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ABSTRACT

An approximation for the moment of inertia of a neutron star in terms only of its mass and radius is pre-
sented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The
approximation is accurate to ~10% for a variety of nuclear equations of state, for all except very low mass
stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in
terms only of mass and radius) for the fractional moment of inertia of the crust.

Subject headings: equation of state — stars: interiors — stars: neutron — stars: rotation

In a number of models of glitch behavior the fractional
moment of inertia of matter in the crust of a neutron star plays
an important role (Alpar et al. 1993). Recently, in collaboration
with C. P. Lorenz (Lorenz, Ravenhall, & Pethick 1993, 1994),
we have derived simple expressions for some properties of the
crust alone, in terms of the mass and radius of the star. In order
to obtain simple expressions for the fractional moment of
inertia of the crust one needs comparable simple results for the
moment of inertia of the core of the star. That quantity
depends on the equation of state at high densities, about which
there is considerable uncertainty, and thus no simple exact
analytical result for it can be derived. What we demonstrate in
this paper is that for a wide variety of neutron-star models
there does exist a simple approximate expression for the
moment of inertia in terms of the mass M and radius R of the
star. It may be combined with other approximate results
(Lorenz et al. 1993, 1994) to obtain a simple expression for the
crust fraction of the moment of inertia AI /I in terms of M, R,
and the matter properties at the crust boundary. For the FPS
equation of state! the quantitative behavior of the various
ingredients in the exact calculation of a moment of inertia is
examined, to provide a partial justification of the result. Com-
parison is made with numerical calculations for many neutron-
star models made by Arnett & Bowers (1977) to provide
evidence for this as a quite widely applicable estimate, indepen-
dent of the equation of state, and useful for all except the
lightest neutron stars.

We use the general relativistic equations for a slowly rotat-
ing star as described by Hartle (1967). For the nonrotating star
that provides the radial dependence, the metric used is

ds? = —e""dt? + e*dr? + r*(d0® + sin® 6d¢?) . (1)

! The interaction used, hereafter called FPS, is based on the nuclear and
neutron matter studies of Friedman & Pandharipande (1981) and is described
in Pandharipande & Ravenhall (1989). The version used is that given on p. 116
of the latter reference, with the modification p,o/p = p,o/po discussed on p.
117.
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It involves the radial functions v(r) and A(r). The Oppenheimer-
Volkoff equations for the pressure P(r) and mass function m(r),

dP _ (p + P/c*)G(m + 4nr*P/c*)A(r)

dar r? > odr

where A(r) = e*® = [1 — 2Gm(r)/rc*]~* and p is the mass-
energy density, must be supplemented by the equation for w(r),

dv _ 2G(m + 4nrP/c*)A(r)
dr r? ’

with the boundary condition ¢"® = 1/A(R), and the equation
for the rotational drag, @,

d( , dw _ 3
(rjdr)-— 4r

dm

4nr’p, (2)

©)

dj
— —w. 4
dr dr @ @
Here j(r) is the quantity e " *40V2 which has the boundary
value j(R) = 1. In the limit of slow rotation, such that the rota-
tion angular velocity Q < GM/R?c, w(r) has the boundary con-
dition @w(R)/Q = 1 — 2GI/R3c?. I is the total moment of inertia,

given by either of the integrals

2¢2 (R, dj(r) w(r)
I‘_zaL' r o

o(r)
? dr.

= 8—” Rr4
3 Jo

This rather intricate set of equations is integrated from r = 0 to
the value r = R where the presure becomes negligible, with a
given equation of state P = P(p), and a central density p(0)
chosen to give the desired neutron-star mass. One then has
also the radius and, after satisfying the boundary conditions,
the moment of inertia.

Numerically there are no problems with this procedure, but
conceptually it is difficult to intuit answers except in simple but
remote cases such as the Newtonian limit and/or the incom-
pressible fluid. From what is known observationally, however,
it is clear that some neutron stars show strong effects of general

(p +§>A(r)f(r) )
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F1G. 1.—For the FPS equation of state (see footnote 1), neutron star
properties as a function of the mass M in M. The radius R is in km; the
moment of inertia I is in M o km?; the ratios I/MR? and I/MR?A(R), and the

crust fractions Al /I obtained numerically and by our approximation (see text),
are dimensionless.

relativity, that is, A(R) is considerably bigger than one. Given
this fact, and the variability arising from the equation of state,
it seems too much to hope that, as with a Newtonian star of
constant density, there should be some relationship between
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the whole-star quantities M, R, and I. In Figure 1 we show the
dependence of I and R on M for one equation of state, FPS (see
footnote 1). One of the accompanying curves on that figure
represents a successful attempt to guess such a relationship: we
find that over a wide range of M, I can be approximated by

MR?

~0. 2 =021 ————— .
I ~0.21MR*A(R) = 0.2 1 2GMJR

©)

(We recall that for an incompressible fluid in the Newtonian
limit I/MR? = % = 0.4. The general relativistic result has been
explored by Chandrasekhar & Miller [1974], and its represen-
tation in terms of our variables is given below in Fig. 4.) We
now try to see under what range of conditions equation (6) may
be expected to hold.

In Figure 2 are shown some of the radial functions that are
ingredients in a moment of inertia calculation. They are for the
FPS equation of state (see footnote 1) and a star mass of
M = 1.445 M, for which R = 10.8 km and A(R) = 1.65, a
quite relativistic object. The metric-related functions A(r), j(r),
and o(r)/Q displayed in Figure 2a are seen to be not constant,
nor close to one (their Newtonian limit). In view of that fact, it
is perhaps surprising that, as is shown in Figure 2a, the pro-
ducts A(r)j(r) and j(r)w(r)/QQ, and thus the ratio [w(r)/Q]/A(r),
are remarkably constant in the interior of the star. As to the
reason for this, it is straightforward to show that

2 Ny = i S22 famr? o - 22 - 2mio}.

r202 CZ

The behavior of the various quantities on the right of this
equation are plotted in Figure 2b. If they are evaluated at
r — 0, the equation becomes

d . . GA(0) 1 P0O)
7 AD)i() = 2M0)j0) — 47rrp(0)|:§ -5 (0)c2]’ r—0).

®)

For the case illustrated, the second ratio in the square bracket
has the value —0.184. For a star mass of M = 1.70 M, it has

Physical Quantities

6
r (km)

FiG. 2—For the FPS equation of state (see footnote 1), radial functions occurring in the moment of inertia calculation as a function of the radial coordinate r, in
km. The neutron star mass is M = 1.445 M ;. (a) Functions A(r), j(r), and @(r)/Q occurring in the metric of the space; the moment of inertia integral eq. (5) and that of
the approximation Q(r), eq. (6) (in M, km?); also ratios or products of these quantities, as functions of the radial coordinate r in km. (b) The baryon density ny (in
fm ~3); the density p (in m, fm ~3); the pressure P (in MeV fm ~3); the mass function m(r) (in M ); and the adiabatic index I".
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the value —0.34. Thus the square bracket, and the second
derivative of A(r)j(r) at r = 0 (the equation has a factor r also) is
small, and may be very small. But generally it cannot be identi-
cally zero. On the other hand, the curve of Aj(r) shown in
Figure 2a s quite flat at small r.

The equation of state, P = P(p), is one of the constraints in
the equations solved to obtain the above result. As an alterna-
tive stellar model, one can require of equation (7) that the
quantity A(r)j(r) be exactly constant, i.e., that

P
4nr3[p(r) - —Z(—:—)] —2m(ir)=0, O<r<R) )
in place of the equation of state. (All of the other equations are
as before.) An alternative way of writing this equation is

P(r) = [p(r) — %p(r)]c?, (10)

where p(r) = m(r)/(4nr3/3) may be regarded as some average
density over the region interior to r. We thus see that equation
(9) is equivalent to a nonlocal equation of state, since the pres-
sure at any point r depends on the density at all points interior
to r. A family of homologous stellar shapes results, whose vital
quantities are plotted in Figure 3. For a given central density
p(0) they are characterized by a length scale a defined in terms
of the central density p(0) by a = [4nGp(0)/c?] /2. They have
a mass M = 1.96[p(0)/m, 1 fm~3]*> M and a radius R =

10.0[p(0)/m, 1 fm~3]~ /2 km, and all have A(R) = 2.37. As a
function of r/a they all have the adiabatic index I = dIn P/
dln p shown in Figure 3: T has the value 9/5 at small radii, and
it increases monotonically with r/a. This is quite similar to the
I" of FPS shown in Figure 2b, although that function is some-
what dependent on M. This shows that the approximation we
suggested, A(r)i(r) ~ a constant, does not lead to grossly
unphysical behavior of stellar models. It is clear, however, that
for a given equation of state such as FPS there is no analytic
identity that can result in the precise constancy of the quantity
A(r)j(r) and the other quantities, or the relationship (6) that we
have guessed, but only quantitative coincidences. Ultimately
we must proceed numerically, and test the approximation
against actual models with different equations of state. It is

p(x)/p(0)
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FiG. 3.—Quantities proportional to the density, the pressure and the mass
vs. the dimensionless radial distance x = r/a, for the homologous model
described in the text. Also shown is its adiabatic index I'.
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nonetheless amusing to use the approximations to bend the
formalism into a slightly more familiar shape.

As a consequence of the approximate constancy of
j()yw(r) ~ w(R), it is straightforward to simplify the second
version of the exact definition (5) for I into the form

R
J I 8n

P
I~ T;—W N 3 X r‘[p(r) + g]A(r)dr . (1 1)

This is even closer to the familiar Newtonian integral, with the
extra factor A(r) and other, minor changes. (Because of our
reliance on the numerical guidance provided in the figures, we
do not attempt to transform the integrals by modifying the
metric.) It is still an integral, however. By arguments similar to
those that produced equation (8) one can show that the total
derivative g(r),

d .
q) =7 [m(ryr*A@j(r)] 12
has a very similar radial dependence to the integrand of equa-
tion (5), and, for the FPS equation of state, we show in Figure
2a the indefinite integrals of I itself, equation (5), and the inte-

gral Q(r) of q(r),

o(r) oc J q()dr , Q(R) = MR*A(R) . (13)
0

[We recall that j(R) = 1.] Thus Q(R) is, apart from a constant,
the approximation (6) we described earlier. The almost con-
stant value of the ratio I(r)/Q(r) demonstrates that there is a
quantity, g(r), that mimics the moment of inertia integrand for
all r, and whose integral has the value given by our guess (6).
Because of this fact, the approximation is more likely to extend
to other models, for which the functional dependence P(p) is
different.

As an example of exact calculations with other equations of
state against which we can test equation (6) we turn to a com-
pilation reported some time ago by Arnett & Bowers (1977).
They give results for the 11 equations of state listed in abbre-
viated form in Table 1. We use those results, without necessar-
ily endorsing the equations of state that they represent, because
they provide a reasonable variety of cases against which to
make a comparison. In Figure 4 we have plotted the ratio
I/MR2?A(R) as a function of M/R for the values in the Tables of
Arnett & Bowers (1977), to permit a visual evaluation. Indi-
cated on each curve, when the range of values given in Arnett
& Bowers (1977) allows it, are the points closest to the
maximum mass and to M = 1 M. Also marked are the points
where the central density is equal to nuclear saturation density
pJm, ~0.16 fm~3, and where it is equal to the density
pg/m, =~ 0.97 fm ~3 of the liquid-solid phase boundary (Lorenz
et al. 1993, 1994). The latter stars consist entirely of crust.
Figure 4 includes also the functional relationship obtained
using FPS.

Curves for the moment of inertia of an incompressible fluid
(invariant to the density on this particular plot) and for a gas of
noninteracting neutrons, which has a polytropic equation of
state P oc p*/3, are also included in Figure 4. They clearly rep-
resent limits outside which the relativistic models (larger values
of M/R) cannot lie. Their contrasting behavior, with respect to
the realistic models, in the Newtonian limit points up the effect
of the low-I" region the realistic models possess in their less-
dense parts, which becomes relatively more important as M/R
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TABLE 1
KEY TO THE EQUATIONS OF STATE REFERRED TO BY ARNETT AND BOWERS 19772

Their Table
Number

Equation of State

Pandharipande 1971a (neutron), BBP® and BPS®
Pandharipande 1971b (hyperon), BBP® and BPS®
Bethe & Johnson 1974, I; BBP® and BPS®

Bethe & Johnson 1974, V and BPS®

Moszkowski 1974 and BPS*

Pandharipande 1971b, Arponen 1972, and BPS°®
Canuto & Chitre 1974, BBP® and BPS®
Pandharipande & Smith 1975 (mean field model)
Pandharipande & Smith 1975 (tensor interaction)

Walecka 1974 (neutrons)
Bowers, Gleeson, & Pedigo 1975

 Properties of the equations of state are plotted in Fig. 4.

® Baym, Bethe, & Pethick.
¢ Baym, Pethick, & Sutherland.

decreases. (For example, when with the FPS model M/R =
0.013, the radius is R ~ 15 km, and matter outside r = 7 km is
all in the solid phase, with the considerably reduced adiabatic
index shown at large r in Fig. 2b.)

Those results are not surprising. What is unexpected and
noteworthy about Figure 4 is the remarkable unanimity of all
except two of the equations of state (Walecka 1974; Bowers,
Gleeson, & Pedigo 1975). (We comment about these excep-
tions later.) This unanimity is apparently not a function of the
mass, but of the quantity M/R, which determines A(R). Conse-
quently the grouping together of the curves seen in Figure 4
would also occur if I/MR2A(R) were plotted against other
functions that differed only by factors involving M/R. For our

particular choice, however, the ratio I/MR?A(R) has the
further property that it is approximately constant, to within an
accuracy of ~10%, for a range of masses that includes those
relevant to present observations.? The numerical factor 0.21 in
equation (6) is negotiable. It was deduced by inspection of
Figure 1 and was not refitted to the results of Figure 4.

The two sets of high values of I/MR2A(R) in Figure 4 come
from Arnett and Bowers’ Tables 11 and 12. In each case
(Walecka 1974; Bowers et al. 1975) the P(p) curve for that
particular equation of state has a plateau below n = n,, corre-
sponding to a phase transition for neutron matter. Our approx-
imation, based on a total-derivative argument, will clearly fail
for such discontinuous profiles. (There is no experimental or
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FIG. 4—The quantity I/MR*A(R) as a function of M/R (M in M, R in km), for the values contained in the Tables of Arnett & Bowers (1977). Indicated on each
curve is the point closest to the maximum mass (dlownward vertical line) and to M = 1 M, (upward vertical line); also, where available, the point at which the central
baryon density is close to n, = 0.16 fm 3, and that where it is close to the density of the liquid-solid phase transition (short and long horizontal lines, respectively).
The number attached to the points refers to the Tables in Arnett and Bowers cited in our Table 1. Curves are also included for the FPS equation of state (see footnote
1), numbered 13, the general-relativistic incompressible-fluid model (Chandrasekhar & Miller 1974), and the polytrope v = 5/3, respresenting a gas of free neutrons,

numbered 14.
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other theoretical evidence for such a phase transition.) For
most of the cases, however, equation (6) provides a useful
approximation to the moment of inertia, and if necessary the
FPS curve suggests ways to make a better functional fit (see
footnote 2).

The FPS equation of state (see footnote 1) represents, we
believe, the best fit currently available to nuclear and neutron
matter properties at densities up to nuclear saturation density
n,, and consequently to the properties of the inner crust of
neutron stars—the density range from neutron “drip” to the
solid-liquid phase boundary. It is unclear, however, how reli-
able it is at supernuclear densities, since it includes as hadron
components only nonrelativistic nucleons, and the the three-
and higher-body interactions between between nucleons are
uncertain. Thus the best procedure for calculating neutron-star
properties may be to graft the FPS crust onto some other core.
The procedure this suggests for calculating the observationally
accessible quantity Al /I is as follows.

As has been shown earlier (Lorenz et al. 1993, 1994), the OV
equations may be approximated in the region of the neutron-
star crust to obtain for the crust mass AM, the expression

a2 | _4n(R — AR)*
AM, ~ 4zR L p(rydr = GMA Py .
Here pp and Py are the density and pressure at the phase
boundary separating the solid crust from the fluid core. The
quantity AR allows for the fact that the effective radius of the
crust is smaller than the radius R measured to the surface of
the star. A relevant dimension, the thickness of the inner crust
AR;., depends on star properties and the neutron chemical
potential ug at the phase boundary as follows (Lorenz et al.
1994):

(14)

R2
ARic = GMARY: M2

That distance, from the onset of neutron drip (i, = 0) to the
phase boundary, presumably underestimates the AR needed
since it does not include the outer crust. But however AR is
chosen, it must scale with M and R in the same way as the
distance in equation (15). One may also obtain by a similar
procedure to that used to derive equation (14) the expression
for the crust moment of inertia:

(15)

1 — 2GI/R3¢?

1 — 2GM/Rc?’ (16)

Al ~ % AM,(R — AR')?

where because of the somewhat different integrand the radius
adjustment AR’ will not be precisely the same as the AR of
equation (14). These expressions can be combined with the
result (6) to give the relationship

Al, _8n (R — AR)°Q, P, _(;_2¢1 an
I ~ 3¢ GM2?R3A(R) > = R3c?

where a ~ 0.21 is the numerical factor in equation (6), and AR
is some average radius adjustment.

2 The behavior shown by FPS in Fig. 4 can be represented approximately
over most of the range of M/R by a curve of the form I/MR?*A(R) ~ 0.23—
0.07(1-10M/R)*/(M/R)"”?, with M in M, and R in kilometres. For very small
M/R, but M greater than the neutron-star minimum mass, a linear expansion
is sufficient. It leads to I ~ 75SM?R, in the same units. The result expected for a
polytrope is I o« MR?, with a proportionality constant that depends on the
polytropic index. Our seemingly paradoxical relationship results from the
varying value of the adiabatic (polytropic) index I' in the crust, shown in Fig.
2b.
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Assuming the FPS value (Lorenz et al. 1993a) Py = 0.374
MeV fm~3 for the pressure at the phase boundary, and a
choice of AR that we will discuss later, we may obtain the
following expression for A, /I:

Al (R — AR)5Q,

il A -4 [
I ~ 9,06 x 10 2R2A(R) %
2 R?
~ 1. 1074 ————
AR ~1.74 x 10 AR km,
MA(R)

M -1
A(R) = (1 2.953 R) s, Qr~1-0.62 r (18)
In this expression R is in km, M in M, and Al /I is a percent-
age.

We show in Figure 1 the fractional moment of inertia of the
crust given by equation (18) for the FPS equation of state (see
footnote 1), compared with the numerical results for that
model. Since in equation (18) R — AR is raised to the sixth
power, the results depend rather sensitively on AR. The value
of R — AR represents an average radius for each integral
approximated, so AR should be somewhat less than the total
crust thickness. The curve in Figure 4 labeled e, and the expres-
sion for AR in equation (18), correspond to a choice AR, that
gives best agreement for AM,, equation (14) at the mass
M = 1.445 M. Alternatively, the crude assumption that the
density is falling exponentially near the crust boundary,
p(r) oc exp (—ar), leads to the choice AR, = AR, — 1/a. The
resulting prediction for AI_/I is labeled « in Figure 1. For the
mass M = 1.445 M, these changes in radius have the values
AR, =0.75 km, AR, = 0.66 km and AR, = 0.54 km; they all
scale with M and R in the manner given in equation (18). The
resulting versions of AI,/I shown in Figure 1 are noticeably
different, but version e differs from the numerical evaluation by
less than ~10% for all masses greater than 1 M. At the
lowest mass illustrated in Figure 1, the star radius is 11.3 km,
and the crust thickness is 2.4 km. Clearly when AR /R 2 20%
the first-order expansion with which we have approximated
the crust properties is strained somewhat.

Accepting the uncertainty that the sensitivity on AR causes,
we present equation (18) as an approximation for the observ-
able quantity Al /I that depends only on the neutron star mass
and radius and is (within the limits we have described) indepen-
dent of the equation of state. Used with the M and R from
other equations of state, it represents a simple way to graft
onto those equations the FPS (see footnote 1) description of
the crust.

We conclude by referring again to the results of Fig. 4: for
the large majority of the equations of state considered,
although they differ considerably in how their masses are
related to radii and what their maximum masses are, the
moment of inertia as a function of the ratio M/R is surprisingly
similar. Exploitation of this result has produced a simple and
model-independent expression for the crust fraction of the
moment of inertia, and its mode of derivation may lead to
insights concerning other general properties of slowly rotating
neutron stars.
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