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ABSTRACT

C-type magnetohydrodynamic shocks in the partially ionized interstellar medium are studied in the two-
fluid approximation. The ionized fluid can move along the magnetic field lines, while it interacts with the
neutral fluid via ion-neutral elastic scattering. I use an explicitly flux-conserving two-dimensional Eulerian
flux-corrected transport code to study the dynamics of two-fluid shocks. A numerical instability intrinsic to
two-fluid problems was discovered, and a solution to the problem is proposed. The code can successfully
simulate C-type shocks. The results of the linear stability analysis by Wardle are confirmed, and the nonlinear

behavior of the instability is explored.

Subject headings: methods: numerical — MHD — shock waves

1. INTRODUCTION

There are several mechanisms driving shocks into the inter-
stellar medium (ISM): supernova explosions, strong stellar
winds, and collisions of molecular clouds. The partially ionizd
ISM can be treated as two distinct fluids coupled by the ion-
neutral friction. When the fractional ionization is small, the
neutral fluid carries most of the density and inertia, but only
the ion fluid interacts with the dynamically important mag-
netic field. If the shock speed v, is lower than the ion Alfvén
speed v = B/(4np™)/2, where B is the magnetic field strength
and p" is the ion density, the ions can build up a magnetic
precursor ahead of the shock (Draine 1980), and the ion flow
remains continuous. There is an ion-neutral slip (ambipolar
diffusion) throughout the shock front, thus—in the “standard
shock frame,” where the shock front is at rest—the ions are
decelerating the neutral fluid running into the shock at a speed
of v,. If the neutral fluid remains cold due to the weakness of
the shock, or because of effective cooling, the neutral flow will
be supersonic everywhere and the flow variables will vary con-
tinuously, hence the shock is called C-type. If the neutral fluid
reaches a temperature so that the flow becomes subsonic and
(as it cools down behind the shock) supersonic again, the shock
will be either J-type, containing a jump in the neutral flow
variables at the supersonic-subsonic transition, or C*-type
(Roberge & Draine 1990), having two continuous sonic points
in the neutral flow. I will focus on numerical studies of C-type
shocks; the methods presented here may well work for the
other types too, but they are beyond the scope of this paper.
Draine, Roberge, & Dalgarno (1983) conclude that shocks with
v, S 25 km s~ ! in a gas with 102 cm ™3 ambient density and
10~* fractional ionization are C-type. The maximum velocity
rises to around 50 km s~ ! in denser gas with lower ionization
(Smith & Brand 1990). .

The physical and observational significance of C-type
shocks is discussed in many papers; I refer the reader to refer-
ences given by Wardle (1990, 1991a, b) and an excellent review
article by Draine & McKee (1993). It was recognized by
Wardle that while the models of the chemistry and physics of
C-type shocks assumed a steady state planar shock front, in
reality all but the weakest shocks are subject to an instability
analogous to the Parker instability. The magnetic field lines

can buckle across the shock front and the ions flow along the
field lines due to the force of ion-neutral friction. The ion
density increases in the troughs (i.e., in the bends closer to the
downstream flow), thus the neutral drag will be stronger at
these points than at the crests of the magnetic field, and the
field lines will bend further. The linear analysis caried out by
Wardle showed that there will be growing modes with wave-
length on the order of the shock thickness L, and with an
e-folding time that can be much shorter than the flow time fg,,
through the shock. Therefore, the steady state models are of
dubious validity, and a fully dynamical simulation is called for
to model the physics of C-type shocks which fulfill the insta-
bility criterion. Another consequence of the instability is the
formation of high-density lumps of the neutral fluid, a possible
place for low-mass ~0.1 Mg star formation. One needs,
however, to know the nonlinear behavior of the instability to
check whether these speculations are correct. There is, of
course, a possibility that the instability saturates at a low
amplitude, or that the necessary approximations in the linear
analysis make the analytic results very different from the solu-
tions of the exact equations; these questions give further moti-
vation for numerical simulations.

I set out to study numerically the dynamics of two-fluid
shocks. The present paper concentrates on the numerical
methods and problems related to the integration of the two-
fluid differential equations. A few test cases will be presented,
both to confirm the results of the linear analysis and to show
that the code can simulate cases unavailable for analytic calcu-
lations. A more thorough exploration of the parameter space
will be presented in a subsequent paper in the near future. Here
I restrict myself to study the stability of isothermal shocks
with plane-parallel initial conditions. The plane-parallel
approximation depends on Lg,, ~ 0.01 pc being much smaller
than the curvature radius of the shock front, which is often
satisfied. For the initially cold gas, isothermality is equivalent
to the assumption that the neutral pressure is negligible com-
pared to the magnetic pressure throughout the shock front due
to the effective cooling. These simplifications are made to
reduce the number of free parameters and to facilitate compari-
sons with the analytical results, although the numerical model
is not limited by them. On the other hand, the code neglects
dynamical effects of grains, chemical reactions, and ionization.
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Ionization is negligible at v, < 50 km s~ !, while chemical reac-
tions probably do not change the dynamics appreciably. Inclu-
sion of chemistry would become unavoidable if the purpose
was to predict and compare line emissions or column densities
to observations. The dynamical role of grains is controversial;
much depends on the size distribution of grains, which is a
poorly known parameter (Elmegreen & Fiebig 1993). For frac-
tional ionization x, 2 104, as in the simulations presented in
this paper, grains are unimportant in any case. For the sake of
simplicity these effects are omitted from our numerical model.
Below 1 briefly review the analytic results regarding the
steady state solution and linear perturbation of C-type shocks
(Wardle 1990, 1991a, b and references therein). The main
physical parameters characterizing the structure of the shock
are the shock speed v,; the neutral density p™; the fractional
ionization x, = n?/ny;, where n” and ny, are the ion and hydro-
gen number densities, respectively; the rate coefficient for ion-
neutral elastic scattering {ov)> &2 x 107° cm® s™*; and the
strength and direction of the magnetic field B in the ambient
medium. A shock is called perpendicular when the angle
between the magnetic field and the normal to the shock front is
0, = 90° upstream, and it is oblique when 8; < 90°. The steady
state solution for a perpendicular shock involves motions per-
pendicular to the shock front only, while oblique shocks with
velocity components parallel to the shock front are more
complex due to their lower degree of symmetry. The tem-
perature of the ambient medium T = 20 K has no influence on
the dynamics because of the isothermal assumption. Assuming
that the helium number density is 10% of the hydrogen

number density, p® = 1.4Myny, where My is the mass of the.

hydrogen atom. Typical values in the ISM are ny = 10>-10°
cm 3, B =10-10% 4G, and x, = 10™* to 10~ 8, with scalings
ny/cm ™3 ~ (B/uG)? ~ 107 %x_ ? except for the lowest density
“diffuse ” medium, where x, & 10”*. The scaling laws imply
L. = 1.4 x 10'7 (107 7/x,) cm with geometric factors of order
unity for oblique shocks and tg,, ~ 5 x 10'*(1077/x,) s.
The neutral Alfvén speed in the unshocked medium is
v = B/(4np™)!/? ~ 2 km s~ !, while the ion Alfvén speed is
v &~ 1200(10~7/x,)!/> km s™?, and the compression ratio is
rp~/20,/v% from the balance of neutral ram pressure
upstream and magnetic pressure downstream.

In the limit of very small fractional ionization there are two
dimensionless numbers that determine the stability of the
shock: the neutral Alfvén number A™ = v /v in the ambient
medium, and the angle ;. For perpendicular shocks Wardle
predicts instability if A™ 2 5, and he finds that oblique shocks
with the same A™ are even less stable than their perpendicular
counterparts. Note that {(sv) does not appear in the stability
condition; it determines the length and timescales of the solu-
tion only. In the linear analysis Wardle assumes that ion
pressure and ion inertia are negligible, which holds if
pP(®)? < B?/(47), i.e., the ion Alfvén number A? = v /v}) < 1.
In the diffuse medium with ny ~ 10> cm ™3, x, ~ 107%, and a
weak magnetic field B ~ 5 uG, the ion Alfvén speed is v} ~ 20
km s~ !; thus the condition is only marginally satistied. We
shall see, however, that the numerical results are very close to
the analytical predictions.

The rest of the paper is organized as follows: In § 2 the
differential equations of two-fluid magnetohydrodynamics are
presented with discussion of various algebraic approximations.
Section 3 describes the numerical algorithms used to solve the
fluid equations. Several improvements are proposed to the
flux-conserving implementation of the flux-corrected transport
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(FCT) finite-difference scheme. Section 4 discusses a few tests of
the code, the setting up of initial conditions, and the results of
sample simulations of C-type shocks. The results and conclu-
sions are summarized in § 5.

2. EQUATIONS

The fluid equations are written in terms of the conservative
variables: p'), m{), e), and B;, the mass momentum, and
energy densities of the fluid f, and the magnetic field strength,
respectively. The superscript f'is either i for ions or n for neu-
trals, while the lower index j denotes any of the three spatial
variables x, y, and z. The momenta are simply m{) = p (.
The energy densities contain kinetic, thermal, and magnetic
contributions:

(2.1a)

1
e = E p(n)(v(n))Z + p(n) ,

)’(”) -1

p(i) + L B2 ,

I S
() = — )42
el =5 P10 +y(”—1 87

(2.1b)

where p? and y) are the thermal pressures and adiabatic
indices, respectively. The conservation equations for mass,
momentum, and energy, and the Maxwell equation for the
magnetic field, are

0,p® + 0, [mP1=0, (2.2a)
o,m + 8, [vPm{ — (1/4m)B, B]] + 0,[pd] = #\, (2.2b)
0, + 9,[v(e® + p®) — (1/4m)B, B;v\"] = 69, (2.20)

0,B; + 0,[B;v{) — B,v{]1 =0, (2.2d)
0,p" + d[mM =0, (2.2¢)
at m;-") + ak[v;‘n)mgn)] + aj[p(n)] = _yﬁj) , (2.2f)

8,6 + OLufPe™ + p)] = — A", ") — 69, (229)

where summation over repeated indices is implied. In the
numerical calculations the velocities and the pressures are
derived from the conservative variables rather than the other
way around; thus the velocities are v{") = m{"/p"”), while the
pressures are defined by the inverse of equations (2.1) as

. . S S 1
p? = (¥ — 1)<e(" -3 p PPl — o= B; Bj> ,  (23a)

. N |
p® =p + 3 B;B;, (2.3b)

p™ = (™ — 1)<e‘"’ - % p‘”’vﬁ-"’v}"‘) . (2.3¢)

The source terms £, 6%, and A are the drag force and energy
transfer between the two fluids, and radiative cooling, respec-
tively. Conservation of momentum and energy implies that
FW=—FPand 67 = —&W, as it is explicitly used above. I
note that ) = &Y — Ful) is the frictional heating plus
heat exchange through elastic scattering. Although the code
can handle any form of cooling function, in this paper I shall
use y™ = 1.001 instead, which effectively implies an isothermal
neutral gas, ie., a very efficient cooling. This simplification
allows easier comparison with the analytic results as well as a
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reduction of the number of free parameters. I take y® = 5/3 for
the ions. The drag force and energy transfer are

FO = apDp®(pin — p®) | (2.4a)
60 = M® -i M® [POp™(W — vP)e"M® + v M)
+ 3(pWpOM®™ — pOp™AD)] | (2.4b)
where
o= % ~37x103cemd3s7 g™t (240

is the coupling constant and M® ~ 30M, and M™ = (7/3)My
are the mean ion and neutral particle masses, assuming that
ny./ny = 10% and the hydrogen is fully molecular. In diffuse
molecular clouds, where the dominant ions are C* and H*
(D{ainei & Katz 1986), M® ~ 10My and a ~ 9.7 x 10*3 cm?
sTtg™h

In some cases it proved to be useful for the numerical stabil-
ity of the calculations to replace the differential equation (2.2¢)
for the ion energy density by an approximate algebraic equa-
tion. As Chernoff (1987) pointed out, the ion heat capacity is
low, thus the heating rate must be 4 x 0, i.e., the ions are
heated to an equilibrium temperature

TO = 7™ 4 1 M®@® — 2 (2.5)
3kg

where kg is the Boltzmann constant. The ion energy density is
therefore determined from p® = (kg/MW)pT® and equation
(2.1b). The energy transfer, needed for the neutral energy
density equation, simplifies to 69 = #Pv). Numerical tests
confirmed that the approximation hardly changes the other
flow variables, while the temperature remains smoother than if
it was integrated from the differential equation. I used the
algebraic approximation in the simulations presented in this
paper, but several check runs were done solving the full system
of differential equations.

A further algebraic approximation is possible for the ion
momentum equation. For low fractional ionization the domi-
nant terms in equation (2.2b) are the gradients of the magnetic
field and the drag force; ion pressure and momentum are negli-
gible if A? > 1 (Wardle 1991b). The balance between the domi-
nant forces is

; 1 1
sp=ofLnn]-a[Las]

Ton velocity can be expressed as v{ = v — F/(apPp™), and
m{ = p®p). While this simplification turned out to be useful
for the linear analysis, and in principle could reduce the
amount of computation in a numerical simulation, I found that
the approximation produced large numerical errors, probably
due to the infinite ion Alfvén speed implied by the tight coup-
ling of B; and v{’; thus, at least with our numerical code, I
could not make use of it.

2.6)

3. NUMERICAL METHOD

There are several methods in use to solve the hydrodynamic
equations (e.g., Woodward & Colella 1984). To choose the best
option, one needs to consider the specific application. Our
simulations involve shocks, magnetic fields, two fluids inter-
acting via ion-neutral scattering, and two spatial dimensions.
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Lagrangian methods were excluded, because they are difficult
to implement in two dimensions. The existence of shocks pro-
hibits the use of the simplest methods, like the Lax-Wendroff
scheme (Lax & Wendroff 1960), since in some cases even artifi-
cial viscosity (Lapidus 1967) is unable to make the calculations
numerically stable (see Brio & Wu 1988, p. 414, or Woodward
& Colella 1984, p. 146). Many of the most advanced methods
are based on solving the nonlinear Riemann problem exactly
(Godunov 1959) or approximately (Roe 1981) for each cell.
These are well studied and developed for hydrodynamical
simulations, but the first paper on extending the approximate
Riemann solver method to magnetohydrodynamics has
appeared only recently (Brio & Wu 1988). There seems to be
no easy way to generalize the exact Riemann solution to the
magnetic case, and especially not in two dimensions. The usual
operator splitting approximation may sacrifice some of the
benefits one hoped to gain from a highly advanced and compli-
cated scheme. Operator splitting makes it especially difficult to
keep the magnetic field divergence-free, since changes in one
sweep should be canceled exactly by the other sweep in the
other coordinate direction.

The method of choice was the FCT scheme (Book, Boris, &
Zalesak 1981), which offers an explicitly two-dimensional
Eulerian difference scheme on an optionally nonuniform rec-
tangular grid. It is known to work well for magnetohydro-
dynamic shock waves, and has a version that can conserve the
divergence of the magnetic field to the accuracy of numerical
truncation errors (DeVore 1991). It is relatively easy to code
but sufficiently powerful for our purposes. One disadvantage in
comparison with some other methods is the appearance of
small oscillations (“ringing ”) behind sharp features like shock
waves. Fortunately the C-type shocks of primary interest here
contain no sharp jumps in any variable. The original realiza-
tion of the magnetic flux-conserving constrained transport
(CT) algorithm by Evans & Hawley (1988), which uses the van
Leer (1979) monotonic method, seems to perform somewhat
worse than the implementation of the CT approach to FCT
(DeVore 1991). A very recent approach (Stone & Norman
1992), method of characteristics—constrained transport (MOC-
CT), may be comparable to or better than DeVore’s FCT. The
well-known alternative to the CT-type algorithms is the use
of the vector potential as a flow variable, and obtaining
a divergence-free magnetic field from it. Although it is an
elegant and simple idea, it requires accurate calculation of the
second derivatives of the potential (needed for the first deriv-
atives of the field), thereby essentially reducing the order of
accuracy by 1.

3.1. The FCT Method

The FCT method is based on the idea of using a high-
accuracy (second or higher order) difference scheme when it is
possible, but applying a first-order diffusive solution where the
higher order method is bound to break down, for example at
shock waves, where the flow variables change dramatically
from cell to cell and second-order approximations fail.
Actually, the prescription is more sophisticated than that: the
difference between the high-order-accurate and the low-order—
diffusive solutions, the “antidiffusive flux,” is multiplied by a
coefficient between 1 and O before being added to the low-
order solution. Where the antidiffusive flux is fully applied, the
final solution will be second-order or higher order accurate,
while at other places where the antidiffusive fluxes are
“corrected ” (i.e., the coefficients are less than unity), the result
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is a more diffusive but stable solution. The correction method
(Zalesak 1979) aims to preserve the stability and positivity of
the diffusive solution, so that no new minima and maxima may
be created by the application of the antidiffusive flux. This
criterion proved to be the most powerful in deciding whether
the second-order corrections make the solution more accurate
or introduce huge errors. Note that the diffusive solution may
show some “ringing,” but the flux correction stops further
amplification of this finite amplitude and stable error.

The FCT method represents shock waves with steep gra-
dients of the flow variables over a few cells; typically the
shocks are smeared over three to five cells. Although this is
clearly different from the exact step functions, and the error at
a given cell near the shock front can be large, the overall jump
conditions and the propagation speed of the shock wave will
faithfully reproduce the analytical solution. The key is that
FCT, like most of the popular hydrodynamic algorithms,
explicitly conserves mass, momentum, and energy. The fluid
equations are rewritten in terms of mass, momentum, and
energy densities, and these conserved flow variables are stored
for each cell in the simulation. Numerical fluxes of these vari-
ables are calculated at the cell boundaries and added to and
subtracted from the flow variables of the two adjacent cells;
thus the sum is conserved to the accuracy of machine round-off
errors. The artificially introduced diffusive and antidiffusive
fluxes are applied the same way. Generally there can be source
terms in the equations as well: cooling and heating that change
the energy density, or the drag force between the two fluids,
which acts like a source of momentum density in the momen-
tum equations for each fluid. Source terms are represented in
the cell centers and are added to the variables of the same cell.

In two dimensions the differential equation for a flow vari-
able w (which can be p'), m{"’, e, or B,) has the following
form:

ow OF
W OFw]

L O] _

1
ot T ox dy 3.1)

S[w] .

In FCT first the fluxes and sources are applied (transported
stage):
wili, j1 = wli, 1+ AuF.[i — 3, /1 — F.[i + 3, ]]

+ F)l,j— 31— FlL,j + 31+ S0, D) - (3.2)
The edge-centered fluxes are calculated from the flow variables
of the neighboring cells as described in the next section. For the
sake of simplicity I assume a uniform grid with Ax = Ay =1
cell. Next the diffusive fluxes are calculated from the flow

velocities and the gradients of w at the cell boundaries
(diffusive stage) and added to the solution:

wPli, j1 = wili, ] + F2[i — 3, j1 — F2[i + 5, ]]

+ FYLj— 31— FJl,j + 31 (3.3)

Finally the antidiffusive fluxes are calculated (F{ and F}), then
corrected according to the monotonicity criterion (FS and F 9}
and added to w”:

w*[i, j1 = wPi, j1 + FS[i — 5, /1 — FSOi+ 4, 71

The calculations of the fluxes F, and F, are analogous to their
physical equivalents in the differential equation. The diffusive

(3.4)
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and uncorrected antidiffusive fluxes are defined as
F2li+ 3,1 = +(5 + €l + 2, 13wl + 1,j1 — wli, j]) ,
(3.5a)
Fili+ 3,j1= —(5 — €0 + 3, /10w i + 1, j1 — w3, 1),
(3.5b)

where €,[i + 1, 7] = v.[i + 1, /1(At/Ax), and analogous expres-
sions apply to the y components. Note that the artificial diffu-
sive and antidiffusive fluxes are, unlike the physical fluxes, not
multiplied by At when applied, but their total effect approaches
zero for At — 0 as expected.

The one-step FCT algorithm can easily be modified to a
two-step, time-centered procedure. In the first half-step the
flow variables are advanced by At/2, and fluxes and source
terms are calculated from them. Next, starting from the orig-
inal flow variables, a full At step is made, but this time the
time-centered fluxes are used. Formally:

{wl£], F[1], S[e1} — {wlt + At/2], F[t + At/2], S[t + At/2]}
{wlt], F[t + At/2], S[t + At/2]} - {w[t + Ac]} . (3.6)
The maximum size of the time step At is determined by the
Courant condition, which basically says that no signal should
propagate more than about one cell in one time step. In MHD
the fast magnetosonic waves have the highest speed, thus
A _ A > . G
| vxl + Crast I vyl + cfas\
where ¢, = c2,,.4 + V3. In the one-step method the Courant

number has to be C < 0.5; usually 0.3-0.4 is taken. In the
time-centered version C = 0.6 may be used safely.

AtSAtCECmin<

3.2. Modifications to the Original FCT Algorithm

In the original descriptions of FCT the edge centered fluxes
are calculated from edge centered flow variables,

wli + 1, j1 + w[i, j]>
> .

This requires the centering of all fluid variables in both the x
and y directions at every time step, since they are given and
calculated at the cell centers only. Ryu (1991) has invented and
thoroughly tested a simple modification that uses less CPU
time and memory while having the same accuracy. First notice
that one can calculate the fluxes at the cell centers and inter-
polate to the cell edges afterward:

Fywli + 1, j1) + F.(wli, 1)
> :

The real gain is that there is no need for the centering at all,
since only the gradients of the fluxes are needed in equation
(3.2), and they can be obtained as

= > . (3.10)

This is a second-order approximation to d, F,(x[i]), just like
the original formula. Note that this simplification cannot and
should not be used for the diffusive and antidiffusive fluxes.

Fli+3,j1=F x< (3.8

Fli+3]= (3.9)
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Another change due to Ryu is the replacement of the trans-
ported wT by the diffused w” flow variable in the definition of
the uncorrected antidiffusive fluxes in equation (3.5b). Numeri-
cal experiments show a rather slight difference in performance,
and probably in favor of Ryu’s method. With the modification
it becomes unnecessary to calculate and store the transported
flow variable wT separately; one can add the diffusive fluxes
right away in equation (3.2). The high-order solution, when no
flux correction is done, differs only by a term fourth order in
Ax and Ay from the original method.

3.3. Solving for the Magnetic Fields in FCT

The x and y components of the magnetic field can in prin-
ciple be handled the same way as the other flow variables. The
results achieved this way can be satisfactory, but the presence
of divergence in the calculated magnetic field is a disturbing
sign. A detailed analysis of this problem can be found in the
description of the constrained transport method by Evans &
Hawley (1988). The solution outlined in their paper relies on
the idea of placing the magnetic fields to the cell edges rather
than to the cell centers. Fluxes, the (v x B) terms, are calcu-
lated at the cell corners and are added to and subtracted from
the B, and B, components sitting on the four edges that meet
at the corner. The numerical equivalent of the divergence of the
magnetic field at the cell center is

v .B=Bx[i + %5.]] —Bx[l _ %’]]

Ax
PR L _ N l
+ By[l’] + 2] By[l’] 2] . (311)
Ay
The fluxes, F,[B,]=F,[B,]=0 and F=F][B,]=

—F,[B,] = v, B, — v, B, (see eq. [2.2d]), are applied as

Bili+%,jl1=B,+AuF[i+%,j—3]1-Fli+%j+3)),

(3.12)

Bili,j+3]=B,—A(F[i—3,j+ 3] —Fli+ 3,j+3)).
By substituting equation (3.12) in equation (3.11), it can be
easily shown that V - BT = V + B; thus the numerical diver-
gence is conserved if the (physical as well as diffusive and
antidiffusive) fluxes are all added as described here.

Numerical experience showed that straightforward applica-
tion of the CT-type magnetic field and flux centering to the
original FCT algorithm results in an excessively diffusive solu-
tion. DeVore invented a modified version of FCT to deal with
the magnetic fields. The basic idea is to evolve the two com-
ponents B, and B, together through the transport, diffusive,
and antidiffusive stages, while keeping track of the flux contri-
butions from the two fields separately, i.e., the fluxes are split
into two partial fluxes: F = F? + F5, The partial antidiffusive
fluxes are corrected separately, thus the diffusion is reduced.
Even though the monotonicity is enforced less strictly this way,
numerical tests by DeVore show that the solution remains well
behaved. ,

As in the case of other flow variables, I found it beneficial to
use the diffused rather than the transported magnetic field as a
basis for the uncorrected antidiffusive flux. I also want to point
to a minor error in DeVore’s paper: the definition following
equation (A9) has wrong superscripts and should probably
read

y =1
B ij+1/2 = 4(B§cyi—1/2j + B;yi—1/2j+l + B;yi+l/2j + BZ;+ 1/2j+1) .

(3.13)
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The equal weighting of the i — 3 and i + 7 centered terms is
not really accurate for a nonuniform grid, since the distance
from the i center to the i — & edge is not necessarily equal to
the distance to the i + 3 edge (the edges, on the other hand,
exactly bisect the distances between cell centers). This inaccu-
racy is, however, not serious, since cell sizes should not change
more than a few percent from cell to cell, and the terms involv-
ing BZ;; 1/, have small coefficients and are of second or higher
order anyway.

3.4. Numerical Instability of Two-Fluid Hydrodynamics

There is an intrinsic numerical instability related to the fric-
tion between the neutral and ion fluid. To demonstrate the
mechanism for this instability, let us take a simple one-
dimensional steady state flow with both fluids at constant den-
sities and temperatures, and at the same constant velocity. The
magnetic field can be taken to be homogeneous too.

Imagine that there is a slight staggered perturbation of the
jon velocity, ie., in every second cell the ion momentum is
slightly higher, and in every other cell it is slightly lower than
the equilibrium value. The neutral momentum is changed
accordingly but with opposite sign; thus the total momentum
is conserved. The perturbation has no effect on the flux gra-
dients, since they are calculated as differences (eq. [3.2] or eq.
[3.10]). Only the source terms dependent on the velocities
change, most importantly the drag forces in the momentum
conservation equations for the ion and neutral fluids:

ﬁ m® + i F[m(i)] = ap(i)pw)(v(n) — U(i)) k (3.14a)
ot 0x

0 4 i) (i) 1)) (n)

—m" 4 — F[m("’] = ocp")p l)(v(t — ™), (3.14b)
ot 0x

Dropping the spatial derivatives and rewriting the right-hand-
sides, I obtain a differential equation for the sm® = —dm™
perturbation:

0 . . .
— om®W = —(p® + mMem® .
% (0 + p™)

The analytical solution is, of course, an exponential decay, but
with an explicit finite-difference method the numerical solution
may easily be overstable, if the time step is not chosen carefully.
The critical dimensionless parameter is

D = ofp® + p™)At . (3.16)

The situation is similar for any two-fluid flow with the veloc-
ities perturbed in either a one- or a two-dimensional stag-
gered pattern, as shown in Figure 1. The amplification of the
error by the two-step FCT algorithm is plotted as a function of
D in Figure 2 (see Appendix A for derivation). The difference
scheme is stable for D < D,y ~ 1.3. However, D < Dy, &
0.8 is required for damping, and in the range from Dg,,, to
Dy, the perturbation is neither amplified nor damped.
Strong gradients introduce large errors which can trigger the
instability; thus damping is preferred to marginal stability.
D yymp = 0.95 for the one-dimensional and x0.75 for the two-
dimensional instability in case of the modified algorithm (Ryu
1991). The original FCT algorithm gives Dy,,, ~ 1.2 in the
one-dimensional case and Dy, & 0.85 in two-dimensions.

The time step has to be the same for all cells; thus the
condition for the stability of the FCT algorithm becomes

D
—_— 3.17
a max (p? + p™) G179

(3.15)

At < Aty =
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F1G. 1.—Staggered instability arises if the computational time step is too long compared to the ion-neutral scattering time. A one-dimensional (bottom) or
two-dimensional (top) staggered perturbation with equal amplitudes but opposite signs for the ion (left) and neutral (right) momenta can grow exponentially. Other
variables, like density, energy density, or the magnetic field, remain constant. The x, y, and z components of the momenta are subject to the instability independently
of each other. The figure shows a specially prepared test for the FCT code; in actual simulations the instability starts to grow at sharp edges, where the errors have
small wavelength components, then spreads over the whole area where the conditions for its growth are satisfied.

where the maximum is taken over all cells in the simulation,
and D, is analogous to the C parameter for the Courant
condition (eq. [3.7]). The time step is set to the smaller of At
and At),.

It should be noted that in two dimensions the modified algo-
rithm can in principle be overstable for 0 < D < 0.1 in the
extreme case, when both v and v reach the maximum value
allowed by the Courant condition with C = 0.6 and ¢, = 0,
and the total density is less than one-tenth of the maximum
density. This results from the overshooting by the artificial
diffusive flux as explained in Appendix A. In the simulations
presented in this paper the fast magnetosonic speed always
exceeds the ion flow speed; thus v, and v, are at most half of
the maximum value, e.g., v, < 0.3Ax/At. This fact itself ensures
marginal stability at the low-density regions, but in typical
cases, where v, and/or v, is small, the instability will be damped
everywhere.

3.5. Improving the Numerical Stabiliity of the FCT Algorithm

A small but effective change in the FCT algorithm largely
eliminates the staggered instability. Notice that the problem
arises from the different methods used for calculating the flux
gradients and the source terms. The flux gradients are com-
puted from the two neighboring cells (or four in two

dimensions), while the source terms are limited to the cell itself,
for which the equation is being solved. Thus the staggered
perturbation cancels for the flux terms but affects the source
terms in the equations.

1 propose to calculate the source terms as a weighted
average with the inclusion of neighboring cells. In one dimen-
sion

(S[iY) = 4S[i — 1] + 4S[i] + S[i + 1] (3.18)
will cancel the effect of the staggered instability, while in two
dimensions

<80, 1> = 280, 1]
+ 8SHi— 1,71+ S[i+ 1, 1]
+ S[i,j— 17+ S[, j + 1)
+%Sl—1,j—1]+Sl+1,j—1]
+ S+ 1L,j+ 1]+ SH—1,j+1])
(3.19)

is the only nine-point weighting scheme (see Appendix B for a
proof) that eliminates the effects of both the one- and the
two-dimensional staggered perturbations.
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FiG. 2—Amplification factor of the staggered instability by one time-centered FCT time step, shown as a function of the dimensionless critical parameter D. The
difference scheme is stable if | 4| < 1, marginally stable for | 4| = 1, and unstable/overstable if | 4| > 1. The four plots correspond to the combinations of the two
versions of the FCT algorithm with the two possible staggering patterns. In one-dimensional simulations only the plots at the bottom are relevant, while in
two-dimensional simulations all of them are relevant. In each plot the top (bold), middle, and lowest curves correspond to é = 0, 0.015, and 0.06, respectively, where
& oc (vAt/Ax)?. The amplification is a monotonic function of §: the top and bottom curves represent theoretical upper and lower bounds on A, provided that C < 0.6
for the Courant condition. In our simulations ¢, > |v|, thus § < 0.015, and the amplification is further limited to the areas between the top and middle curves;

hence D < 0.75 ensures damping even without the weighting scheme.

The numerical experiments show that using <S) instead of S
allows bigger time steps, while the results do not change per-
ceivably. The diffusion associated with (S — {S)) is second
order in Ax and Ay. The weighting scheme cannot cancel the
less unstable perturbation patterns with longer wavelengths;
thus there is a limit on increasing D,,,, in equation (3.17) above
Dgymp = 0.8.

3.6. Boundary Conditions

Boundaries are represented as an extra layer of two rows of
cells around the n, x n, computational grid at (i = —1, 0,
n.+Ln+2j=1..,n)and(i=—1,...,n,+2;j= —1,
0, n, + 1, n, + 2). In the calculations the boundary cells play
the role of first and second neighbors to the cells close to the
edge of the grid. Below, I shall refer to the two rows of bound-
ary cells as the inner and outer boundary layers, while I call the
cellsat(i=2,n,—1;j=1,...,n)and (i= —1,...,n, +2;
j=2,n)theinneredge, and thecellsat (i = 1,n,;j=1,..., n)
and (i= —1,...,n,+2;j =1, n) the outer edge. The follow-
ing boundary conditions are allowed in our code:

1. Continuous—The flow variables are copied from the
outer edge to the two boundary layers next to them, therefore
all the gradients vanish at the boundaries, which keeps the

reflectivity low—a good approximation of the infinitely distant
or free boundaries.

2. Fixed.—In some cases I want to fix the boundary condi-
tions for the flow variables. The initial outer edges are stored in
the adjacent boundary layers and are kept fixed for the rest of
the computation.

3. Reflective—A solid wall or piston may be represented by
copying the flow variables from the outer edges to the inner
layer of boundary cells, while the outer boundary cells are
updated from the corresponding inner edges. The component
of the momentum orthogonal to the reflective boundary
changes signs.

4. Periodic—The inner boundary cell values are taken from
the opposite inner edge, and the outer boundary layer is copied
from the opposite outer edge. This assumes that the simulation
isinvariant with a translation by n, (or n,) cells.

S. Shifted periodic—The procedure is similar to the pre-
vious one, except that there is a shift along the edge; thus the
translation is (i; j) — (i + n,;j + n,), where ng < n, is an integer.
The typical use of this boundary condition is for testing
another run which is periodic in the y direction and has a fixed
or continuous x boundary. By rotating the initial condition in
the x-y plane, and applying the corresponding shifted periodic
boundary condition, one can rerun the simulation and verify
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that the results are independent of the grid orientation. Not all
boundary cells are determined by this translational symmetry,
eg,the (i=1,...,ng;j=n, + 1) cells have no corresponding
section at the j = 1 edge. I fix this problem by extending ths
fixed or continuous boundary condition along the x bound-
aries to the unmatched portions of the y boundary layers; thus
I can use the content of the corner cells from the opposite
edges. The shifted periodic boundary condition should not be
combined with reflective or periodic boundaries along the
other sides, and the grid has to be uniform too.

Our code allows the i = 0 and i = n, + 1 boundaries to be
either of the continuous, fixed, reflective, or periodic types,
while the j = 0 and j = n, + 1 boundaries are periodic with an
optional shift. First the x boundary, then the y boundary layers
are determined. In the above description cell-centered flow
variables are assumed, but the CT method introduces edge-
centered B, and B, variables. It is easy to generalize the above
rules for edge-centered variables, only the reflective boundary
condition is somewhat undetermined ati = 1, n, + 3.

4. RUNNING THE CODE

4.1, Tests

An excellent test suite for magnetohydrodynamical simula-
tions was published by Stone et al. (1992). Since the FCT algo-
rithm has been thoroughly tested in the past, I will make no
attempt here to evaluate the performance of the code on all the
test problems. Advection tests show that FCT is quite diffusive
at contact discontinuities of the flow variables, e.g., when a
square wave of B, is advected with a constant speed, although
it is relatively good at preserving the sharpness of shocks,
where the velocity has a singularity as well, as shown by the
shock-tube problem in Brio & Wu (1988). The modifications in
the FCT algorithm by Ryu make no noticeable difference in
either cases. DeVore (1991) presents two tests for the flux-
conserving FCT: the rigid rotation of a current-carrying cylin-
der and the self-similar spherical expansion of a strong shock
wave and trailing magnetic bubble out of the potential well of a
star.

To my knowledge there is no test for two-fluid problems in
the literature; thus I chose to use the steady state solution for
the C-type shock as a test problem. It will be evident from the
sample runs that the code can accurately maintain the steady
state solution for many thousands of time steps. It is a bigger
challenge to build up a C-type shock by driving a piston into a
uniform medium. This is a one-dimensional problem, due to
the slab symmetry of the steady state solution. The piston is
represented by a reflective boundary at x = 0, and initially all
the cells contain the undisturbed ambient medium with

p™=2338x10"22gcm™ 3,
p? =5010 x 10725 gcm ™3,

W) = —2.2605 kms~! (4.1)
TG =20K ,
By —_ 5 ,u-G >

which is equivalent to ny; = 100 cm ™2 and x, = 10~ *. All other
flow variables are zero. The velocity v\’ is the difference
between the upstream and downstream velocities of a 3 km s ™!
shock ; thus the piston is expected to build up a shock structure
identical to the 3 km s~ ! steady state solution, except that it is

moving by the downstream velocity to the right. The right-
hand boundary condition is set to continuous; the grid size is
n, = 400. The Courant number is C = 0.6, but the time step
has to be limited by the drag instability condition. The early
transients are extremely violent, thus D,,, = 1.5 is needed
(without the weighting scheme D,,,,, = 0.95 would be required).

The flow hits the reflective boundary with full speed, produc-
ing heat and compression of both fluids and the magnetic field.
The magnetic pressure increases until it can balance the ram
pressure. First the ions slow down, then the ion-neutral friction
helps the neutral gas to move against the incoming flow.
Finally the C-type shock is built up perfectly, with a damping
transient at the piston. Figure 3 shows the perfect agreement
between the final stage and the analytic solution for the steady
state shock. The average relative errors are less than 0.1% for
all the flow variables in the shock transition region. The tran-
sient, which leads to demagnetization of the gas next to the
piston, is erased at late times in the isothermal simulation
presented here; note, however, that in an adiabatic simulation
it would leave a permanent “imprint” on the gas adjacent to
the piston (see Fig. 3¢).

In general, analytic solutions are not available for compari-
son, and one needs to check self-consistency of the results. As
Evans & Hawley (1988) point out, the convergence rate can be
determined by repeating the simulation at least three times on
successively finer grids. Ax and Ay have to be multiplied by the
same factor h < 1. The absolute value of the true error is
expected to fall as h?, where B is the rate of convergence. The
relative error of the low- and high-resolution grids in the L,
norm is therefore proportional to 1 — hf. From the two inde-
pendent relative errors of the three simulations, § and the true
error can be estimated.

The above procedure deals with the dependence of overall
errors on the grid resolution. It is of interest to check whether
the orientation or the motion of the grid has a major effect on
the results. Operator splitting algorithms are especially suscep-
tible to anisotropy errors, and the advection of the flow is not
trivial either. It is very simple to test the Galilean invariance:
add a constant velocity to every cell in the initial condition,
and repeat the calculation. For periodic boundaries no other
change is necessary; for fixed or continuous boundary condi-
tion the grid has to be elongated, because the two simulations
will contain the same structures at different positions. Of
course, this test cannot be done for problems involving reflec-
tive boundaries. The results may be transformed back to allow
for direct comparison.

Rotation of the grid is a bit trickier. The flow variables at the
rotated cell positions can be obtained by linearly interpolating
between the four closest cells of the original grid. The vector
variables (v") and B) have to be rotated accordingly. The rota-
tion angle 0, is chosen to make the shift in the shifted periodic
condition n, = sin 6,(n, Ay/Ax) an integer, while Ay’ may need
to be slightly different from Ay to satisfy n;, Ay’ = n, Ay cos 6,,
where the dimensions of the new grid are given by n}, x n), (see
Fig. 4). The continuous or fixed x boundary condition has to
be extended to the sections of the y boundary, which are not
determined by the shifted periodicity. To make the test mean-
ingful, the flow variables need to be nearly constant close to the
constant or fixed boundaries, otherwise their different shapes
in the two grids would make the simulations different. This
may require placing the x boundaries farther from the inter-
esting structures. The result of the rotated simulation can be
transformed back by a similar procedure.
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F1G. 3.—The three snapshots show three stages of the formation of the C-type shock. The ambient gas is moving to the left, hitting the reflective boundary
“piston,” represented by the shaded areas, at x = 0. The thin lines are the actual flow variables in the simulation, and the bold lines show a steady state solution for a
3 km s~ ! C-type shock for comparison. The steady state equations are integrated to 10™# accuracy; then the velocities and positions are shifted by a Galilean
transformation to match the ambient velocity of the numerical model and to make the locations where the magnetic fields reach B,(x) = 10 4G coincide for the
steady state solution and the piston-driven shock. (a) Initially the cold isothermal neutral gas, lacking thermal pressure, passively compresses at the wall, while the
ions and the magnetic field are building up the C-shock structure due to the high ion Alfvén speed v% ~ 20 km s~ . (b) By the time ¢ = 3.6 x 10* yr the ions have
succeeded in decelerating the neutrals out to x = 4 mpc, and the whole flow converges to the steady state solution. (c) Finally the shock structure becomes a perfect
C-type, with damping residuals of the initial transients at the left boundary. Here and in all subsequent figures the distance, time, and density units are mpc = 103
pc = 3.09 x 10'% cm, kyear = 103 yr = 3.16 x 10'°s,and my cm ™2 = 1.67 x 107 2* gcm ™3, respectively. Note that 1 mpc/1 kyear = 0.98 km s~ 1.
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These tests require the same size or only slightly bigger grids
than the original simulation, so they can be done for the
highest resolution “production runs.” The comparison may
show that some features are results of spurious coincidences,
such as alignment of the shock front with the grid, or that
numerical errors are accumulating at some location due to the
steady position relative to the grid. On the other hand, they
may make us more confident if similar results are found with
different grid speeds and orientations.

4.2, Initial Conditions for the Wardle Instability

A slightly perturbed steady state solution is used as the
initial condition for studying the development of the Wardle
instability. The advantage of this method is that I do not need
to wait until the simulation relaxes into the steady state solu-
tion; furthermore, the transients of the relaxation process
would mix with the growth of the Wardle instability.

First, the steady state equations are solved by setting 0, =
0, = 0, = 0 in equation (2.2); thus all flow variables are func-
tions of x alone. Following Wardle & Draine (1987), for per-
pendicular shocks the standard shock frame is used, where the
shock front is in the y-z plane, the flow is along the x-axis, and
the magnetic field is parallel to the y-axis; thus B, = B, =
o) = v = 0. For oblique shocks the frame moving by a v,
tan 0, speed parallel to the shock front is the most convenient,
since in this frame v'? | B (and the electric field E vanishes)
everywhere. The E = 0 frame can be used if v, tan 6, < ¢, where
c is the speed of light. For shock speeds of a few times 10 km
s~ ! the condition holds up to 6, < 89°5 obliqueness, which is
hardly distinguishable from a perpendicular shock with 6, =
90°. In both frames the steady state magnetic field and the fluid

densities are simple algebraic expressions from momentum
conservation and flux freezing,

PO0x) = pP0P(0)/v(x) , (4.22)
p™(x) = p(0)o(0)/v¥(x) , (4.2b)
B(x) = B,(0), (4.2¢)

Bx) = {p‘i’(x)By(O)/p‘i)(O) if B,(0) = 0 (perpendicular) ,
) = B (x)vP(x)/v(x) if B(0) # 0 (oblique) .

4.2d)

The other variables are integrated from x = 0, the downstream
boundary, through the shock according to the following set of
differential equations:

(P — )g® — FOuP 4 CB, B, FOo

(i) _
0,y = F0p® — 50,20 1 Cpr(i)uf(“) > (4.3a)
0,0 = C(4nF v — B, B, 0,0, (4.3b)
0,09 =79~ CB,B,FP — (1 — CBY)p™"P o, v¥, (4.3c)
m _1 g(n) — A (n)’ (n) + g;(i)v(n)
Ox v = e L S p® ip,,mfz(n))] = (4.3d)
gr(i)
n) y
ax Uy - - p(,,)vg,) 5 (436)
0.0 = —FY — PO 0,0, (@30

where C = (4np@v2® — B2)~1, Alternatively, p'” may be com-
puted from the heating balance (eq. [2.5]). The numerical inte-
gration is done by the ODEINT algorithm, an adaptive
Runge-Kutta integrator, from Numerical Recipes (Press et al.
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F1G. 4—Geometry of the rotation of the grid. Both the original n, x n, and
the new n; x nj grids are duplicated according to their respective translational
invariance. The continuous lines are the fixed or continuous boundaries, while
the dotted lines are the (shifted) periodic boundaries. The grids are rotated
around the upper left-hand corner by 6,, which causes a shift in the boundary
condition by n, cells, i.e., n, Ax distance. In general Ay’ cannot be exactly equal
to Ay, but Ax is kept fixed, since in the x direction there is only a lower bound
for n, Ax. If a vector variable points in the x direction in the original frame, like
the arrow, it will have to be rotated by 0, relative to the x’ axis of the new
frame.

1992), with an accuracy of 108, One has to fix v{/?, v, p'/,
pY), and B, at x = 0. In terms of v, and 6, the upstream veloc-
ities are given as v{"(0) = v{’(0) = v, tan 9 (or 0 for 8, = 90°),
and v"(0) = v0) + Av, = v,, where the small velomty slip
Av, < v sets the dlstance of the shock front from the bound-
ary. The relations between the ny, X,, and T™ ambient param-
eters and the upstream numerical flow variables are p"(0) =
L4Myny, pP0) = MYx,ny, and p™(0) = ky T™p™(0)/M™. 1t
is practical to obtain p®)(0) from the ion heating balance condi-
tion or to simply take T® = T™,

Once the steady state solution is calculated, a perturbation is
added to the velocity field upstream of the shock, where the
flow variables are almost constant. The velocity perturbation
will perturb the densities and the magnetic field as the flow
evolves. I chose velocity perturbations rather than density per-
turbations, since the latter could not excite modes with v!/? #
0. As the perturbation reaches the shock, it may grow, but no
further perturbation is coming in at the upstream boundary,
thus the growth can be studied in a well-defined environment.
A particular wavelength can be triggered by a sine wave per-
turbation of

v Ax, y) = Vf(x) cos (k,y) ,
{sm [m(x — x,)/w,]

ifx, <x<xp+w,
otherwise ,

fx) = (4.4)

where f(x) is a smooth masking function with width w, at
position x,, and V is the amplitude in km s~ !, typically less
than 1% of the shock speed. The physical w1dth of the grid in
the y-direction, w, should be an integer multiple of the wave-
length A, = 2n/k,. 1 make best use of the CPU by setting them
equal, w, = 4,.
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Another interesting perturbation is a Gaussian random field,
a sum of sine waves with a power-law distribution of ampli-
tudes and random phases, for each component of the velocity
perturbation:

nx/2  ny/2

V) k;o kgo(kiz * kf)"/l

X COS |:271<Ej ks y> + qb:l
W, oW,

where ¢ is a uniform random variable in the [0, 27] interval.
The power-law index « is usually set to zero, so that I give all
wavelengths the same chance to grow. The ion velocities are
not perturbed initially, but they catch up with the neutrals in a
few time steps due to the coupling, and because most of the
mass and inertia is in the neutral fluid. Note that a periodic
boundary condition in the y direction will preferentially select
modes with wavelengths 4, = w,/n, where n is a positive
integer. One needs to choose w, according to the wavelengths
of interest.

Let us consider now how the physical dimensions and their
numerical equivalents relate to each other, and what the con-
straints are for the upstream boundary conditions from the
physics and the numerical limitations. Wardle (1990) charac-
terizes perpendicular shocks with the length scale of the shock
along the x-axis being L, = +/20$/[2p™(0)], where « is the
coupling constant (eq. [2.4c]). The grid size has to be about
w, = 3Lg,, to have a sufficiently long upstream and down-
stream flow. The typical wavelength for growing modesis 4, =
0.5Ly)0y S w,. I found that n, x n, = 180 x 30 is the smallest
grid that has a sufficient resolution, therefore Ax ~ Ay <
Lg16w/60. The timescale for the flow is g, = 7/ Lo /(205) =
1/[ap®(0)], where r, ~ \/2A™ is the compression ratio for the
steady state shock. For the instability to grow fast, the neutral
Alfvén Mach number should be A™ = 10. The fast magneto-
sonic speed cp,q = v, is highest downstream where the ion
fluid is compressed by r,, thus the time step is estimated by
At < r;%°CAx/vQ from equation (3.7). The number of time
steps needed to run the simulation for one characteristic time is

. tflow 0.6 Lflow A(") 03 A(")
"= At ~25°0< ><6OAx 10, \ioaw): 49

The other constraint on the time step comes {rom the drag
instability (eq. [3.17]) with At <D, /[0 max (p™)] =

Dpnax/[er s p™(0)], and
1 A(n) A(n) 2
e O 1) (0 R

r, p™O

", > Iy Pm( )

Dy p9(0)
With the weighting scheme proposed for source terms, D,,,,
may be somewhat greater than unity. In our simulations the
iwo limits on n, are often comparable. Both estimates, espe-
cially the second one, exclude very low fractional ionization,
since the resulting high A™/A® ~ 0.22x; %* ratio would make
the simulation prohibitively long. New ideas and innovative
numerical methods may be required to simulate the cases with
high Alfvén speed for the ions, like the typical dense ISM with
very low fractional ionization and strong magnetic field;
however, Wardle’s analysis and our numerical experiments
with varying fractional ionization suggest that the x, param-
eter, in the linear regime of the instability at least, only mildly

affects the results.

ov(x, y) =

@.5)
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4.3. Simulations of C-Type Shocks
I present three examples for modeling C-type shocks. The

2 first is a perpendicular shock with 4™ ~ 13.5. The physical
n: parameters of the ambient gas are identical to the second
E’.. example in Wardle’s (1990) table: v, = 12.5 km s~
v+ B,=5uG,and TV =

, X, = 1074,
20 K. Wardle predicts that the fastest-
growmg unstable mode has a wavelength 2n/k, = 071LﬂOw
and a growth rate s = 9.1t},, where L, = 7 x 10 cm and
triow = 5.4 x 10'° 5. The purpose of this simulation is to check
the linear behavior of the shock. I take a 180 x 30 grid of
dimensions w, = 3L, and w, = 1, = 0.71Ly,,,. The steady
state v/ velocmes are perturbed by a single sine wave of
amphtude 0.001 km s~ !, and the masking function is w, =

0.5Lg,,, wide and positioned to start at the third cell from the
x = 0 boundary, i.., x, = x[3]. Figure 5 shows the initial con-
ditions. The simulation is run with C = 0.6 Courant condition,
which itself ensures sufficiently small time steps so that the
weighting scheme can stabilize the momentum equations
against the staggered instability, while the ion temperature is
calculated from the ion heating balance to avoid excessive
inaccuracies. Other variables are almost unaffected by the

W
\\\

N \ \\

\\“ \\\‘ \\“\\\‘\\\\‘\\\‘

Vol. 425

choice of method for obtaining p. The x boundaries are con-
tinuous, while the y boundaries are periodic to fit the assumed
periodicity of the instability. A typical simulation like this
needs ~ 10 hr of CPU time on a Sun 4/50.

The evolution of the flow is shown in Figure 6. It is evident
at first glance that Wardle’s qualitative picture of the insta-
bility is correct: as the velocity perturbation reaches the shock,
it starts to grow exponentially. The magnetic field lines bend
(B, # 0), and both the ion and neutral densities increase in the
troughs (0, B, < 0) and decrease at the peaks (0, B, > 0). The
wavelength was set by the perturbation and the grid size, but
the growth rate offers an opportunity for quantitative compari-
son. I chose the standard deviation of B,,

msm o Ax. Ay, B[, j] AxiAy‘Bx[i,j])z
2B )= i8)jZx _ SR )jPxtJd
‘ ( x) Z way 1=121=1 Wy w

i=1,j=1

4.8)

as a measure of the growth rate. The steady state solution is
B, = constant for both the perpendicular and oblique shocks,
hence the standard deviation is purely a result of the instability
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FiG. 5—Initial condition of an 4™ ~ 13.5 orthogonal C-type shock. The steady state solution is perturbed by a 0.001 km s~

v{" variables. Only a 90 x 30 submesh is drawn for the sake of clarity.

! amplitude sine wave in thev{’ and
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F1G. 6.—A™ =~ 13.5 orthogonal shock at t = 0.75t,,, time, at the end of the linear growth of the instability. The velocity perturbation in v increased by almost a
factor of 1000. The ion density shows a peak at y ~ 0.4 mpc, where 9, B, < 0, i.e., where the magnetic field lines buckle over from downstream to upstream direction

(“troughs ). The neutral density has an excess at the same position, due to the convergent v flow, but there is an elongated maximum at y ~

1 mpc as well, where

the depleted ion fluid cannot slow the neutrals down as effectively as in the steady state solunon

in either case. The definition allows for nonuniform grids as
well. The code calculates o(B,) at about every 50th time step
and saves it into a log file. The evolution can be readily seen in
Figure 7 by plotting log o(B,) against time. The fast initial
growth results from the compression of the ion fluid and the
magnetic field by the sine wave velocity perturbation and a
transient as the perturbation reaches the shock. The linear
growth of the instability corresponds to the next straight
section of the curve, which finally bends over as nonlinear
effects slow the exponential growth down. The slope of the
curve is s = 4,Ina(B,) = 9.5t;.,, in good agreement with
Wardle.

The simulation is repeated on a 216 x 36 and a 150 x 25
grid. The perturbations in the flow variables differ only by a
few percent from the ones in Figure 6, with formal convergence
rates between 1 and 2 for all the flow variables. The growth
rates in the linear stage are essentially identical to the result
from the 180 x 30 grid (Fig. 7).

The second problem demonstrates on an oblique shock how
the fastest-growing mode can be found when no analytic pre-

diction is available. I chose 6, = 45°, but otherwise all physical
properties of the ambient ISM are identical with the perpen-
dicular shock in the first example. Note that the frame is differ-
ent, thus o) = v{) = v, = 12.5 km s~ ', but B, = B, = 5/,/2
uG. Oblique shocks are expected to be more unstable and the
fastest-growing mode to have shorter wavelength (Wardle
1991b). Oblique shocks have a somewhat smaller thickness,
thus w, = 2.5Lg,,, 1s sufﬁ(:lent while w, = Lg,,, allows modes
with A /Lnow =144 L. Numerlcal damping selectively
suppresses small- wavelength modes, hence a 180 x 90 grid is
needed with a finer resolution in the y direction. All com-
ponents of the steady state neutral velocity are perturbed with
a Gaussian noise of ¥ = 0.001 km s~ ! amplitude and x = 0
index. The masking function is w, = 0.3Ly,,,, wide, and it starts
at x, = x[3]. See Figure 8 for the initial condition. The simula-
tion is run with C = 0.6 and D,,, = 1.5. The boundary condi-
tions and the calculation of p®” are the same as for the
perpendicular case.

The results (Fig. 9) show that the fastest-growing mode is at
Ay & Loy As concluded by Wardle from the separability of
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FiG. 7—Time dependence of a(B,), a linear measure for the instability, is
shown on the top semilog plot. The fast initial increase, as the perturbation
reaches the shock, is followed by an exponential growth, and a nonlinear cutoff
at t ~ 1.4 x 10% yr. The slope can be read from the bottom plot, which is the
time derivative of the upper one scaled by t;.%,. The linear regime corresponds
to the plateau at s ~ 9.5¢;,.},, which agrees well with Wardle’s prediction of a
9.1t growth rate. The short- and long-dashed curves are results from simu-
lations on a lower resolution 150 x 25 grid and a higher resolution 216 x 36
grid, respectively. Note that the relative errors are reduced with increasing grid
resolution, a good indication of numerical convergence.

the linearized equations, the v/’ components are not ampli-
fied; the initial perturbations in the z direction simply propa-
gate in the form of intermediate waves. The y components are,
however, growing very fast. The semilog plot in Figure 10 has a
slope of 0,Inp(B,) ~ 12, which indeed is steeper than the
growth curve of the previous perpendicular case, in spite of the
contributions from the slower-growing and damping modes. A
series of runs with pure sine wave perturbations of different
wavelengths would be required to find the accurate wavelength
and growth rate for the fastest-growing mode. Results of this
more systematic search will be reported in a forthcoming
paper.

The third problem aims to explore the nonlinear evolution
of the instability. I chose a perpendicular shock of A™ ~ 8 for
this purpose, with v;=7.5 km s~! (the first example in
Wardle’s 1990 table), and the other parameters are identical to
our previous perpendicular shock. The high-resolution grid is
360 x 50 in size, and w, is 4L, long to give space to the
nonlinear structures, which are expected to detach from the
shock eventually. The fastest-growing mode is predicted to
have 4, = 1.13L,,, wavelength; thus w, = 4,. Calculations on

a high-resolution grid are quite expensive, and the linear
regime is of secondary interest now; therefore, it is appropriate
to set the amplitude of the sine wave perturbation to a rela-
tively high ¥ = 0.05 km s~! value, while w, = 0.5L;,,, and
x; = x[3] as usual. The Courant condition with C = 0.6 pro-
duces smaller time steps on finer grids, and eliminates the
danger of the staggered instability by itself.

The results are shown in Figures 11 and 12. The growth rate
during the short linear evolution is about 1.5¢%,, close to what
is expected. First the ion density becomes nonlinear, then the
neutral density and velocity follow. The magnetic field stays
very smooth even at late stages of the nonlinear growth. All
variables saturate after ¢ = 3t;,,, and the density maxima,
both in the ion and the neutral fluid, become more and more
elongated in the flow direction. Finally, a high-density clump
of the ion fluid detaches from the shock front and is advected
downstream. The simulation has to be stopped because of a
slowly increasing numerical error in the flow variables due to
insufficient grid resolution. The peak, most prominent in the
ion temperature in Figure 12¢, is a result of a slight undershoot
in the neutral density at the foot of the steep shock front, which
makes the neutral velocity v = m®/p™, and thus the ion-
neutral velocity slip responsible for the ion temperature, too
high. On a 180 x 30 grid the peak shows up much earlier,
confirming its numerical origin.

As a final test of the code, two low-resolution simulations of
this same A®™ ~ 8 perpendicular shock are shown in Figure 13.
One of the runs is done on a 180 x 30 grid with w, = 3Lg,,,
and w, = 1.13Ly,,,,, while the other uses a 208 x 29 grid (w; =
3.47Ly,, and w, = 1.08Ly,,,) rotated by 6, = 17°1 relative to
the shock normal. The grid rotation corresponds to an n, = 20
shift of the periodic boundary condition. The two simulations
are stopped at the same physical time, and the rotated result is
transformed back to facilitate comparison. The close agree-
ment is very reassuring, especially considering the fact that the
shape of the cells, with an aspect ratio Ax/Ay = 0.44, is quite
far from a square.

5. CONCLUSIONS

I have implemented a divergence-free version of the FCT
finite-difference scheme to solve the coupled differential equa-
tions describing the dynamics of the two-fluid system, which
contains the neutral gas, the ions, and the magnetic field. The
FCT algorithm was slightly modified according to Ryu’s (1991)
suggestions, which reduce the computational burden and
memory usage.

A numerical instability intrinsic to the two-fluid problem
was discovered. The instability manifests itself in the exponen-
tial growth of the ion and neutral momentum in a staggered
pattern with alternating signs. Probably any explicit integra-
tion scheme has to take into account the limitation on the time
step At < D,,,,/max (axp™ + ap®), where the maximum is taken
over the computational grid at every time step, similar to the
fashion in which the Courant condition is applied. Physically
(xp™) ™! ~ (Cov)n™)~ ! is the average time between ion-neutral
scatterings for an ion, assuming that the fractional ionization is
small. The numerical coefficient is determined for the time-
centered FCT algorithm: D_,, < 0.75 is required to suppress
the two-dimensional staggered instability. The condition can
be relaxed if the source terms, in particular the drag force and
heat due to ion-neutral friction, are calculated as a weighted
average over the eight neighboring cells, rather than using the
central cell only as prescribed by the original FCT algorithm.
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FiG. 10.—Time dependence of o(B,) for the oblique shock. The top semilog plot shows a slow increase in the beginning, probably due to the damping of many of
the short-wavelength modes. This simulation was stopped in the linear regime; thus the curve does not bend over. The time derivative (bottom) is scaled to allow
comparison with Fig. 7. The growth rate is & 12 at the plateau, distinctly higher than in the perpendicular case.

FiG. 11.—Growth of the perturbation for the A™ ~ 8 perpendicular shock. The short linear growth with s & 1.5, is followed by a saturated nonlinear stage.
While the perturbation in the magnetic field stops growing, the ion and neutral density fields still evolve.

The weighting does not change the order of accuracy; in fact
test runs show no perceivable difference in the results, but there
is a gain in speed due to the longer time steps allowed by
D, ~ 15,

Testing a numerical code is a complex problem. The stan-
dard magnetohydrodynamical problems, and the convergence
tests with refined grids, are well-known methods to evaluate
the performance of a numerical code. An additional test can be
the verification of Galilean invariance: the grid is either drifted
by a constant velocity or rotated by a given angle. I describe in
detail how the rotation can be realized by the use of shifted
periodic boundary conditions. These tests are useful for any
grid-based numerical algorithm, since they can reveal anisot-
ropy or finite resolution-related errors, and there is no need to
increase the size of the grid significantly for their execution. As
a specific two-fluid test problem, I demonstrate how a C-type
shock is built up by a piston driven into the ambient medium.
The final stage of this numerical experiment shows a perfect
C-type shock, identical to the high-accuracy solution of the
steady state equations. The success of this test confirms that
the FCT code can accurately calculate the smooth flows of the
C-type shocks, provided that the time step is not too long
compared to the ion scattering time. The numerical instability

was discovered in the course of the first experiments on this
simple test problem.

Finally, a few examples for the Wardle instability are exam-
ined. This is the first numerical confirmation of the linear
analysis. First a perpendicular shock is simulated, with param-
eters identical to one of Wardle’s examples. The shape, the
wavelength, and the growth rate of the growing mode are
found to be in good agreement with the analytical predictions,
even though the numerically accessible parameter space
restricts the simulations to relatively low ion Alfvén speeds,
where Wardle’s analytical approximations are the least accu-
rate. Numerical errors and convergence rates are estimated
from comparison with a higher and a lower resolution simula-
tion. An oblique shock of the same shock speed is studied next.
As predicted by Wardle, the growth rate of the fastest-growing
mode exceeds that of the perpendicular shock, while its wave-
length is shorter. In the last example the evolution of the insta-
bility for a weak perpendicular shock is followed deep into the
nonlinear regime. The perturbation saturates only when the
density perturbations become of order unity, the velocity field
is changed by about 10%, while the magnetic field lines are still
only slightly bent. The density maxima become gradually elon-
gated in the direction of the flow, and finally a density clump
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detaches from the shock and drifts downstream with the flow.
Whether these results are typical or not will be the subject of

o' further investigations.

The two-fluid code presented in this paper is a good tool for
studying the dynamics of C-type shocks. The numerical simu-
lations should lead to a physical understanding of the nonlin-
ear evolution of the Wardle instability and other phenomena
of two-fluid shocks, hopefully enabling an approximate but
general analytical description. With this goal in mind, I am
using the code to execute a systematic series of numerical
experiments to explore the Wardle instability in the numeri-
cally available parameter space; results will be reported in a

I would like to acknowledge the generous help and encour-
agement of Bruce T. Draine, who directed my interest to the
area of two-fluid shocks. I am indebted to Dongsu Ryu for his
help and expertise in numerical hydrodynamics, and also to
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analysis and visualization macros, including the “hidden line”
surface drawing algorithm used for most of the figures in this
paper. I thank the anonymous referee for his valuable com-
ments. This research was supported in part by NSF grant AST
90 17082 and OTKA, the Hungarian Science Foundation,
grant F-4491.

subsequent paper.

APPENDIX A

I calculate the amplification of the staggered instability by a time-centered FCT step. A spatially uniform flow is assumed in which
the x components of the ion and neutral momenta are perturbed by om® = —dm™ relative to the correct '/’ values in a staggered
pattern, formally written as

m(f)[i 1= n—,(f) + 5m(f)(_ )Sxi+5yi (A1)

Here s, = 1 if there is staggering in the x direction, and zero otherwise; s, is defined analogously. The m{? constants cancel in all of
the followmg equations; thus they are omitted. In the first half-stepw = 5m"’ is transported by equation (3 2)to

At D
wT —w+?S ( —5>w, (A2)
since the source term is S = —wD/At from equations (3.15) and (3.16), while the edge-centered fluxes cancel. The diffusive fluxes are

FP? = +5,(% + €2/3)2w from equation (3.5a), where k is either x or y. The perturbation does not affect the edge-centered ¢, =
vi(At/2)/Ak constants. The diffusion stage (eq. [3.3]) yields

2 2 D
wP =wl — 4w[(sx _g Sy + (5 & ; 5 ey)] = (N — E)W , (A3)

where N=1—(3)s, +s 1Y) + (3)s,€?), and summation for k =x, y is implied. The uncorrected antidiffusion fluxes are
F= Fs& - e,f/6)2[qw + (1 — q)wP] with g = 1 for the original FCT scheme and g = 0 for Ryu’s version. With the definition of
M =1+ (3)s, + s,) — (3)(s, €7) the antidiffused perturbation can be written as

i€k | D
6]—<K—M2)w, (Ad)

where K = MN — g(M — 1)(N — 1). The half-step is completed by the Zalesak flux correction, which here reduces to a truncation of
the magnitude of w, by the maximum of the absolute values of w and w”, and we obtain the half-step solution

H = sign (w*) min [|w*|, max (Jw], |w”|)] . (AS)

The full step consists of the same stages as the half-step; I use a prime to distinguish the symbols from their half-step equivalents.
The time-centered S’ = wfD/At source term is multiplied by At in the full step; thus the half-step equations are modified as follows:

wid = wP +4[gw” + (1 — gw D]l:(s +5)

T

wl'=w — DwH (A6a)
w2 = N'w — DwH (A6b)
wA = K'w — M'DwH (A6¢)
w"¥ = sign (w?) min [[w?'|, max (|w][, |[w?'|)] . (A6d)

Note that €, = v, At/Ak = 2¢, is used in the definitions of M’ and N’ due to the full-size time step.

The A = w""/w amplification is a function of D, g,s = s, + s,, and 8 = 3s,€?/s, since N = 1 — s(3 + 28) and M = 1 + s(3 — ),
and N'and M’ can be expressed from ¢’ = 46 similarly. The é parameter is usually small; its range is limited to 0 < § < C?%/6 by the
| x| < C/2 Courant condition. It would be rather tedious and useless to calculate the amplification A(D, §; g, s) analytically; instead
I obtained numerical results for finely spaced values of D and plotted them in Figure 2 for fixed values of 5. The amplification turns
out to be a monotonic function of §; thus A(D, 0; g, s) and A(D, 0.06; g, s) are upper and lower bounds, respectively, in the four cases
defined by the dimensionality of the staggering (s = 2, 1) and the choice of the original method versus Ryu’s modification (q = 1, 0).
The A(D, 0.015; g, s) curves are shown not just as an intermediate case but as the more typical lower bounds on A, since
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At < CAk/(| v, | + ctaq), and, in our calculations at least, the fast magnetosonic speed exceeds the flow velocities, therefore | €, | < C/4
and < 0.015.

The results of the above calculations were checked by running the FCT code for a few time steps with initial conditions as in
Figure 1 and periodic boundaries on a 4 x 4 grid. The amplitude of the perturbation grew exactly as expected in all cases. The
weighting scheme was, of course, not used in these check runs.

APPENDIX B

The weighting of the source function is required to eliminate perfectly the staggered instability for both the one- and the
two-dimensional cases. The most general 9-point weighting scheme is

<S[l’1]> = aS[i, .]]
+ b (S[i— 1,71+ S[i + 1, /1) + b(S[, j — 11 + S[G, j + 1])
+eSi—1,j—1]+SH+1,j—1]+ S+ 1L,j+1]+SL—1,j+1]), (B1)

where the symmetrically placed corner cells have the same c coefficients, but I let the b, and b, weights of the cells on the four sides
be different, as may be appropriate if Ax # Ay. The sum of the 9 weights must be

a+2b,+2b,+4c=1. (B2)
The staggered perturbation can be written formally as
S[i, j1 = STi, J) + 8(— 1)+7 (B3)

where S is the correct value and &S is the numerical error. The s, = 0, 1 and s, = 0, 1 parameters tell whether the perturbation is
staggered in the x and y directions, respectively. The three possible patterns corresponding to (s,; s,) = (1; 1), (1; 0), (0; 1) and the
condition that (S[i,j]> should be independent of S yield three more linear equations for the weights:

a—2b,—2b,+4c=0,
a+2b,—2b,—4c=0, (B4)
a—2b,+2b,—4c=0.

Combined with equation (B2), the unique solutionis a = %, b, = b, = }, and ¢ = 1, as was indicated in equation (3.19).
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