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ABSTRACT 

The precession and nutation of the Earth’s equator arise from solar, lunar, and planetary torques on the 
oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the 
ecliptic is caused by planetary perturbations and the Earth’s gravitational harmonic 72- These planetary 
perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, 
obliquity rate, and nutation while the J2 perturbations contribute to precession and nutation. Small 
additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth’s 
bulge. The total correction to the obliquity rate is —0.0247century, it is an observable motion in space (the 
much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it 
is not present in the IAU-adopted expressions for the orientation of the Earth’s equator. The72 effects have 
generally been allowed for in past nutation theories and some precession theories. For the planetary effect, 
the contributions to the 18.6 yr nutation are —0.03 mas (milliarcseconds) for the in-phase At// plus 
out-of-phase contributions of 0.14 mas in Aif/ and —0.03 mas in Ae. The latter terms demonstrate that 
out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the 
precession rate is considered and the inferred value of the moment of inertia combination (C—A)/C, which 
is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession 
rate, the rigid body (C-A)/C=0.003 273 763 4 which, in combination with a satellite-derived J2, gives a 
normalized polar moment of inertia Cl MR2=0.330 700 7. The planetary contributions to the precession and 
obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in 
precession also arises from tides and changing J2. Contributions from the improved theory, masses, ecliptic 
motion, and measured values of the precession rate and obliquity are combined to give expressions 
(polynomials in time) for precession, obliquity, and Greenwich Mean Sidereal Time. 

1. INTRODUCTION 

Torques on the oblate Earth due to the gravitational attrac- 
tion of the Sun and Moon cause the Earth’s equator to pre- 
cess and nutate. The precession is retrograde and its rate is 
507yr, roughly 1/3 of it due to the Sun and 2/3 from the 
Moon. The rate depends on the lunar and solar masses and 
distances, the orbital eccentricities and inclinations, and the 
obliquity angle between the Earth’s equator and ecliptic 
planes. 

Recent decades have seen impressive advances in the ac- 
curacies of techniques measuring positions of artificial satel- 
lites, the Moon, and radio sources. Accurate theories for the 
motion of the Earth’s equator in space are needed. This paper 
examines several theoretical contributions to precession, 
obliquity change, and nutation. 

The orbit of the Earth-Moon system about the Sun de- 
fines the ecliptic plane. The lunar orbit is inclined 5° to the 
ecliptic plane and the strong solar torques drive the preces- 
sion of the lunar orbit plane along the ecliptic with an 18.6 yr 
period. But several influences cause a slight tilt of the mean 
plane of orbital precession with respect to the ecliptic. The 
Earth’s oblateness contributes a small torque which attempts 
to precess the lunar orbit along the equator. The net result of 
these two torques is a lunar orbit precession along a plane 
tilted 8" with respect to the ecliptic and this plane intersects 
the ecliptic at the dynamical equinox, the intersection of the 

ecliptic and equator planes. This small influence of the 
Earth’s oblateness on the lunar orbit in turn causes a small 
change in the precession of the Earth’s equator. 

The orbit planes of the planets have small inclinations 
with respect to the ecliptic plane. As a consequence of the 
planetary attractions, the ecliptic plane moves. The Moon’s 
mean plane of orbital precession follows the moving ecliptic 
closely, but not perfectly. This motion causes a 1.4" tilt of the 
plane of orbital precession to the ecliptic. There are also 
direct planetary torques on the lunar orbit which contribute a 
smaller displacement. These two influences on the lunar orbit 
result in torques on the oblate Earth which modify its orien- 
tation. In addition, the planets directly torque the Earth. The 
torques from these three planetary influences are not aligned 
with respect to the dynamical equinox. Consequently, they 
contribute to both the precession of the equator and the 
obliquity rate. While the precession rate must be a measured 
quantity, the obliquity rate is not a free parameter of the 
dynamics. These planetary influences are not included in the 
IAU-adopted theory of precession and obliquity change 
(Lieske et al. 1977). Neither have all of the consequences of 
the planetary tilts on the lunar orbit been included in recent 
nutation theories. 

The above sources of precession and obliquity rate also 
cause accelerations. Acceleration corrections also arise from 
tidal effects and the Earth’s changing J2- 

The above outlined corrections to the motion of the 
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Earth’s equator are developed in the following sections. To 
these corrections are added precession corrections developed 
by Kinoshita & Souchay (1990) due to the Earth’s J4 and 
second-order corrections due to nutation. From the revised 
theory are developed new polynomial expressions for the 
motion of the Earth’s equator and revised values of the 
Earth’s fractional moment of inertia, (C—A)/C, and the nor- 
malized polar moment, C/MR2. 

2. FUNDAMENTALS 

This section sets up the fundamental equations for calcu- 
lating the motion of the Earth’s equator (or pole) in space. As 
the computations of the subsequent two sections are limited 
to small effects, it is reasonable to introduce simplifications. 
The Earth will be treated as a rigid body without oceans and 
without the influence of a liquid core. Small differences in 
the directions of the axes of angular momentum, instanta- 
neous spin, and figure (equivalent to celestial ephemeris pole 
for a rigid body) are ignored. The equations will be written 
for the angular momentum axis, but strictly speaking it is the 
motion of the figure axis of the rigid Earth which is desired. 
Also ignored are second-order effects due to the change of 
the Earth’s orientation, e.g., precession and nutation modify- 
ing the computation of precession and nutation. 

The oblate, rigid Earth is torqued by an external body. 
The attracting body has a geocentric distance r and a product 
of the gravitational constant and mass Gm. The Earth has 
moments of inertia A, A, C with A<C, and mass M. The z 
axis is aligned with the Earth’s principal axis corresponding 
to the maximum moment C, and the x axis points toward the 
intersection of the ecliptic and equator planes, the dynamical 
equinox. The potential energy of the external body in the 
gravity field of the oblate Earth is 

V=Gm[M/r-(C-A)(3 sin2 5-l)/2r3], (1) 

where the declination of the attracting body is S and the right 
ascension is a. Equivalently, the vector r has components 
(x,y,z). The torque T on the Earth is 

T=-rXVV, (2) 

3Gm(C-A)sin S cos ô sin a 
— cos a 

0 

T= 
3Gm(C —A) 

(3) 

The rate of change of the vector angular momentum L is 
governed by dL/dt=T. Given the orbit of the external at- 
tracting body, the resulting precession and nutation of the 
Earth can be calculated. 

The analytical theories for the Sun, planets, and Moon are 
referred to the ecliptic plane. Consequently, the conversion 
from geocentric ecliptic coordinates (X,Y,Z) to equatorial 
coordinates (x,y,z) requires a rotation about the x axis by 
the obliquity e 

Y cos €—Z sin e 
Z cos e+Y sin e 

(4) 

In the torque vector the products of equatorial coordinate 
components become 

(l/2)(72-Z2)sin 2e+VZ cos 2e 
—XZ cos e—XY sin 6 

0 
(5) 

The ecliptic coordinates (X,Y,Z) of the attracting body can 
be written in terms of the geocentric distance r and the geo- 
centric ecliptic longitude \ and latitude ß 

I X\ j COS yö COS X\ 
Y = r cos y0 sin X . (6) 

\z) \ sin ß ! 

Because the Earth’s path about the Sun is well approxi- 
mated by an elliptical orbit in the ecliptic plane, the solar 
torque may be computed with good accuracy with little ef- 
fort. Averaged over an integral number of revolutions the 
average x component of torque is 

Tx = 3Gm(C-A)ún ecos e/2a3(l—e2)3/2, 

where a is the semimajor axis, e the orbital eccentricity, and 
e the obliquity. The x component of the torque gives rise to a 
retrograde precession along the ecliptic with rate 
dif//dt = Tx/C(x)z sin e, where a)z is the major component of 
the Earth’s angular velocity and Ca)z approximates the total 
angular momentum of the Earth’s spin. 

dt('/dt=3Gm(C-A)cos e/2a3(l-e2)3/2Cwz. (7) 

G/a3 may be replaced with the square of the mean motion 
divided by the sum of the masses (Sun+Earth+Moon) using 
Kepler’s third law. The analogous precession from the Moon 
includes an inclination factor of 1-1.5 sin2 i. The other two 
torque components have zero average, but of course the first 
two components have time variations which contribute peri- 
odic nutation terms. 

The elliptical approximation above works well for the 
solar-induced precession of the Earth’s equator along the 
ecliptic, but it is a coarser approximation for the lunar effect 
because the lunar orbit is strongly perturbed by the Sun. 
These difficulties in the major precession and nutation effects 
have been dealt with by Kinoshita & Souchay (1990). Their 
computation for the solar precession is only larger by 
2X10-6 so Eq. (7) is a very good approximation for the Sun. 
The lunar orbit is highly perturbed and the equivalent equa- 
tion for the lunar-induced precession, including the inclina- 
tion factor, is less precise. The computation of many small 
corrections in this paper can use the elliptical approximation. 

3. EFFECTS DUE TO THE TILTED LUNAR MEAN PLANE 

The lunar orbit precesses along a plane which is tilted 
slightly with respect to the ecliptic plane. The Earth’s J2 

causes an 8" tilt and planetary effects cause a 1.5" tilt. As a 
consequence of these small sizes, expansions will be used. 
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The lunar latitude arises from the 5.15° inclination of the 
orbit to the ecliptic i, and smaller perturbations Aß so that 

sin yß^sin i sin F + Aß, (8) 

where F is the mean argument of latitude. Similarly the lunar 
longitude \ may be written in terms of its mean longitude L, 
mean anomaly /, eccentricity e, and smaller contributions 
AL 

k=L + 2e sin l + AL. (9) 

The perturbing terms most important for precession and 
nutation are selected from Chapront-Touzé & Chapront 
(1988, 1991). For J2 perturbations 

Aß=-8.045" sin L + 0.326" sin(L-2F), 

AL =7.063" sin 0 + 0.361" sin(L+F), (10) 

where is the lunar node (Í1=L—F). The important 
planetary-induced terms are 

A/3= 1.510" sin(L + 96.68°), 

AL=—0.289" sin(0 + 95.13°) 

-0.062" sin(L + F+95.13°). 

The J2 and planetary effects also cause radial perturbations, 
but compared with the longitude and latitude perturbations 
they are relatively ineffective in modifying precession and 
nutation. 

For the purposes of expansions, the above perturbations in 
ecliptic longitude and latitude will be represented symboli- 
cally as 

Aß = B sin(L+ 0)+£' sin(L-2F), 
(12) 

AL=E sin(il +<p)+ F' sin(L+F+cp). 

The ecliptic plane is rotating about a line which is dis- 
placed from the dynamical equinox by <p—90o=5.13°. The 
phase <f) is different from cp because the first term in latitude 
combines both the direct effect of the planets with the indi- 
rect effect of the ecliptic motion. After introducing these per- 
turbations into the differential equations of the previous sec- 
tion and carrying out the expansions through first degree in e 
and sin i there are contributions to both rate and periodic 
terms in ÿ and e. The rate terms are 

dip 3Gm{C—A)cos 2e 
dt Aa3Co)z sin e 

X[2B cos <£ + (£'—F)sin i cos <p], 

de —3Gm(C—A)cos e 
dt Aa?>Co)z 

X\2B sin <f) + (Ef -E)sm i sin <p]. 

A contribution to the obliquity rate requires phase shifts. 
The planetary effects contribute a —0.254 mas/yr (mas 
=milliarcsecond) correction to the obliquity rate while J2 

perturbations contribute nothing. To the precession, J2 per- 
turbations contribute -2.630 mas/yr while planetary effects 
contribute -0.056 mas/yr for a total of -2.686 mas/yr. 

The largest of the nutation corrections has the 18.6 yr 
period of the lunar node (rate Ù). While the rigid-body nu- 
tation caused by the main lunar theory only contains in-phase 
terms (sines of the arguments for Aip and cosines for Ae), the 
phase shifts with the planetary effects also induce out-of- 
phase terms (cosines for Aip and sines for Ae) 

3Gm(C —A)sin e cos e 
sin eAil/= ^ {T-7 sin i B cos ó 

4a3Co)zil 

+ 2E' cos 9 + 6 sin i F'jsin Í1 

+ [5 sin i B sin </> —2F' sin 9]cos Í1} 
(14) 

3Gm(C—A)sin e 
A6=  : {[sin i B cos ó 

4a3Cct)2fi 

— 2E' cos 9]cos íl + [sin i B sin </> 

— 2E' sin 9] sin Í1}. 

Nutation terms at half of the nodal period must also be con- 
sidered. The contributions to the nutation terms with argu- 
ment twice the lunar node are 

3Gm(C —A)cos 2e 
sin eAiI/= ; ^ [(sin i E cos 9 

8a3Ccu2il 

— 2F')sin 2íl + (sin i E sin ip)cos 2Í1] 
(15) 

3Gm(C—A)cos e 
Ae = ; : [ — (sin i E cos 9 

8a3C(x)zQ 

— 22?')cos 2íl + (sin i E sin 9)sin 2Í2]. 

Finally, there are small corrections to terms with argument 
2L (rate 2L) 

3Gm(C-A)cos 2e 
sin eAif/= ; : [-B cos ó sin 2L 

4a3C(ozL 

— B sin cp cos 2L], 
(16) 

3Gm{C—A)cos e 
A 6= ; ^ [Æ cos 4> cos2L 

4a3CoL>zL 

— B sin cp sin 2L] 

Using the numerical values of the coefficients and phases 
for the J2 and planetary effects from Eqs. (10) and (11), the 
above contributions to the nutation have been calculated. 
They are presented in Table 1 (units mas). The major contri- 
bution is to the 18.6 yr A^ term with a lesser contribution to 
the 18.6 yr A£ term. Both of these contributions increase the 
magnitude of the conventional 18.6 yr terms. The contribu- 
tions to the 9.3 yr nutation are small. The two contributions 
in Eq. (15) from the J2 effect nearly cancel and the values in 
the Table 1 are effectively zero. The higher frequency of the 
2L( = 2F + 2il) term prevents those half-month nutation 
corrections from being large. 

Out-of-phase terms in the nutation theory will arise from 
dissipative processes in the oceans (Wahr & Sasao 1981; Zhu 
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Table 1. Nutation terms due to J2 and planetary tilt effects of lunar orbit. 
Lunar mean longitude is L = il + F. 

Ae 

Argument 
sin 
mas 

cos 
mas 

sm 
mas 

cos 
mas 

J2 Tilt 
Í1 
20 
2L 

Planetary 
n 
20 
2L 

-1.4782 
0.0049 
0.0151 

-0.0301 
-0.0005 

0.0003 

0.0000 
0.0000 
0.0000 

0.1366 
0.0060 

-0.0028 

0.0000 
0.0000 
0.0000 

-0.0277 
0.0032 

-0.0015 

0.1557 
-0.0026 
-0.0081 

0.0029 
0.0003 

-0.0002 

et al 1990) and interior of the Earth (Wahr & Bergen 1986; 
Dehant 1988, 1990). The out-of-phase terms in Table 1 arise 
from the phase shifts in the planetary effects which in turn 
arise because the orbit planes of the planets other than Earth 
have no special alignment with the ecliptic plane or dynami- 
cal equinox. There are still smaller corrections with argu- 
ments of 2L +Í1, 2L - il, 2m—íl, and 3Í1 which are 
not given. 

Woolard (1953) was aware that out-of-phase terms in nu- 
tation theory could arise from planetary perturbations on the 
lunar orbit. The out-of-phase 18.6 yr term for nutation in 
longitude occurs in his Table 24 (it is marked with a ? and a 
footnote, but matches the value in Table 1 of this paper), but 
the obliquity term was too small for his cutoff limit. Woolard 
also calculated the obliquity rate contribution, showing 
-0.256 mas/yr in his Table 24 at the year 1900. In the text 
(p. 127) he also comments that the planetary-induced lunar 
terms contribute to precession and to the acceleration of 
obliquity. Kinoshita (1975, 1977) considered the obliquity 
rate contribution to be due to an error in Woolard’s equations 
of motion. This assertion will be discussed further in Sec. 6. 
Kinoshita’s Mj correction to precession is -2.68 mas/yr and 
it appears to correspond to the sum of the J2 and in-phase 
planetary effects computed in this paper. In Kinoshita & 
Souchay (1990) a more elaborate “second-order” correction 
to precession replaces the earlier correction. It contains a 
-2.60 mas/yr correction to precession due to the J2 effects, 
but the —0.056 mas/yr planetary effect is missing. Presum- 
ably, their nutations contain the corresponding contribution 
from J2, but not from the planetary tilt. 

4. RATES DUE TO DIRECT TORQUES OF PLANETS ON EARTH 

The torques from the Sun and Moon dominate the preces- 
sion of the Earth’s equator. There are small additional 
torques from the planets which contribute to the precession. 
The inclination of the planetary orbits to the ecliptic will also 
cause a small obliquity rate. A calculation of the precession 
contribution was given by Kinoshita & Souchay (1990), but 
not the obliquity rate. A brief derivation of both rates is given 
below. Note that the effect of these direct planetary torques 
on the Earth is distinct from the tilt effect due to the direct 
planetary perturbations on the lunar orbit. 

In order to compute the geocentric coordinates of the at- 
tracting planet, it is necessary to difference the heliocentric 
coordinates of the planet and the Earth. Primes will be used 
for the planet’s variables, no primes for the Earth. The effects 
are small; so to keep the derivation from becoming unwieldy, 
two approximations will be introduced. The heliocentric or- 
bits will be taken as circles and the planetary inclinations 
will only be carried to first degree (cos Then the plan- 
et’s geocentric ecliptic coordinates are 

af cos(w' + n') —a cos(M + fT) 
af sin(w'Tí!') —a sin(H + iy) 

a ' sin / ' sin M ' 
(17) 

where a and a ' denote the semimajor axes, i ' the inclination 
to the ecliptic, Í1' the node on the ecliptic, and u and «' the 
arguments of latitude measured from that same node for both 
the Earth and attracting planet. The geocentric distance r is 
given by 

r2 = a2 + a'2-2aa' cos(u — ur). (18) 

The ecliptic coordinates are rotated into equatorial coor- 
dinates following Eq. (4) and the products of coordinates of 
Eq. (5) are formed for substitution into Eq. (3) for the torque. 
There result expressions involving products of sines and co- 
sines of u and «'.In order to isolate the secular rates from 
the periodic terms Gauss’ method of averaging over « and « ' 
is used. Denoting the average with (), an example is 
((YZ/r5)) = f i(YZ/r5)dudur I4tt2 with both integrals 
evaluated from 0 to 277. To winnow out terms which will 
disappear during the double integration a mathematical de- 
vice is useful. The transformations (sin w, sin «')—►(—sin «, 
-sin«'), (cosm, cos «')—►(—cos «, -cos«'), and both 
taken together leave unchanged the distance r which appears 
in the denominators of the integrals. Any component of the 
numerators Y2-Z2, YZ, XZ, or XY which reverses sign un- 
der any of the three transformations will average to zero. 
Also, since only « — « ' appears in the denominator, changing 
variables of integration to « —«' and « + « ' makes it clear 
that additional components average to zero. Finally one gets 

((Y2 —Z2)/r5) = (l/2)(l/r3), 

(YZ/r5) = (a'/2)sin i' cos il'(«'(l/r5) 

— <z(cos(m —w')/r5)), 
(19) 

(XZ/r5)= -(«72)sin /' sin il'(«'(l/r5) 

-«(cos(w-w')/r5)), 

(XY/r5) = 0. 

The three different averages on the right-hand sides above 
are only functions of « —«' and they may be evaluated in 
terms of complete elliptic integrals of the first and second 
kind, K(k) and E(k), respectively, 
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Table 2. Precession and obliquity rates from direct planetary torques on the 
Earth’s bulge. 

Planet 
if/ rate 
mas/yr 

e rate 
mas/yr 

Mercury 
Venus 
Mars 
Jupiter 
Saturn 
Uranus 
Neptune 
Total 

0.003 651 
0.187 273 
0.005 393 
0.116 665 
0.005 177 
0.000 100 
0.000 029 
0.318 287 

-0.000 090 
-0.017 372 

0.000 255 
0.002 782 
0.000 217 
0.000 001 
0.000 001 

-0.014 207 

(l/r3) = 2£(&)/[7r(fl + fl')3(l -£2)L 

{llr5) = 2[-K{k) + 2E{k){2-k2)l{\-k1)y 

[37r(a + a')5(l —&2)], (20) 

{cos(u — u,)lr5) = 2\_ — K(k){2 — k2) 

+ 2E(k){l — k2 + kA)¡{ \ —k2)y 

[37r(a + a')5/:2(l — A:2)]. 

The modulus k is the geometric mean of the two semimajor 
axes divided by the arithmetic mean or 

A:2 = 4flfl7(ö + ß')2. (21) 

The rates induced by the direct planetary torques are 

dil/ldt = [Gm' {C—A)l ir{a + ar){a — a'ŸCoiz] 

X[3 cos e E{k) 

— G cos 2e sin ï cos il'/sin e], 

de/dt^lGm’ (C-A)l Tr(a + a'){a- a'ŸCoiz] 

X[-G cos e sin V sin ilf], (22) 

G = (a2 + la,2)E(k)/2(a2-ar2) 

— (a — a')K(k)/2(a + a'), 

where m[ is the attracting planet’s mass. In the precession 
rate the larger term involves cos eE(k). It contributes to 
precession as though the attracting body were in the ecliptic 
plane and it has the same cos e dependence as the dominant 
precession due to the Sun and Moon. For both rates the com- 
binations sin sin Í!' and sin/'cosí!', which are two of 
the coordinates of the planet’s orbit pole direction, allow for 
small contributions due to the tilt of the planet’s orbit plane 
with respect to the ecliptic. 

The numerical results for the precession and obliquity rate 
contributions from the direct planetary torques on the Earth 
are given in Table 2. The 0.3183 mas/yr precession rate re- 
sults from 0.3269 mas/yr due to the cos eE(k) term and 
—0.0086 mas/yr from the planetary inclinations. The com- 
parison of precession rate with Kinoshita & Souchay’s 
(1990) computations for Venus through Saturn shows differ- 
ences of 3% for Venus and 1% for Jupiter. In Table 2 the 
largest values of the modulus k occur for Venus and Mars, 

0.987 and 0.978, respectively. The obliquity rate contribution 
of —0.014 mas/yr combines with the larger contribution of 
—0.254 mas/yr from planetary effects through the lunar orbit 
(Sec. 3) to give -0.268 mas/yr. Tidal torques contribute ah 
additional 0.024 mas/yr to obliquity rate; that derivation is 
interconnected with nonlinear contributions and will be de- 
ferred (Sec. 7) until after the summarizing of the rates. The 
total obliquity rate with respect to space is —0.244 mas/yr. 
This correction to the obliquity rate is not included in the 
expressions accompanying the IAU-adopted precession 
theory. 

5. TOTAL PRECESSION AND OBLIQUITY RATES 

This section summarizes the various contributions to pre- 
cession and obliquity rates, gives the total values, and dis- 
cusses the implications. The precession and nutation of the 
Earth’s pole in space depend on the dynamical flattening 
(C—A)/C. Since the precession rate was measured with a 
smaller relative error than the nutation coefficients, the rate 
of precession was chosen as a primary 1976 IAU constant 
and recent nutation series have been computed from the de- 
rived value of (C-A)/C (or proportional quantities for the 
Sun and Moon called ks and kM). 

Knowledge of the precession rate and obliquity has im- 
proved since the adoption of the 1976 IAU constants. The 
value of (C—A)/C appropriate to the IAU constants, but 
with the theoretical modifications of this paper and updated 
ecliptic motion, is 0.003 273 978 26. The featured computa- 
tions will use improved values of the precession rate, ob- 
liquity, masses, mean motions, and ecliptic motion. A —3 
mas/yr correction to the IAU-adopted value of the precession 
constant has been indicated by several lines of evidence: lu- 
nar laser ranging (Williams et al 1991, 1993), very long 
baseline interferometry (Herring et al 1991; Herring 1991; 
McCarthy & Luzum 1991; Steppe et al 1993), the two com- 
bined (Chariot et al 1991), and systematic proper motions in 
star catalogues (Miyamoto & Soma 1993). Several recent fits 
have given corrections near -3.2 to —3.3 mas/yr and a gen- 
eral precession rate of 5028.777century has been chosen for 
this paper. The change from the IAU general precession rate 
is -3.266 mas/yr and the change in the luni-solar precession 
rate is —3.219 mas/yr (the two do not match because the 
ecliptic motion is different from the IAU paper). For the 
obliquity at J2000 (e0), the value of 84 381.409"=23° 
26'21.409" is based on analyses of lunar and planetary ob- 
servations. This obliquity and the mass ratios Earth/Moon 
=81.300 59 and Sun/(Earth+Moon)=328 900.560 are from 
the recent ephemeris DE 245 (Newhall et al 1993). See 
Standish (1982) for the technique of extracting the obliquity 
from an ephemeris. The corresponding {C—A)/C is 
0.003 273 763 40, £5=3475.197397century, and 

=7546.737 00"/century (or 7567.305 75"/century with the 
1/^2 factor). 

The various contributors to precession and obliquity rates 
are summarized in Table 3. Taken from Kinoshita & Souchay 
(1990) are the first-order equations for the computation of 
the lunar- and solar-induced precession (the values were 
computed from the equations), the value of the second-order 
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Table 3. Contributions to precession and obliquity rates. {C—A)!C 
=0.003 273 763 4 and obliquity 23°26'21.409" at J2000. 

Contribution 
Free, rate 
arcsec/yr 

€ rate 
arcsec/yr 

Sun first order 
Moon first order 
Second order 
74 
Tilt effects 
Direct planetary 
Tidal 
Geodesic precession 
Total space motion 
Ecliptic motion 
General motion 

15.948 870 
34.457 698 
-0.000 468 

0.000 026 
-0.002 686 

0.000 318 

-0.019 194 
50.384 565 
-0.096 865 
50.287 700 

-0.000 254 
-0.000 014 

0.000 024 

-0.000 244 
-0.468 096 
-0.468 340 

lunar plus solar effects (excluding the J2 orbit effects), and 
the small value for the precession induced by the Earth’s J4 

gravitational harmonic. The contribution to precession and 
obliquity rate due to the lunar orbit tilt comes from Sec. 3 of 
this paper and the planetary contribution due to direct 
torques on the Earth’s oblateness comes from Table 2 in Sec. 
4. The relativistic precession, variously called the geodesic, 
geodetic, and de Sitter-Folker precession, is computed from 
the following equation based on that in Barker & O’Connell 
(1970, 1975): 

Pg=3(na/c)2n/2(l-ez), (23) 

where c is the speed of light and n and a are the mean 
motion and semimajor axis of the orbit of the Earth-Moon 
system about the Sun. The convention of measuring the pre- 
cession constant in a left-handed sense (retrograde) results in 
a negative sign for the geodesic precession in Table 2. The 
tidal influence on obliquity rate is taken from Sec. 7. The 
sum of all of the above contributions gives the precession 
and obliquity rate with respect to space for the stated value 
of (C—A)/C. Conventionally the precession along the fixed 
ecliptic with respect to space is referred to as the “luni-solar 
precession” (which includes contributions from the planets 
as well). Clearly, it would be inappropriate to refer to the 
companion —0.244 mas/yr obliquity rate as luni-solar obliq- 
uity rate since most of it ultimately comes from planetary 
influences. 

To get the precession and obliquity rate for the moving 
equator with respect to the moving ecliptic plane it is neces- 
sary to subtract off the motion of the ecliptic plane. This is 
done in the last two lines of Table 3. The values for the 
ecliptic motion have been improved upon since the IAU 
theory (Lieske et al. 1977). Improved ecliptic motion and its 
influence on the precession expressions has been considered 
by Bretagnon (1982), Bretagnon & Chapront (1981), Laskar 
(1986), and Simon et ai (1994) and the improved motion 
from Simon et ai, including the correction for mass changes, 
has been used in Table 3. There is a problem with the no- 
menclature of the past. What have been called “planetary 
precession” and obliquity rate (Woolard uses “precession in 
obliquity”) come from the motion of the ecliptic. We now 
have two planetary contributions to each of precession and 
obliquity rate which are motions in space, not ecliptic mo- 

tion. It is conventional to refer to the (mean-of-date) motion 
of the dynamical equinox along the moving ecliptic plane as 
“general precession in longitude.” Consequently, the final 
line has been labeled general motion and by extension the 
obliquity rate might be called general obliquity rate. 

Both very long baseline interferometry (VLBI) and lunar 
laser ranging (LLR) are capable of measuring the motion of 
the equator with respect to space rather than the moving 
ecliptic. Thus both measure the luni-solar precession rate, not 
the general precession rate (the IAU primary constant), and 
have the potential to measure the —0.244 mas/yr obliquity 
rate with respect to space. There is weak evidence for the 
latter in the VLBI results (Herring et al. 1991; Steppe et al. 
1993). Better precession and obliquity rate measurements 
can be anticipated as the VLBI and LLR data spans lengthen 
and separation of rates and 18.6 yr nutation becomes stron- 
ger. 

The nutation theory of Kinoshita & Souchay (1990) is a 
significant improvement on previous theories and it is impor- 
tant to understand the corresponding values of (C-A)/C, 
kM, and £5. In part due to misprints, three different values of 
(C-A)/C and two of kM have been published and it is im- 
portant to resolve the discrepancy. From the 1976 IAU con- 
stants and Kinoshita & Souchay’s numerical values and 
equations are calculated (C-A)/C =0.003 273 967 71, 
£5=3475.414 267century, £^=7547.199 697century (or 
7567.769 707century with the l/Fl factor). The set of their 
values which has internal consistency is (C—A)/C 
=0.003 273 967 (Souchay & Kinoshita 1991), 
£s=3475.41357century, and £^=7547.198l7century 
(7567.768l7century with factor). The relative difference is 
2.2X10-7, but is small enough to only influence the nutation 
at the few microarcsecond level. In Kinoshita & Souchay the 
(Earth+Moon)/Sun mass ratio is incorrectly labeled Earth/ 
Sun ratio in two places and correctly labeled in a third, but 
any discrepancy is too small to explain the difference. To 
adjust their theory to this paper’s updated precession rate and 
(C-A)/C with all of the corrections, multiply their nutation 
series by the factor 0.999 937 82. 

It is instructive to consider several contributions to the 
above factor and the proportionate (C—A)/C. The largest is 
the correction to the IAU precession rate causing a relative 
change of — 6.48X10-5. Updating the mass ratios and ob- 
liquity causes -8X10“7. The change in the ecliptic motion 
causes 9X10-7. Theoretical differences due mainly to the 
planetary tilt induced precession (absent in Kinoshita & 
Souchay) and a somewhat different geodesic precession ac- 
count for 2.2X10-6. By comparison, the relative uncertainty 
due to the present precession rate determination is about 
7X10“6. 

The ratio of J2 = (C—A)/MR2, where R is the Earth’s 
equatorial radius, and (C-A)/C gives C/MR2 the normal- 
ized polar moment of inertia. Combining J2 from the 
GEM-T2 solution of Marsh et al. (1990), including a suitable 
addition for the model’s permanent tide, with the precession 
derived (C—A)/C from above yields a rigid body 
C/MR2=0.330 700 7. With the mean moment /=(C + 2A)/ 
3, then 7/MR2=0.329 978 9. 
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6. THE PHASE OF THE TILT TERMS 

There are two reasons to consider the seemingly prosaic 
subject of the phase of the tilt terms used in Sec. 3. (1) It has 
been stated (Kinoshita 1975, 1977) that these terms do not 
give rise to an obliquity rate and the resolution of the differ- 
ence between that claim, Woolard (1953), and this paper 
hinges on the origin of the phase. (2) Time variations of the 
phase will give rise to higher derivatives of the precession 
and obliquity. 

The /2~induced tilt terms in Sec. 3 have zero phase so 
long as L and ÎÎ are referred to the moving equinox. They do 
not give rise to an obliquity rate and do not need to be 
considered further in this section. The planetary-induced tilt 
terms in the lunar orbit arise in two ways. The direct terms 
arise from the forces of the planets on the lunar orbit. The 
indirect terms arise from the force of the Sun on the lunar 
orbit, coupled with the motion of the ecliptic plane due to the 
forces of the planets changing the heliocentric orbit. The tilt 
from the direct effect is an order of magnitude smaller than 
the indirect effect. The two components have been combined 
in Sec. 3. The indirect contribution will dominate the follow- 
ing discussion. 

We wish to express the secular motion of the lunar orbit 
plane acted upon by the Sun. The coordinates of the pole of 
the variable lunar orbit plane are {Pv,-Qv,cos iv) where 
Py^siniysinily and ßy=sincos fly. The analogous 
time-varying variables for the ecliptic pole are Pf and Q'. 
Using an inertial frame aligned with the ecliptic and equinox 
at the initial time, e.g., at J2000 P' = g' = 0, a good approxi- 
mation for the differential equations for the secular motion is 
(see chapters 12 and 16 of Brouwer & Clemence 1961) 

dPy/dt = Ù0(Qv-Q'), 

dQy/dt=-Ù0(Py-Pf). (24) 

In the first approximation il0 is a quantity which is propor- 
tional to the mass ratio Sun/(Earth+Moon), the lunar mean 
motion, and the cube of the ratio of the lunar to heliocentric 
semimajor axes (a/a')3. When the ratio of ecliptic motion to 
il0 is small, it is 1CT5 for the Moon, a good approximation 
for the solution of the differential equations is 

Pv=P + P'-Q'/Qo, 

Qv=Q + Q,+P,/Úq. (25) 

P=sin i sin il0 and g=sin i cos no represent a uniformly 
processing lunar orbit plane with rate ÍÍ0 (retrograde 18.6 yr 
period) and fixed inclination i, which the additional solar 
perturbation terms modify. Py—P' and Qy—Qr are good 
approximations for the motion of the lunar orbit pole with 
respect to the moving ecliptic pole (Pf and ß' are functions 
of time). In the above solution the orbit is precessing along a 
plane tilted slightly with respect to the moving ecliptic with 
the tilt given by the last terms on the right-hand side. At 
J2000 ß7ii0

= 1-386" and P’/Ù0=-0.124", so the indirect 
term causes a 1.39" tilt with an orientation governed by the 
node about which the ecliptic plane is rotating (II=174.87° 
at J2000). 

The tilt of the lunar orbit plane to the moving ecliptic can 
be expressed as a perturbation in the lunar latitude 

Aß=(ß7ii0)cos L0 + (P7iio)sin L0, (26) 

where the mean longitude L0 is given in terms of the mean 
argument of latitude and node (L0 = F-fiî0). Note that the 
differential Eqs. (24) and their solution (25) are written in an 
inertial coordinate system. While the differences Pv-P' and 
Qy—Q' are useful for seeing that the lunar orbit nearly fol- 
lows the ecliptic, the node fl0 is a quantity referenced to the 
equinox at the initial time (J2000) and its retrograde rate is 
with respect to inertial space. The subscript zero has been 
used to distinguish L0 and fl0 from L and il which in con- 
ventional lunar theory are measured from the moving (mean 
of date) equinox along the moving (mean) ecliptic. The A/3 
equation can be put in the form of an amplitude times 
sin(L04-phase) where the phase is given by tan-1(ß7P')> 
which at J2000 is 95.13° or 270°-n. At J2000 this phase 
rate measured along the moving ecliptic plane is -17.36 
7yr, twice the rate of II measured along the fixed J2000 
ecliptic. To put A/3 in the form of Eq. (11) with sin(L 
+phase), with L measured from the moving (mean of date) 
equinox along the moving ecliptic, then for compatibility the 
phase must be measured from the moving equinox, along the 
moving ecliptic, to the node of rotation of the ecliptic on the 
moving ecliptic. In the notation of the IAU precession paper 
this phase is 210°—I[{T,0). The phase rate is then the general 
precession rate minus 17.36 or 32.93"/yr (this rate is wrong 
in Brown’s lunar theory). The smaller direct contribution has 
its own phase which depends on the difference between the 
moving equinox and the planetary nodes, so in Eq. (11) the 
phase of the combined direct and indirect terms is slightly 
larger than 95.13° and the amplitude is slightly larger than 
1.39". 

Woolard (1953) earlier computed the obliquity rate con- 
tribution from the planetary-induced tilt in the lunar orbit. 
When explaining it (pp. 127-128) he used the (direct plus 
indirect) A/3 contribution from Brown’s lunar theory which 
is equivalent to Eq. (11). Broken into sine and cosine com- 
ponents of F + il=L, only the cosine component [he gave it 
as 1.53" cos(F+fl)] was displayed because the sine does not 
give rise to a secular obliquity rate. If the argument was 
measured with respect to the moving equinox, as Í1 and L 
conventionally are in lunar theory, and if the coefficient was 
constant, then there would be no obliquity rate. For this rea- 
son Kinoshita (1975, 1977) argued against Woolard’s ob- 
liquity rate. For the indirect contribution (there is a parallel 
argument for the direct contribution), Eq. (26) and its discus- 
sion show that the A/S expression could have been written in 
terms of cos[L —IliTjO)] or in the form of Eq. (26) using 
L0. To write it using L requires introducing a function of 
IliTjO), and II(r,0) depends on the moving equinox. Wool- 
ard was only computing the linear time term (his discussion 
shows that he was aware of the higher powers of time). His 
notation was numerically suitable for the epoch [like Eq. (11) 
of this paper], but if taken literally it is functionally mislead- 
ing because the equinox dependence is hidden in the numeri- 
cal coefficient [in Eq. (11) it is in the phase]. The discussion 
in the appendix of Kinoshita (1977) was unaware that A/3 
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had a functional dependence on the equinox which was un- 
displayed in Woolard. Kinoshita’s discussion depended on a 
finite partial derivative of À/3 with respect to the equinox, but 
the equinox dependence given above causes the partial to be 
zero. It is concluded here that the obliquity rate from the 
indirect (and direct) tilt is real and that Woolard’s numerical 
value was reasonable. 

There is an anomaly that I do not understand. The com- 
parison by Souchay & Kinoshita (1991) of their theory with 
a numerical integration showed as discrepancies neither the 
obliquity rate term nor the out-of-phase 18.6 yr nutation 
terms which arise from the same source. 

Since the indirect tilt terms depend on the time-varying 
P ' and Q ' and the two direct planetary effects (direct tilt and 
direct torque on the Earth) depend on the time-varying plan- 
etary orbits, it should be understood that all three of these 
contributions to the obliquity rate are not constant. Over long 
time scales (>10 000 yr) the obliquity exhibits quasiperiodic 
variations and the rate will show both signs. By contrast, the 
small obliquity rate due to tidal dissipation (Sec. 7) is always 
positive. 

Both the precession and obliquity rates arising from the 
indirect tilt will vary with time. The time dependence of the 
P' and Q' derivatives in Eq. (26) can be used with Eqs. (12) 
and (13) to compute the precession and obliquity rates as a 
power series in time. For use in Sec. 8 it is convenient to 
express these rates in a coordinate system moving with the 
ecliptic and equinox. In the two-time (7V) power series of 
Lieske et al (1977) or Simon et al (1994) differentiate P' 
and Q' with respect to t, set i=0, and use T as the time 
variable. The series for the indirect contribution then be- 
comes —0.003 92+0.000 703 T for precession rate (units " 
and centuries) and — 0.0233+3 X10-6 T2 for obliquity rate. 
The computation of the nonlinear contributions is similar for 
the direct planetary torques on the Earth and the direct plan- 
etary tilt on the lunar orbit. In Eqs. (22) the dependence of 
the direct torque effects on the planetary P’s and g’s is ex- 
plicit and power series for the P’s and g’s (Laskar 1986; 
Simon et al. 1994) can be used. Venus dominates the accel- 
eration and the result is -17X10-6 "/centuries2 for preces- 
sion and 2X10~6 "/centuries2 for obliquity. The acceleration 
due to the direct tilt terms is more difficult, but is estimated 
to be about 40% larger than for the direct torque effect. Be- 
cause the polynomials for the planets used a fixed equinox, 
to these figures must be added the larger accelerations which 
result from transforming from a fixed to a moving equinox: 
411X10-6 "/centuries2 for precession and -48X10-6 

"/centuries2 for obliquity. The total of the preceding direct 
and indirect tilt terms and the direct torques on Earth are 
listed under “planetary tilt and direct torque” in Table 4. 
Note that part (0.032 69 "/century) of the direct torque effect 
for precession in Eq. (22) does not depend on planetary Ps 
and Qs, contributes no accelerations, and is included with 
the entry for luni-solar precession in the table. 

The coefficients of the planetary-tilt-induced nutation 
(Table 1) will also have secular changes. Assuming that the 
secular changes in the AL coefficients scale in proportion to 
those of the latitude coefficient, then the in-phase contribu- 
tions are (-0.0301+0.0050L) sind to the longitude nuta- 

Table 4. Time and obliquity dependence of precession and obliquity rates 
("/century) which are needed to calculate the evolution of precession and 
obliquity with time. 

Rate in "/century e Dependence 

Luni-solar, direct planetary torque 
Geodesic precession 
Second order (M3) 
Second order 
J4 precession 
J2 tilt 
Planetary tilt and direct torque 
1 ides on lunar orbit 
Fides on spin and moments 
' 2 rate 

Precession 
P0 cos £0 - 0.003395 t - éxlO“6 t2 
-1.919362 + 2.7x1o-61 
-0.03310 
-0.01368 
+0.00260 
-0.2630 
-0.00643 + 0.0010741 
-0.0001021 
-0.000133 t 
-0.0140 t 

COS £ 
1 
6 cos2 e - 1 
3 cos2 £ - 1 
cos £ (4-7 sin2 e) 
cos 2e / sin £ 
cos 2e / sin £ 
cos2 £ 
cos3e 
COS £ 

Planetary tilt and direct torque 
Tides 

Obliquity 
-0.0268 - 0.0000441 + 3x 10“612 cos £ 
+0.0024 sinE cose 

tion and (0.0029-0.0005L) cos Í1 to the latitude nutation 
(units mas and centuries). The relative changes of the out-of- 
phase coefficients is about 10_3/century and is ignorable. 

7. TIDAL AND NONLINEAR EFFECTS 

This section considers effects which cause accelerations 
and higher derivatives in the accumulated precession (inte- 
gral of precession rate), and another contribution to obliquity 
rate. There are effects due to the change in the eccentricity of 
the orbit of the Earth-Moon system about the Sun which 
have been considered in previous theories, plus tidal effects 
in the lunar orbit and Earth rotation, and possible changes in 
(C-A)fC. Many of the results of this section can be derived 
from Eq. (7) and its lunar counterpart. Moving toward poly- 
nomial expressions for the precession quantities as in Lieske 
et al. (1977), the units of that paper are now adopted (arc- 
seconds and centuries). The results of this section are sum- 
marized in Table 4. That table also gives the e dependence 
since the change of obliquity contributes additional accelera- 
tions and higher derivatives which will be utilized while 
solving the differential equations for orientation in the next 
section. 

As seen from Eq. (7), the eccentricity of the heliocentric 
orbit enters into the solar-induced precession of the equator 
and changes in the eccentricity will affect the derivatives of 
the precession rate. The evaluation of the eccentricity- 
induced acceleration (first derivative of the precession rate) 
in the accumulated precession in the IAU theory dates to de 
Sitter & Brouwer (1938). It is re-evaluated here at J2000. 
Using the eccentricity polynomials in Laskar (1986) or 
Simon et al. (1994), ¿/e/¿/í = -42.0Xl0_6/centuries. This 
causes the solar-induced precession rate to have a first de- 
rivative of -3362X10-6 "/centuries2. The eccentricity of the 
heliocentric orbit also enters into the geodesic precession Eq. 
(23). The derivative of that rate (in retrograde sense) is 
2.7XlO-6 "/centuries2. The lunar orbit includes perturbations 
by the Sun and those which depend on the heliocentric ec- 
centricity contribute accelerations. These periodic terms in 
the lunar latitude and distance weakly influence the lunar- 
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induced precession through their squares. The fractional in- 
fluence on the precession rate is 1.97X10-6 by these radial 
terms and -5X10-8 by these latitude terms, yielding 
-33.3X10-6 "/centuries2 or 1.0% of the solar-induced accel- 
eration. The luni-solar acceleration is — 3395X10-6 

"/centuries2 exclusive of the contribution of the geodesic pre- 
cession. There is also a small (higher derivative) contribution 
due to the second derivative of e2. The t and t2 terms in the 
precession rate (without geodesic precession) due to helio- 
centric eccentricity changes are -3395X10-6 "/centuries2 

Í-6X10-6 "/centuries3 t2. To convert the t coefficient to the 
Px parameter of the I AU theory divide by cos 60 to get 
-0.003 70 "/centuries2. The agreement with the -0.003 69 
"/centuries2 used in the IAU theory is excellent, aided by the 
small t2 term. 

Tides are raised on the Earth by the Moon and Sun and 
their energy dissipation causes the Moon to recede and the 
Earth’s rotation to slow. Lunar laser analyses indicate a secu- 
lar acceleration of —26.0 "/centuries2 and a tidal (semimajor 
axis) recession of 3.84 cm/yr (Williams et al 1993) so 
da/di/a = 1.00X10~8/centuries. The l/<z3 dependence of pre- 
cession in Eq. (7) implies the precession changes by 
— 103X10-6 "/centuries2. The tidal changes in the lunar orbit 
eccentricity e and inclination i are small (Chapront-Touzé & 
Chapront 1983, 1988) and lead to only 0.9 and 0.2X10-6 

"/centuries2, respectively, in the precession. Equation (7) de- 
pends on the obliquity e, the angular momentum Ccùz, and 
the moment difference (C—A) which exhibit secular 
changes due to tidal effects. An angular momentum balance 
between the Earth’s spin and the lunar orbit for long time 
scales gives an estimate for secular changes in these quanti- 
ties. Writing the angular momentum components perpendicu- 
lar and parallel to the ecliptic plane 

Hz = C(oz cos €+Mm[G(M+m)a(l-e2)]1/2 

Xcos //(M+m), 

Hy = Co)z sin 6, (27) 

where m and M are the masses of the Moon and Earth and G 
the gravitational constant. Differentiating both equations for 
secular changes, conserving angular momentum, and com- 
bining gives 

d€/dt = [m/(M+m)](n/(i)z)(MR2/C)(a/R)2 sin e 

X(1 — e2)1/2 cos i[da/dt/2a-ede/dt/(l-e2) 

— tan i di/dt] 
(28) 

d(Cü)2)/dt/Cù>z= —cot e deldt, 

where n is the lunar mean motion and R the Earth’s radius. 
Evaluating with the tidal changes in the lunar orbit (domi- 
nated by da/dt) gives de/df = 19.6X10-4 "/centuries and 
d(Ccu2)A/f/Ccu7=—2.20X10-8/centuries. The latter causes 
110X10-6 "/centuries2 in the precession. Both C—A and the 
deviation of C from the mean moment depend on the square 
of the Earth’s rotation rate. Thus the value of 
dtojdt! ct)2

:=: 2.19X 10_8/centuries, 0.44% less than 
d{Cù)z)ldtlC(x)z. The change in C—A causes a precession 
change of —220X10“6 "/centuries2. This tidal despinning of 

the Earth by the Moon causes changes in both lunar- and 
solar-induced precession. The solar tides also act to despin 
the Earth. The solar torque is much less well known than the 
lunar. It is a common approximation to assume that the ratio 
of solar to lunar torques is proportional to the square of the 
ratio of tide heights (0.46), though there is some 
evidence for a smaller torque ratio (Brosche & Wunsch 
1990). Here the factor 1.21 is used to amend the lunar cal- 
culations for the solar contribution: the tidal obliquity rate 
is 24X10“4 "/centuries and the tidal precession change 
is (-102-1.21 X HO) X10-6 "/centuries2= -235 X 10~6 

"/centuries2. A related, but not identical, calculation of the 
obliquity rate by Kaula (1964), when adjusted for recent 
secular acceleration measurements and the solar contribu- 
tion, gives an obliquity rate of 17X10~4 "/centuries. 

There are a host of nontidal processes which change the 
spin rate of the Earth by exchanging angular momentum be- 
tween the liquid core, solid mantle plus crust, oceans, and 
atmosphere, but these leave Ca)z unaffected. However, some 
of these processes do affect the precession through changes 
in C—A. The Earth’s gravitational harmonic J2 is propor- 
tional to C—A and exhibits a small secular decrease which 
has been detected from the analyses of ranges to the Lageos 
and Starlette satellites (Yoder et al 1983; Rubincam 1984; 
Cheng et al. 1989; Gegout & Cazenave 1991; Watkins & 
Eanes 1993; Nerem et al 1993). Consequently the preces- 
sion rate should also exhibit a decrease. The J2 rates from 
these studies lie in the range of (-2.5 to 
—3.6)XlO~9/centuries; they induce a sizable precession rate 
change in the range of (—11.6 to — 16.8)X10-3 "/centuries2. 
This is about 0.7% of the —2 "/centuries2 classical accelera- 
tion induced by ecliptic motion (next section) and two orders 
of magnitude larger than tidally induced accelerations. 
Though seeming to vary on thousand year time scales, the 
nontidal acceleration of the Earth’s spin (Stephenson & Mor- 
rison 1984, 1985) appears to be in accord with the reported 
J2 rates. While the J2 rate is clearly visible in satellite track- 
ing data taken since 1976, that rate is imperfectly separated 
from the 74 rate and there appear to be rate irregularities and 
questions about the separation of A8.6 yr tidal signatures 
which limit knowledge of the long-time average (Watkins & 
Eanes 1993). For Table 4 a J2 

rate °f —3XlO_9/centuries has 
been adopted; this yields —0.014 "/centuries2 in precession. 
This choice will give a precession acceleration valid since 
1976, but future extrapolation is less certain. The J2 rate 
uncertainty is the largest recognized uncertainty in the accel- 
eration of precession. The precession is only sensitive to 
long-time changes in J2 and the appropriate contribution to 
the precession will depend upon further monitoring of J2 

changes with artificial satellites. 

8. POLYNOMIALS 

The IAU precession paper (Lieske et al 1977) gives poly- 
nomials in time for orienting the Earth based on the IAU- 
adopted general precession rate, obliquity, and masses. 
Equivalent matrix formulations have also been published 
(Lieske 1979; Fabri 1980). Improved ecliptic motion led to 
polynomial updates by Bretagnon & Chapront (1981), 
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Fig. 1. Relation between the fixed equator (mean equator) and fixed ecliptic 
of J2000 and the moving (mean of date) equator and ecliptic. The arc from 
the moving equinox to the node of the moving ecliptic on the fixed ecliptic 
is = FQ = o-¿ + . The subscript A is not used with symbols in the 
figure. 

Laskar (1986), and Simon et al. (1994). The latter paper in- 
cludes improved precession rate, obliquity, and masses as 
well. In this paper theoretical contributions to precession and 
obliquity rates and higher derivatives have been identified 
and computed. In this section the theoretical improvements 
plus updated values for precession rate, obliquity, masses, 
and ecliptic motion will be used to generate revised polyno- 
mial expressions. 

The notation of the IAU paper is used in this section 
except that the tilde has been dropped. The subscript A (for 
accumulated) denotes an angle. Thus ijjA and pA are accumu- 
lated (integrated) luni-solar and general precession rates, re- 
spectively. Rates will be indicated with derivatives. The 
polynomial expressions will be derived for a single time ar- 
gument for use with the J2000 epoch. The fixed ecliptic and 
equator planes of J2000 and the moving ecliptic and equator 
of date constitute the basic geometry. See the IAU paper and 
Fig. 1 for the definition of the variables. 

The basic differential equations were given in the IAU 
paper but they require additional terms due to the obliquity 
rate contributions with respect to inertial space. The obliq- 
uity and precession rates of Table 4 use a coordinate frame 
which is moving with the equinox. The total contribution of 
the obliquity rate (no ecliptic rate) from Table 4 is denoted 
R € and the total contribution to the precession rate multiplied 
by sin eA is denoted These two components of the equa- 
tor’s rotation vector are in the plane of the moving equator. 
Two of the differential equations are just the projections of 
these two rates through the angle (“planetary preces- 
sion”) between the moving equinox and the intersection of 
the fixed ecliptic and moving equator. 

da)A/dt = cos Y/^e+sin XaRij,, 
(29) 

sin a)Adi//A/dt = cos sin XaR€- 

The differential equation for the obliquity rate with respect to 
the moving ecliptic involves both the motion of the ecliptic 
and Re 

d€A/dt —cos pAdQ'/dt —sin pAdPr/dt 

+ (1 —cos 7rA)cos(IlA+pA)d7rA/dt + R€, (30) 

where P'=sin tta sin UA and g'=sin irA cos UA describe 
the ecliptic pole with UA and irA being the node and inclina- 
tion, respectively, of the moving ecliptic on the fixed ecliptic. 

In addition to P' and Q ', which are input functions for the 
ecliptic motion, the right-hand sides of the differential equa- 
tions are functions of Xa and Pa • Two geometrical equations 
are needed to link these latter two variables with the others 

sin Y^ = sin tta sin(IIi4+/?y4)/sin oja , 
(31) 

COS(V\A+pA) = COS ^ COS(nA + >llA) 

+ sin xa sin(IIA+ i/^cos • 

The three differential equations and the two geometrical 
equations must be solved simultaneously for (x)A, if/A, eA, 
Xa , and pA . 

The simultaneous solution was performed with a numeri- 
cal technique. The variables are represented with polynomi- 
als of time. The five equations are evaluated at equal time 
intervals, the polynomial coefficients are fit, and the proce- 
dure is iterated to convergence. Input quantities are the J2000 
obliquity (e0) and general precession rate plus the polynomi- 
als for P ' and Q '. The constant P0 in Table 4 is determined 
from the initial obliquity and precession rate and the other 
precession rates in the table. At J2000 the rates of general 
and luni-solar precession are linked through the rate of the 
planetary precession xa projected on the ecliptic plane. The 
iterative solution for the polynomials was done in extended 
precision on a microcomputer. 

Parameters such as the commonly used ÇA, 0A, and zA are 
derived geometrically from the above set of variables. Nu- 
merical polynomial fits were also used. Two points are noted 
for generating the polynomials for ÇA and zA . The polyno- 
mial for o)A is carried to one higher degree than those for ÇA 

and zA. It is necessary to include a constant in ÇA and zA 

when the zero coefficient of t in a)A is finite. The constant is 
d(oA/dt/sin €0di//A/dt evaluated at J2000 and has opposite 
signs for and zA . 

The computer program was tested against the IAU expres- 
sions. For the IAU theory, three terms are used which have 
the form, but different numerical values, of those on the first 
two lines for precession rate in Table 4: the P0 and t terms on 
the first line and a constant geodesic precession rate. With 
the input values used in the IAU theory, the program was 
able to successfully reproduce the polynomials in the IAU 
paper with a deviation of no more than 1 in that paper’s last 
digit except for IIA . As also experienced by Fabri (1980), in 
the IAU paper the number of digits given for fl^ exceeds 
those given for P' and Q’ and apparently additional digits in 
P ' and Q ' were used there. 
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Table 5. Polynomial expressions for orientation of the Earth’s equator (arcsec). Time t in Julian centuries from J2000 (JD 2451545.0). Greenwich mean 
sidereal time (s) at 0 h UT1. Time in UT1 centuries from 12 h UT1, JD 2451545. 

Angle Constant t2 t* 

P' 
Q’ 
ka 

nA 

Pa 
Va 
C0A 

Xa 
£a 
Ça 
zA 

eA 

Ça 
£â 
ru 
GMS TO 

0 
0 
0 

629543 
0 
0 

84381 
0 

84381 
2 

-2 
0 
0 

84381 
0 

24110 

000000 
000000 
000000 
967373 
000000 
000000 
409000 
000000 
409000 
511180 
511180 
000000 
000000 
409000 
000000 

4, 
-46. 
46. 

-867. 
5028. 
5038. 

-0. 
10. 

-46. 
2306. 
2306. 
2004. 

10. 
-46. 

5038. 
.54841 8640184 

199610 
809560 
997570 
919986 
770000 
456501 
024400 
557700 
833960 
071060 
065079 
182023 
557700 
809560 
456501 
7928613 

0.193971 
0.051043 

-0.033506 
0.153382 
1.105407 

-1.078977 
0.051268 

-2.381366 
-0.000174 
0.299027 
1.092516 

-0.429466 
0.493164 
0.051142 
1.558353 
0.0927695 

-0.000223 
0.000522 

.000124 

.000026 

.000076 

.001141 

.007727 
,001208 
.002000 

0.018017 
0.018265 

-0.041822 
-0.000309 
0.000531 

-0.000186 
-0.0000003 

-0.000001 
-0.000001 
0.000000 

-0.000004 
-0.000024 
0.000133 
0.000000 
0.000170 

-0.000001 
-0.000005 
-0.000029 
-0.000007 
-0.000003 
0.000000 

-0.000027 
-0.0000020 

The expression for Greenwich Mean Sidereal Time 
(GMST) relates UT1 to the angle between the mean equinox 
of date and the Greenwich meridian. This paper will follow 
the convention that the GMST expression is a solution of the 
dynamical equations for rotation. The IAU-adopted polyno- 
mial expression for GMST given by Aoki et ai (1982) is 
specific to the IAU precession theory. As pointed out by 
Williams & Melbourne (1982) and Zhu & Mueller (1983), 
changing the precession expressions without changing the 
GMST expression would alter the determination of UT1 
from observations. Consequently, an additional equation has 
been evaluated numerically. The fundamental parameter is 
the rotation rate of a rigid Earth with respect to inertial space 
about its symmetry axis 

¿/(GMST+^)/<ii —cos o)Adil/Aldt (32) 

with due consideration for the units. The nonlinear parts of 
the GMST expression at zero hour UT, GMST=GMST0 
-bUTl, come from 

cos (x>Adil/A/dt dt — XA (33) 

dividing arcseconds by 15 to convert to seconds. The coeffi- 
cients of the constant and linear terms were set by imposing 
the condition that at J2000 there would not be a discontinuity 
of UT1 (the constant coefficient matches Aoki et al), its rate, 
or the rotation rate of the Earth in space (there are small 
ambiguities at the level of truncated digits). In Aoki et al the 
constant and linear coefficients were picked for continuity of 
UT1 determined from optical astrometric measurements of 
catalogue stars rather than continuity with respect to an in- 
ertial frame. Inertially referenced techniques now dominate 
the determination of UT1 so there is no counterpart to the 
catalogue equinox drift. It is conventional to derive the small 

nonlinear terms of GMST0 using a linear time scale for the 
independent time, but to evaluate the entire GMST0 expres- 
sion using a UT1 time scale. 

Since the IAU theory for precession appeared, there have 
been improvements in the computation of the motion of the 
ecliptic due to theoretical advances and improved planetary 
masses, better measured values for precession rate and ob- 
liquity, and the theoretical computations of Kinoshita & 
Souchay (1990) and this paper. To illustrate the resulting 
changes, revised expressions are presented here. The input 
values match those used to generate Table 3 (Sec. 5). The 
ecliptic motion is taken from Simon et al (1994) including 
planetary mass corrections. The theoretical contributions of 
Table 4 have been used. The resulting expressions are given 
in Table 5. The units are arcseconds and Julian centuries 
measured from J2000 [i = (JD-2451545.0)/36525], except for 
GMST which uses seconds and centuries of UT1 measured 
from JD 2451545.0 UT1 = 12 h. UT1 on January 1, 2000. 
While these expressions can serve those who need the high- 
est accuracy now, it should be anticipated that there will be 
future improvements: some theoretical, certainly in the mea- 
surement of the precession constant and obliquity, and hope- 
fully in the predictive knowledge of the J2 rate. 

The polynomial expressions in Table 5 can be used for 
times extending out to a few millennia, but are not suitable 
for longer times. The polynomials are equivalent to expan- 
sions of expressions appropriate for longer times: an average 
precession rate and obliquity plus long-periodic, or at least 
quasiperiodic, terms with periods exceeding 10 000 yr 
(Berger 1976; Laskar et al 1993). For millions of years the 
small tidal acceleration is inexorable and modifies the pre- 
cession and obliquity behavior for ancient times (Berger 
et al 1992). Nontidal J2 change must be transient. Most of 
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the Earth’s oblateness is caused by its spin and fluctuations 
of the active Earth’s J2 from the spin-controlled equilibrium 
will damp down. 

9. ROTATIONS 

Considered in this section are sequences of rotations suit- 
able for the various sets of precession parameters in Table 5. 
When combining the rotations for precession and nutation, 
the number of rotations can be minimized. Finally, an expe- 
dient procedure is given which is suitable for introducing the 
most important (linear) corrections to precession and ob- 
liquity without undertaking the more extensive and complete 
modifications. 

Consider the sequence of rotations which can be used to 
orient the precessing and nutating Earth. The standard pro- 
cedure is to precess from the mean equator and equinox of 
J2000 to the mean equator and equinox of date using the 
angles £4, , and zA and then to nutate to the true equator 
and equinox of date by rotating into the mean ecliptic of 
date, applying nutation in longitude to reach the true equinox 
of date, and then to rotate to the true equatorial plane includ- 
ing nutation in obliquity. The sequence of six rotations (Æ, is 
the rotation matrix around axis Ï) is 

X/?^)/^0-^). (34) 

An alternative is to precess by moving along the fixed eclip- 
tic to the intersection with the mean equator of date, then 
rotate along that equator to the mean equinox of date, and 
then to nutate as before. The seven rotations are 

Æ ! ( - - A e)i?3( - A 1 ( (Xa 1 ( - "a ) 

X7?3(-,AA)«i(eo)- (35) 

A second alternative is to precess by moving along the 
fixed ecliptic to the intersection with the mean ecliptic of 
date, rotate back along the mean ecliptic, and then nutate 

flli-eA-AiO^-nA-pA-A^l^A) 

xR3(Ha)Ri(€q). (36) 

The third procedure requires only five rotations. If one is 
to nutate as well as precess, it is possible to bypass the mean 
equator of date and combine the precession and nutation 
along the moving ecliptic. Five rotations is not the minimum 
for combining precession and nutation. With four rotations 
one can move along the fixed equator to the intersection with 
the moving ecliptic (angle £4), rotate into the moving ecliptic 
(64), combine the rotation along the ecliptic of date (r}A to 
the mean equinox of date) and nutation in longitude, and 
rotate to the true equator 

Rl{-eA-^e)Ri(<-7)A-^ili)Rl{e'A)R3{^A). (37) 

The angles £4, eA, and r]A have not been given with con- 
ventional precession expressions in the past. They are illus- 
trated in Fig. 1 and the expressions are given in Table 5. 

Note that for the changes in precession and obliquity 
polynomials not due to ecliptic motion, only the last two 

(left) rotations in the last two sequences above would be 
changed; for the first two sequences the precession and 
obliquity changes are distributed over multiple rotations. The 
last two sequences make it clear that a change to the preces- 
sion and obliquity rates could be added into the correspond- 
ing nutation parameters as an alternative way to introduce 
them (a similar conclusion was reached by Folkner et al 
1994 and VLBI fits to observations have often included lin- 
ear terms in their “nutation” corrections). Adding 
-0.02447centuries t to Ae and -0.32197centuries t to A'F 
(t in centuries from J2000) is an expedient way to incorpo- 
rate the most important corrections without reprogramming 
the precession and GMST expressions. For this expedient 
approach the equation of equinoxes associated with A^ will 
automatically satisfy the concerns of Williams & Melbourne 
(1982) and Zhu & Mueller (1983) about precession modifi- 
cations changing UT1, so that the GMSTO polynomial does 
not require revision. Neither does the J20Ö0 value of the 
obliquity need changing for the expedient approach since the 
difference tends to cancel between the rotations. Other theo- 
retical contributions, such as the nonlinear corrections, could 
also be added as nutation corrections. The expedient proce- 
dure does not work for geometrical revisions to ecliptic mo- 
tion (purely P’, g', IÏ4, and 774 but also parts of other 
parameters) since they appear in multiple rotations and tend 
to cancel, but it could be applied to the dynamical conse- 
quences of those revisions. However, it is observed that if an 
expedient procedure becomes too complicated then it is not 
expedient. It is best suited to easily inserting the linear cor- 
rections to precession and obliquity while more thoroughgo- 
ing revisions can use Table 5’s polynomial expressions for 
precession and GMSTO. 

10. NUTATION CORRECTIONS, SCALING, AND COMPARISONS 

The 1980 IAU nutation series (Seidelmann 1982) was a 
combination of the rigid-body series of Kinoshita (1977) and 
the elastic and structured-Earth corrections due to Wahr 
(1979, 1981). Since the 1980 IAU nutation working group 
paper there have been two revisions of rigid-body nutation 
(Zhu & Groten 1989; Kinoshita & Souchay 1990). The nu- 
tation theories allowing for the Earth’s elasticity and core are 
based on the rigid-body theories and it is well to compare 
and understand those rigid-body theories. 

Zhu & Groten utilized the earlier work of Kinoshita 
(1977) extending the nutation series to smaller terms, and 
adding both second-order terms and corrections for the 
Earth’s J3. It has served as the basis for nonrigid body treat- 
ments by Zhu et ai (1990), and the several ZMOA series of 
Herring (1990), Mathews et al. (1991), and Herring et al. 
(1991). Kinoshita & Souchay also extended the series to 
smaller terms, and added second-order terms, J3 effects, and 
planetary terms involving planetary arguments. In addition 
they added small solar terms due to the offset of the Earth 
from the center of mass of the Earth-Moon system and re- 
vised the expression for the (C-A)/C scaling of the nuta- 
tion series from the precession constant. In Kinoshita (1977) 
and Kinoshita & Souchay the J2 tilt effects on the scaling 
and 18.6 yr terms are present. The in-phase 18.6 yr nutation 
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coefficients and the —0.00567centuries precession due to the 
planetary tilt effect is present in the former, but not the latter 
work. Kinoshita & Souchay also add — 0.0147centuries 
second-order contributions to the precession and make small 
revisions to the first-order contributions which are not 
present in the earlier works. Thus there are small differences 
in the scaling of Kinoshita & Souchay, Zhu & Groten, and 
this paper which are addressed below. Only Kinoshita & 
Souchay have the small center-of-mass offset corrections, 
three of which have amplitudes of 0.02 mas in longitude. 
Comparison of the J3 contributions in the two papers shows 
poor agreement; the 3231 day obliquity coefficients have dif- 
ferent signs and differ by 0.12 mas. In addition, the 6164 day 
coefficients disagree by a factor of two. See Souchay (1993) 
for further comparisons. 

The coefficients of Kinoshita & Souchay’s rigid-body nu- 
tation theory would have to be multiplied by 0.999 937 82 
(Sec. 5) to match the precession rate and other changes of 
this paper. This would cause the 18.6 yr coefficient to 
increase by 1.075 mas and the 18.6 yr At coefficient to 
change by —0.574 mas. These corrections are in addition to 
those of Table 1, and taken together the in-phase corrections 
to the 18.6 yr coefficients are 1.045 mas in A(/f (giving 
-17.280 76") and -0.571 mas in A* (9.228 00"). 

To match the constants of this paper the coefficients of 
Zhu & Groten’s rigid-body nutation series need to be multi- 
plied by 0.999 930 8 for the lunar terms and 0.999 929 7 for 
the solar terms. For the in-phase 18.6 yr coefficients this 
gives —17.280 75" in A^ and 9.227 92" in At. Thus after 
correction to a common (C—A)IC and compensation for the 
planetary tilt effect, the 18.6 yr terms of Zhu & Groten and 
Kinoshita & Souchay differ by only 0.01 mas in longitude 
and 0.08 mas in obliquity. 

To all nutation series since Woolard (1953) the out-of- 
phase planetary tilt contributions of Table 1 need to be 
added. To all nutation series since Woolard, a —0.15 mas 
annual term from the yearly variation of the geodesic preces- 
sion needs to be added to the nutation in longitude (Voinov 
1988; Gill et al 1989; Fukushima 1991). For highest accu- 
racy, nutation terms with planetary arguments, such as those 
of Kinoshita & Souchay, should also be included. While it 
causes minor changes in the resulting nutation series evalu- 
ation, the arguments of the 1980 IAU series and other series 
can be improved upon by using the values of Simon et al 
(1994). The annual argument (/') differs by 5" at J2000, but 
the values of V and L ' depend very much upon which long- 
period terms are being carried when these arguments are fit 
to the time-varying heliocentric orbit. It should be compat- 
ible with the formulation used to generate the nutations with 
planetary arguments. 

11. SUMMARY 

Improvements in the accuracy of the observed motion of 
the Earth’s equator plane and the wish to use these observa- 
tions to infer the Earth’s properties make improvements in 
the theories of precession, obliquity rate, and nutation desir- 
able. The rate terms computed in this paper come from lunar 

orbit perturbations due to the planets and the Earth’s J2 plus 
direct planetary torques on the Earth and tidal effects. 

The corrections to the obliquity rate are due to direct plan- 
etary torques on the Earth (see Sec. 4 and Table 2), torques 
due to planetary perturbations on the lunar orbit (Sec. 3), and 
tidal influences (Sec. 7, Table 4). Together these corrections 
are —0.244 mas/yr. This correction is a motion in space; the 
conventional —0.468"/yr obliquity rate is due solely to eclip- 
tic motion, not to changes in the Earth’s orientation. The 
LAU-adopted theory of precession and obliquity changes re- 
quires correction for this contribution to the obliquity rate. 
The largest contribution to the obliquity rate in space was 
earlier computed by Woolard (1953), but its reality was ques- 
tioned by Kinoshita (1977). Section 6 discusses the reason 
for this discordant interpretation and concludes that the rate 
is real. The obliquity motion in space should be observable 
by the very long baseline interferometry and lunar laser rang- 
ing techniques. 

In addition to the obliquity rate amendments, there are 
small contributions to the precession rate due to direct plan- 
etary torques and lunar orbit effects (Secs. 3 and 4, Table 2). 
The sum of the various contributions to obliquity and preces- 
sion rates is given in Table 3 (Sec. 5). Based on recent mea- 
surements a general precession rate of 50.2877"/yr 
at J2000 was adopted. For a rigid Earth this corresponds 
to the moment-of-inertia combination (C—A)/C 
=0.003 273 763 4. Combined with a satellite-determined J2 

this gives a normalized polar moment of inertia 
C/MR2=0.330 700 7 and a normalized mean moment 
//Mi?2=0.329 978 9, with R the equatorial radius. 

The contributions to obliquity and precession rates are not 
constant with time and the higher derivatives from these and 
other sources are computed in Sec. 7. Table 4 summarizes 
both linear and nonlinear (in time) contributions. The largest 
nonlinear correction arises from the Earth’s J2 rate. The 
theory for orienting the Earth (precession, obliquity changes, 
and Greenwich Mean Sidereal Time) is considered in Sec. 8 
and revised polynomial expressions are presented (Table 5). 
In addition to the theoretical corrections of this paper, these 
expressions use improved values of the obliquity, precession 
rate, masses, and ecliptic motion. 

Matrix rotations which combine precession and nutation 
are considered in Sec. 9. The conventional rotation scheme is 
not optimized for the number of rotations. A sequence of four 
rotations is given which incorporates both precession and 
nutation. 

The torques, due to lunar orbit perturbations from the 
planets, also give rise to nutation contributions (Sec. 3 and 
Table 1). The largest contributions are to the 18.6 yr nuta- 
tion: -0.030 sin Í1+0.137 cos Í1 to A*/' (in mas) and 
-0.028 sin Í1+0.003 cos Í1 to Ae. The small out-of-phase 
corrections arise because the perturbing planets’ nodes on the 
ecliptic are not aligned with the dynamical equinox. Out-of- 
phase nutations are conventionally considered to arise from 
energy dissipation in the Earth and oceans, but these are 
exceptions. 

The torques which cause precession and nutation depend 
on {C—A)!C so that an accurate determination of the pre- 
cession rate sets the scale of the nutation series. This scaling 
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of the two most recent rigid-body theories is discussed in 
Sec. 10. Also discussed are the additions appropriate to each 
of these nutation theories. 

Since the IAU expressions for precession and nutation 
were adopted, both theoretical improvements and refined 
measurements have become available. The theoretical contri- 
butions of this paper may be added to revised computations 
of ecliptic motion, rigid-body nutation, dissipative effects in 
the Earth’s interior and oceans, and relativistic effects. Im- 
proved measurements of the precession constant and indi- 
vidual nutation terms are available. The latter have permitted 
refined computations of the non-rigid-body contributions to 

nutation. Understanding of the orientation of the Earth’s 
equator and the fundamental influences on the orientation is 
advancing. 

I wish to thank X. X. Newhall for the plot in Fig. 1. H. 
Kinoshita and J. H. Lieske provided useful comments. M. 
Watkins gave advice on the J2 rate. This paper presents the 
results of one phase of research carried out at the Jet Propul- 
sion Laboratory, California Institute of Technology, under 
contract with the National Aeronautics and Space Adminis- 
tration. 

REFERENCES 

Aoki, S., Guinot, B., Kaplan, G. H., Kinoshita, H., McCarthy, D. D., & 
Seidelmann, R K. 1982, A&A, 105, 359 

Barker, B. M., «fe O’Connell, R. F. 1970, Phys. Rev. D 2, 1428 
Barker B. M., «fe O’Connell, R. F. 1975, Phys. Rev. D 12, 329 
Berger, A. 1976, A«feA., 51, 127 
Berger, A., Loutre, M. R, «fe Laskar, J. 1992, Science, 255, 560 
Bretagnon, R 1982, A«feA, 114, 278 
Bretagnon, R, & Chapront, J. 1981, A&A, 103, 103 
Brosche, R, & Wunsch, J. 1990, in Earth’s Rotation from Eons to Days, 

edited by R Brosche and J. Sundermann (Springer-Verlag, Berlin), p. 141 
Brouwer, D., & Clemence, G. M. 1961, Methods of Celestial Mechanics 

(Academic Press, New York) 
Chapront-Touzé, M., & Chapront, J. 1983, A&A, 124, 50 
Chapront-Touzé, M., & Chapront, J. 1988, A&A, 190, 342 
Chapront-Touzé, M., & Chapront, J. 1991, Lunar Tables and Programs from 

4000 B.C. to A.D. 8000 (Willmann-Bell, Richmond) 
Chariot, R, Sovers, O. J., Williams, J. G., & Newhall, X. X. 1991, in Pro- 

ceedings of the 127th Colloquium of the International Astronomical 
Union, Reference Systems, edited by J. A. Hughes, C. A. Smith, and G. H. 
Kaplan (U.S. Naval Observatory, Washington), p. 228 

Cheng, M., Eanes, R., Shum, C, Schutz, B., & Tapley, B. 1989, Geophys. 
Res. Lett. 16, 393 

Dehant, V. 1988, in The Earth’s Rotation and Reference Frames for Geodesy 
and Geodynamics, edited by A. K. Babcock and G. A. Wilkins (Kluwer, 
Dordrecht), p. 323 

Dehant, V. 1990, Geophys. J. Royal Astron. Soc., 100, 477 
de Sitter, W., & Brouwer, D. 1938, Bull. Astron. Inst. Neth., 8, 213 
Fabri, E. 1980, A&A, 82, 123 
Folkner, W. M., Chariot, R, Finger, M. H., Newhall, X. X, Williams, J. G., 

Sovers, O. J., & Standish, E. M. 1994, A&A (in press) 
Fukushima, T. 1991, A&A, 244, Lll 
Gegout, R, & Cazenave, A. 1991, Geophys. Res. Lett. 18, 1739 
Gill, E., Soffel, M., Ruder, H., & Schneider, M. 1989, in Earth’s Rotation 

from Eons to Days, edited by P. Brosche and J. Sundermann (Springer, 
Berlin), p. 13 

Herring, T. A. 1990, in Proceedings of the 127th Colloquium of the Inter- 
national Astronomical Union, Reference Systems, edited by J. A. Hughes, 
C. A. Smith, and G. H. Kaplan (U.S. Naval Observatory, Washington), 
p. 157 

Herring, T. A., Buffet, B. A., Mathews, R M., & Shapiro, I. I. 1991, J. 
Geophys. Res. 96, 8259 

Kaula, W. M. 1964, Reviews of Geophys. 2, 661 
Kinoshita, H. 1975, Smithsonian Astrophysical Observatory Special Report, 

No. 364 
Kinoshita, H. 1977, Celest. Mech. 15, 277 
Kinoshita, H., & Souchay, J. 1990, Celest. Mech. and Dyn. Astron. 48, 187 
Laskar, J. 1986, A&A, 157, 59 
Laskar, J., Joutel, R, & Boudin, F. 1993, A&A, 270, 522 

Lieske, J. H. 1979, A&A, 73, 282 
Lieske, J. H., Lederle, T, Fricke, W., & Morando, B. 1977, A«feA, 58, 1 
Marsh, J. G., et al 1990, J. Geophys. Res. 95, 22043 
Mathews, R M., Buffett, B. A., Herring, T. A., & Shapiro, I. I. 1991, J. 

Geophys. Res., 96, 8243 
McCarthy, D. D., & Luzum, B. J. 1991, AJ, 102, 1889 
Miyamoto, M., & Soma, M. 1993, AJ, 105, 691 
Nerem, R. S., Chao, B. R, Au, A. Y, Chan, J. C., Klosko, S. M., Pavlis, N. 

K., & Williamson, R. G. 1993, Geophys. Res. Lett., 20, 595 
Newhall, X. X., Standish, E. M., & Williams, J. G. 1993, DE 245 ephemeris 

of the planets and Moon 
Rubincam, D. P. 1984, J. Geophys. Res., 89, 1077 
Seidelmann, P. K. 1982, Celest. Mech., 27, 79 
Simon, J. L., Bretagnon, R, Chapront, J., Chapront-Touzé, M., Francou, G., 

& Laskar, J. 1994, A&A, 282, 663 
Souchay, J. 1993, A&A, 276, 266 
Souchay, J., & Kinoshita, H. 1991, Celest. Mech. and Dyn. AstrOn., 52, 45 
Standish, E. M. 1982, A&A, 114, 297 
Stephenson, F. R., & Morrison, L. V. 1984, PTRSL, A 313, 47 
Stephenson, F. R., & Morrison, L. V. 1985, Geophys. Surveys, 7, 201 
Steppe, J. A., Oliveau, S. H., & Sovers, O. J. 1993, in Earth Orientation, 

Reference Frames and Atmospheric Excitation Functions, submitted for 
the 1992 IERS Annual Report, IERS Technical Note 14, edited by P. 
Chariot, p. R-33 

Voinov, A. V. 1988, Celes. Mech., 42, 293 
Wahr, J. M. 1979, Ph.D. thesis, University of Colorado, Boulder, Colorado 
Wahr, J. M. 1981, Geophys. J. Royal Astron. Soc., 64, 705 
Wahr, J. M., & Bergen, Z. 1986, Geophys. J. Royal Astron. Soc., 87, 633 
Wahr, J. M., & Sasao, T. 1981, Geophys. J. Royal Astron. Soc., 64, 747 
Watkins, M., & Eanes, R. 1993, in Advances in Space Research, Vol. 13, 

No. 11, 251 
Williams, J. G., & Melbourne, W. G. 1982, in Proceedings, High-Precision 

Earth Rotation and Earth-Moon Dynamics: Lunar Distances and Related 
Observations, edited by O. Caíame and D. Reidel (Hingham, Massachu- 
setts), p. 293 

Williams, J. G., Newhall, X. X., & Dickey, J. O. 1991, A&A, 241, L9 
Williams, J. G., Newhall, X. X., & Dickey, J. O. 1993, in Contributions of 

Space Geodesy to Geodynamics: Earth Dynamics, Geophysical Mono- 
graph of the American Geophysical Union, Vol. 24, edited by D. E. Smith 
and D. L. Turcotte, Washington, D.C., p. 83 

Woolard, E. W. 1953, in Astronomical Papers for the American Ephemeris 
and Nautical Almanac XV, Pt. 1, (U.S. Government Printing Office, Wash- 
ington) 

Yoder, C. R, Williams, J. G., Dickey, J. O., Schutz, B. E., Eanes, R. J., & 
Tapley, B. D. 1983, Nature, 303, 757 

Zhu, S. Y, & Groten, E. 1989, AJ, 98, 1104 
Zhu, S. Y, Groten, E, & Reigber, C. 1990, AJ, 99, 1024 
Zhu, S. Y, & Mueller, I. I. 1983, Bull. Geod., 57, 29 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

