of Harper & Taylor (1993). So,
we think that there is no evidence for systematic scale errors.
Furthermore, with the value of the mass of Saturn determined
by TASS1.5, the residuals are not significantly different: these
residuals are not very sensitive to any reasonable change on the

mass of Saturn. Note that the precision quoted in the table is
certainly overestimated.

If we adopt the value of Campbell & Anderson, we can say
that our value is relatively good but overestimated. A better value
canbe obtamed if we keep only the post 1966 observations in the
fit. We find : Jl = 3498.3 which is close to the Sinclair-Taylor
value. With observatlons before 1966 only, we find 3493.6. So
it seems that the oldest observations lead to overestimate the
mass of Saturn.

5.3. Residuals of the observations

The residuals of the observations are presented in Table 11 in
the form of root-mean-square residuals of several major data
sets. We have compared these results with those from Harper &
Taylor (1993).

In general, the improvement of precision is small and oc-
curs mainly for the oldest observations (except those of Veillet
& Dourneau, reference 47). Furthermore, it seems that the dis-
tribution of the residuals does not depend on the theory. So, we
can say that the residuals presented in the table represent the
precision of each set of observations.

A complete discussion of the comparative quality of the data
sets is done in Harper & Taylor (1994). We only emphasize here
the sets of Pascu, of Veillet & Dourneau and of Struve which
contain numerous observations of good quality.

The observations of Aksnes et al. (1984) are very precise.
They correspond to mutual events, with precision limited only
by the timing of each event. This precision (0’/02 as seen from
the Earth ~ 130 km) corresponds to a fraction of the diameter

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995A%26A...297..588V

vl

FTY9O5ACA - Z797- 7588

604

of the involved satellites. Unfortunately, up to now there are
very few observations of this kind. We see here the importance
of the next campaign for observing mutual events in 1995-1996
(Arlot & Thuillot 1993).

The results given for each satellite show that Enceladus,
Tethys, Dione, Rhea and Titan have the best residuals. Residuals
for Mimas and Japetus are not as good. In fact, Harper & Taylor
(1994) have shown that these satellites are much less observed
than the others.

5.4. Remarks about the new orbits obtained

Tables 1 to 8 present the adopted solution TASS1.6. The pre-
sentation is limited here to perturbations greater than 20 km
but the fortran program which computes the positions uses the
complete series. This program including the series is available
from the authors. It is not our purpose to describe here the whole
solution because this was already done in Papers II and III. We
only want to emphasize two points.

The first one concerns the mass of Enceladus. The value
found in TASS1.6 is smaller than that in Dourneau or in Harper
& Taylor (about three times our value). The main effect is seen
in the mean longitude of Dione where both terms are smaller
than those found in Paper III. Note that in all cases, these terms
are rather small (to compare to the precision of the observations
~ 1000 km). It is why the mass of Enceladus is rather badly
determined.

The second one concerns the eccentricity of Tethys. There
are in the mean longitude of Mimas, some very long period terms
whose arguments contain 2®; + ¢ (terms n° 7 and 10 in Table
1b). These terms were more numerous in Paper III because the
eccentricity of Tethys was 5 times greater than that found in the
present work (Table 3c). Indeed, because the argument 2® + ¢3
contains the pericenter of Tethys, the amplitude of such terms
depends on its eccentricity. The influence of these very long
period terms does not seem to be as important as mentioned in
Vienne et al. (1992), where it was explained that these terms
could be confused with a secular acceleration. Nevertheless,
the standard errors on the eccentricity of Tethys are rather large
(about half its value) and then the question about the eccentricity
of Tethys is still open. Furthermore, the corresponding small
divisors exist in any case even if the eccentricity of Tethys is
very small. The study of this secular resonance has to be done.
Perhaps it would be an explanation of the nearly circular orbit
of Tethys.

6. Conclusion

TASS with its version TASS1.6 is now ready to produce
ephemerides. In comparison with previous theories, the im-
provement in precision seems small because the residuals reach
the precision of the observations. The interest of TASS is mainly
elsewhere.

A. Vienne & L. Duriez: TASS1.6: Ephemerides of the major Saturnian satellites

The internal precision of the nominal solution is far better.
So, it will be a good tool to account with the future observa-
tions of high precision (mutual events in 1995-1996, spacecraft
observations).

TASS is arepresentation of the motion of the satellites which
is coherent with all the dynamical parameters of the Saturnian
system, specially with the masses, the oblateness coefficients,
the mean mean motions and the semi major axes.

‘We have now to work again to improve TASS into a version
TASS.2. The versions TASSI. are all issued from the nominal
solution presented in Paper III. They differ only because they
depend on the partial derivatives. In the present work, we have
found large variations for some of the parameters (e.g.: eccen-
tricity of Tethys, node of Dione, eccentricity and pericenter of
Japetus,...) and this fact degrades the precision of the represen-
tation. The first interest in computing a new version of TASS
is to update the nominal solution. We recall that the nominal
solution of TASS1. (Paper III) is based on the representation
by Dourneau (1987) which is very different from ours. We can
then expect smaller variations of the parameters. The second
interest is to improve some points quoted in Paper III in or-
der to improve the nominal solution (specially for Japetus, see
Table 9).

With the aim of the CASSINI mission as well as for a better
knowledge of the dynamical system of the Saturn’ satellites, it
is very important to collect high quality observations and also to
reduce some older ones such as those from the Voyager missions
or those from new observations by CCD cameras (Colas 1991).
The mutual events which occur in 1995-1996 are especially of
great interest.

Acknowledgements. We would like to thank Dr. M. Rapaport for many
helpful discussions. We are very grateful to Dr. Dan Pascu for his per-
mission to use his unpublished observations of the satellites of Saturn.

References

Aksnes K., Franklin F,, Millis R. et al.: 1984, AJ 89, 280.

Arlot JL.E., Thuilot W.: 1993, Icarus 105,

Aoki S., S6éma M., Kinoshita H., Inoue K.: 1983, A&A 128, 263
Bretagnon P: 1982, A&A 114,278

Campbell, J.K., Anderson, J.D.: 1989, AJ 97, 1485.

Colas, F.: 1991, ‘Nouvelles observations CCD astrométriques pour
I’étude dynamique des satellites des planétes’, Thése, Observatoire
de Paris.

Dourneau, G.: 1987, ‘Observations et étude du mouvement des huit
premiers satellites de Saturne’, Thése, Bordeaux.

Duriez, L., Vienne, A.: 1991, A&A 243,263

Eichhorn H.: 1993, Celest. Mech. 56, 337.

Elliot, J.L., Bosh, A.S., Cooke, M.L. et al.: 1993, AJ 106, 2544.
Harper D., Taylor, D.B.: 1993, A&A 268, 326

Harper D., Taylor, D.B.: 1994, A&A 284, 619

Null G.W,, Lau E.E., Biller E.D., Anderson J.D.: 1981, AJ 86, 456.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995A%26A...297..588V

vl

FTY9O5ACA - Z797- 7588

A. Vienne & L. Duriez: TASS1.6: Ephemerides of the major Saturnian satellites 605

Simon, J.L., Bretagnon, P.: 1984, A&A 138, 169

Simpson, R.A., Tyler, G.L.: 1983, AJ 88, 1531.

Sinclair, A.T., Taylor, D.B.: 1985, A&A 147, 241

Strugnell P.R., Taylor, D.B.: 1990, A&AS 83, 289

Taylor, D.B., Shen K.X.: 1988, A&A 200, 269

Taylor, D.B., Morrison L.V., Rapaport M.: 1991, A&A 249, 569
Veillet C., Dourneau G.: 1992, A&AS 94, 291

Vienne, A.: 1991, ‘Théorie Analytique des Satellites de Saturne’,
These, Lille.

Vienne, A., Duriez, L.: 1991, A&A 246, 619
Vienne, A., Duriez, L.: 1992, A&A 257, 351

Vienne, A., Sarlat, J.M., Duriez, L.: 1991, ‘About the secular acceler-
ation of Mimas’, in ’Chaos, Resonance and Collective Dynamical
phenomene in the solar system’ [.A.U Symposium 152, ed. Ferraz-
Mello

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995A%26A...297..588V

