Mg II ABSORPTION IN A SAMPLE OF 56 STEEP-SPECTRUM QUASARS

Thomas L. Aldcroft¹

Department of Physics, Stanford University, Stanford, CA 94305-4060

JILL BECHTOLD

Steward Observatory, University of Arizona, Tucson, AZ 85721

AND

MARTIN ELVIS

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 1993 November 1; accepted 1993 December 1

ABSTRACT

We present an analysis of the statistical properties of Mg II absorbers found in the spectra of 56 intrinsically faint, steep-spectrum radio quasars. We observe for the first time a significant excess of associated Mg II absorbers over the number expected from cosmologically distributed absorbers. This result is in contrast to previous Mg II surveys in which the QSOs were optically selected. This distinction is similar to the result for associated C IV absorbers, in which intrinsically faint, steep-spectrum quasars show excess associated absorption and intrinsically bright QSOs (both radio-loud and radio-quiet) do not show an excess.

From our spectra a statistically complete list of absorption lines is derived, and we find 29 Mg II absorbers, 18 of which have not been previously reported. We also determine several characteristics of the quasar emission lines in our spectra. The Mg II absorber distribution as a function of redshift and equivalent width is calculated both for our sample alone and from our sample combined with spectra from other surveys. For the redshift distribution $n(z) = n(1 + z)^{\gamma}$, we obtain, using the combined sample, the values $\gamma = 1.11 \pm 0.46$ for $W_{\min} = 0.6$ Å and $\gamma = 2.47 \pm 0.68$ for $W_{\min} = 1.0$ Å. We find that the distribution of strong absorbers is inconsistent with no evolution at a confidence level between 2.2 and 2.9 σ , depending on the deceleration parameter q_0 . The deviation from no evolution is similar to what had been previously reported.

Subject headings: quasars: absorption lines

1. INTRODUCTION

Recent imaging and spectroscopic studies have found that Mg II-selected objects are normal, relatively bright spiral galaxies (Steidel 1992; Bergeron, Cristiani, & Shaver 1992; Bergeron & Boissé 1991; however, see Yanny & York 1992 for an opposing viewpoint). This means that these absorption lines provide a useful tool for studying the properties of gas-rich galaxies over much of the age of the universe. In particular, the statistical analysis of absorber properties can shed light on a number of issues in galaxy structure and evolution. For the Mg II absorbers, numerous surveys have been carried out (for references see Steidel & Sargent 1992, hereafter SS). The most recent and comprehensive is the data set in SS, which is combined with spectra from Sargent, Steidel, & Boksenberg (1988b, hereafter SSB1). One very interesting finding by SS is that weak absorption systems ($W_0 \ge 0.3$ Å) are consistent with no evolution, whereas the strong systems ($W_0 \ge 1.0$ Å) require evolution at 2–3 σ confidence.

As a complement to previous surveys, we have observed 56 steep-spectrum radio-loud quasars at the Multiple Mirror Telescope² (MMT) and the Palomar 5.08 m telescope³ during a

¹ Present address: Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138.

² The Multiple Mirror Telescope Observatory is a joint facility of the University of Arizona and the Smithsonian Institution.

³ Palomar Observatory is owned and operated by the California Institute of Technology. total of 13 nights between 1988 June and 1989 May. The majority of quasars in our sample are at moderate redshift ($z_{em} = 0.7-1.5$) and have been observed at a resolution between 100–360 km s⁻¹. The primary purpose of this survey was to find Mg II absorption-line systems in lobe-dominated quasars (Ald-croft, Elvis, & Bechtold 1993, hereafter Paper I). In these quasars we will search for Mg II-selected H I 21 cm absorption at redshifts between 0.4 and 1.4. For positive detections, the different line of sight between the optical and the lobe-dominated radio emission means that direct limits will be placed on the overall linear size of the absorber. The detection of absorption in resolved radio emission also gives limits on the sizes of individual absorbing clouds.

Because of the restrictive radio selection criteria described in § 2, we were forced to observe objects which are generally fainter in the optical than those of previous surveys. The average absolute magnitude of objects in our sample is about 2 mag fainter than in the sample of SS. Thus the typical rest equivalent width limit in our spectra is somewhat higher than in previous surveys, about 0.6 Å. However, a beneficial consequence is that the quasars in our sample have very different intrinsic optical and radio properties from those in any previous Mg II survey. This is important for study of associated Mg II absorbers, and in fact we have detected in our sample an excess of associated absorbers, in contrast to previous results (SS; Lanzetta, Turnshek, & Wolfe 1987). Even more significant is our finding that the quasars showing associated absorption have rest-frame colors very much redder than the rest of our sample, the details of which are presented in Aldcroft, Elvis, & Bechtold (1994).

In this paper we present the optical spectra, a statistically complete list of absorption lines in those spectra, plots of Mg II detection equivalent width limit versus redshift, and a statistical analysis of the Mg II absorption systems. We also combine our lines with those published in SS and SSB1 to further constrain several evolutionary parameters.

2. DEFINING THE SAMPLE

The starting point defining the objects in our survey is the sample of 73 quasars presented in Paper I. These were selected from the Véron-Cetty & Véron (1989) QSO catalog based on the following criteria:

$$S(2.7 \text{ GHz}) \ge 1 \text{ Jy}, \quad m_V \le 19.5, \quad \alpha \ge 0.4 ,$$

 $z_{\text{em}} \ge 0.5, \quad \delta \ge -30^\circ .$

Here S is the radio flux, m_V is the visual magnitude, α is the radio spectral index $(S \sim \nu^{-\alpha})$, $z_{\rm em}$ is the quasar emission redshift, and δ is the declination.

Of these objects, we did not obtain spectra of 17, for the following reasons, with the number of objects following in parentheses: we were unable to determine the radio lobe dominance, making the object unusable for the purposes of Paper I (4); low redshift (7); various problems with the observation (e.g., bad bias) rendering the spectrum unusable (4); the object was much fainter than the published magnitude (1); and a high-quality spectrum had already been published (1). Thus our sample is defined by criteria which are uncorrelated with any absorber properties. This is important because several objects in our sample have absorption systems which were known at the time of the observations and might otherwise raise questions about bias in the sample.

3. OBSERVATIONS AND DATA REDUCTION

In Table 1 we show a journal of our observations. In this table is the object name, quasar emission redshift, wavelength range in angstroms, FWHM spectral resolution in angstroms, date, instrument, integration time in minutes, and spectrum identification. In the instrument column, P200 DS is the Palomar Double Spectrograph, MMT blue is the MMT blue channel, and MMT red is the MMT low-resolution echellette spectrograph. For observations with the P200 DS and MMT blue channel, the spectral resolution listed is the average FWHM of several calibration-lamp lines over the width of the spectrum. For the MMT red channel observations the resolution is given in terms of X_{λ} , which is defined by $X_{\lambda} \equiv \lambda/3000$ Å.

The spectra labeled "MMT blue" in Table 1 were obtained at the Multiple Mirror Telescope with the blue spectrograph, "Big Blue" image tube and photon-counting Reticon (Latham 1982). The 800 line mm⁻¹ grating was used in second order with the image stacker (Chaffee & Latham 1982), resulting in spectral resolution of about 120 km s⁻¹ FWHM. Each QSO was placed alternately in one of two sets of apertures, and sky spectra were recorded simultaneously in the other aperture. Pixel-to-pixel variations in detector response were divided out using a long quartz-lamp exposure obtained during the day. At the beginning and end of each object integration, a short exposure of a helium-neon-argon-cadmium-mercury lamp was obtained to calibrate the wavelength-to-pixel transformation. Individual exposures of each QSO were wavelength-calibrated with bracketing arcs, rebinned to a linear wavelength scale, and co-added. A variance array for each spectrum, derived from the total object and sky counts, was maintained throughout. Exposures of IIDS standard stars were obtained at the beginning and end of each night to look for residual instrumental features. Data were reduced using standard routines with the Ohio State IRS software package as implemented at Steward Observatory. No flux calibration was performed.

The spectra labeled "MMT red" in Table 1 were obtained at the Multiple Mirror Telescope with the red channel CCD spectrograph used in low-resolution cross-dispersed mode (Schmidt, Weymann, & Foltz 1989). This instrument consists of a cross-dispersion prism together with an 81 line mm⁻¹ grating used in orders 4–8. This was used with a 1200×800 Loral CCD and a $2'' \times 20''$ slit, giving a resolution of 350 km s⁻¹. The observations included bias frames and dome flats obtained during the day, quartz flats taken after each object exposure. and helium-neon-argon comparison lamps bracketing each exposure. The spectra were reduced using the IRAF noao.imred.echelle package. After wavelength calibration, the individual echelle orders were divided by the continuum fit of a standard star (observed and reduced in the same manner) and then combined. The resulting spectra are thus not flux-calibrated. The variance array for each spectrum was calculated using the known noise characteristics of the CCD.

The "PS 200" observations at the Palomar 5 m telescope used the double spectrograph instrument (Oke & Gunn 1982) with a 2" slit. In 1988 June the TI-CCD No. 8 was used in the blue side of the spectrograph with the 600 line mm^{-1} grating in first order. The resulting resolution is 180 km s⁻¹ (FWHM). The TI-CCD No. 2 was used in the red side with the 600 line mm^{-1} grating in first order, with resulting spectral resolution of 360 km s⁻¹. In 1988 July the TI-CCD No. 432 was used in the blue side of the spectrograph with the 300 line mm⁻¹ grating in first order. The resulting resolution is 180 km s^{-1} . The TI-CCD No. 167 was used in the red side with the 310 line mm⁻¹ grating in first order, with resulting spectral resolution of 330 km s⁻¹. For both sets of observations, bias frames and dome flats were taken during the day, and iron-argon and helium-neon-argon comparison-lamp exposures bracketed each object integration. A standard star was observed at the beginning and end of each night. The spectra were reduced using the IRAF noao.twodspec package. This included flux calibration using standard stars. In the data taken in 1988 July there was a severe problem with the flat-fielding below 4100 Å. For unknown reasons the position of defects on the chip appears to have been unstable by one to two pixels in the wavelength direction. This means that in many of these spectra there are spurious features which can be mistaken for absorption lines. In addition, below about 3900 Å many of the spectra show significant continuum structure which is clearly an artifact. For this reason we do not apply our line-finding algorithm to this spectral region, nor do we include it in any statistical analyses.

TABLE 1 JOURNAL OF OBSERVATIONS

Sp.#	1	1	, 1	2	1	2	-	2	1	2		2		77		4	-	1	7	e.	4	5	1	2	1	2	ę	4		2	-	2	1	2	-	2	1	2	-	2		2	3
$t_{ m int}$	60	74	20	20	30	30	30	30	20	20	90	06	40	40	60	09	135	25	25	60	60	30	60	60	50	50	60	60	67	67	20	20	45	45	45	45	44	44	50	50	45	45	60
Instrument	MMT red	MMT red	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	MMT red	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	P200 DS	MMT red
Date	06-May-89	12-Apr-89	09-Jul-88	09-Jul-88	18-Jun-88	18-Jun-88	10-Jul-88	10-Jul-88	10-Jul-88	10-Jul-88	16-Jun-88	16-Jun-88	09-Jul-88	09-Jul-88	18-Jun-88	18-Jun-88	07-May-89	10-Jul-88	10-Jul-88	17-Jun-88	17-Jun-88	06-May-89	16-Jun-88	16-Jun-88	09-Jul-88	09-Jul-88	16-Jun-88	16-Jun-88	18-Jun-88	18-Jun-88	09-Jul-88	09-Jul-88	10-Jul-88	10-Jul-88	09- J ul-88	09-Jul-88	09-Jul-88	09-Jul-88	10-Jul-88	10-Jul-88	09-Jul-88	09-Jul-88	04-Dec-88
FWHM	$3.3X_{\lambda}$	$3.3X_{\lambda}$	5.1	6.5	2.5	3.8	4.9	6.7	4.9	6.7	2.4	3.5	5.1	6.7	2.5	3.8	$3.3X_{\lambda}$	5.0	6.5	2.5	3.6	$3.5X_{\lambda}$	2.4	3.6	5.0	6.5	2.5	3.6	2.5	3.8	5.1	6.6	4.9	6.7	5.1	6.7	5.1	6.7	4.9	6.7	5.0	6.7	6.5
Wavelength	4560 - 10111	4435 - 10135	3302 - 4708	4827 - 7249	3740 - 4607	4683 - 5976	3135 - 4729	4823 - 7242	3111 - 4727	4826 - 7235	3742 - 4613	4684 - 5982	3137 - 4710	4821 - 7234	3741 - 4613	4718 - 5981	4580 - 10004	3104 - 4759	4817 - 7239	3740 - 4607	4694 - 5981	4527 - 10145	3742 - 4613	4689 - 5977	3280 - 4708	4824 - 7154	3742 - 4613	4687 - 5979	3740 - 4613	4802 - 5975	3211 - 4693	4831 - 7151	3124 - 4729	4820 - 7242	3137 - 4719	4827 - 7158	3157 - 4723	4827 - 7151	3104 - 4705	4823 - 7242	3137 - 4673	4824 - 7158	4277 - 8123
лш	19.0	17.8	17.4		16.8		18.5		16.4		17.5		18.4				20.6	16.8					17.5		19.0				19.5		16.5		0.0		18.0		17.3		18.4		17.8		
zem	060.1	3.530	0.938		.905		1.191).555		.927		1.795				.988	.695					0.635		1.457				.942		0.980		002.0		1.959		.037		.757		2.328		
ect	00 663	00 172	PKS 1453-10 (3C 309.1		PKS 1508-05		3C 334 (3C 336 (PKS 1629+12				3C 343	3C 380					3C 395 (4C -02.79				3C 422 (PKS 2115-30 (PKS 2143-15 (PKS 2223+21		CTA 102		3C 454		PKS 2251+24		
Obj	Q1437+6224	Q1442+1011	Q1453-1056		Q1458+7152		Q1508-0531		21618 + 1743		21622 + 2352		21629 + 1202				Q1634+6251	Q1828+4842					21901 + 3155		J 2003-0232				Q2044-0247		Q2115-3031		Q2143-1541		2223 + 2102		2230 + 1128		Q2249+1832		Q2251 + 2429		
									-		<u> </u>		<u> </u>				-	-					0		<u> </u>				_		_				<u> </u>		G						
Sp.#	1	2	-		1	1	1	1	-	1	-	1							5	1	-	1	1	2	-	1	1	1		1	-	1		2	-	1	5 ~			-	2	1	1
tint Sp.#	50 1	50 2	30 1	60 1	120 1	30 1	40 1	30 1	120 1	100 1	60 1 6	40 1	60 1	30	120 1	30	90 1	30 1	30 2	60 1	15 1	60 1	30 1 0	30 2	60 1 0	53 1	20 1	30 1	100 1	55 1	45 1	45 1	30 1	30 2	20 1 0	40 1	40 2 9	60 1	50 1	30 1	30 2	95 1	75 1
Instrument t_{int} Sp.#	P200 DS 50 1	P200 DS 50 2	MMT blue 30 1	MMT red 60 1	MMT red 120 1	MMT red 30 1	MMT red 40 1	MMT red 30 1	MMT blue 120 1	MMT blue 100 1	MMT red 60 1 6	MMT blue 40 1	MMT red 60 1	MMT red 30 I	MMT blue 120 1	MMT red 30 I	MMT red 90 1	MMT blue 30 1	MMT red 30 2	MMT blue 60 1	MMT blue 15 1	MMT blue 60 1	MMT blue 30 1 C	MMT red 30 2	MMT blue 60 1 0	MMT blue 53 1	MMT blue 20 1	MMT red 30 1	MMT red 100 1	MMT blue 55 1	MMT blue 45 1	MMT red 45 1	P200 DS 30 1	P200 DS 30 2	P200 DS 20 1 0	P200 DS 40 1	P200 DS 40 2 G	MMT blue 60 1	MMT red 50 1	P200 DS 30 1	P200 DS 30 2	MMT blue 95 1	MMT red 75 1
Date Instrument tint Sp.#	10-Jul-88 P200 DS 50 1	10-Jul-88 P200 DS 50 2	05-Mar-89 MMT blue 30 1	05-Dec-88 MMT red 60 1	05-Dec-88 MMT red 120 1	05-Dec-88 MMT red 30 1	04-Dec-88 MMT red 40 1	05-Dec-88 MMT red 30 1	05-Mar-89 MMT blue 120 1	08-Nov-88 MMT blue 100 1	05-Dec-88 MMT red 60 1 0	08-Nov-88 MMT blue 40 1	05-Dec-88 MMT red 60 1	05-Dec-88 MMT red 30 1	08-Jan-89 MMT blue 120 1	05-Dec-88 MMT red 30 I	06-May-89 MMT red 90 1	08-Nov-88 MMT blue 30 1	11-Apr-89 MMT red 30 2	08-Nov-88 MMT blue 60 1	08-Nov-88 MMT blue 15 1	08-Jan-89 MMT blue 60 1	08-Jan-89 MMT blue 30 1 C	12-Apr-89 MMT red 30 2	05-Mar-89 MMT blue 60 1 0	05-Mar-89 MMT blue 53 1	05-Mar-89 MMT blue 20 1	07-May-89 MMT red 30 1	12-Apr-89 MMT red 100 1	08-Jan-89 MMT blue 55 1	06-May-89 MMT blue 45 1	07-May-89 MMT red 45 1	09-Jul-88 P200 DS 30 1	09-Jul-88 P200 DS 30 2	06-May-89 P200 DS 20 1 0	10-Jul-88 P200 DS 40 1	10-Jul-88 P200 DS 40 2 G	05-Mar-89 MMT blue 60 1	12-Apr-89 MMT red 50 1	10-Jul-88 P200 DS 30 1	10-Jul-88 P200 DS 30 2	05-Mar-89 MMT blue 95 1	07-May-89 MMT red 75 1
FWHM Date Instrument t_{int} Sp.#	4.7 10-Jul-88 P200 DS 50 1	6.5 10-Jul-88 P200 DS 50 2	1.5 05-Mar-89 MMT blue 30 1	$3.5X_{\lambda}$ 05-Dec-88 MMT red 60 1	$3.7X_{\lambda}$ 05-Dec-88 MMT red 120 1	$3.7X_{\lambda}$ 05-Dec-88 MMT red 30 1	$3.7X_{\lambda}$ 04-Dec-88 MMT red 40 1	$3.7X_{\lambda}$ 05-Dec-88 MMT red 30 1	1.6 05-Mar-89 MMT blue 120 1	1.6 08-Nov-88 MMT blue 100 1	$3.7X_{\lambda}$ 05-Dec-88 MMT red 60 1 0	1.6 08-Nov-88 MMT blue 40 1	$3.7X_{\lambda}$ 05-Dec-88 MMT red 60 1	3.7X _A 05-Dec-88 MMT red 30 1	1.6 08-Jan-89 MMT blue 120 1	$3.7X_{\lambda}$ 05-Dec-88 MMT red 30 I	$3.5X_{\lambda}$ 06-May-89 MMT red 90 1	1.6 08-Nov-88 MMT blue 30 1	$3.3X_{\lambda}$ 11-Apr-89 MMT red 30 2	1.6 08-Nov-88 MMT blue 60 1	1.6 08-Nov-88 MMT blue 15 1	1.6 08-Jan-89 MMT blue 60 1	1.6 08-Jan-89 MMT blue 30 1 C	3.5 12-Apr-89 MMT red 30 2	1.6 05-Mar-89 MMT blue 60 1 (1.6 05-Mar-89 MMT blue 53 1	1.6 05-Mar-89 MMT blue 20 1	$3.5X_{\lambda}$ 07-May-89 MMT red 30 1	$3.5X_{\lambda}$ 12-Apr-89 MMT red 100 1	1.6 08-Jan-89 MMT blue 55 1	$3.5X_{\lambda}$ 06-May-89 MMT blue 45 1	$3.2X_{\lambda}$ 07-May-89 MMT red 45 1	4.9 09-Jul-88 P200 DS 30 1	6.6 09-Jul-88 P200 DS 30 2	$3.5X_{\lambda}$ 06-May-89 P200 DS 20 1 C	4.9 10-Jul-88 P200 DS 40 1	6.7 10-Jul-88 P200 DS 40 2 C	1.6 05-Mar-89 MMT blue 60 1	$3.3X_{\lambda}$ 12-Apr-89 MMT red 50 1	4.9 10-Jul-88 P200 DS 30 1	6.7 10-Jul-88 P200 DS 30 2	1.6 05-Mar-89 MMT blue 95 1	$3.2X_{\lambda}$ 07-May-89 MMT red 75 1
Wavelength FWHM Date Instrument $t_{\rm int}$ Sp.#	3104 - 4727 4.7 10-Jul-88 P200 DS 50 1	4832 - 7242 6.5 10-Jul-88 P200 DS 50 2	4035 - 5064 1.5 05-Mar-89 MMT blue 30 1	$4249 - 8145 3.5X_{\lambda} 05-\text{Dec-88} \text{MMT red} 60 1$	4657 - 8156 3.7X _A 05-Dec-88 MMT red 120 1	$4291 - 8156 3.7X_{\lambda} 05-\text{Dec-}88 \text{MMT red} 30 1$	$4277 - 8124$ 3.7X _{λ} 04-Dec-88 MMT red 40 1	4259 - 8167 3.7X _A 05-Dec-88 MMT red 30 1	3220 - 5064 1.6 05-Mar-89 MMT blue 120 1	3221 - 5071 1.6 08-Nov-88 MMT blue 100 1	4291 - 8156 $3.7X_{\lambda}$ 05-Dec-88 MMT red 60 1 (3118 - 5068 1.6 08-Nov-88 MMT blue 40 1	4291 - 8135 $3.7X_{\lambda}$ 05-Dec-88 MMT red 60 1	4259 - 8156 3.7X _A 05-Dec-88 MMT red 30 1	3137 - 5119 1.6 08-Jan-89 MMT blue 120 1	4249 - 8156 3.7X _A 05-Dec-88 MMT red 30 I	$4506 - 9371 3.5 X_{\lambda} 06-May-89 MMT red 90 1$	3200 - 5066 1.6 08-Nov-88 MMT blue 30 1	4452 - 10182 $3.3X_{\lambda}$ 11-Apr-89 MMT red 30 2	3114 - 5061 1.6 08-Nov-88 MMT blue 60 1	3158 - 5067 1.6 08-Nov-88 MMT blue 15 1	3139 - 5123 1.6 08-Jan-89 MMT blue 60 1	3142 - 5122 1.6 08-Jan-89 MMT blue 30 1 C	5040 - 8115 3.5 12-Apr-89 MMT red 30 2	3129 - 5064 1.6 05-Mar-89 MMT blue 60 1 (3180 - 5061 1.6 05-Mar-89 MMT blue 53 1	3198 - 5062 1.6 05-Mar-89 MMT blue 20 1	4480 - 10004 $3.5X_{\lambda}$ 07-May-89 MMT red 30 1	4444 - 10057 3.5 X_{λ} 12-Apr-89 MMT red 100 1	3175 - 5059 1.6 08-Jan-89 MMT blue 55 1	$4506 - 10091 3.5 X_{\lambda} 06 \cdot May - 89 MMT blue 45 1$	4542 - 9898 $3.2X_{\lambda}$ 07-May-89 MMT red 45 1	3137 - 4704 4.9 09-Jul-88 P200 DS 30 1	4827 - 7243 6.6 09-Jul-88 P200 DS 30 2	4486 - 10111 3.5 X_{λ} 06-May-89 P200 DS 20 1 $ $ C	3258 - 4705 4.9 10-Jul-88 P200 DS 40 1	4820 - 7239 6.7 10-Jul-88 P200 DS 40 2 C	3190 - 5062 1.6 05-Mar-89 MMT blue 60 1	4452 - 10165 $3.3X_{\lambda}$ 12-Apr-89 MMT red 50 1	3104 - 4742 4.9 10-Jul-88 P200 DS 30 1	4817 - 7251 6.7 10-Jul-88 P200 DS 30 2	3261 - 5066 1.6 05-Mar-89 MMT blue 95 1	4571 - 9838 $3.2X_{\lambda}$ 07-May-89 MMT red 75 1
m_V Wavelength FWHM Date Instrument t_{int} Sp.#	17.3 3104 - 4727 4.7 10-Jul-88 P200 DS 50 1	4832 - 7242 6.5 10-Jul-88 P200 DS 50 2	16.4 4035 - 5064 1.5 05-Mar-89 MMT blue 30 1	17.7 4249 - 8145 3.5 X_{λ} 05-Dec-88 MMT red 60 1	19.0 4657 - 8156 3.7 X_{λ} 05-Dec-88 MMT red 120 1	16.6 4291 - 8156 $3.7X_{\lambda}$ 05-Dec-88 MMT red 30 1	16.5 $4277 - 8124$ 3.7 X_{λ} 04-Dec-88 MMT red 40 1	17.0 4259 - 8167 3.7 X_{λ} 05-Dec-88 MMT red 30 1	17.8 3220 - 5064 1.6 05-Mar-89 MMT blue 120 1	17.5 3221 - 5071 1.6 08-Nov-88 MMT blue 100 1	18.5 4291 - 8156 $3.7X_{\lambda}$ 05-Dec-88 MMT red 60 1 (16.6 3118 - 5068 1.6 08-Nov-88 MMT blue 40 1	18.9 4291 - 8135 $3.7X_{\lambda}$ 05-Dec-88 MMT red 60 1	18.5 4259 - 8150 3.7 Å U5-Dec-88 MMT red 30 1	17.8 3137 - 5119 1.6 08-Jan-89 MMT blue 120 1	17.6 4249 - 8156 $3.7X_{\lambda}$ 05-Dec-88 MMT red 30 I	19.1 4506 - 9371 3.5 X_{λ} 06-May-89 MMT red 90 1	16.6 3200 - 5066 1.6 08-Nov-88 MMT blue 30 1	$4452 - 10182 3.3X_{\lambda} 11-\text{Apr-89} \text{MMT red} 30 2$	18.1 3114 - 5061 1.6 08-Nov-88 MMT blue 60 1	16.2 3158 - 5067 1.6 08-Nov-88 MMT blue 15 1	17.3 3139 - 5123 1.6 08-Jan-89 MMT blue 60 1	17.1 3142 - 5122 1.6 08-Jan-89 MMT blue 30 1 C	5040 - 8115 3.5 12-Apr-89 MMT red 30 2	18.0 3129 - 5064 1.6 05-Mar-89 MMT blue 60 1 (16.2 3180 - 5061 1.6 05-Mar-89 MMT blue 53 1	16.3 3198 - 5062 1.6 05-Mar-89 MMT blue 20 1	17.6 4480 - 10004 $3.5X_{\lambda}$ 07-May-89 MMT red 30 1	19.0 4444 - 10057 3.5 X_{λ} 12-Apr-89 MMT red 100 1	14.4 3175 - 5059 1.6 08-Jan-89 MMT blue 55 1	18.4 4506 - 10091 3.5 X_{λ} 06-May-89 MMT blue 45 1	18.0 4542 - 9898 $3.2X_{\lambda}$ 07-May-89 MMT red 45 1	18.6 3137 - 4704 4.9 09-Jul-88 P200 DS 30 1	4827 - 7243 6.6 09-Jul-88 P200 DS 30 2	16.8 4486 - 10111 3.5 X_{λ} 06-May-89 P200 DS 20 1 C	19.1 3258 - 4705 4.9 10-Jul-88 P200 DS 40 1	4820 - 7239 6.7 10-Jul-88 P200 DS 40 2 C	16.7 3190 - 5062 1.6 05-Mar-89 MMT blue 60 1	17.7 4452 - 10165 $3.3X_{\lambda}$ 12-Apr-89 MMT red 50 1	17.2 3104 - 4742 4.9 10-Jul-88 P200 DS 30 1	4817 - 7251 6.7 10-Jul-88 P200 DS 30 2	17.7 3261 - 5066 1.6 05-Mar-89 MMT blue 95 1	18.5 4571 - 9838 $3.2X_{\lambda}$ 07-May-89 MMT red 75 1
zem m v Wavelength FWHM Date Instrument $t_{\rm int}$ Sp.#	0.717 17.3 3104 - 4727 4.7 10-Jul-88 P200 DS 50 1	4832 - 7242 6.5 10-Jul-88 P200 DS 50 2	0.670 16.4 4035 - 5064 1.5 05-Mar-89 MMT blue 30 1	2.065 17.7 4249 - 8145 3.5 X_{λ} 05-Dec-88 MMT red 60 1	1.240 19.0 4657 - 8156 $3.7X_{\rm A}$ 05-Dec-88 MMT red 120 1	2.224 16.6 4291 - 8156 3.7X _A 05-Dec-88 MMT red 30 1	0.962 16.5 $4277 - 8124$ 3.7X _{λ} 04-Dec-88 MMT red 40 1	0.915 17.0 4259 - 8167 $3.7X_{\lambda}$ 05-Dec-88 MMT red 30 1	0.545 17.8 3220 - 5064 1.6 05-Mar-89 MMT blue 120 1	0.580 17.5 3221 - 5071 1.6 08-Nov-88 MMT blue 100 1	3.400 18.5 4291 - 8156 $3.7X_{\lambda}$ 05-Dec-88 MMT red 60 1 (0.768 16.6 3118 - 5068 1.6 08-Nov-88 MMT blue 40 1	1.382 18.9 4291 - 8135 $3.7X_{\Lambda}$ 05-Dec-88 MMT red 60 1	1.898 18.5 4259 - 8156 3.7X _Å 05-Dec-88 MMT red 30 1	0.871 17.8 3137 - 5119 1.6 08-Jan-89 MMT blue 120 1	1.534 17.6 4249 - 8156 $3.7X_{\lambda}$ 05-Dec-88 MMT red 30 I	1.043 19.1 4506 - 9371 $3.5X_{\lambda}$ 06-May-89 MMT red 90 1	1.327 16.6 3200 - 5066 1.6 08-Nov-88 MMT blue 30 1	$4452 - 10182 3.3X_{\lambda} 11-Apr-89 MMT red 30 2$	0.670 18.1 3114 - 5061 1.6 08-Nov-88 MMT blue 60 1	0.613 16.2 3158 - 5067 1.6 08-Nov-88 MMT blue 15 1	1.029 17.3 3139 - 5123 1.6 08-Jan-89 MMT blue 60 1	1.110 17.1 3142 - 5122 1.6 08-Jan-89 MMT blue 30 1 C	5040 - 8115 3.5 12-Apr-89 MMT red 30 2	0.734 18.0 3129 - 5064 1.6 05-Mar-89 MMT blue 60 1 (0.554 16.2 3180 - 5061 1.6 05-Mar-89 MMT blue 53 1	0.652 16.3 3198 - 5062 1.6 05-Mar-89 MMT blue 20 1	1.982 17.6 4480 - 10004 $3.5X_{\lambda}$ 07-May-89 MMT red 30 1	0.418 19.0 4444 - 10057 $3.5X_{\lambda}$ 12-Apr-89 MMT red 100 1	0.729 14.4 3175 - 5059 1.6 08-Jan-89 MMT blue 55 1	1.400 18.4 4506 - 10091 $3.5X_{\lambda}$ 06-May-89 MMT blue 45 1	1.065 18.0 4542 - 9898 $3.2X_{\lambda}$ 07-May-89 MMT red 45 1	1.519 18.6 3137 - 4704 4.9 09-Jul-88 P200 DS 30 1	4827 - 7243 6.6 09-Jul-88 P200 DS 30 2	1.038 16.8 4486 - 10111 3.5 X_{λ} 06-May-89 P200 DS 20 1 C	2.171 19.1 3258 - 4705 4.9 10-Jul-88 P200 DS 40 1	4820 - 7239 6.7 10-Jul-88 P200 DS 40 2 C	0.528 16.7 3190 - 5062 1.6 05-Mar-89 MMT blue 60 1	1.055 17.7 4452 - 10165 $3.3X_{\lambda}$ 12-Apr-89 MMT red 50 1	0.846 17.2 3104 - 4742 4.9 10-Jul-88 P200 DS 30 1	4817 - 7251 6.7 10-Jul-88 P200 DS 30 2	0.625 17.7 3261 - 5066 1.6 05-Mar-89 MMT blue 95 1	1.890 18.5 4571 - 9838 $3.2X_{\lambda}$ 07-May-89 MMT red 75 1
ject $z_{ m em}$ m $_{V}$ Wavelength FWHM Date Instrument $t_{ m int}$ Sp.#	PHL 923 0.717 17.3 3104 - 4727 4.7 10-Jul-88 P200 DS 50 1	4832 - 7242 6.5 10 - Jul - 88 P200 DS 50 2	3C 57 0.670 16.4 4035 - 5064 1.5 05-Mar-89 MMT blue 30 1	PKS 0229+13 2.065 17.7 4249 - 8145 3.5 X_{λ} 05-Dec-88 MMT red 60 1	3C 68.1 1.240 19.0 4657 - 8156 $3.7X_{\lambda}$ 05-Dec-88 MMT red 120 1	PKS 0237-23 2.224 16.6 4291 - 8156 3.7X _Å 05-Dec-88 MMT red 30 1	$3C 94$ 0.962 16.5 4277 - 8124 $3.7X_{\lambda}$ 04-Dec-88 MMT red 40 1	PKS 0420-01 0.915 17.0 4259 - 8167 $3.7X_{\lambda}$ 05-Dec-88 MMT red 30 1	3C 147 0.545 17.8 3220 - 5064 1.6 05-Mar-89 MMT blue 120 1	3C 154 0.580 17.5 3221 - 5071 1.6 08-Nov-88 MMT blue 100 1	OH 471 3.400 18.5 4291 - 8156 3.7X ₃ 05-Dec-88 MMT red 60 1 0	3C 175 0.768 16.6 3118 - 5068 1.6 08-Nov-88 MMT blue 40 1	3C 181 1.382 18.9 4291 - 8135 3.7X _A 05-Dec-88 MMT red 60 1	PKS 0736-06 1.898 18.5 4259 - 8156 3.7XA 05-Dec-88 MMT red 30 1	3C 196 0.871 17.8 3137 - 5119 1.6 08-Jan-89 MMT blue 120 1	3C 205 1.534 17.6 4249 - 8156 3.7X _A 05-Dec-88 MMT red 30 1	$3C 212$ 1.043 19.1 4506 - 9371 3.5 X_{λ} 06-May-89 MMT red 90 1	PKS 0859-14 1.327 16.6 3200 - 5066 1.6 08-Nov-88 MMT blue 30 1	$4452 - 10182 3.3X_{\lambda}$ 11-Apr-89 MMT red 30 2	3C 216 0.670 18.1 3114 - 5061 1.6 08-Nov-88 MMT blue 60 1	4C 41.21 0.613 16.2 3158 - 5067 1.6 08-Nov-88 MMT blue 15 1	3C 245 1.029 17.3 3139 - 5123 1.6 08-Jan-89 MMT blue 60 1	PKS 1055+20 1.110 17.1 3142 - 5122 1.6 08-Jan-89 MMT blue 30 1 C	5040 - 8115 3.5 12-Apr-89 MMT red 30 2	3C 254 0.734 18.0 3129 - 5064 1.6 05-Mar-89 MMT blue 60 1 6	PKS 1136-13 0.554 16.2 3180 - 5061 1.6 05-Mar-89 MMT blue 53 1	3C 263 0.652 16.3 3198 - 5062 1.6 05-Mar-89 MMT blue 20 1	PKS 1148-00 1.982 17.6 4480 - 10004 3.5X ₃ 07-May-89 MMT red 30 1	4C 31.38 0.418 19.0 4444 - 10057 $3.5X_{\lambda}$ 12-Apr-89 MMT red 100 1	4C 29.45 0.729 14.4 3175 - 5059 1.6 08-Jan-89 MMT blue 55 1	$3C 268.4$ 1.400 18.4 4506 - 10091 $3.5X_{\lambda}$ 06-May-89 MMT blue 45 1	4C 53.24 1.065 18.0 4542 - 9898 $3.2X_{\lambda}$ 07-May-89 MMT red 45 1	3C 270.1 1.519 18.6 3137 - 4704 4.9 09-Jul-88 P200 DS 30 1	4827 - 7243 6.6 09-Jul-88 P200 DS 30 2	PKS 1229-02 1.038 16.8 4486 - 10111 3.5 X_{λ} 06-May-89 P200 DS 20 1 (PKS 1318+11 2.171 19.1 3258 - 4705 4.9 10-Jul-88 P200 DS 40 1	4820 - 7239 6.7 10-Jul-88 P200 DS 40 2 G	PKS 1327-21 0.528 16.7 3190 - 5062 1.6 05-Mar-89 MMT blue 60 1	$3C 287$ 1.055 17.7 4452 - 10165 $3.3X_{\lambda}$ 12-Apr-89 MMT red 50 1	3C 286 0.846 17.2 3104 - 4742 4.9 10-Jul-88 P200 DS 30 1	4817 - 7251 6.7 10-Jul-88 P200 DS 30 2	PKS 1335-06 0.625 17.7 3261 - 5066 1.6 05-Mar-89 MMT blue 95 1	PKS 1354-15 1.890 18.5 4571 - 9838 $3.2X_{\lambda}$ 07-May-89 MMT red 75 1

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

5

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

11

© American Astronomical Society • Provided by the NASA Astrophysics Data System

 $\ensuremath{\mathbb{C}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

13

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

17

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

4. QSO SPECTRA

In Figure 1 we show all of the spectra which we obtained in this survey. Each spectrum is labeled by the quasar name, the quasar emission redshift, and the spectrum number. This number corresponds to the number in the journal of observations given in Table 1. At the bottom of each spectrum the error array of 1 σ uncertainty is plotted. The error array is plotted as a thick line in regions which we considered unusable for statistically complete detection of Mg II absorption lines. The spectra taken at Palomar are flux-calibrated up to an arbitrary normalization, and the *y*-axis is labeled "Relative Flux (f_v)," while the rest are not flux-calibrated. In each spectrum we also mark the statistically significant absorption lines which are listed in Table 3. Note that the telluric absorption bands 6290, 6880, and 7620 Å have not been removed and are visible in some of our spectra.

For 33 of the spectra in our sample we found no high-quality spectra previously published, or else we significantly extend the spectral coverage. A large number of the objects with published spectra had not been included in a statistical analysis, in particular those of Barthel, Tytler, & Thomson (1990, hereafter BTT). There are eight objects which overlap with the samples of SS and SSB1.

5. EMISSION-LINE PROPERTIES

In Table 2 we list the emission-line properties of the 56 quasars in our survey. The columns in this table are the line name, the line rest wavelength in angstroms, the observed wavelength in angstroms, the rest equivalent width in angstroms, the emission redshift, the line-width parameter (LW) in angstroms, and the line asymmetry (ASM). The line wavelength is defined to be the peak of a cubic spline fit to the smoothed spectrum. Both the LW and the ASM, as well as λ_1 , λ_2 , and λ_m , are

taken from BTT and are defined by the following equations:

$$W = \sum_{i} (1 - y_i/c_i),$$

$$\sum_{-\infty}^{\lambda_1} (1 - y_i/c_i) \equiv 0.1587W,$$

$$\sum_{-\infty}^{\lambda_m} (1 - y_i/c_i) \equiv 0.5W,$$

$$\sum_{-\infty}^{\lambda_2} (1 - y_i/c_i) \equiv 0.8413W,$$

$$LW = 1.1775(\lambda_2 - \lambda_1),$$

$$ASM = 100[0.5(\lambda_1 + \lambda_2) - \lambda_m]/LW$$

Here y_i and c_i are the spectrum and continuum at pixel *i*, respectively. The LW gives an estimate of the line width and equals the FWHM for a Gaussian line. The ASM indicates the degree of asymmetry in the line.

The set of emission lines listed in Table 2 is not complete in a statistical sense, since we measured only lines in which a welldefined continuum was discernible. In the cases where the Mg II emission was not clearly distinguishable from the Fe II and Balmer continuum emission, the continuum is taken to be the underlying power-law component, and we label the line Mg II + Fe II. When the Mg II emission can be clearly separated from the Fe II, we measure both Mg II and Mg II + Fe II.

6. ABSORPTION-LINE PROPERTIES

The extraction of absorption lines was carried out in the following manner. The continuum was determined by iteratively fitting a cubic spline to the spectrum and excluding pix-

TABLE 2 Emission Lines in Sample

Line	λ ₀	λ_{obs}	W_0	^z em	LW	ASM
	Q	0056-000	9 (PHL	923)		
[NV]	3426	5875.9	4.6	0.7151	58	5.3
iom	3727	6406 7	37	0 7190	18	25.5
[Un] [NeIII]	3869	6649 0	5 4	0.7185	50	12.0
_[itelli]		00150 11	47 (20			
Mall+Fall	2700	4672 7	47 (30	57) 0.6696	53	8.5
MgII+I'ell	2100	4012.1	DVC of	0.0030		
	Q022	29+1309 (PK5 02	(29+13)		
CIV	1549	4750.1	40.0	2.0664	84	1.1
HeII	1641	5029.0	3.2	2.0655	63	2.8
OIII]	1664	5109.7	3.0	2.0708	48	3.6
	1909	5856.0	13.7	2.0680	76	-3.7
	Q	0229+34	10 (3C e	58.1)		
	— No	emission .	lines m	easured –	-	
	Q02	37-2322 (PKS 02	237-23)		
SiIV+OIV1	1400	4522.7	5.2	2.2314	96	-1.4
CIV	1549	4976.5	35.2	2.2126	167	-9.6
CIII]	1909	6146.0	25.2	2.2199	171	-6.3
		Q0350-07	19 (3C	94)		
MgII+FeII	2799	5494.7	11.2	0.9633	50	1.9
[NV]	3426	6729.0	3.2	0.9641	42	0.1
ioui	3727	7326.4	24	0.9658	20	61
_[011]	004	20 0127 (PKS 0	20.01)	20	0.1
	Q04	20-0127 (F K3 04	120-01)		
Mg11+Fe11	2799	5362.8	15.8	0.9162	55	3.4
	<	0538+49	49 (3C	147)		
MgII+FeII	2799	4327.5	33.7	0.5462	113	5.3
	ς	0610+26	05 (3C	154)		
MgII+FeII	2799	4419.7	35.9	0.5792	143	-4.7
	Q	0642+445	54 (OH	471)		
HI	1216	5352.7	57.4	3.4031	48	-1.8
NV	1240	5443.8	25.5	3.3897	101	10.1
OI	1304	5749.1	3.3	3.4105	50	3.9
CII	1336	5887.8	1.7	3.4080	49	10.2
SiIV+OIV]	1400	6159.6	6.4	3.4009	97	-4.1
CIV	1549	6818.2	26.7	3.4015	99	-7.9
HeII	1641	7205.0	3.9	3.3919	107	-4.3
OIII]	1664	7315.6	3.2	3.3964	92	13.4
	G	0710+11	51 (3C	175)		
CIII]	1909	3375.4	13.9	0.7684	78	12.2
<u></u>	Ģ	0725+14	43 (3C :	181)		
CIII	1909	4551.7	20.9	1.3847	88	6.2
CII	2326	5548.1	2.0	1.3852	46	18.3
MgII+FeII	2799	6678.6	56.2	1.3863	228	-1.2
	Q07	36-0620 (PKS 07	(36-06)		
CIII	1909	5573.0	10.5	1,9198	105	0.2
CII	2326	6793.2	1.8	1.9205	80	0.1
		0809+48	22 (3C	196)		
CIII	1909	3569.1	19.6	0.8699	64	-13.6
CII	2326	4351.1	1.4	0.8706	13	19.3
		0835159	14 (30 4	205)		
CIII	1000	4020 1	10.0	1 5010	104	25
	1909	4832.1	19.6	1.5316	124	3.3
Mg11+Fell	2799	1085.6	13.7	1.5317	170	3.7

Line	λ_0	λ_{obs}	W ₀	^z em	LW	ASM
		Q0855+1	421 (3C2	212)		
MgII+FeII	2799	5766.1	34.3	1.0603	170	4.2
	00	859-1403	(PKS 08	59-14)		
CIV	1549	3614.8	27.8	1 3335	69	6.2
CIII	1909	4453.4	16.5	1.3332	86	2.3
MgII+FeII	2799	6543.7	31.8	1.3381	164	-5.1
		00906±43	05 (3C 3	216)		
	— No	emission	lines me	easured —		
	Q	1007+414	47 (4C 4	1.21)		
MgII	2799	4513.0	11.6	0.6125	43	-4.1
MgII+FeII	2799	4413.0	21.9	0.6125	94	-16.3
	(Q1040+12	219 (3C 2	245)		
CIII]	1909	3867.8	18.2	1.0267	72	-2.8
	Q10	55+2007	(PKS 10	55+20)		
CIV	1549	3272.3	52.7	1.1125	61	8.7
HeII	1641	3464.6	3.1	1.1119	31	0.8
OIIIJ	1664	3521.9	6.2	1.1165	43	1.7
CIIIJ	1909	4034.5	16.8	1.1137	62	1.6
Mg11+Fell	2799	5923.7	29.7	1.1165	121	6.7
		21111+40	53 (3C 2	254)		
	— No	em issi on	lines me	easured —		
	Q1	136-1334	(PKS 11	36-13)		
MgII	2799	4356.9	17.6	0.5567	36	2.1
MgII+FeII	2799	4356.9	54.2	0.5567	127	-6.9
	(Q1137+66	604 (3C 2	263)		
MgII+FeII	2799	4603.3	11.5	0.6448	74	9.2
	Q1	148-0007	(PKS 11	48-00)		
CIV	1549	4614.7	32.5	1.9790	89	1.0
CIII]	1909	5688.3	8.4	1.9801	89	-6.2
MgII+FeII	2799	8337.6	17.7	1.9790	178	11.2
	Q	1153+314	44 (4C 3	1.38)		
[OII]	3727	5283.9	55.9	0.4177	17	0.0
[NeIII]	3869	5483.8	29.0	0.4174	28	3.3
HI	4861	6889.3	30.3	0.4173	30	3.9
[OIII]	4959	7027.5	84.2	0.4171	30	3.9
[0111]	5007	7095.1	215.9	0.4170	25	-4.7
HI	6562	9296.0	347.2	0.4166	73	0.1
	Q	1156+293	81 (4C 29	9.45)		
MgII+FeII	2799	4831.1	11.9	0.7262	60	7.5
· · · · · · · · · · · · · · · · · · ·	Q	1206+435	56 (3C 26	68.4)		
MgII	2799	6706.2	4.7	1.3961	37	6.1
Mg11+FeII	2799	6706.2	21.6	1.3961	151	6.9
	Q	1213+53	52 (4C 5	3.24)		
MgII+FeII	2799	5786.0	37.0	1.0674	161	-0.3
[NV]	3426	7091.4	3.4	1.0690	50	18.9
	3727	7713.5	4.4	1.0696	24	10.6
	3869	8012.3	10.8	1.0709	53	-2.4

TABLE 2—Continued

Line	λ_0	λ_{obs}	W_0	^z em	LW	ASM
<u></u>	Q	1218+335	9 (3C 27	70.1)		
SiIV+OIV]	1400	3533.1	13.9	1.5243	43	2.5
CIV	1549	3914.1	64.2	1.5267	71	6.1
HeII	1641	4135.4	3.0	1.5207	31	7.1
OIII	1664	4208.3	4.7	1.5291	56	0.0
MgII+FeII	2799	7073.9	27.7	1.5219	112	1.4
	01	229-0207 (PKS 12	29-02)		
MgII+FeII	2799	5720.2	29.4	1.0439	108	7.2
INVI	3426	6999.9	1.9	1.0432	38	0.0
[NeIII]	3869	7910.1	4.5	1.0444	59	2.3
	Q13	18+1122 (PKS 13	18+11)		
HI	1216	3855.7	171.9	2.1716	110	6.9
CIV	1549	4923.6		2.1785		
CIII]	1909	6054.4	34.1	2.1720	176	-4.3
	Q1:	327-2126 (PKS 13	27-21)		
MgII+FeII	2799	4267.4	71.1	0.5248	138	-3.4
	0	Q1328+25	24 (3C 2	287)		
MgII	2799	5747.6	8.5	1.0536	34	2.9
MgII+FeII	2799	5747.6	24.7	1.0536	134	8.1
[NV]	3426	7039.3	2.1	1.0547	42	14.2
[OII]	3727	7657.4	9.4	1.0546	18	14.2
[NeIII]	3869	7953.5	6.1	1.0557	56	23.6
	(Q1328+30	45 (3C 2			
MgII+FeII	2799	5180.0	9.3	0.8508	40	3.9
[NV]	3426	6339.2	1.7	0.8503	11	14.2
[NeIII]	3869	7158.1	3.6	0.8501	25	-6.1
<u> </u>	01:	335-0611 (PKS 13	35-06)		
MgII+FeII	2799	4542.8	27.9	0.6232	112	-8.0
	01:	354-1512 (PKS 13	54-15)		
CIII	1909	5541 3	23.1	1 9032	122	-2.8
Mall⊥Eell	2700	8164 8	20.1	1 0173	198	-12.0
MEIITICII		1427 1 62	24 (006	(62)	100	-12.1
Mall+Fall	2700	5871 5	24 (UQ0 81 Q	1 0070	154	-4.2
	3426	7167 1	12.2	1.0010	10-1	6.5
	3797	7706 7	15.7	1.0320	46	10.9
	3869	8096.9	43.0	1.0928	124	-15.3
		1442+10	10.0	172)		
HILNV	1216	5543.8	543	3 5603	170	7 5
	1204	5033.0	10	3 5523	86	-5.6
SIVION	1400	6340 G	1.5	3 5302	102	-0.0
	1400	7004.4	4.2 23.9	3.5217	200	-6.1
	01/	453-1056 (PKS 14	53-10)		
CIII	1909	3704.2	25.0	0.9406	56	-3.9
MgII+FeII	2799	5432.4	64.2	0.9410	133	1.1
[NV]	3426	6642.2	1.9	0.9388	18	-8.5
	0	1458+715	2 (3C 30)9.1)		
MgII+FeII	2799	5328.8	22.7	0.9040	40	6.1
	01	508-0531 (PKS 15	08-05)		
CIIII	1000	A172 Q	72	1 1967	22	14.2
ОШ_ Ма∏⊥БаП	2700	6123.2	1.3	1 1870	40 40	39
11811-1.CII	2133	0120.2	14.4	1.1019		0.9

<u> </u>	<u> </u>	W.	~	TW	ASM
~~~	~ 00s		~em		
2700	Q1618+17	<u>43 (30 3</u>	<u>0 5560</u>	70	6.9
2199	4004.0	20.0	0.5560	19	-0.8
3727	5800.0	1.3	0.5562	11	14.2
3869	6018.5	4.1	0.5556	18	8.5
	01622123	52 (30 3	36)		
2799	5393.9	34.7	0.9273	110	5.2
Q16	529+1202 (	PKS 162	9+12)		
1549	4317.1	17.9	1.7869	72	-4.6
1909	5329.2	10.8	1.7920	90	-1.7
2326	6499.2	0.9	1.7942	11	14.2
	Q1634+62	51 (3C 34	43)		
2799	5563.1	38.8	0.9877	24	3.9
3426	6809.2	50.0	0.9875	19	6.1
3727	7410.2	197.1	0.9882	23	10.6
3869	7694.8	120.9	0.9888	30	17.0
4861	9660.6	•••	0.9874	30	10.6
4959	9856.6	•••	0.9876	31	10.6
5007	9951.1		0.9874	35	4.8
0.422	Q1828+48	42 (3C 3	<u>30)</u>	10	~ ~
3426	5795.4	1.9	0.6916	18	8.5
3141	6506.9	1.7	0.6922	14	21.2
3809 4961	0040.7	3.0 20.6	0.6921	14	12.0
4001	0204.0	20.0	0.0079	01 06	12.0
4939	8464 1	345	0.0904	20	6.1
	0101.1	55 (20 20	25)	20	
N/		,.	, ,	······	
- NO	emission	ines med			
0700	$\frac{22003-0232}{6870,0,1}$	(4C -02	.79)		
2199	00/9.2.1	6.0	1.4579	00	-2.2
	Q2044-024	17 (3C 42	2)		
— No	emission	lines med	isured —		
Q2	115-3031 (	PKS 211	.5-30)		
1909	3775.3	9.9	0.9779	64	-1.7
2799	5538.8	10.5	0.9790	61	2.5
Q2	143-1541 (	PKS 214	3-15)		
3426	5812.6	1.2	0.6966	40	-3.9
3809	0000.8	3.7	0.0947	05	4.7
Q22	23+2102 ( 5627 2	PKS 222	3+21)	202	76
1909	3037.3	10.5	1.9000	202	-7.0
	0000		100)		
1000	2230+112	8 (CTA 1	1.0257	04	
<u>ر</u> 1909	22230+112 3885.7	8 (CTA 1 23.9	1.0357	94	1.1
<u>ر</u> 1909 2799 3426	22230+112 3885.7 5703.5 6976 4	8 (CTA 1 23.9 13.2	1.0357 1.0379 1.0262	94 58	1.1
ς 1909 2799 3426	22230+112 3885.7 5703.5 6976.4	8 (CTA 1 23.9 13.2 2.5	102) 1.0357 1.0379 1.0363	94 58 25	1.1 5.3 -6.1
( 1909 2799 3426	2230+112 3885.7 5703.5 6976.4 Q2249+18	8 (CTA 1 23.9 13.2 2.5 32 (3C 4)	102) 1.0357 1.0379 1.0363 54) 1.7561	94 58 25	1.1 5.3 -6.1
(1909) 2799 3426 1216	22230+112 3885.7 5703.5 6976.4 Q2249+18 3350.5 4260.0	8 (CTA 1 23.9 13.2 2.5 32 (3C 44 170.7	102) 1.0357 1.0379 1.0363 54) 1.7561 1.7561	94 58 25 76	1.1 5.3 -6.1 11.3
2799 3426 1216 1549	22230+112 3885.7 5703.5 6976.4 Q2249+18 3350.5 4269.0 5264.0	8 (CTA 1 23.9 13.2 2.5 32 (3C 44 170.7 44.6	102) 1.0357 1.0379 1.0363 54) 1.7561 1.7559 1.7582	94 58 25 76 51	1.1 5.3 -6.1 11.3 12.7
(1909) 2799) 3426 1216 1549) 1909) 2226	22230+112 3885.7 5703.5 6976.4 Q2249+18 3350.5 4269.0 5264.9 641.6	8 (CTA 1 23.9 13.2 2.5 32 (3C 4 170.7 44.6 15.7	1.0357 1.0357 1.0379 1.0363 54) 1.7561 1.7559 1.7583 1.7583	94 58 25 76 51 61	1.1 5.3 -6.1 11.3 12.7 -2.5
(1909) 2799) 3426 1216 1549) 1909) 2326	22230+112 3885.7 5703.5 6976.4 Q2249+18 3350.5 4269.0 5264.9 6416.8	8 (CTA 1 23.9 13.2 2.5 32 (3C 44 170.7 44.6 15.7 4.9	102) 1.0357 1.0379 1.0363 54) 1.7561 1.7559 1.7583 1.7587 1.7587	94 58 25 76 51 61 104	1.1 5.3 -6.1 11.3 12.7 -2.5 -1.5
2799 3426 1216 1549 1909 2326 Q22	22230+112 3885.7 5703.5 6976.4 Q2249+18 3350.5 4269.0 5264.9 6416.8 251+2429 (	8 (CTA 1 23.9 13.2 2.5 32 (3C 4) 170.7 44.6 15.7 4.9 PKS 225	102) 1.0357 1.0379 1.0363 54) 1.7561 1.7559 1.7583 1.7583 1.7587 51+24)	94 58 25 76 51 61 104	1.1 5.3 -6.1 11.3 12.7 -2.5 -1.5
	λ₀           2799           3426           3727           3869           2799           Q16           1549           1909           2326           2799           3426           3727           3869           4861           4959           5007           3426           3727           3869           4861           4959           5007           3426           3727           3869           4861           4959           5007           - No           - No           Q2           1909           2799           Q2           3426           3727           369           4861           4959           5007           - No           Q2           1909           2799           Q2           3426           3869           Q22           3426 <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\lambda_0$ $\lambda_{obs}$ $W_0$           Q1618+1743 (3C 3:           2799         4354.8         20.6           3426         5330.3         1.3           3727         5800.0         4.1           3869         6018.5         4.1           Q1622+2352 (3C 3:         2799         5393.9         34.7           Q1622+2352 (3C 3:         2799         5393.9         34.7           Q1629+1202 (PKS 162         1549         4317.1         17.9           1909         5329.2         10.8         2326         6499.2         0.9           Q1634+6251 (3C 3:         38.8         3426         6809.2         50.0           3727         7410.2         197.1         3869         7694.8         120.9           4861         9660.6          4959         9856.6            5007         9951.1           Q1828+4842 (3C 3:         3426           4859         9836.4         1.3         35007         8464.1         34.5           Q1901+3155 (3C 3:           Q1901+3155 (3C 3:            Q2003-0232 (4C -02         2799         6879.2.1         <td< td=""><td>$\lambda_0$ $\lambda_{obs}$ $W_0$ $z_{em}$           Q1618+1743         (3C 334)           2799         4354.8         20.6         0.5560           3426         5330.3         1.3         0.5558           3727         5800.0         4.1         0.5562           2869         6018.5         4.1         0.5556           Q1622+2352         (3C 336)         2799         5393.9         34.7         0.9273           Q1629+1202         (PKS 1629+12)         1549         4317.1         17.9         1.7869           1909         5329.2         10.8         1.7920         2326         6499.2         0.9         1.7942           Q1634+6251         (3C 343)         2799         5563.1         38.8         0.9877           3426         6809.2         50.0         0.9875         3727         7410.2         197.1         0.9882           3869         7694.8         120.9         0.9874         4959         9856.6          0.9874           4959         9856.6          0.9874         199         0.6916           3727         6306.9         1.7         0.6922         3869         6546.7</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<></td></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\lambda_0$ $\lambda_{obs}$ $W_0$ Q1618+1743 (3C 3:           2799         4354.8         20.6           3426         5330.3         1.3           3727         5800.0         4.1           3869         6018.5         4.1           Q1622+2352 (3C 3:         2799         5393.9         34.7           Q1622+2352 (3C 3:         2799         5393.9         34.7           Q1629+1202 (PKS 162         1549         4317.1         17.9           1909         5329.2         10.8         2326         6499.2         0.9           Q1634+6251 (3C 3:         38.8         3426         6809.2         50.0           3727         7410.2         197.1         3869         7694.8         120.9           4861         9660.6          4959         9856.6            5007         9951.1           Q1828+4842 (3C 3:         3426           4859         9836.4         1.3         35007         8464.1         34.5           Q1901+3155 (3C 3:           Q1901+3155 (3C 3:            Q2003-0232 (4C -02         2799         6879.2.1 <td< td=""><td>$\lambda_0$ $\lambda_{obs}$ $W_0$ $z_{em}$           Q1618+1743         (3C 334)           2799         4354.8         20.6         0.5560           3426         5330.3         1.3         0.5558           3727         5800.0         4.1         0.5562           2869         6018.5         4.1         0.5556           Q1622+2352         (3C 336)         2799         5393.9         34.7         0.9273           Q1629+1202         (PKS 1629+12)         1549         4317.1         17.9         1.7869           1909         5329.2         10.8         1.7920         2326         6499.2         0.9         1.7942           Q1634+6251         (3C 343)         2799         5563.1         38.8         0.9877           3426         6809.2         50.0         0.9875         3727         7410.2         197.1         0.9882           3869         7694.8         120.9         0.9874         4959         9856.6          0.9874           4959         9856.6          0.9874         199         0.6916           3727         6306.9         1.7         0.6922         3869         6546.7</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<>	$\lambda_0$ $\lambda_{obs}$ $W_0$ $z_{em}$ Q1618+1743         (3C 334)           2799         4354.8         20.6         0.5560           3426         5330.3         1.3         0.5558           3727         5800.0         4.1         0.5562           2869         6018.5         4.1         0.5556           Q1622+2352         (3C 336)         2799         5393.9         34.7         0.9273           Q1629+1202         (PKS 1629+12)         1549         4317.1         17.9         1.7869           1909         5329.2         10.8         1.7920         2326         6499.2         0.9         1.7942           Q1634+6251         (3C 343)         2799         5563.1         38.8         0.9877           3426         6809.2         50.0         0.9875         3727         7410.2         197.1         0.9882           3869         7694.8         120.9         0.9874         4959         9856.6          0.9874           4959         9856.6          0.9874         199         0.6916           3727         6306.9         1.7         0.6922         3869         6546.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

els which deviate negatively by more than 3  $\sigma$ . Next the distribution of deviations was compared with the expected Gaussian distribution, based on the known error array. This occasionally revealed non-Gaussian noise due to instrumental problems, but more typically shows that the error array required some adjustment to accurately represent the observed noise in the spectrum. We found that in general the Palomar spectra required no scaling and the MMT blue channel error arrays required adjustment by 5%-20%. In the MMT red channel data the discrepancy between observed and calculated noise was more serious, from 20% to 50%. The exact cause of this is unknown. However, after scaling the error array by a constant so that the  $\chi^2$  per degree of freedom was unity, we found that in all cases the error array gave a locally accurate estimate of noise throughout the spectrum. This gives us complete confidence in the error arrays which were ultimately used.

Absorption lines were detected using the optimal extraction algorithm described by Schneider et al. (1992). In this method the normalized instrumental point-spread function (PSF) is used as a profile for optimal extraction of an unresolved line centered at pixel *i*. The equivalent width EW_i and uncertainty  $\sigma_{EW_i}$  at each pixel define a detection significance level  $SL_i =$  $EW_i / \sigma_{EW_i}$ . In regions of the detection array with  $SL_i > 3.5$  the peaks were flagged as possible lines. After scanning the entire spectrum, each flagged line was fitted with a Gaussian to determine the equivalent width, velocity width, central wavelength, and associated uncertainties. In the case where lines were blended, simultaneous fitting of multiple Gaussians was performed. As mentioned in Schneider et al. (1992), it is important to make the distinction between the optimal extraction parameters, which define the detection significance level (SL), and the Gaussian determination of line parameters. The SL is used strictly as the criterion for statistically complete line detection, whereas the Gaussian parameters are used for all subsequent quantitative analysis.

The significant lines were then identified using interactive software which graphically displays the positions of strong absorption lines (Morton & Smith 1973) at a selected redshift. All absorption systems were identified on the basis of a confirmed absorption doublet. We define this as a system which could be well fitted with two Gaussians whose wavelengths and velocity widths were constrained, and whose absorber strengths were physically allowed.

In Table 3 we list the absorption lines found in our sample of quasars. The columns are absorption-line wavelength and uncertainty in angstroms, observed equivalent width and uncertainty in angstroms, detection significance level, identification (if any), corresponding redshift with uncertainty on the last digit in parentheses, and spectrum number. The uncertainty in wavelength and redshift takes into account the noise in the spectrum and rms deviations in the wavelength calibration. In this list we include all lines which have detection significance level  $SL \ge 5.0$ , as well as lines for which there is corroborating evidence and  $SL \ge 3.5$ . Lines which are considered tentative are identified with a question mark.

In Table 4 we list the Mg II absorption systems which form the basis of our statistical analysis. The columns are the object name, the QSO emission redshift, the absorber redshift, and the rest equivalent widths for Mg II  $\lambda$ 2796, Mg II  $\lambda$ 2803, and Mg I  $\lambda 2852$ , respectively. The uncertainties follow each value in parentheses. For the Mg I line, upper limits are given where no line was detected, and the field is blank in cases where the line could not have been observed. In the Mg II lines in this table the stronger member is detected at better than  $5 \sigma$  confidence, and the weaker member is detected at better than  $3.5 \sigma$ confidence. The doublet ratio is required to be consistent with the physically allowed range of 1–2. Our line list is complete at these limits. The redshift and equivalent widths of each doublet were determined by simultaneously fitting two Gaussians constrained to have equal velocity width and the wavelength ratio of the Mg II doublet. The lines which are identified in Table 3 with a question mark are not included in our analysis.

In our sample we find a total of 29 Mg II absorbers, of which 18 are new systems. All but three of the 29 absorbers have rest equivalent width greater than 0.5 Å, as one might expect, given that our survey was designed to detect strong absorbers. A surprisingly large number of systems, six out of 29, have an apparent ejection velocity with respect to the quasar of less than 6000 km s⁻¹. This is discussed in § 9.3. We also find in our spectra four new C IV absorbers, four new Galactic Ca II systems, and six new Galactic Na I systems.

## 7. NOTES ON INDIVIDUAL OBJECTS

The literature references in this section are based in large part on the extensive compilations of Junkkarinen, Hewitt, & Burbidge (1991) and York et al. (1991), as well as on NED.⁴

The apparent ejection velocities of associated absorbers which we quote are based on the Mg II emission redshifts listed in Table 2. The emission redshift listed along with the object name is the value given by VCV.

7.1. 
$$Q0056-0009$$
 (PHL 923,  $z_{em} = 0.717$ )

We find no published spectra for this object, and no lines were detected in our spectrum. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra.

7.2. 
$$Q0159 - 1147 (3C 57, z_{em} = 0.670)$$

This object was observed previously by Tytler et al. (1987), who found no absorption lines in the range 4021-4929 Å. We also find no lines.

## 7.3. Q0229+1309 (*PKS* 0229+13, $z_{em} = 2.065$ )

This object has previously been studied by Sargent, Boksenberg, & Steidel (1988a, hereafter SBS) in the range 3950–4975 Å. They identified Mg II systems at  $z_{abs} = 0.3723$  and 0.4177, and C IV at  $z_{abs} = 1.8622$ , 1.9024, and 1.9584. Mg II at the latter two C IV redshifts is not in our spectral coverage. Of the unidentified lines in our spectra, one was also seen and not identified by SBS, and another is possibly present in their published spectrum. Bergeron & Boissé (1991) have imaged this field, and they find a nearby emission-line galaxy at z = 0.417, but were unable to find a candidate for the  $z_{abs} = 0.3723$  system. In our spectra we confirm the C IV lines and find an Mg II systems:

⁴ The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

TABLE 3 Absorption Lines in Sample

1A
•
•
•
$^{\circ}$
0
•
•
S
Ь
ō.
77
КĻ
4
0
0

TABLE 3—Continued

No.	$\lambda_{abs}$	σ(λ)	EW	σ(EW)	SL	9	Zabs	Sp.#	No.	$\lambda_{abs}$	σ(λ)	EW	σ(EW)	SL	Ð	Zabs	Sp.#
	Q0642+	4454	OH 47	_		^z em = 3	.400			Q07104	-1151	3C 175			$z_{em} = 0.768$		
	4339.9	0.8	6.64	0.70	16.7			1		3934.8	0.4	0.55	0.11	6.2	CaII(3934)	0.0000(1)	-
7	4352.0	1.0	7.42	1.04	12.4				8	3969.6	0.3	0.25	0.08	4.0	Call(3969)	0.0000(1)	•
n	4366.3	1.2	3.63	0.86	6.3			<b>.</b>	e	4090.9	0.3	0.91	0.09	12.0	MgII(2796)	0.4629(1)	4
4	4404.4	0.8	2.46	0.58	7.6			1	4	4101.3	0.2	0.43	0.08	5.8	MgII(2803)	0.4629(1)	1
ŝ	4412.7	1.1	4.78	0.91	7.6			1	S	4171.9	0.6	0.35	0.12	3.4	MgI(2853)	0.4623(2)	1
9	4436.4	0.9	3.76	0.51	8.7			1	9	4932.3	0.3	0.35	0.08	5.1	~ ~ ~ ~	~	
2	4457.3	0.9	7.82	0.71	15.7			1									
<b>%</b>	4475.3	0.9	8.54	0.67	20.2			1		Q07254	-1443	3C 181			zem = 1.382		
6	4584.3	1.0	4.48	0.46	10.7			1									
10	4628.9	0.9	8.49	0.74	10.8			1	1			1		;			
11	4655.4	0.9	5.54	0.61	9.4			1		6066.7	1.0	1.34	0.19	7.9	MgII(2796)	1.1695(4)	-
12	4694.8	0.8	3.65	0.36	12.4			1	5	6080.4	0.8	0.78	0.18	4.5	MgII(2803)	1.1688(3)	-
13	4722.3	0.9	4.99	0.53	16.8			1									
14	4738.5	1.0	8.68	1.05	15.5			F		Q0736-I	0620	PKS 0	736-06		$z_{em} = 1.898$		
15	4753.6	1.1	4.61	0.87	10.8			1									
16	4806.5	0.8	5.69	0.49	15.3			1	-	4367 1	00	0 74	010	c a	(011/11E48)	1 8175(6)	-
17	4828.5	0.9	3.19	0.94	11.7			н		1.4005			01.0	1.0		(0) $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$	-4 ,
18	4838.9	1.2	6.61	1.11	10.5			1	4 6	4510.0	6.0 0	11.0	60.0 0 1 4	0.0 7 F	CIV(1530)	1.01/0(0)	
19	4896.6	0.9	2.17	0.34	7.5			1	~	4517 G		34.1	ET-0			(c) 10101 (c)	- ,
20	4938.4	1.5	3.63	0.84	8.3			1	μ <i>.</i>	4538.6	0.0	1.40 3 56	0.13	01.4 77 2		1.9131(5) 1.0216(E)	
21	4950.0	0.8	1.85	0.85	15.4			1		4544 8		0.00	0.10		CIV(15ED)	(0)010011	
22	4954.9	0.8	4.84	0.55	17.1			1		5729.7	 -	0.05	77.0	1.97 C V	CIV(1000) Eall(2600)	1.2300(3) 1.2036(6)	
23	4975.4	0.9	5.52	0.52	12.6			1	- 04	6154 R	P 1	141	010	10	Mall(206)	1 2010(5)	
24	4995.5	0.9	5.24	0.65	13.7			1	o	6161.5	60	107	01.0	16.91	MaII(2796)	1 2034(3)	
25	5011.7	0.9	13.45	0.86	15.7			1	0	61712	800	0.36	0.00	10.01	MaII(2803)	1 2012(3)	
26	5032.8	0.8	5.45	0.43	17.1			1	1	6176.3	80	0 00	010	19.6	MaII(2803)	1 2030(3)	
27	5084.1	0.9	7.31	0.51	15.7			1			2	2222	2412		(000-)	(0)0007.1	-
28	5145.3	1.0	5.23	0.66	13.6			1			1077	301 06			0 0.71		
29	5159.4	0.8	9.21	0.59	31.7			1		Lenon	7701	001 00			zem = 0.0/1		
8	5199.8	0.8	4.92	0.32	19.2			1									
31	5225.7	0.9	4.72	0.33	19.3			1	-	3359.7	0.7	1.92	0.45	5.3	FeII(2344)	0.4332(3)	1
32	5252.2	0.8	2.94	0.25	14.8			1	7	3406.0	0.4	1.15	0.23	6.0	FeII(2374)	0.4344(2)	1
33	5279.2	0.8	6.17	0.22	36.4			1	e	3418.9	0.4	1.76	0.31	6.7	FeII(2382)	0.4348(2)	1
34	5305.5	0.8	5.19	0.20	51.7			-	4	3702.6	0.3	0.93	0.15	7.6	MnII(2577)	0.4369(1)	
35	5323.3	0.8	0.52	0.09	9.4			-	5	3716.1	0.3	2.05	0.16	16.9	FeII(2586)	0.4367(1)	
36	7811.4	0.9	4.23	0.70	6.7				9	3727.1	0.3	0.62	0.14	5.5	MnII(2594)	0.4365(1)	·
									7	3735.4	0.3	2.73	0.18	20.8	FeII(2600)	0.4366(1)	•
									80	3744.1	0.3	0.85	0.17	6.1	MnII(2606)	0.4365(1)	
									6	4017.7	0.2	3.04	0.16	25.9	MgII(2796)	0.4368(1)	-
									10	4028.0	0.2	2.91	0.15	24.3	MgII(2803)	0.4367(1)	-
									11	4099.4	0.3	1.48	0.15	11.9	MgI(2853)	0.4369(1)	1

Sp.#						'													
Zabs						11, 1000 0	0.0001(1) 0002(1)	0.6360(1) 0.6363(1)		1.9867(5) 1.9878(5)									
Ð	$z_{em} = 0.734$	ed —	$z_{em} = 0.554$	ed —	$z_{em} = 0.652$	(1000)11 D	Call(3934) Call(3969)	MgII(2796) ? MgII(2803) ?	$z_{em} = 1.982$	CIV(1548) CIV(1550)	$z_{em} = 0.418$	ed	$z_{em} = 0.729$	ed —	$z_{em} = 1.400$	ed —	$z_{em} = 1.065$	ed —	
SL		s detect		s detect			5.4 3.3	5.1 5.2 3.9 4.5		9.5 11.9		s detect		t detect		detect		detect	
(EW)		No line	36-13	No line		10	0.05	0.07 0.07 0.07 0.07	18-00	0.07 0.08		No line		No line		No lines		No line	
EW o	3C 254	4	PKS 113		3C 263	000	0.18	0.27 0.27 0.25 0.26	PKS 11	0.59 0.87	4C 31.38		4C 29.45		3C 268.4		4C 53.24	1	
σ(λ)	4053		334		6604	0	0.4	0.3 0.3 0.2	007	0.8 0.8	3144		2931		4356		5352		
$\lambda_{abs}$	Q1111+		Q1136-1		Q1137+	0 1000	3958.6 3968.6	4041.8 4544.4 4574.8 4587.4	Q1148-0	4624.0 4633.3	Q1153+		Q1156+		Q1206+		Q1213+	20	
No.						.	- 7 0	0 <del>4</del> 10 (0		7 1									
Sp.#			44			-									-				
Zabs Sp.#		1 1 4343(5) 1 1	1.4336(5) 1 1.4346(5) 1	1.4327(6) 1 1.4327(6) 1 1.4367(4) 1	$\begin{array}{ccc} 1.4329(3) & 1 \\ 1.4362(3) & 1 \end{array}$	1.4342(6) 1		1.0487(3) 1 1.0489(3) 1 1							1		0.6594(1) 1 0.6588(2) 1		
ID Zabs Sp.#	zem = 1.534	1 FeII(037A) 1 4343(5) 1	Fell(2382) 1.4336(5) 1 Fell(2382) 1.4336(5) 1 Fell(2600) 1.4345(5) 1	$\begin{array}{c} \Gamma_{re11}(2000) & 1.4327(6) & 1\\ MgII(2796) & 1.4327(6) & 1\\ MgII(2796) & 1.4367(4) & 1 \end{array}$	MgII(2803) 1.4329(3) 1 MgII(2803) 1.4362(3) 1	MgI(2853) 1.4342(6) 1	$z_{em} = 1.043$	MgII(2796) 1.0487(3) 1 MgII(2803) 1.0489(3) 1 1	zem = 1.327		$z_{em} = 0.670$	d –	$z_{em} = 0.613$		1	$z_{em} = 1.029$	MgII(2796) 0.6594(1) 1 MgII(2803) 0.6588(2) 1	<i>z</i> _{em} = 1.110	
SL ID Zabs Sp.#	$z_{em} = 1.534$	5.4 5.1 FeIT(2374) 1 4343(5) 1	4.6 FeII(22017) 1.1436(5) 1 5.4 FeII(2600) 1.436(5) 1	11.5 MgII(2796) 1.4327(6) 1 11.5 MgII(2796) 1.4327(6) 1	8.4 MgII(2803) 1.4329(3) 1 6.1 MgII(2803) 1.4362(3) 1	3.6 MgI(2853) 1.4342(6) 1	$z_{em} = 1.043$	5.4 MgII(2796) 1.0487(3) 1 3.7 MgII(2803) 1.0489(3) 1 7.5 1	$z_{em} = 1.327$	detected	$z_{em} = 0.670$	detected —	$z_{em} = 0.613$	6.5 5.0	6.4 1	zem = 1.029	6.6 MgII(2796) 0.6594(1) 1 5.0 MgII(2803) 0.6588(2) 1	<i>z</i> _{em} = 1.110	5.8 1
σ(EW) SL ID zabs Sp.#	$z_{em} = 1.534$	0.23 5.4 1 0.13 5.1 Eatt(2374) 1.4343(5) 1	0.14 4.6 Fell(2382) 1.4336(5) 1 0.15 5.4 E-17(2382) 1.4336(5) 1	0.16 1.5 $M_{gII}(2796)$ 1.4327(6) 1 0.16 11.5 $M_{gII}(2796)$ 1.4327(6) 1 0.16 11.5 $M_{gII}(2796)$ 1.4367(4) 1	0.18 8.4 MgII(2803) 1.4329(3) 1 0.17 6.1 MgII(2803) 1.4362(3) 1	0.14 3.6 MgI(2853) 1.4342(6) 1	$z_{em} = 1.043$	0.32 5.4 MgII(2796) 1.0487(3) 1 0.29 3.7 MgII(2803) 1.0489(3) 1 0.89 7.5 1	359-14 z _{em} = 1.327	- No lines detected —	$z_{em} = 0.670$	- No lines detected —	$z_{em} = 0.613$	0.13 6.5 1 1 0.09 5.0 1	0.10 6.4 1	zem = 1.029	0.17 6.6 MgII(2796) 0.6594(1) 1 0.16 5.0 MgII(2803) 0.6588(2) 1	$55+20$ $z_{em} = 1.110$	0.13 5.8 1
EW σ(EW) SL ID zabs Sp.#	3C 205 $z_{em} = 1.534$	1.09 0.23 5.4 0.56 0.13 5.1 Ealt(2374) 1.4343(5) 1	0.54 0.14 4.6 FeII(2017) 1.1336(5) 1 0.75 0.17 5.4 E-11(2382) 1.4336(5) 1 0.75 0.17 5.4 E-11(2600) 1.4346(5) 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.75 0.18 8.4 MgII(2803) 1.4329(3) 1 0.82 0.17 6.1 MgII(2803) 1.4362(3) 1	0.50 0.14 3.6 MgI(2853) 1.4342(6) 1	3C 212 $z_{em} = 1.043$	1.56 0.32 5.4 MgII(2796) 1.0487(3) 1 1.02 0.29 3.7 MgII(2803) 1.0489(3) 1 5.51 0.89 7.5 1	PKS 0859-14 z _{em} = 1.327	— No lines detected —	$3C\ 216$ $z_{em} = 0.670$	— No lines detected —	$4C \ 41.21$ $z_{em} = 0.613$	0.73 0.13 6.5 0.40 0.09 5.0 1	0.57 0.10 6.4 1	$3C 245$ $z_{em} = 1.029$	0.97 0.17 6.6 MgII(2796) 0.6594(1) 1 0.69 0.16 5.0 MgII(2803) 0.6588(2) 1	PKS 1055+20 z _{em} = 1.110	0.62 0.13 5.8 1
$\sigma(\lambda)$ EW $\sigma(EW)$ SL ID $z_{abs}$ Sp.#	5804 3C 205 $z_{em} = 1.534$	0.8 1.09 0.23 5.4 11 0.56 0.13 5.1 Fall(2374) 1.4343(5) 1	1.2 0.54 0.14 4.6 Fel(2381) 1.335(5) 1 1.2 0.75 0.14 4.6 Fel(2382) 1.4336(5) 1 1.2 0.75 6.17 5.4 Del(2382)	1.2 0.60 0.16 4.9 MgII(2796) 1.4327(6) 1 1.2 1.25 0.16 11.5 MgII(2796) 1.4327(4) 1	0.8 0.75 0.18 8.4 MgII(2803) 1.4329(3) 1 0.8 0.82 0.17 6.1 MgII(2803) 1.4362(3) 1	1.6 0.50 0.14 3.6 MgI(2853) 1.4342(6) 1	1421 3C 212 $z_{em} = 1.043$	0.9 1.56 0.32 5.4 MgII(2796) 1.0487(3) 1 0.8 1.02 0.29 3.7 MgII(2803) 1.0489(3) 1 1.7 5.51 0.89 7.5	403 PKS 0859-14 $z_{em} = 1.327$	No lines detected	4305 3C 216 $z_{em} = 0.670$	No lines detected	$z_{em} = 0.613$ 4C 41.21 $z_{em} = 0.613$	0.3         0.73         0.13         6.5         1           0.4         0.40         0.09         5.0         1	0.4 0.57 0.10 6.4 I	1219 3C 245 $z_{em} = 1.029$	0.4 0.97 0.17 6.6 MgII(2796) 0.6594(1) 1 0.4 0.69 0.16 5.0 MgII(2803) 0.6588(2) 1	2007 PKS 1055+20 z _{em} = 1.110	0.4 0.62 0.13 5.8 1
$\lambda_{abs} \sigma(\lambda) EW \sigma(EW) SL ID z_{abs} Sp.#$	Q0835+5804 3C 205 $z_{em} = 1.534$	4274.2 0.8 1.09 0.23 5.4 5780.1 1.1 0.56 0.13 5.1 FaII(737.4) 1.4343(5) 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6944.8 1.6 0.50 0.14 3.6 MgI(2853) 1.4342(6) 1	Q0855+1421 3C 212 $z_{em} = 1.043$	5728.8 0.9 1.56 0.32 5.4 MgII(2796) 1.0487(3) 1 5744.1 0.8 1.02 0.29 3.7 MgII(2803) 1.0489(3) 1 5909.5 1.7 5.51 0.89 7.5 1	Q0859-1403 PKS 0859-14 zem = 1.327	No lines detected	Q0906+4305 3C 216 $z_{em} = 0.670$	No lines detected	Q1007+4147 4C 41.21 $z_{em} = 0.613$	3222.1 0.3 0.73 0.13 6.5 3968.0 0.4 0.40 0.09 5.0 1	4547.8 0.4 0.57 0.10 6.4 1	Q1040+1219 3C 245 $z_{em} = 1.029$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q1055+2007 PKS 1055+20 z _{em} = 1.110	3323.6 0.4 0.62 0.13 5.8 1

 $\ensuremath{\textcircled{}^\circ}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

1994ApJS...93...1A

TABLE 3—Continued

.1A
•
•
•
$\infty$
0
•
•
•
1994ApJS

Perro	nnea
	onur
	Į
	-1 -1
L V	IAB

$\sum_{a=1}^{b} \sigma(\lambda) = EW - \sigma(EW) = SL ID = \mathbb{Z}_{abb} = Sp.\# = No. \lambda_{abb} = \sigma(\lambda) = EW - \sigma(\lambda) = \mathbb{Z}_{abb} = \mathbb$	EW $\sigma(EW)$ SL ID $z_{abs}$ Sp.# No. $\lambda_{abs}$ $\sigma(\lambda)$ EW $\sigma_{abs}$	$\sigma(EW)$ SL ID $z_{abs}$ Sp.# No. $\lambda_{abs}$ $\sigma(\lambda)$ EW $\sigma_{abs}$	SL ID $z_{abs}$ Sp.# No. $\lambda_{abs} \sigma(\lambda) EW \sigma$	ID $z_{abs}$ Sp.# No. $\lambda_{abs} \sigma(\lambda) EW \sigma$	$z_{abs}$ Sp.# No. $\lambda_{abs} \sigma(\lambda) EW \sigma$	Sp.# No. $\lambda_{abs} \sigma(\lambda) EW \sigma$	No. $\lambda_{abs} \sigma(\lambda) EW \sigma$	$\lambda_{abs} \sigma(\lambda) EW o$	$\sigma(\lambda) = EW o$	EW 0 DKC 135	1012	r(EW)	SL	ID - 1 890	Zabs	Sp.#
$8+3359  3C \ 270.1 \qquad z_{em} = 1.519 \qquad Q1354-1512  P$	$3C 270.1$ $z_{em} = 1.519$ $Q1354-1512$ P	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$z_{em} = 1.519$ Q1354-1512 P	$z_{em} = 1.519$ Q1354-1512 P	Q1354-1512 P	Q1354-1512 F	Q1354-1512 F	Q1354-1512 P	512 P	<u>в</u>	KS 13	54-15		$z_{em} = 1.890$		
7         1.4         5.76         2.56         36.3         CIV(1548)         1.5001(9)         1         1         4838.8         0.9           .2         0.3         8.09         2.66         38.3         CIV(1550)         1.5002(2)         1         2         5679.1         0.9           .8         0.9         2.34         0.51         5.8         MgII(2796)         0.7422(3)         2         5694.5         0.8           .7         1<0         1.88         0.50         0.7432(3)         2         5694.5         0.8	5.76     2.56     36.3     CIV(1548)     1.5001(9)     1     1     4838.8     0.9       8.09     2.66     38.3     CIV(1550)     1.5002(2)     1     2     5679.1     0.9       2.34     0.51     5.8     MgII(2796)     0.7432(3)     2     3     5694.5     0.8       1 88     0.50     4.8     MaTI/08003     0.7432(3)     2     3     5694.5     0.8	2.56     36.3     CIV(1548)     1.5001(9)     1     1     4838.8     0.9       2.66     38.3     CIV(1550)     1.5002(2)     1     2     5679.1     0.9       0.51     5.8     MgII(2796)     0.7432(3)     2     3     5694.5     0.8       0.50     4.8     Mart/08030     0.7432(3)     2     3     5694.5     0.8	36.3 CIV(1548) 1.5001(9) 1 1 4838.8 0.9 38.3 CIV(1550) 1.5002(2) 1 2 5679.1 0.9 5.8 MgII(2796) 0.7422(3) 2 3 5694.5 0.8 4.8 MaTI/2803 0.7422(3) 2	CIV(1548) 1.5001(9) 1 1 4838.8 0.9 CIV(1550) 1.5002(2) 1 2 5679.1 0.9 MgII(2796) 0.7422(3) 2 3 5694.5 0.8 MATI/2803 0.7423(3) 2	1.5001(9)         1         1         4838.8         0.9           1.5002(2)         1         2         5679.1         0.9           0.7422(3)         2         3         5694.5         0.8           0.7432(3)         2         3         5694.5         0.8	1         1         4838.8         0.9           1         2         5679.1         0.9           2         3         5694.5         0.8	1         4838.8         0.9           2         5679.1         0.9           3         5694.5         0.8	4838.8 0.9 5679.1 0.9 5694.5 0.8	0.9 0.9 0.8		2.35 2.60 1.49	0.43 0.43 0.45	5.4 7.4 3.5	MgII(2796) MgII(2803)	1.0309(3) 1.0312(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.13     0.22     18.5     MgII(2796)     1.5002(1)     2     Q1437+6224       2.91     0.23     15.3     MgII(2803)     1.4997(2)     2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MgII(2796) 1.5002(1) 2 Q1437+6224 MgII(2803) 1.4997(2) 2 D1437+6224	1.4997(2) 2 Q1437+6224	2 Q1437+6224 2	Q1437+6224	Q1437+6224	6224	1	00 663			$z_{em} = 1.090$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PKS 1229-02 $z_{em} = 1.038$ 1       5236.0       0.1         2       5248.5       0.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$z_{em} = 1.038 \qquad \qquad 1  5236.0  0.1  2  5248.5  0.0  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0$	$z_{em} = 1.038 \qquad \qquad 1  5236.0  0.1 \\ 2  5248.5  0.0 \\ 2  0.1 \\ 2  0.1 \\ 2  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0.1 \\ 0  0  0  0.1 \\ 0  0  0  0  0  0  0  0  0  0$	1 5236.0 0.4 2 5248.5 0.6	1         5236.0         0.4           2         5248.5         0.3	1 5236.0 0.4 2 5248.5 0.5	5236.0 0.4 5248.5 0.8	0.2	<b>00 00</b>	$1.32 \\ 1.19$	0.16 0.16	7.2 7.2	MgII(2796) MgII(2803)	0.8724(3) 0.8721(3)	
.6 $0.8$ $0.84$ $0.14$ 7.2       3       5843.7       1         .5 $0.8$ $0.92$ $0.13$ 7.1       MgII(2796) $0.7571(3)$ 1       Q1442+1011         .0 $0.8$ $0.85$ $0.12$ $6.7$ MgII(2803) $0.7571(3)$ 1       Q1442+1011	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.2         3         5843.7         1           7.1         MgII(2796)         0.7571(3)         1         Q1442+1011           6.7         MgII(2803)         0.7571(3)         1         Q1442+1011	MgII(2796) 0.7571(3) 1 3 5843.7 1 MgII(2796) 0.7571(3) 1 Q1442+1011 MgII(2803) 0.7571(3) 1	0.7571(3) 1 3 5843.7 1 0.7571(3) 1 Q1442+1011 0.7571(3) 1 0	3 5843.7 1 1 Q1442+1011 1 Q1442+1011	3 5843.7 1 Q1442+1011	5843.7 1. Q1442+1011	1011	0	1.87 0Q 17:	0.22	10.0	z _{em} = 3.530		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PKS 1318+11 $z_{em} = 2.171$ 1       5624.6         2       5634.0       0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$z_{em} = 2.171$ 1 5624.6 2 5634.0 2 5634.0 1	$z_{em} = 2.171$ 1 5624.6 2 5634.0 0	1 5624.6 2 5634.0 1	1 5624.6 2 5634.0	1 5624.6 2 5634.0	5624.6 5634.0	•••	8.0 8.8	0.88 0.45	0.09 0.08	11.8 6.2	CIV(1548) CIV(1550)	2.6330(5) 2.6330(5)	
3         5719.2           .2         0.6         1.28         0.21         6.7         CIV(1548)         1.8757(4)         1         4         5728.8           .7         1.1         0.70         0.23         3.7         CIV(1550)         1         8751(7)         1	3         5719.2           1.28         0.21         6.7         CIV(1548)         1.8757(4)         1         4         5728.8           0.70         0.93         3.7         CIV(1550)         1         8751(7)         1	0.21 6.7 CIV(1548) 1.8757(4) 1 4 5728.8 0.22 3.7 CIV(1550) 1.8751(7) 1 4 5728.8	6.7 CIV(1548) 1.8757(4) 1 4 5728.8 3.7 CIV(1550) 1 8757(7) 1 4 5728.8	CIV(1548) 1.8757(4) 1 4 5728.8 CIV(1550) 1.8751(7) 1 4 5728.8	3 5719.2 1.8757(4) 1 4 5728.8 1 8751(7) 1	3 5719.2 1 4 5728.8	3 5719.2 4 5728.8	5719.2 5728.8		0.9 0.8	0.45 0.17	0.11 0.09	4.4 1.0	CIV(1548) ? CIV(1550) ?	2.6941(6) 2.6941(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.25 4.7 MgII(2796) 0.8411(5) 2 Q1453-10 0.69 0.25 2.7 MgII(2796) 0.8411(5) 2 Q1453-10 0.69 0.25 2.7 MgII(2802) 0.8411(5) 2	0.25 4.7 MgII(2796) 0.8411(5) 2 Q1453-10 0.55 7.7 MgII(2796) 0.8411(5) 2 Q1453-10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OIV(1000)         Listoit         I         OIV(1000)         Listoit         I           Mg11(2796)         0.8413(3)         2         Q1453-10         M453-10	0.8413(3) 2 Q1453-10 0.8413(5) 2	2 Q1453-10	Q1453-10	Q1453-10	0	56	PKS 14	153-10		$z_{em} = 0.938$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.11 0.23 4.7 MgII(2796) ? 1.0547(3) 2	0.23 4.7 MgII(2796) ? 1.0547(3) 2	4.7 MgII(2796) ? 1.0547(3) 2	MgII(2796)? 1.0547(3) 2	1.0547(3) 2	5						- No line	s detect	ed —		
27-2126 PKS 1327-21 z _{em} = 0.528 Q1458+	PKS 1327-21 $z_{em} = 0.528$ Q1458+	$327.21   z_{em} = 0.528   Q_{1458+}$	$z_{em} = 0.528$ Q1458+	z _{em} = 0.528 Q1458+	Q1458+	Q1458+	Q1458+	Q1458+		7152	3C 309	-		$z_{em} = 0.905$		
.6         0.3         0.84         0.19         4.9         MgII(2796)         ?         0.3012(1)         1         1         3934.1           .0         0.5         0.57         0.21         3.0         MgII(2803)         ?         0.3016(2)         1         2         39345.1	0.84 0.19 4.9 MgII(2796) ? 0.3012(1) 1 1 3934. 0.57 0.21 3.0 MgII(2803) ? 0.3016(2) 1 2 3934.	0.19 4.9 MgII(2796) ? 0.3012(1) 1 1 3934. 0.21 3.0 MgII(2803) ? 0.3016(2) 1 2 3945.	4.9         MgII(2796) ?         0.3012(1)         1         1         3934.           3.0         MgII(2803) ?         0.3016(2)         1         2         39345.	MgII(2796) ? 0.3012(1) 1 1 3934. MgII(2803) ? 0.3016(2) 1 2 39345.	0.3012(1) 1 1 3934. 0.3016(2) 1 2 3945.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3934.8 2 3945.0	3934.8 3945.0	0.00	0.2	0.41 0.20	0.07 0.06	7.1 3.5	CaII(3934) AII(3945)	0.0000(1) 0.0001(1)	
$28+2524  3C  287 \qquad z_{em} = 1.055 \qquad 3 \\ 2  3  2883. \qquad 2884. \qquad 2883. \qquad 2884. \qquad 28$	3C 287 $z_{em} = 1.055$ 3 2968. 4 5883.	$z_{em} = 1.055$ 3968. 4 5883.	$z_{em} = 1.055$ 3968. 4 5883.	$z_{em} = 1.055$ 3 3968. 4 5883.	3 3968. 4 5883.	3 3968.	3 3968. 4 5883.	3968. 5883.	10 00	0.5 0.5	0.38 0.55	0.09 0.12	5.1 5.3	Call(3969) Nal(5891) ?	0002(1) 0014(1)	- 0
5 5888. — No lines detected —	5 5888. — No lines detected —	- No lines detected	5 5888. s detected	5 5888. ted	5 5888.	5 5888.	5 5888.	5888.	0	0.3	0.89	0.13	7.6	NaI(5897) ?	0016(1)	
28+3045 3C 286 z ₂₀₀ = 0.846 Q150	3C 286 z_m = 0.846 Q150	3 z_m = 0.846 Q150	z*m = 0.846	zem = 0.846 Q150	Q150	Q150	Q150	Q150	2	0531	PKS 18	08-05		$z_{em} = 1.191$		
						,					1	- No line	s detect	ed —		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.30 0.08 4.4 FeII(2586) 0.6928(2) 1	0.10 4.4 FeII(2586) 0.6928(2) 101618 0.10 9.2 FeII(2600) 0.6928(2) 1 Q1618.	4.4 FeII(2586) 0.6928(2) 1 0.691618 9.2 FeII(2600) 0.6928(2) 1 0.1618 4.7 0.0000 0.6000(2) 1 0.1618	Fell(2586) 0.6928(2) 1 Fell(2600) 0.6928(2) 1 C-TIT(2001) 0.6926(2) 1 Q-TIT(2002) 0.6926(2) 1 C-TIT(2002) 0.69276(2) 1 C-TIT(2002) 0.69776(2) 1 C-TIT(200	0.6928(2) 1 0.6926(2) 1 0.6926(2) 1 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 2 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2) 0.6926(2)	1 1 Q1618-	Q1618-	Q1618-	1 +	-1743	3C 334			$z_{em} = 0.555$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.23 0.08 2.8 Call(3969) 0.6927(4) 2 1 5884.	0.08 2.8  Call(3969) $0.6927(4) 2$ 1 5884.	4.1         Call(3504)         0.0325(3)         4           2.8         Call(3969)         0.6927(4)         2         1         5884.	Call(3969) 0.6927(4) 2 1 5884.	0.6927(4) 2 1 5884.	2 1 5884.	1 5884.	5884.		1.0	0.94	0.21	5.3			5
35-0611 PKS 1335-06 $z_{em} = 0.625$ 2 682!	PKS 1335-06 $z_{em} = 0.625$ 2 682!	335-06	$z_{em} = 0.625$ 2 6821	$z_{em} = 0.625$ 2 682!	2 682	2 682	2 682	6825	5.3	1.0	1.00	0.21	5.6			7
.4 0.7 2.29 0.47 5.1 1	2.29 0.47 5.1 1	0.47 5.1 1	5.1 1	Т	-	-										

<del>, - 1</del>
•
•
•
•
$\infty$
σ
•
•
τn
Ĕ.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1
4
0
0
- C (

⊿'

ABLE 3-	-Continued	
NBLE	4	
<	ABLE	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	No.	λ_{abs}	$\sigma(\lambda)$	ΕW	$\sigma(\mathrm{EW})$	SL	Ð	Zabs	Sp.#	No.	λabs	$\sigma(\lambda)$	ЕW	$\sigma(EW)$	SL	Ð	Zabs	Sp.#
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Q1622+	2352	3C 336			$z_{em} = 0.927$				Q1828+	-4842	3C 38($z_{em} = 0.695$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	1 2006	0	000		0 1	E-11/0000)	(1)0121 0	Ŧ	-	0 1000	2			2		(1) 1000 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0	3882.2	0.2	1.16	0.11 0.11	12.2	Fell(2344)	0.4(10(1) 0.6561(1)			5888.1	0.0	0.27	0.19	0.0	Call(3934) ? Nal(5801)	0.0006(2)	., .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ເ ຕ	3932.9	0.3	1.28	0.13	10.7	FeII(2374)	0.6564(1)		•	5889.6	0.0	0.77	0.07	17.4	" "	0003(1)	1 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	3946.1	0.1	1.39	0.10	16.0	FeII(2382)	0.6561(1)	1	e	5894.7	0.3	0.41	0.09	8.3	NaI(5897)	0005(0)	. (1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ	4115.8	0.2	1.40	0.11	15.7	MgIÌ(2796)	0.4718(1)	1		5895.5	0.8	0.46	0.08	13.7		0003(1)	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	4126.4	0.2	1.50	0.12	14.9	MgII(2803)	0.4719(1)	1									
4.305.4 01 2.08 Full(2340) 0.536(1) 1 9 4490.5 02 0.01 0.01 Exel(2340) 0.5301(1) 1 1 4490.5 02 0.01 0.01 15.5 Exel(2340) 0.5301(1) 1 1 4490.5 02 0.01 0.01 15.5 Exel(2340) 0.5301(1) 1 3397.4 0.00 10.5 0.0001(1) 1.3001(1)	2	4282.9	0.2	1.03	0.11	11.3	FeII(2586)	0.6558(1)	1		Q1901+	-3155	3C 39f			$z_{em} = 0.635$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	æ	4305.4	0.1	2.09	0.12	20.8	FeII(2600)	0.6558(1)	1									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	4433.2	0.2	0.97	0.09	12.5	FeII(2344)	0.8911(1)	1						1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	4490.6	0.2	0.91	0.10	10.1	FeII(2374)	0.8912(1)	1		3887.2	0.1	0.63	0.06	11.7	MgII(2796)	0.3901(0)	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	4505.8	0.2	1.43	0.11	15.2	FeII(2382)	0.8910(1)	1	7	3897.4	0.1	0.21	0.06	3.9	MgII(2803)	0.3902(0)	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	4917.8	0.4	2.52	0.35	8.9	FeII(2600)	0.8913(2)	2	e	3934.5	0.3	0.63	0.08	9.5	Call(3934)	0001(1)	,1
14 5304.1 0.5 2.29 0.23 11.3 Mg[(280) 0.8619(2) 2 8885.1 0.3 0.09 7.8 Nal(6891) -0004(1) 2 Q1639+1202 PKS 1629+12 $z_{m} = 1.795$ $z_{m} = 1.795$ $z_{m} = 1.795$ $q_{2003-0232}$ $d_{C} - 02.79$ $z_{m} = 1.457$ $-0004(1)$ $z_{m} = 1.457$ 1 3688.5 0.1 21.8 0.13 g_{11} $r(1560)$ $1.2786(3)$ $-0004(1)$ $z_{m} = 1.457$ 2 3988.5 0.3 z_{10} 0.23 1.42 $CV(1560)$ $1.2786(3)$	13	5290.9	0.4	3.10	0.25	13.9	MgII(2796)	0.8921(2)	5	4	3969.8	0.3	0.27	0.07	5.1	CaII(3969)	0.0001(1)	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	5304.1	0.5	2.29	0.23	11.3	MeII(2803)	0.8919(2)		5	5889.0	0.5	0.64	0.09	7.8	NaI(5891)	0004(1)	2
Q1620+1202 PKS 1629+12 $z_{em} = 1.795$ Q2003-0232 4C - 02.79 $z_{em} = 1.457$ 1 3882.5 0.4 3.16 0.22 14.3 CIV(1546) 1.3785(3) 1 2 3888.9 0.3 2.16 0.32 14.3 CIV(1546) 1.3785(3) 1 3 3881.8 0.1 2.10 0.33 1.76 0.88 5.3 CIV(1546) 1.2114(2) 3 3881.8 0.1 2.16 0.12 1.4 3.30.6 0.5312(0) 3 3.76 0.88 5.3 CIV(1556) 1.2114(2) 5 4281.8 0.1 2.16 0.10 2.4 0.5312(0) 3 3 3.76 0.88 5.3 CIV(1556) 1.2114(2) 5 4392.7 0.3 1.66 0.3 1.3735(1) 1 4.3736(1) 1 4.3756(2) 1.2456(2) 1.2456(2) 1.2456(2) 1.2456(2) 1.2456(2) 1.2456(2) 1.2456(2) 1.2456(2) 1.2456(2)							(000	(=)	•	9	5895.1	0.3	0.33	0.09	4.1	NaI(5897)	0004(1)	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Q1629+	1202	PKS 1	629+12		$z_{em} = 1.795$				02003-(1232	4C -02	62		z = 1.457		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																~em		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	3682.5	0.4	3.16	0.22	14.2	CIV(1548)	1.3785(3)	1	-	0 0010	0	107	00 0	2	(01 1 1 1 1 0)	1 0100/6/	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	3688.9	0.3	2.51	0.23	14.3	CIV(1550)	1.3788(2)	1	- 0	0.1240	0.0	- 0.4 - 0.4	0.00	0.0	CIV (1346)	(c)2012.1	-
4 4281.8 0.1 2.15 0.10 24.0 MgII(2796) 0.5313(1) 1 3304.4 0.2 0.7 0.23 7.5 $CIV(1545)$ 1.4568(3) 1 5 4282.0 0.3 1.73 0.11 16.7 MgII(2796) 0.5313(1) 1 4 380.4 0.1 0.23 7.5 $CIV(1546)$ 1.4568(3) 1 6 4283.6 0.3 1.10 0.24 6.0 0.5313(1) 3 380.4 0.1 0.97 0.18 6.1 1.4573(1) 9 7 4383.6 0.8 1.10 0.24 6.0 0.3312(2) 1 4 3810.4 0.1 0.97 0.18 6 1.4573(1) 9 7 4388.6 0.6 0.86 0.13 5.6 MgI(2803) 0.5315(1) 3 7 8 7 1.4573(2) 1.4563(2) 1.4563(2) 1.4563(2) 1.4573(2) 1.4573(2) 1.4577(2) 1.4577(2) 1.4577(2) 1.4577(2) 1.4577(2) 1.4577(2) 1.4563(2) 1.21212(2) 1.1 1.4563(2) <td>n</td> <td>3981.8</td> <td>0.2</td> <td>1.08</td> <td>0.15</td> <td>9.1</td> <td>FeII(2600)</td> <td>0.5313(1)</td> <td>ო</td> <td>N (</td> <td>3429.3</td> <td>0.3</td> <td>3.76</td> <td>0.86</td> <td>5.0 D</td> <td>CIV(1550)</td> <td>1.2114(2)</td> <td></td>	n	3981.8	0.2	1.08	0.15	9.1	FeII(2600)	0.5313(1)	ო	N (3429.3	0.3	3.76	0.86	5.0 D	CIV(1550)	1.2114(2)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	4281.8	0.1	2.15	0.10	24.0	MgII(2796)	0.5312(0)	n	n.	3803.6	0.5	1.71	0.23	7.5	CIV(1548)	1.4568(3)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4282.0	0.3	1.73	0.12	14.9	*	0.5313(1)	1		3804.4	0.2	0.99	0.18	6.2		1.4573(1)	n
4293.1 0.1 2.06 0.10 23.5 $"$ 0.5313(0) 3 3810.4 0.1 0.97 0.18 6.1 " 1.4571(1) 3 7 4353.6 0.8 1.10 0.24 6.0 0.5313(0) 3 5 4531.4 0.3 0.61 0.10 6.1 " 1.4571(1) 3 7 4368.6 0.6 0.86 0.19 5.6 Mg(2853) 0.5313(2) 3 7 3.9 Fell(2344) 1.2132(3) 9 8 4454.4 0.3 0.69 0.15 5.5 Fell(2344) 0.9002(1) 3 7 7 3.37 7.8 Fell(2322) 1.2137(3) 9 8 4454.4 0.3 0.66 1.74 0.43 4.8 Fell(2322) 1.2137(3) 9 9 4527.5 0.6 1.10 0.26 0.3 7.8 Fell(2382) 1.2137(3) 9 10 5314.0 0.6 1.4 0.3 0.66 1.74 0.4 9 1.11 0.27 8	ŝ	4292.7	0.3	1.86	0.11	16.7	MgII(2803)	0.5312(1)	1	4	3810.1	0.3	1.32	0.24	7.0	CIV(1550)	1.4569(2)	1
6 4353.6 0.8 1.10 0.24 6.0 7 4368.6 0.6 0.86 0.19 5.6 MgI(2853) 0.5315(1) 3 7 8 FeII(2344) 1.2132(3) 4366.3 0.3 0.3 0.48 0.13 5.4 m_1 0.43 4.8 FeII(2344) 1.2132(3) 8 4454.4 0.3 0.69 0.15 5.5 FeII(2342) 0.2002(1) 3 8 572.0 0.9 1.11 0.27 39 FeII(2382) 1.2137(3) 9 4454.4 0.3 0.69 0.17 1.02 0.19 6.9 FeII(2382) 1.2137(3) 5 5 7 5 577.8 0.6 1.10 0.26 5.1 1.2137(3) 5 5 1.2137(3) 5 5 1.2137(3) 5 5 1.2137(3) 5 5 1.2137(3) 5 5 1.2137(3) 5 5 1.2137(3) 5 5 1.2137(3) 5 5 5 1.2137(3) 5 5 5 5 1.2111(4) <td></td> <td>4293.1</td> <td>0.1</td> <td>2.06</td> <td>0.10</td> <td>23.5</td> <td>× =</td> <td>0.5313(0)</td> <td>e</td> <td>:</td> <td>3810.4</td> <td>0.1</td> <td>0.97</td> <td>0.18</td> <td>6.1</td> <td>8</td> <td>1.4571(1)</td> <td>m</td>		4293.1	0.1	2.06	0.10	23.5	× =	0.5313(0)	e	:	3810.4	0.1	0.97	0.18	6.1	8	1.4571(1)	m
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	4353.6	0.8	1.10	0.24	6.0		~	I	2	4531.4	0.3	0.61	0.10	6.1			m
4369.3 0.3 0.48 0.13 4.4 " 0.5315(1) 3 7 5.271.8 0.6 1.74 0.43 4.8 FeII(2382) 1.2125(3) 9 8 4454.4 0.3 0.69 0.15 5.5 FeII(2382) 0.9002(1) 3 5774.7 0.6 2.07 0.33 7.8 " 1.2137(3) 9 9 4527.5 0.3 1.02 0.19 6.9 FeII(2382) 0.9005(2) 1 9 5772.0 0.9 1.11 0.26 4.9 FeII(2382) 1.2137(3) 9 10 5314.0 0.6 1.42 0.26 6.9 " 0.9005(2) 1 9 5773.8 0.6 1.01 0.26 1.2128(2) 1.2127(4) 9 5773(3) 1.2128(2) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2127(3) 1.2117(1) 1.22321<	7	4368.6	0.6	0.86	0.19	5.6	MgI(2853)	0.5312(2)	1	9	5188.3	0.9	0.84	0.27	3.9	FeII(2344)	1.2132(4)	C4
8 4454.4 0.3 0.69 0.15 5.5 Fell(2344) 0.9002(1) 3 5274.7 0.6 2.07 0.33 7.8 " 1.2137(3) 5 9 4527.5 0.3 1.02 0.19 6.9 Fell(2382) 0.9001(1) 3 8 5772.0 0.9 1.11 0.26 4.9 Fell(2586) 1.2121(4) 5 4528.5 0.6 1.42 0.26 6.9 " 0.9005(2) 1 9 5723.8 0.6 1.11 0.26 4.9 Fell(2586) 1.2121(4) 5 10 5314.0 0.6 1.86 0.34 5.8 MgII(2796) 0.9003(2) 4 9 5743.8 0.6 1.01 0.3 $5713(2)$ 1211(4) 9 5743.8 0.6 1.212 0.3 12117(2) 9 5743.8 0.6 1.211 0.3 $5211(2382)$ 1.4111(4) 5523.5 0.7 1.41 0.31 10.4 $5117(2600)$ 1.2127(3) 52323.5 0.7 1.41 0.33 20.1		4369.3	0.3	0.48	0.13	4.4	, F	0.5315(1)	ę	- 2	5271.8	0.6	1.74	0.43	4.8	FeII(2382)	1.2125(3)	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ø	4454.4	0.3	0.69	0.15	5.5	FeII(2344)	0.9002(1)	n		5274.7	0.6	2.07	0.33	7.8	2	1.2137(3)	~
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	4527.5	0.3	1.02	0.19	6.9	FeII(2382)	0.9001(1)		∞	5722.0	0.9	1.11	0.26	4.9	FeII(2586)	1.2121(4)	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4528.5	0.6	1.42	0.26	6.9	"	0.9005(2)	-		5723.8	0.6	1.10	0.26	5.1	2	1.2128(2)	4
5315.3 0.4 2.29 0.17 11.5 $"$ $0.9008(1)$ 2 10 5749.8 0.6 2.82 0.31 10.4 Fell(2600) $1.2113(2)$ 2 11 5327.8 0.3 1.04 0.31 3.1 $MgII(2803)$ $0.9006(1)$ 4 5753.5 0.7 1.41 0.32 5.6 " $1.2127(3)$ 4 5328.5 0.6 1.32 0.17 6.2 " 0.6 2.87 0.31 28.3 $MgII(2796)$ $1.2117(1)$ 2 5328.5 0.6 1.32 0.17 6.2 $0.9006(2)$ 2 11 618.7 0.4 5.87 0.31 2.93 $1.2117(1)$ 2 5328.5 0.6 1.32 0.33 20.1 $MgII(2796)$ $1.2117(1)$ 2 $1.2116(2)$ 2 $1.2116(2)$ 2 $1.2116(2)$ 2 $1.2116(2)$ 2 $1.2116(2)$ 2 $1.2117(1)$ 2 2 $1.2116(2)$ 2 $1.2116(2)$ 2	10	5314.0	0.6	1.86	0.34	5.8	MeII(2796)	0.9003(2)	4	6	5745.1	0.9	1.03	0.33	3.5	FeII(2382)	1.4111(4)	4
11 5327.8 0.3 1.04 0.31 3.1 $MgII(2803)$ $0.9004(1)$ $\overline{4}$ 5753.5 0.7 1.41 0.32 5.6 " $1.2127(3)$ $\overline{4}$ 5328.5 0.6 1.32 0.17 6.2 " $0.9006(2)$ 2 11 6184.7 0.4 5.87 0.31 28.3 $MgII(2796)$ $1.2117(1)$ 2 5328.5 0.6 1.32 0.17 6.2 " $0.9006(2)$ 2 12 620.0 0.5 4.80 0.33 20.1 $MgII(2796)$ $1.2117(1)$ 2 $61634+6251$ $3C$ 343 $z_{em} = 0.988$ 13 6264.6 0.9 0.82 0.19 4.3 $FeII(2600)$ $1.4093(4)$ 2 $Q1634+6251$ $3C$ 343 $z_{em} = 0.988$ 14 6741.4 0.4 1.78 0.17 13.3 $MgII(2796)$ $1.4108(1)$ 2 $Q1634+6251$ $3C$ 343 2 0.4 1.76 0.17 13.3 $MgII$		5315.3	0.4	2.29	0.17	11.5	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.9008(1)		10	5749.8	0.6	2.82	0.31	10.4	FeII(2600)	1.2113(2)	C1
5328.5 0.6 1.32 0.17 6.2 $"$ $0.9006(2)$ 2 11 6184.7 0.4 5.87 0.31 28.3 $MgII(2796)$ $1.2117(1)$ 2 0.17 5.2 0.33 20.1 $MgII(2803)$ $1.2115(2)$ 2 0.16 1.32 3.33 20.1 $MgII(2803)$ $1.2115(2)$ 2 0.16 1.32 $3.0.6$ 0.33 20.1 $MgII(2796)$ $1.4103(4)$ 0.16 1.78 0.17 13.3 $MgII(2796)$ $1.4108(1)$ 2 1.4 6741.4 0.4 1.78 0.17 13.3 $MgII(2796)$ $1.4108(1)$ 2 1.5 6757.5 0.4 1.50 0.16 11.6 $MgII(2803)$ $1.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.4104(1)$ $2.410600000000000000000000000000000000000$	11	5327.8	0.3	1.04	0.31	3.1	MgII(2803)	0.9004(1)	1 4		5753.5	0.7	1.41	0.32	5.6		1.2127(3)	4
Q12 6200.0 0.5 4.80 0.33 20.1 MgII(2803) 1.2115(2) 2 Q1634+6251 3C 343 $z_{em} = 0.988$ 13 6264.6 0.9 0.82 0.19 4.3 FeII(2600) 1.4093(4) 2 Q1634+6251 3C 343 $z_{em} = 0.988$ 13 6264.6 0.9 0.82 0.19 4.3 FeII(2600) 1.4093(4) 2 Q16 1.3.3 MgII(2796) 1.4108(1) 2 1.4108(1) 2 15 6757.5 0.4 1.50 0.16 11.6 MgII(2803) 1.4104(1) 2		5328.5	0.6	1.32	0.17	6.2		0.9006(2)	. 0	11	6184.7	0.4	5.87	0.31	28.3	MgII(2796)	1.2117(1)	7
$Q_{1634+6251} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$								(-)		12	6200.0	0.5	4.80	0.33	20.1	MgII(2803)	1.2115(2)	7
The second se		01634+	6251	3C 343			~ – 0 988			13	6264.6	0.9	0.82	0.19	4.3	FeII(2600)	1.4093(4)	5
15 6757.5 0.4 1.50 0.16 11.6 MgII(2803) 1.4104(1) 2		LINNE	1010	5000			*em - 0.000			14	6741.4	0.4	1.78	0.17	13.3	MgII(2796)	1.4108(1)	7
										15	6757.5	0.4	1.50	0.16	11.6	MgII(2803)	1.4104(1)	

1.1
•
•
•
•
\sim
σ
•
•
:
:
JS
oJS
ApJS
ApJS
4ApJS
94ApJS
994ApJS

۲

TABLE 3—Continued

Sp.#		1	1	1	1	1	1	1	e	e	n	n	6	e	~	n	7	e	7	ę	7	e	7	2	7											
Zabs		2.3515(3)	2.3526(3)	2.3637(4)	2.1566(*)	1.7493(4)	1.7499(2)	2.1551(7)		2.3645(9)	2.3641(8)	2.1559(5)	2.1596(3)	2.1559(5)	2.1603(2)	2.3525(6)	2.3544(2)	2.3523(5)	2.3535(2)	2.3635(5)	2.3650(2)	2.3624(5)	2.3653(2)	1.0896(3)	1.0894(1)											
IJ	$z_{em} = 2.328$	NV(1238)	NV(1242)	NV(1242)	CII(1334)	CIV(1548)	CIV(1550)	SiIV(1393)		SiIV(1393)	SiIV(1402)	CIV(1548)	£ .	CIV(1550)	-	CIV(1548)	F .	CIV(1550)	2	CIV(1548)	*	CIV(1550)	2	MgII(2796)	MgII(2803)											
SL		14.3	22.1	8.4	4.2	6.6	3.7	5.4	6.3	5.0	6.4	18.0	8.6	12.3	9.6	14.5	16.7	13.6	13.7	34.4	43.5	33.0	38.9	4.0	4.5											
σ(EW)	251+24	0.14	0.16	0.16	0.24	0.17	0.16	0.23	0.43	0.27	0.29	0.22	0.26	0.21	0.24	0.19	0.14	0.22	0.14	0.22	0.14	0.23	0.14	0.13	0.13											
EW	PKS 2	1.61	2.87	1.07	0.31	0.94	0.49	1.12	2.26	1.11	1.57	3.61	1.52	2.02	2.58	2.09	2.17	1.55	1.24	5.10	5.01	4.58	4.71	0.53	0.59											
σ(λ)	2429	0.4	0.4	0.5	2.5	0.7	0.3	0.9	1.4	1.2	1.1	0.8	0.5	0.8	0.3	0.9	0.3	0.8	0.3	0.8	0.3	0.8	0.3	0.7	0.3											
Labs	Q2251+5	4151.9	4166.7	4180.4	4212.6	4256.5	4264.4	4397.5	4542.3	4689.3	4719.1	4885.9	4891.7	4894.1	4900.9	5190.3	5193.3	5198.7	5200.5	5207.3	5209.7	5214.3	5218.9	5843.2	5857.7											
No.		1	2	n	4	5	9	7	ø	6	10	11		12		13		14		15		16		17	18											
Sp.#		1	5	2	7	2				c	2 10	N		-		3					-	1	1	1	-	1	-	1	1	3		3	5			
Zabs		0.9384(1)	0.9378(4)	0.9382(1)	0.9385(1)	0.9387(2)				(0)0100	(£)0100	(z)ninn-									1.4414(4)	1.4416(4)	1.9028(5)	1.9007(3)	1.9012(3)	1.9014(3)	1.9010(4)	1.9023(3)	1.9019(2)	1.9010(3)		0005(2)	0005(0)			
IJ	$z_{em} = 0.942$	FeII(2344)	FeII(2600)	MgII(2796)	MgII(2803)	MgI(2853)		$z_{em} = 0.980$		NI - T/ 6001)	Nal(5891)	(160C)IBNI		$z_{em} = 0.700$				zem = 1.959			CIV(1548)?	CIV(1550) ?	+Sill(1304)?	CII(1334)	SiIV(1393)	SiIV(1402)	Sill(1526)	CIV(1548)	CIV(1550)	FeII(2344)	$z_{em} = 1.037$	NaI(5891)	NaI(5897)	$z_{em} = 1.757$	ted —	
SL		7.4	3.6	13.2	11.8	7.3					4.4 0	0.9				6.6					7.1	5.7		7.8	11.8	6.9	5.2	12.8	10.1	6.4		8.4	7.6		s detec	
σ(EW)	~	0.38	1.32	0.41	0.35	0.45		115-30		010	01.0	01.0		143-15		0.13		223 + 21	-		0.09	0.09		0.09	0.20	0.09	0.09	0.08	0.08	0.10	02	0.11	0.12	4	— No line	
EW	3C 425	2.35	4.24	5.51	4.20	2.74		PKS 2		5	0.41	0.47	0.0714	PKS 2		0.76		PKS 2			0.60	0.50		0.57	0.75	0.53	0.38	1.01	0.79	0.51	CTA 1	0.53	0.44	3C 45-		
$\sigma(\lambda)$	247	0.3	1.1	0.4	0.3	0.6		031		1 7	1.0 7	C.1		541		1.0		2102			0.6	0.7		0.4	0.4	0.5	0.6	0.4	0.3	0.7	1128	0.9	0.3	1832		
λabs	Q2044-0	4544.0	5038.6	5420.0	5434.7	5531.0		Q2115-3		1005	0000.0 5 001 6	0.1600	1 01 100	Q2143-1		5457.4		02223+			3779.8	3786.3		3871.1	4043.6	4069.9	4429.0	4493.4	4500.3	6800.5	Q2230+	5888.5	5894.7	Q2249+		
No.		-	7	ი	4	5				•	-	4				1					1	7		ო	4	5	9	7	œ	6		-	7			

Object	^z em	$z_{\rm abs}$	New	$W_0(\lambda 2796)$	$W_0(\lambda 2803)$	W ₀ (MgI λ2852)
Q0229+1309	2.065	1.8609(4)	*	1.02(14)	0.70(14)	< 0.57
Q0229+3410	1.240	0.7754(3)	*	1.92(41)	2.02(36)	<1.13
		1.2248(3)	*	3.47(16)	2.14(16)	0.56(16)
Q0237-2322	2.224	1.3647(3)		1.91(8)	1.43(8)	<0.16
		1.6582(3)		0.55(5)	0.42(5)	
		1.6719(3)		0.80(5)	0.61(5)	
Q0420-0127	0.915	0.6330(3)		1.02(10)	0.86(10)	< 0.36
Q0710+1151	0.768	0.4630(1)	*	0.62(6)	0.29(5)	0.24(8)
Q0725+1443	1.382	1.1694(4)	*	0.62(9)	0.36(8)	<0.28
Q0736-0620	1.898	1.2009(5)	*	0.19(5)	0.16(4)	
		1.2035(3)	*	0.49(4)	0.41(5)	
Q0809+4822	0.871	0.4367(1)		2.12(11)	2.03(10)	1.03(10)
Q0835+5804	1.534	1.4330(6)		0.25(7)	0.31(7)	0.21(6)
		1.4365(4)		0.51(7)	0.34(7)	<0.20
Q0855+1421	1.043	1.0491(3)	*	0.76(16)	0.50(14)	
Q1040+1219	1.029	0.6591(1)	*	0.58(10)	0.42(10)	< 0.19
Q1218+3359	1.519	0.7423(3)	*	1.34(29)	1.08(29)	< 0.74
		1.5000(1)	*	1.25(9)	1.16(9)	•••
Q1229-0207	1.038	0.7571(3)	*	0.52(7)	0.48(7)	< 0.22
Q1354-1512	1.890	1.0309(3)	*	1.28(21)	0.73(22)	<0.88
Q1437+6224	1.090	0.8723(3)	*	0.71(9)	0.64(9)	< 0.42
Q1622 + 2352	0.927	0.4718(1)		0.95(7)	1.02(8)	< 0.20
		0.8920(2)		1.64(13)	1.21(12)	
Q1629+1202	1.795	0.5313(0)		1.40(7)	1.35(7)	0.31(8)
		0.9008(1)		1.20(9)	0.69(9)	<0.39
Q1901+3155	0.635	0.3901(0)	*	0.45(4)	0.15(4)	<0.13
Q2003-0232	1.457	1.2116(1)	*	2.65(14)	2.17(15)	< 0.31
		1.4106(1)	*	0.74(7)	0.62(7)	
Q2044-0247	0.942	0.9384(1)	*	2.84(21)	2.17(18)	1.41(23)

TABLE 4 Mg 11 $\lambda\lambda$ 2796, 2803 Absorption Lines

 $z_{abs} = 1.8609$.—This strong system is most likely associated with the $z_{abs} = 1.8622$ C IV system of SBS. Although the line wavelength ratio is rather poor, the system is fitted adequately $(\chi^2_{\nu} = 0.7)$ by an Mg II doublet. The redshift discrepancy is probably due to wavelength calibration error at this high wavelength.

7.4.
$$Q0229+3410 (3C 68.1, z_{em} = 1.240)$$

We find no published spectra for this object. We find the following absorption systems:

 $z_{abs} = 0.2022$.—We observe a Na I doublet at this redshift. $z_{abs} = 0.7754$.—This strong system is fitted well by a single Mg II doublet at spectral resolution. The two lines have equal equivalent widths to within the measurement uncertainties.

 $z_{abs} = 1.2248$.—This very strong Mg II doublet has an apparent ejection velocity of 2000 km s⁻¹ with respect to the quasar.

7.5.
$$Q0237 - 2322$$
 (PKS 0237 - 23, $z_{em} = 2.224$)

This object has an unusually large number of strong absorption systems, and has been studied by SS, SBS, Lanzetta et al. (1987), and Boissé & Bergeron (1985). See SS for a comprehensive discussion of the known absorption systems. In our spectrum we confirm the systems at $z_{abs} = 1.3651$, 1.6577, 1.6723, and 2.2028, but find no new absorption systems.

7.6.
$$Q0350-0719(3C 94, z_{em} = 0.962)$$

This quasar was previously studied by Tytler et al. (1987), who found no absorption lines in the range 4021-4931 Å. We find a Galactic Na I absorption system in our spectrum.

7.7. Q0420-0127 (PKS 0420-01, $z_{em} = 0.915$)

Wills et al. (1980) observed this object in the approximate range 3650–6700 Å and found an Mg II system at $z_{abs} = 0.633$, but they give no quantitative treatment of the spectrum. Yanny (1992) presents narrow-band [O II] λ 3727 photometry of this field and finds at least seven nearby candidate emissionline objects. Yanny & York (1992) take this and similar objects as evidence favoring the disappearing starburst or merging dwarf scenario at $z \gtrsim 0.5$. We confirm the $z_{abs} = 0.633$ system and find no new absorbers in our spectrum.

7.8. $Q0538+4949 (3C 147, z_{em} = 0.545)$

We find no published spectra and no absorption lines in our spectrum.

7.9.
$$Q0610+2605$$
 (3C 154, $z_{em} = 0.580$)

No spectra are previously reported. We find a tentative associated Mg II absorber:

 $z_{abs} = 0.5920$.—This tentative Mg II system has an apparent infall velocity of 2400 km s⁻¹ relative to the quasar.

7.10.
$$Q0642 + 4454 (OH 471, z_{em} = 3.400)$$

Sargent, Steidel, & Boksenberg (1989, hereafter SSB2) obtained a spectrum of this object in the range 3150–7000 Å and found Mg II absorption at $z_{abs} = 1.2464$ and C IV absorption at 2.9724, 3.1338, and 3.2483. Khare, York, & Green (1989) reported several tentative absorber systems, but none are confirmed by SSB2 even though they could have been observed. In

36

our spectrum, which has lower signal-to-noise ratio than SSB2, we find no identified lines redward of the Ly α forest.

7.11.
$$Q0710+1151$$
 (3C 175, $z_{em} = 0.768$)

Boissé et al. (1992) obtained a spectrum in the range 3190-3946 Å and found Galactic Ca II $\lambda 3934$ absorption. We confirm both members of the Ca II doublet and find an Mg II absorber:

 $z_{abs} = 0.4630$.—This moderate-strength Mg II system has tentative Mg I absorption, with a detection significance 3.4 σ .

7.12.
$$Q0725+1443$$
 (3C 181, $z_{em} = 1.382$)

Anderson et al. (1987, hereafter AWFC) obtained a high-resolution spectrum of this object covering the range 3150–4025 Å and found an associated C IV absorber at $z_{abs} = 1.3878$. We see no evidence for the corresponding Mg II in our spectrum, but we find one new Mg II system:

 $z_{abs} = 1.1694$.—This is a definite Mg II absorber. The corresponding C IV is apparent in the spectrum of AWFC, although they do not identify it.

7.13.
$$Q0736-0620$$
 (*PKS* 0736-06, $z_{em} = 1.898$)

This quasar was previously observed by Young, Sargent, & Boksenberg (1982, hereafter YSB), in the range 3500–5150 Å. They found associated C IV absorption at $z_{abs} = 1.9132$ and 1.9310. We confirm these systems and find another C IV system (not associated) and an Mg II complex:

 $z_{abs} = 1.2009$, 1.2035.—This definite Mg II complex is clearly asymmetric but is fitted well with two Mg II doublets at the spectral resolution. There is evidence for Mg I at both these redshifts, but they cannot be confirmed because they fall in an O₂ band which was visible in a number of our spectra at high air mass. Notice the prominent O₂ band near 7600 Å. We also see evidence for Fe II with 3 σ and 4 σ detections of $\lambda\lambda 2382$ and 2600, respectively. The corresponding C IV is out of the range of YSB.

 $z_{abs} = 1.8175$.—This weak but definite system would appear in the spectrum of YSB at about a 3.7 σ significance.

7.14.
$$O0809 + 4822 (3C 196, z_{em} = 0.871)$$

This object has a famous and well-studied absorption system at $z_{abs} = 0.43685$ which gives rise to a host of metal-line species (see Foltz, Chaffee, & Wolfe 1988, who present excellent highresolution spectra covering 3300–4200 Å and 5150–5950 Å) and H I 21 cm absorption (Brown et al. 1988; Brown & Mitchell 1983). The 21 cm absorption is especially significant because it occurs in a resolved background source, which allows useful limits to be placed on the absorber size (Foltz et al. 1988; Brown et al. 1988). There is also an associated absorber in this object at z = 0.8714 (Foltz et al. 1988), with apparent infall velocity 100 km s⁻¹. We find no additional absorption systems in our spectrum.

7.15. Q0835+5804 (3C 205, $z_{em} = 1.534$)

BTT obtained a high signal-to-noise spectrum of this object covering the range 3980–7750 Å and found Mg II systems at $z_{abs} = 1.4353$, 1.4382, and 1.5427. AWFC found an associated

C IV complex centered at $z_{abs} = 1.5373$. We confirm the complex at $z_{abs} = 1.436$ (although our absolute redshifts disagree by about 0.0010) and add a detection of Fe II $\lambda 2374$ for the lower redshift member. We see the associated Mg II system at low confidence, about 2.5 σ , with equivalent width about half what BTT found. If present, the apparent infall velocity would be 1000 km s⁻¹. We find no additional absorption systems.

7.16.
$$Q0855+1421$$
 (3C 212, $z_{em} = 1.043$)

We find no published spectra for this object. The night-sky subtraction in our spectrum is worse than normal. We see an unidentified but strong, broad absorption complex just redward of the Mg II emission. This feature is consistent with either Galactic Na I absorption at -600, 150, and 750 km s⁻¹ or an associated Mg II complex with an apparent infall velocity of 6900 km s⁻¹, or a combination of the two. The associated absorber in this quasar is particularly interesting because Elvis et al. (1994) found that the X-ray spectrum shows excess soft absorption which is consistent with an absorber intrinsic to the quasar having hydrogen column density $N_{\rm H} = 0.9^{+0.8}_{-0.6} \times 10^{22}$ cm⁻². This is discussed in more detail in Aldcroft et al. (1994). We find in addition the following associated Mg II system:

 $z_{abs} = 1.0490$: This is a moderate-strength associated system, with an apparent ejection velocity of 1600 km s⁻¹.

7.17.
$$Q0859 - 1403$$
 (PKS $0859 - 14$, $z_{em} = 1.327$)

SS previously studied this object in the range 3900–6995 Å and found no absorption lines. Boissé et al. (1992) obtained a spectrum covering 3185–3946 Å and found a very tentative Mg II absorber at $z_{abs} = 0.2095$. Our spectrum is not sensitive enough to have detected this system.

7.18.
$$Q0906+4305$$
 (3C 216, $z_{em} = 0.670$)

For this object we find no published spectra and no absorption lines in our spectrum. This object has a peculiar continuum/emission-line shape, in that the Mg II emission is almost nonexistent. Smith & Spinrad (1980) first reported the redshift based primarily on an emission line presumed to be [O II] λ 3727.

7.19.
$$Q1007+4147$$
 (4C 41.21, $z_{em} = 0.613$)

We find no published spectra for this object. We find three significant lines, all unidentified. One of them is near the wavelength of Galactic Ca II, but since the other doublet member is not observed, we make no identification.

7.20.
$$Q1040+1219$$
 (3C 245, $z_{em} = 1.029$)

We find no published spectra for this object. In our spectrum we detect a new Mg II system:

 $z_{abs} = 0.6591$.—We have some reservations about this system because the calculated redshifts of the doublet members disagree by 0.0006. A fit with an Mg II doublet (with wavelength ratio constrained) clearly shows the wavelength-ratio problem, but the fit has $\chi^2_{\nu} \approx 1$ and so we make the identification.

7.21. Q1055+2007 (*PKS* 1055+20, $z_{em} = 1.110$)

We find no published spectra for this object. In our spectra

No. 1, 1994

37

we detect a single unidentified line on the red wing of the C IV emission.

7.22. Q1111+4053 (3C 254, $z_{em} = 0.734$)

We find no published spectra for this object, and we detect no absorption lines in our spectrum.

7.23.
$$Q1136-1334$$
 (PKS 1136-13, $z_{em} = 0.554$)

Boissé et al. (1992) obtained a spectrum for this object and found Galactic Ca II λ 3934 absorption. We find no significant absorption lines in our spectrum.

7.24. Q1137+6604 (3C 263, $z_{em} = 0.652$)

We find no published spectra for this object. In our spectrum we find a Galactic Ca II absorber and a tentative associated Mg II system:

 $z_{abs} = 0.6360$.—Optimal extraction of the Mg II doublet members gives significance levels of 3.9 and 4.5 σ , respectively, with adequate agreement of the redshifts to within the uncertainties. The apparent ejection velocity is 1600 km s⁻¹.

7.25.
$$Q1148-0007$$
 (PKS 1148-00, $z_{em} = 1.982$)

This object has been studied by SBS and YSB, who found C IV absorption at $z_{abs} = 1.4669$ and 1.9861. SS studied this object in the range 5148–8947 Å and found no identified absorption lines. The unidentified line they report at 6280.0 Å is most likely a weak atmospheric O₂ band. At the position of their line at 8854.8 Å, we observe the equivalent width $W_{obs} = 0.24 \pm 0.23$, in contrast to their value $W_{obs} = 1.37 \pm 0.17$. We find no new absorption systems in our spectrum.

7.26.
$$Q1153+3144$$
 (4C 31.38, $z_{em} = 0.418$)

This object was included in our sample based on the redshift $z_{\rm em} = 1.557$ given by Burbidge & Kinman (1966), although they did note that their spectrum might also be consistent with a redshift of 0.413. Our spectrum clearly shows that this object has a redshift of $z_{\rm em} = 0.418$ and shows emission lines typical of a Seyfert galaxy. Because of the low redshift it makes no contribution to our statistical sample. We find no absorption lines in this spectrum.

7.27.
$$Q1156+2931$$
 (4C 29.45, $z_{em} = 0.729$)

We find no published spectra for this object, and our spectrum reveals no absorption lines.

7.28.
$$Q1206+4356$$
 (3C 268.4, $z_{em} = 1.400$)

AWFC studied this object in the range 3150-4025 Å, and they found Mg II absorption at $z_{abs} = 0.4124$ and associated C IV absorption at $z_{abs} = 1.3767$ and 1.3963. We find no absorption lines in our spectrum. At the position of Mg II at $z_{abs} =$ 1.38 the 1 σ rest equivalent width limit in our spectrum is 0.05 Å.

7.29. Q1213+5352 (4C 53.24, $z_{em} = 1.065$)

We find no published spectra for this object, and our spectrum reveals no absorption lines.

7.30. Q1218+3359 (3C 270.1, $z_{em} = 1.519$)

AWFC studied this object in the range 3320–4200 Å, and they found associated C IV absorption at $z_{abs} = 1.5004$. We confirm this doublet in our spectra, find the corresponding Mg II, and find a new Mg II absorption system. Note that spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra:

 $z_{abs} = 0.7423$.—This Mg II system lies at the edge of the steep red wing of the C III] λ 1909 emission, and so the continuum placement is uncertain.

 $z_{abs} = 1.5000$.—This strong associated Mg II system has an apparent ejection velocity of 2600 km s⁻¹.

7.31. Q1229-0207 (*PKS* 1229-02, $z_{em} = 1.038$)

This object was studied by Briggs et al. (1985) over the ranges 3410-4050 Å and 5000-5910 Å. They observed the Mg II system at $z_{abs} = 0.395$, along with the corresponding Mg I and Fe II. This system is also a 21 cm absorber (BW). In our spectrum we find one unidentified line and a new Mg II absorber:

 $z_{abs} = 0.7571$.—This moderate-strength system falls between the two spectra of Briggs et al. (1985).

7.32. Q1318+1122 (*PKS* 1318+11, $z_{em} = 2.171$)

BTT observed this object over the range 3880–7750 Å, and they found Mg II absorption at $z_{abs} = 0.8388$ and 1.0541 and C IV at $z_{abs} = 1.8755$. Our spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra. In our spectra we confirm the Mg II at $z_{abs} = 0.8388$, and the C IV system. The Mg II line is detected at a significance level below our 5 σ threshold and hence is not included in the statistical analysis. For the $z_{abs} = 1.0541$ system, we see the Mg II $\lambda 2796$ line at 4.7 σ but find no evidence for the Mg II $\lambda 2803$ line at a 4.5 σ level.

7.33.
$$Q_{1327-2126}$$
 (PKS 1327-21, $z_{em} = 0.528$)

We find no published spectra for this object. Our spectrum shows a single tentative Mg II absorber:

 $z_{abs} = 0.3015$.—This system is regarded as tentative because it falls below our 5 σ significance cutoff.

7.34. Q1328+2524 (3C 287, $z_{em} = 1.055$)

We find no published spectra for this object, and our spectrum shows no absorption lines.

7.35. Q1328+3045 (3C 286, $z_{em} = 0.846$)

This object contains the well-studied absorption system at $z_{abs} = 0.6927$. At this redshift absorption has been observed in metal lines (Meyer & York 1992 and references therein), H I 21 cm (Briggs 1988), and damped Ly α (Cohen et al. 1992). Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra. In our spectrum we find Fe II at $z_{abs} = 0.6927$ and no other lines. The Mg II doublet falls in the dichroic gap of the double spectrograph.

7.36. $Q_{1335} - 0611 (PKS \ 1335 - 06, z_{em} = 0.625)$

We find no published spectra for this object. Our spectrum shows one unidentified line.

7.37. Q1354-1512 (PKS 1354-15, $z_{em} = 1.890$)

We find no published spectra for this object. In our spectrum we find one new Mg II absorber:

 $z_{abs} = 1.0309$.—This is a definite Mg II system. The unidentified line at 4838 Å is at the correct wavelength for Fe II $\lambda 2382$, but we see no Fe II $\lambda 2600$ and so we reject this identification.

7.38. Q1437+6224 (OQ 663, $z_{em} = 1.090$)

No absorption lines have been previously reported for this object. We find a broad unidentified line which occurs in the quasar Mg II emission and a new Mg II absorber:

 $z_{abs} = 0.8723$.—This is a moderate-strength Mg II system.

7.39.
$$Q1442+1011$$
 (OQ 172, $z_{em} = 3.530$)

This object was observed by SBS in the range 5500–7150 Å. They found definite C IV absorption at $z_{abs} = 2.6336$ and possible absorption at $z_{abs} = 2.6705$, 2.6939, 3.0473, and 3.1101. BTT observed this object in the range 3875–7750 Å and did not identify any of these systems. In our spectrum we confirm the $z_{abs} = 2.6336$ system and possibly the 2.6939 system, but not any of the others in SBS. Our 1 σ limit on W_{obs} is about 0.7–1.0 Å in this region, compared with 0.5–0.8 Å in SBS. We find no other significant lines redward of Ly α . We have not determined wavelengths for the Ly α forest lines in our spectrum because the spectrum of BTT is at higher resolution.

7.40.
$$Q_{1453} - 1056 (PKS \ 1453 - 10, z_{em} = 0.938)$$

We find no published spectra for this object, and our spectra show no absorption lines. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra.

7.41. $Q1458 + 7152 (3C \ 309.1, z_{em} = 0.905)$

This object was previously studied by SS in the wavelength range 3100–6995 Å, and they found two unidentified lines near 5900 Å. We see only the lower wavelength line, which in our spectrum is consistent with Galactic Na I at a velocity of -450 km s^{-1} . We find in addition Galactic Ca II and possible Al I. These are apparent in the spectrum of SS but are not identified.

7.42.
$$O1508-0531$$
 (PKS 1508-05, $z_{em} = 1.191$)

We find no published spectra for this object, and our spectra show no absorption lines. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra.

7.43.
$$Q1618+1743$$
 (3C 334, $z_{em} = 0.555$)

We find no published spectra for this object. In our spectra we see two unidentified lines. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra.

7.44.
$$Q1622+2352$$
 (3C 336, $z_{\rm em} = 0.927$)

SS studied this object in the range 3100–6995 Å and found Mg II absorption at $z_{abs} = 0.4721, 0.6562, 0.6601, and 0.8915$. We confirm these systems in our spectra and find no other absorption lines. The associated Mg II system has an apparent ejection velocity of 5500 km s⁻¹.

7.45. Q1629+1202 (PKS 1629+12, $z_{em} = 1.795$)

BTT obtained a spectrum of this object covering the range 3870–7750 Å and found a strong Mg II system with Mg I at $z_{abs} = 0.5316$, and found Mg II, Mg I, and Fe II at $z_{abs} = 0.9004$. Our spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra. In our spectra we confirm the lines in BTT and find in addition Fe II $\lambda 2600$ at $z_{abs} = 0.5313$ and a new C IV absorber:

 $z_{abs} = 1.3790.$ —This likely C IV absorption system is out of the range of BTT. We find no evidence for the corresponding Mg II. This system would be certain except that it falls in the badly flattened portion of the spectrum. However, there are no prominent defects near this position on the CCD and so this system is unlikely to be an artifact. There may also be Si IV absorption at this redshift, but these lines fall in the Ly α forest, and so we cannot make a positive identification.

7.46.
$$Q_{1634+6251}(3C_{343}, z_{em} = 0.988)$$

We find no published spectra for this object, and our spectra show no absorption lines. This object is a Seyfert 2 galaxy with very little continuum emission.

7.47.
$$Q_{1828}+4842$$
 (3C 380, $z_{em} = 0.695$)

Boissé et al. (1992) studied this object in the range 3139– 3946 Å and found no lines. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra. In our spectra we find Galactic Na I and tentative Ca II.

7.48.
$$Q1901+3155 (3C 395, z_{em} = 0.635)$$

We find no published spectra for this object. We find in our spectra a new Mg II absorber and Galactic Ca II and Na I:

 $z_{abs} = 0.3901$.—This system is included in our statistical analysis, although the doublet ratio for this system is on the border of acceptability at 2.7 ± 0.7 .

7.49.
$$Q2003-0232$$
 (4C -02.79, $z_{em} = 1.457$)

We find no published spectra for this object. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra, but the lines we find are far away from known defects on the CCD or are corroborated otherwise. We find in our spectra a rich collection of lines from three absorption systems:

 $z_{abs} = 1.212$.—This very strong system is seen in C IV, Mg II, and four Fe II lines. It is apparent from the poor redshift match among different lines in these spectra that the uncertainty in the wavelength calibration is around 2–3 Å, rather more than the formal value.

 $z_{abs} = 1.411.$ This certain Mg II system shows absorption in the two strongest Fe II lines, but not in C rv. There is also what

would appear to be a very strong Mg I line at this redshift, but it unfortunately falls right in a telluric band. The spectrum was taken at an air mass of 1.25, so the band is most likely contributing to the Mg I line strength at some level. However, the shape of the spectrum in this region would be unusual for pure telluric absorption. To complicate matters further, if there were Mg II at $z_{abs} = 1.457$, the line Mg II $\lambda 2796$ would also be coincident with the possible $z_{abs} = 1.411$ Mg I line. If associated with the quasar, this system would have an apparent ejection velocity of 5800 km s⁻¹.

 $z_{abs} = 1.457$.—This is a definite associated C IV absorber with an apparent ejection velocity of 100 km s⁻¹.

7.50.
$$Q2044 - 0247 (3C 422, z_{em} = 0.942)$$

We find no published spectra for this object. In our spectra we find one strong associated Mg II absorption system:

 $z_{abs} = 0.9384$.—This definite associated system shows absorption in Mg II, Mg I, and two Fe II lines. Note that our spectra did not cover Fe II $\lambda 2382$ at this redshift. The apparent ejection velocity of this system is 600 km s⁻¹.

7.51.
$$Q2115-3031$$
 (PKS 2115-30, $z_{em} = 0.980$)

We find no published spectra for this object. In our spectra we see a likely Galactic Na I absorber. The components are not resolved, but the line was well fitted with a Na I doublet. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra.

7.52.
$$Q2143 - 1541$$
 (PKS 2143 - 15, $z_{em} = 0.700$)

We find no published spectra for this object. In our spectra we see one unidentified line. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra.

7.53.
$$Q2223+2102$$
 (*PKS* 2223+21, $z_{em} = 1.959$)

BTT obtained a spectrum of this object covering 3870-7750Å, and they find a rich system at $z_{abs} = 1.9019$ showing C IV, Si II $\lambda 1526$, and Fe II $\lambda 2344$ absorption. Our spectrum 1 for this object potentially suffers from the flattening problem in the 1988 July spectra. However, it is apparent that this spectrum is not badly affected, since we are able to make reasonable identifications for the lines which appear. We confirm the lines in BTT and find additional lines at this redshift. We also find a new tentative C IV system:

 $z_{abs} = 1.4407$.—This is a tentative C IV absorber in which the line C IV $\lambda 1550$ is blended with Si II $\lambda 1304$ from the $z_{abs} = 1.9019$ system. If this line is entirely Si II $\lambda 1304$, then it is much too strong and the redshift match is poor.

 $z_{abs} = 1.9019$.—In this definite system we find Fe II $\lambda 2344$, C IV, Si II $\lambda 1526$, Si IV $\lambda 1402$, Si IV $\lambda 1393$, C II $\lambda 1334$, and possibly Si II $\lambda 1304$. Fe II $\lambda 2374$ and Fe II $\lambda 2382$ may be present in our spectrum but unfortunately happen to lie in an O₂ band.

7.54.
$$Q2230+1128$$
 (CTA 102, $z_{em} = 1.037$)

AWFC studied this object in the wavelength range 4040– 5240 Å and found no absorption lines. We find Galactic Na I in our spectra, which was unresolved but fitted well with a Na I doublet. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra.

7.55. Q2249+1832 (3C 454, $z_{em} = 1.757$)

BTT studied this object in the range 3870-7800 Å. They tentatively identify an Mg II system at $z_{abs} = 0.782$, and either Mg II at $z_{abs} = 1.1045$ or Galactic Na I. However, the poor redshift matches in both these systems and confusion with Galactic Na I make the Mg II identifications unlikely. In our spectra, we rule out the $z_{abs} = 0.782$ system at the 2.5 σ level. We confirm the latter system of BTT, but it is significant in our spectrum only at 4σ . We would attribute this line to an unresolved Galactic Na I doublet. We find no other confirmed absorption lines in our spectra. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra.

7.56. Q2251+2429 (*PKS* 2251+24, $z_{em} = 2.328$)

This object was previously studied by BTT in the range 3870–7730 Å. They found Mg II absorption at $z_{abs} = 1.0901$ and C IV absorption at $z_{abs} = 1.7495$, 2.1554, 2.352, and 2.3626. In our spectra we confirm the lines they see and find in addition Si II λ 1393 at $z_{abs} = 2.1555$. No additional systems are present. The detection significance level of the Mg II system is below our threshold, and it is not included in our statistical analysis. Spectrum 1 for this object suffers from the flattening problem in the 1988 July spectra.

8. SAMPLE PROPERTIES

In Figure 2 we show the 5 σ rest equivalent width detection limits in each of the spectra as a function of Mg II redshift. The plots have been clipped above 2.5 Å, and regions in which Mg II is not observable at all are shown with the limit set to zero. Because there is uncertainty about the physical nature and environment of absorbers very near the quasar itself, we exclude from our statistical analysis any regions with a velocity relative to the quasar of less than 6000 km s⁻¹. We also apply the same criterion near the Ly α emission peak, since identification of heavy-element doublets is uncertain at wavelengths near or below the Ly α peak. These excluded regions, along with the O₂ bands and the dichroic gap of the double spectrograph at $z \approx 0.7$, are apparent in the plots of Figure 2.

The overall sensitivity and size of our sample are summarized in the plots of Figure 3. The left-hand plot shows the integrated redshift path length as a function of the 5 σ rest equivalent width detection limit. This is defined by

$$Z(W_0) = \sum_{k} \int g(W_0 - W_k(z)) dz , \qquad (1)$$

where $W_k(z)$ is the detection limit in the kth quasar at redshift z, and g(x) is the Heaviside step function [g(x) = 0 for x < 0 and g(x) = 1 for $x \ge 0$]. For comparison, the path length in the sample of SS (which we always take to include the data in SSB1) is 114.2 at $W_0 = 0.3$ Å and 131.1 at $W_0 = 1.0$ Å. In the right-hand plot of Figure 3 we show the number of quasar sight lines versus redshift at various equivalent width limits. This

function is given by

$$S(z, W_0) = \sum_k g(W_0 - W_k(z)).$$

The thickest line is S(z, 0.3 Å), the medium line is S(z, 0.6 Å), and the thinnest line is S(z, 1.0 Å).

9. ABSORBER STATISTICS

A straightforward step in studying the intrinsic nature of absorption-line systems is to calculate their observed distribution in redshift and rest equivalent width. The redshift distribution can be easily compared with the prediction for a noevolution model of absorbers and thus has a direct physical interpretation. The equivalent width distribution is more difficult to interpret because there are a number of contributing factors which are at present poorly understood. However, the observed distribution will certainly be a key ingredient in understanding these issues, so this calculation should be done where possible. In this section we first discuss the parametric forms commonly used in the literature to represent the distribution functions. We then derive two approximations which allow calculation of the normalization and the binned values of the equivalent width distribution for an inhomogeneous sample. Finally, we present and discuss the best-fit distribution parameters for 11 different subsamples of our data and the data of SS and SSB1.

9.1. Distribution Functions and Computational Techniques

The redshift distribution of absorbers is generally found to be well fitted with a single power law of the form

$$n(z) = n(1+z)^{\gamma}, \qquad (2)$$

where n(z) is the number of absorbers per unit redshift above a specified equivalent width limit. Both the normalization n and the power-law index γ are functions of this limit. This power law is a special case of the redshift distribution for a nonevolving population in a Friedmann universe, $n(z) = n(1+z)(1+2q_0z)^{-1/2}$, where q_0 is the deceleration parameter. For the limiting cases $q_0 = 0$ ($\Omega = 0$) and $q_0 = 0.5$ ($\Omega = 1$) we have n(z) =n(1+z) and $n(z) = n(1+z)^{1/2}$, respectively. Thus any value of γ between 0.5 and 1 is considered consistent with a nonevolving population of absorbers.

Two forms for the absorber equivalent width distribution function which are empirically found to fit the data are (SS; Tytler et al. 1987; Sargent et al. 1980):

$$n(W) = \frac{N^*}{W^*} \exp\left(-\frac{W}{W^*}\right),\tag{3}$$

$$n(W) = CW^{-\delta} \,. \tag{4}$$

Here n(W) is the number of absorbers per unit equivalent width, z is the redshift, W is the rest equivalent width, and the remaining variables are the fitted parameters. The distribution n(W) is normalized so that

$$\int_{W=W_0}^{\infty} n(W) dW = \langle N(z) \rangle,$$

where $\langle N(z) \rangle$ is number of absorbers per unit redshift in that sample and W_0 is the rest equivalent width limit. Note that SS find that increased rest equivalent width is weakly correlated with increasing redshift.

This means that the distribution parameters are in reality functions of redshift. However, the correlation is just barely detected by SS, and so for most purposes the redshift dependence can be ignored or accounted for by specifying the average redshift of absorbers in the sample.

The calculation of the parameters for equation (4), the power-law form of the equivalent width, generally also requires an upper cutoff W_{cut} in the equivalent width instead of integrating to infinity. This is because the integral of the power-law form converges rather slowly, and so the lack of very strong absorbers in the data has a large effect on the overall fit. The residuals of a fit with no upper cutoff are unacceptably large. A typical value used for the cutoff is the highest equivalent width observed in the sample, but since this is fairly arbitrary, it is important to verify that the fit parameters depend only weakly on the cutoff. However, using the published sample MG1 from SS, we have derived the best-fit values of C_0 and δ_0 as a function of the upper cutoff W_{cut} and find a strong dependence, especially near their cutoff of about 3 Å. This is illustrated in Figure 4, which shows that the variation with small changes in $W_{\rm cut}$ is much greater than the formal uncertainties in the fitted values from SS, $C_0 = 0.38 \pm 0.03$ and $\delta_0 =$ 1.65 ± 0.09 . Thus this power-law form of the distribution in essence requires the cutoff as an additional parameter. Since there is no good physical justification for either of the equivalent width forms, the one which gives a statistically acceptable fit with the fewest parameters should be used. For this reason we do not calculate best-fit parameters C_0 and δ_0 .

In our analysis the actual calculation of distribution parameters is done by the maximum-likelihood method, which allows robust fitting of inhomogeneous unbinned absorption-line data. We follow the method described by Murdoch et al. (1986), with a minor modification to allow different equivalent width limits in a single QSO.

The calculation of the best-fit parameters of equations (2)– (4) for a uniform sample with an equivalent width limit W_0 is straightforward. For a nonuniform sample, as outlined in Murdoch et al. (1986), the spectra are broken up into regions, each with its own detection limit. In this case the best-fit parameters γ_0 and W_0^* are easily computed. However, the normalization N_0^* is less straightforward because it depends on $\langle N(z) \rangle$, which is ill-defined for a nonuniform sample. For the purposes of plotting the computed distributions and comparing with results from uniform surveys, it is useful to have an approximate expression for this parameter. To do this, we first define the distribution

$$n(z, W) = \frac{A}{W^*} (1+z)^{\gamma} \exp\left(-\frac{W}{W^*}\right), \qquad (5)$$

which is the number of absorbers per unit equivalent width per unit redshift. The normalization of n(W) means we can approximate n(W) by integrating the best-fit model of n(z, W)over a unit redshift interval at the average absorber redshift of

FIG. 2.-Rest equivalent width limits

the sample. This gives

$$n(W) \approx \int_{\langle z \rangle - 1/2}^{\langle z \rangle + 1/2} \frac{A_0}{W_0^*} (1+z)^{\gamma} \exp\left(-\frac{W}{W_0^*}\right) dz .$$

Comparing with the original form for n(W) gives the value for the normalization.

The calculation of the binned values of n(W) is also less straightforward in the case that the spectra have different equivalent width limits. The method we used is an approximation, but in the cases where we can check the results the agreement is good.

Define $N(W_A, W_B)$ to be the number of absorbers in $S(W_A)$ with $W_A \le W_i < W_B$. Here $S(W_A)$ is the collection of spectral

regions in which a line of rest equivalent width W_A could have been detected at 5 σ confidence. Then the binned distribution $n(W_A, W_B)$ is just

$$n(W_A, W_B) = \frac{N(W_A, W_B)}{Z(W_A)(W_B - W_A)}$$

Recall that $Z(W_A)$ is defined by equation (1). However, some absorbers near the detection limit with $W_A \leq W_i < W_B$ may not be in $S(W_A)$. We can make maximum use of available data by dividing (W_A, W_B) into N_W subregions defined by $w_j = -j(W_B - W_A)/N_W + W_A$ and approximating

$$n(W_A, W_B) = \frac{1}{N_W} \sum_{j=1}^{N_W} n(w_{j-1}, w_j)$$

If we make N_W large enough, then $N(w_{j-1}, w_j)$ will be either 0 or 1, and we can replace the above equation by a sum over all the N_{obs} lines detected in the spectra, giving

$$n(W_{A}, W_{B}) = \sum_{i=1}^{N_{obs}} \frac{g(W_{i} - W_{A})g(W_{B} - W_{i})}{Z(W_{i})(W_{B} - W_{A})}$$

The uncertainty in this quantity is given by the standard counting statistics (Poisson deviations) on the number of lines with $W_A \leq W_i < W_B$.

9.2. Distribution Function Results

The results of our statistical analysis of our sample of 56 quasars are given in Table 5. Here N_{obs} is the number of observed lines, Z is the redshift path length for the sample, $\langle z \rangle$ is the average redshift of absorbers in the sample, $\langle N(z) \rangle$ is the average number of absorbers per unit redshift, and γ_0 , W_0^* , and N_0^* are the best-fit values for the model parameters given in equations (2) and (3). We have calculated the distribution parameters for a number of different subsamples of our data, alone and in combination with the large data set of SS. The Kolmogorov-Smirnov (KS) probability for each of the samples was at least 0.46, indicating that the derived distributions are good fits to the data. The samples are defined as follows:

- A Our entire sample, analyzed using a discrete set of W_0 limits to approximate the local equivalent width limit. Parameters which depend on a uniform equivalent width limit are not calculated.
- A2,3 Lines in our sample which are in S(0.6 Å) and S(1.0 Å), respectively.
- MG1,2,3 Lines from SS and SSB1 which are in S(0.3 Å), S(0.6 Å), and S(1.0 Å), respectively.

 $MG \qquad MG2 + MG3.$

- An-MGn Sample An, with regions in MGn excluded. This sample is thus independent of the SS and SSB1 data. The value of n can be 2, 3, or blank (indicating the complete sample).
- An+MGn Sample An combined with sample MGn. In the case of overlapping regions in the same QSO, the MGn data are used.

FIG. 3.—Left: redshift path length vs. rest equivalent width limit. Right: sight lines vs. redshift for various equivalent width limits. The thickest line is for $W_0 = 0.3$ Å, the medium line is for $W_0 = 0.6$ Å, and the thinnest line is for $W_0 = 1.0$ Å.

FIG. 4.—Power-law distribution function parameters δ and C as a function of the upper cutoff W_{cut} used in the maximum-likelihood fitting. The solid and dashed horizontal lines show the value and 1 σ limits derived by SS for δ and C.

		Re	SULT	s of Statisti	CAL ANALYS	IS	
Sample	Nobs	Z	$\langle z \rangle$	$\langle N(z) \rangle$	γ0	W ₀ *	
Α	18		1.00		1.41 ± 1.00	0.62 ± 0.13	1.42 ± 0.22^{a}
A+MG	87		1.13		1.21 ± 0.42	0.65 ± 0.07	1.47 ± 0.14^{a}
A-MG	14		0.93		0.98 ± 1.16	0.56 ± 0.13	1.40 ± 0.27^{a}
A2	14	26.6	1.03	0.60 ± 0.15	1.87 ± 1.20	0.58 ± 0.14	1.71 ± 0.62
MG1	110	114.2 ^b	1.12	$0.97\pm0.10^{ m b}$	$0.78\pm0.42^{\rm b}$	0.60 ± 0.06	1.55 ± 0.20^{b}
A2+MG2	80	153.3	1.13	0.53 ± 0.06	1.11 ± 0.46	0.64 ± 0.07	1.36 ± 0.21
A2-MG	11	21.2	0.93	0.57 ± 0.16	2.07 ± 1.42	0.53 ± 0.13	1.77 ± 0.77
MG2	69	132.0	1.14	0.53 ± 0.06	1.04 ± 0.49	0.66 ± 0.08	1.31 ± 0.21
A3	7	31.9	0.98	0.25 ± 0.09	1.26 ± 1.64	0.62 ± 0.22	1.26 ± 0.84
A3+MG3	44	161.0	1.26	0.28 ± 0.04	2.47 ± 0.68	0.68 ± 0.10	1.19 ± 0.32
MG3	38	134.6	1.31	0.29 ± 0.05	2.58 ± 0.73	0.70 ± 0.11	1.22 ± 0.34

TABLE 5 SULTS OF STATISTICAL ANALYSI

^a Calculated using approximate formula described in text.

^b Taken directly from SS and not calculated with our software.

Note that there were insufficient lines in sample A3–MG3 to do meaningful statistics. Samples MG2 and MG3 were assembled from the published tables and plots of equivalent width detection limits in SS and SSB1. These samples were then analyzed in exactly the same way as our own data. For sample MG1, determining the regions which comprise S(0.3 Å) from the published plots is difficult. Since our sample has a small redshift path length at this limit, there is little point in combining our data with MG1 for redshift evolution calculations. However, the equivalent width distribution calculations can be done using only the line lists.

The primary result shown by Table 5 is that our new sample is statistically consistent in all cases with the larger sample of SS and SSB1. In all cases our independent samples (such as A-MG) give redshift and equivalent width distribution parameter values which are consistent with SS and SSB1, but with larger uncertainties. The number of absorbers per unit redshift for various equivalent width limits is also consistent. By combining our new data with the published data, we have reduced the uncertainties in the distribution parameters, in most cases by 10%-20%.

In Figure 5 we graphically illustrate the values of γ_0 and W_0^* for the samples in Table 5, grouped roughly by equivalent width limit. Note that we are plotting these two parameters together only as a convenient way of displaying the data, and not to imply any relationship between them. On the left are our complete sample and MG1, in the middle are the 0.6 Å data, and on the right are the 1.0 Å data. In these plots the triangle represents the values derived from our data, the square is for our data combined with SS, the circle is for our data in which the objects in common with SS have been excluded, and the cross is for the data from SS. Recall that we were unable to analyze the A3-MG3 sample. These plots show once again that our results are statistically consistent with the data in SS.

Referring back to Table 5, the value of γ_0 is clearly seen to be a function of the sample equivalent width limit. For the 0.3 Å (MG1) and 0.6 Å samples (MG2 and A2), the distribution of absorber redshifts is consistent with no evolution in galaxy number density and cross section, for $q_0 = 0-0.5$. However, the strong absorbers in the 1.0 Å samples (MG3 and A3) are inconsistent with no evolution at 2–3 σ , in the sense that the overall cross section was larger in the past. We also see that the

A+MG

A-MG

3

MG1

2

γ,

0.8

0.6

0.4

0

1

W₀ (Angstroms)

value of the equivalent width distribution parameter W_0^* is independent of the equivalent width limit for all of the samples. This implies that a single exponential is a good characterization of the absorber population over the entire range of observed equivalent widths.

The observed values of n(z) for three different samples, MG1, A2+MG2, and A3+MG3, are shown in Figure 6. The data have been binned for display purposes, and the solid lines show the best-fit power-law distributions. The strong dependence of both the normalization and the power-law index on equivalent width limit is apparent.

In Figure 7 we plot the observed values of n(W), binned for display purposes. The solid line in the figure is the plot of n(W) using the form in equation (3) and the values for N^* and W^* given in the last row of Table 5. The dashed line is the same function using the values derived by SS of $N^* = 1.55 \pm 0.20$ and $W^* = 0.66 \pm 0.11$. Although our values are somewhat lower than those found by SS, they are consistent within the uncertainties.

9.3. Associated Absorbers

As was mentioned in the Introduction, the intrinsic properties of the quasars in our sample are very different from those of previous Mg II surveys. In particular, the quasars in our survey have an average absolute magnitude of -26.7, compared with -28.6 for SS, radio flux $S(2.7 \text{ MHz}) \ge 1$ Jy, and radio spectral index steeper than $\alpha = 0.4$. Within the paradigm which explains the broad properties of quasars by orientation effects (see, e.g., Antonucci 1993), the objects in our survey are relatively faint quasars with jets oriented toward the plane of the sky. Since both of these attributes could plausibly cause an increase in the number of low-ionization associated absorbers, an analysis of these systems is very useful.

In Figure 8 we show a histogram of the number of absorption systems in sample A versus the apparent ejection velocity βc with respect to the quasar. The data are binned in 1000 km s⁻¹ intervals. In the calculation of β we have used the emission-line redshifts which we determined in § 5. The plot suggests an excess of absorbers with apparent ejection velocity less than 6000 km s⁻¹. A total of six absorbers are found in the range -1000 to +6000 km s⁻¹. However, it is important to note that

A3+MG3 MG3

3

2

γ.

0.8

0.6

0.4

0

1

W₀ (Angstroms)

γ,

1

2

0.8

0.6

0.4

0

W₀ (Angstroms)

A2

A2+MG2

3

A2-MG

MG2

© American Astronomical Society • Provided by the NASA Astrophysics Data System

1994ApJS...93...1A

FIG. 6.—Number of absorbers per unit redshift for samples MG1, A2+MG2, and A3+MG3. The data have been binned for display purposes, and maximum-likelihood fits to the data are shown by the solid lines.

we have made no corrections to account for varying spectral coverage and signal-to-noise ratio within the spectra. The plot of Figure 8 is thus only a qualitative illustration of the distribution of velocities.

A quantitative measure of the excess of associated absorbers is easily obtained by integrating the derived distribution n(z, W) over the regions within ± 6000 km s⁻¹ of the Mg II emission peaks, using the local rest equivalent width limits. This gives an expected number of absorbers based on the "background" of intervening absorbers. For sample A, the expected number of absorbers within ± 6000 km s⁻¹ of the emission peak is 2.17, with the formal uncertainty less than 0.1. Given this mean, the probability of observing six or more absorbers is 2.4%. If we limit the negative velocity to that which could plausibly occur in normal galaxies in front of the quasar, giving the interval from -1500 to 6000 km s⁻¹, the chance of seeing at least six absorbers is down to 0.3%.

This excess of Mg II absorbers over the background number is in contrast to the results of previous surveys which have addressed this question (SS; SSB1; Lanzetta et al. 1987). The best statistics are from SS, who observed 89 Mg II emission peaks and found six absorbers with $|\beta c| \le 6000$ km s⁻¹. This is consistent with the number expected from distributed absorbers. As we have pointed out, the distinction lies in the intrinsic source properties, and a similar disagreement between surveys is found for the associated C IV lines. The spectra of 55 QSOs (both radio-loud and radio-quiet) obtained by SBS showed no excess, nor did the subsample of radio-loud quasars. However, in a survey of steep-spectrum 3C and 3CR quasars, a sample similar to ours, it was found that 10 out of 12 showed associated C IV absorption (AWFC). An excess of associated C IV absorbers was also found by Foltz et al. (1986) and Weymann et al. (1979). In all cases, the surveys which contain intrinsically faint, steep-spectrum radio sources show an excess, while the surveys containing QSOs selected by optical luminosity, with an assortment of radio properties, show no excess.

10. SUMMARY

We have presented moderate-resolution $(100-360 \text{ km s}^{-1})$ optical spectra of 56 steep-spectrum quasars obtained at the Multiple Mirror Telescope and Palomar Observatory. These quasars were selected based on their radio and optical luminosity, radio spectral index, redshift, and declination, as described in Paper I. This selection gives us a sample with intrinsic source properties that are very different from those of previous Mg II surveys, and this has allowed our unexpected finding of an excess of associated Mg II absorbers.

The primary purpose of our survey was to find relatively strong Mg II absorption-line redshifts to allow a subsequent search for H I 21 cm absorption in these quasars (Paper I). This means that our sample is largely sensitive to rest equivalent widths above 0.6 Å. For limits of 0.3, 0.6, and 1.0 Å, the total redshift path lengths of our sample are 9.9, 22.8, and 28.6, respectively. The quasar emission redshifts fall in the range 0.5-3.5, with the majority being between 0.7 and 1.5.

In addition to the spectra and associated error arrays, we have presented plots of the Mg II rest equivalent width limit versus redshift in each of the quasars. We have given a statisti-

FIG. 7.—Number of absorbers per unit equivalent width. The solid line is the maximum-likelihood fit to our data for n(W), and the dashed line is the best-fit curve given by SS. The same data are plotted in linear and logarithmic axes.

FIG. 8.—Histogram of the number of Mg II absorbers in sample A vs. apparent ejection velocity with respect to the quasar. The data have been binned in 1000 km s⁻¹ intervals. This plot of the raw data suggests an excess of associated absorbers; an unbiased, quantitative measure of this excess is given in the text.

cally complete list of all absorption lines found, both Galactic and extragalactic. In our spectra we find a total of 29 Mg π systems, 18 of which have not been previously reported.

We have derived the best-fit redshift and equivalent width distribution parameters for 11 different subsamples of our data

and the data of SS and SSB1. We find that the values determined from our sample are statistically consistent with previously found values. The combination of our spectra with those presented in SS and SSB1 yield the following distribution parameters: for $W_{\min} = 0.6$ Å, $\gamma = 1.11 \pm 0.46$, $W^* = 0.64 \pm 0.07$ Å, and $N^* = 1.36 \pm 0.21$; for $W_{\min} = 1.0$ Å, $\gamma = 2.47 \pm 0.68$, $W^* = 0.68 \pm 0.10$ Å, and $N^* = 1.22 \pm 0.32$.

Of the 29 Mg II systems, six have an apparent ejection velocity from the quasar of less than 6000 km s⁻¹ and are termed "associated." The observed number of associated systems in our spectra is inconsistent with Poisson fluctuations of the nonassociated background systems at 97%–99% confidence. This is the first time such an excess of associated Mg II absorbers has been observed.

We thank the staff members at the VLA, the Multiple Mirror Telescope, and Palomar Observatory for their assistance. We also thank M. Birkinshaw for assistance in understanding the VLA calibrations and for comments on the manuscript. The work of T. L. A. was supported by NASA grant NGT-50938 awarded by the NASA Graduate Student Researchers Program. J. B. was supported by RII-8800660 and AST-9058510 from the National Science Foundation. M. E. was supported by NASA contracts NAS8-30751 (*HEAO 2*) and NAS8-39073 (ASC), and by NASA grant NASW-2201 (LTSA).

REFERENCES

- Aldcroft, T. L., Elvis, M., & Bechtold, J. 1993, AJ, 105, 2054 (Paper I) ——. 1994, in preparation
- Anderson, S. F., Weymann, R. J., Foltz, C. B., & Chaffee, F. H. 1987, AJ, 94, 279 (AWFC)
- Antonucci, R. 1993, ARA&A, 31, 473
- Barthel, P. D., Tytler, D. R., & Thomson, B. 1990, A&AS, 82, 339 (BTT)
- Bergeron, J., & Boissé, P. 1991, A&A, 243, 344
- Bergeron, J., Cristiani, S., & Shaver, P. A. 1992, A&A, 257, 417
- Boissé, P., & Bergeron, J. 1985, A&A, 145, 59
- Boissé, P., Boulade, O., Kunth, D., Tytler, D., & Vigroux, L. 1992, A&A, 262, 401
- Briggs, F. W. 1988, in QSO Absorption Lines, ed. J. C. Blades, D. A.
- Turnshek, & C. A. Norman (Cambridge: Cambridge Univ. Press), 275 Briggs, F. H., Turnshek, D. A., Schaeffer, J., & Wolfe, A. M. 1985, ApJ,
- 293, 387 Brown, R. L., Broderick, J. J., Johnston, K. J., Benson, J. M., Mitchell,
- K. J., & Waltman, W. B. 1988, ApJ, 329, 138
- Brown, R. L., & Mitchell, K. J. 1983, ApJ, 264, 87
- Burbidge, E. M., & Kinman, T. D. 1966, ApJ, 145, 654
- Chaffee, F. H., Jr., & Latham, D. W. 1982, PASP, 94, 386
- Cohen, R. D., Barlow, T. A., Beaver, E. A., Junkkarinen, V. T., Lyons, R. W., & Smith, H. E. 1992, ApJ, 421, 453
- Elvis, M., Fiore, F., Mathur, S., & Wilkes, B. J. 1994, ApJ, 425, 103
- Foltz, C. B., Chaffee, F. H., Jr., & Wolfe, A. M. 1988, ApJ, 335, 35
- Foltz, C. B., Weymann, R. J., Peterson, B. M., Sun, L., Malkan, M. A., & Chaffee, F. H. 1986, ApJ, 307, 504
- Junkkarinen, V., Hewitt, A., & Burbidge, G. 1991, ApJS, 77, 203
- Khare, P., York, D. G., & Green, R. 1989, ApJ, 347, 627
- Lanzetta, K. M., Turnshek, D. A., & Wolfe, A. M. 1987, ApJ, 322, 739
- Latham, D. W. 1982, in IAU Colloq. 67, Instrumentation for Astronomy
- with Large Optical Telescopes, ed. C. M. Humphries (Dordrecht: Reidel), 245

- Meyer, D. M., & York, D. G. 1992, ApJ, 399, L121
- Morton, D. C., & Smith, W. H. 1973, ApJS, 26, 333
 Murdoch, H. S., Hunstead, R. W., Pettini, M., & Blades, J. C. 1986, ApJ, 309, 19
- Oke, J. B., & Gunn, J. E. 1982, PASP, 94, 586
- Sargent, W. L. W., Boksenberg, A., & Steidel, C. C. 1988a, ApJS, 68, 639
- (SBS)
- Sargent, W. L. W., Steidel, C. C., & Boksenberg, A. 1988b, ApJ, 334, 22 (SSB1)
- ——. 1989, ApJS, 69, 703 (SSB2)
- Sargent, W. L. W., Young, P., Boksenberg, A., & Tytler, D. 1980, ApJS, 42, 41
- Schmidt, C. D., Weymann, R. J., & Foltz, C. B. 1989, PASP, 101, 713
- Schneider, D. P., et al. 1992, preprint
- Smith, H. E., & Spinrad, H. 1980, ApJ, 236, 419
- Steidel, C. C. 1992, in The Evolution of Galaxies and Their Environment, ed. J. M. Shull & H. Thronson (Dordrecht: Kluwer), in press
- Steidel, C. C., & Sargent, W. L. W. 1992, ApJS, 80, 1 (SS)
- Tytler, D., Boksenberg, A., Sargent, W. L. W., Young, P., & Kunth, D. 1987, ApJS, 64, 667
- Véron-Cetty, M.-P., & Véron, P. 1989, ESO Sci. Rep., No. 7
- Weymann, R. J., Williams, R. E., Peterson, B. M., & Turnshek, D. A. 1979, ApJ, 234, 33
- Wills, B. J., Netzer, H., Uomoto, A. K., & Wills, D. 1980, ApJ, 237, 319
- Yanny, B. 1992, PASP, 104, 840
- Yanny, B., & York, D. G. 1992, ApJ, 391, 569
- York, D. G., Yanny, B., Crotts, A., Carilli, C., Garrison, E., & Matheson, L. 1991, MNRAS, 250, 24
- Young, P., Sargent, W. L. W., & Boksenberg, A. 1982, ApJS, 48, 455 (YSB)