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The formation of terrestrial planets and the cores of Jovian planets is reviewed in the
framework of the planetesimal hypothesis, wherein planets are assumed to grow via
the pairwise accumulation of small solid bodies. The rate of (proto)planetary growth is
determined by the size and mass of the protoplanet, the surface density of planetesimals,

- and the distribution of planetesimal velocities relative to the protoplanet. Planetesimal
velocities are modified by mutual gravitational interactions and collisions, which
convert energy present in the ordered relative motions of orbiting particles (Keplerian
shear) into random motions and tend to reduce the velocities of the largest bodies in
the swarm relative to those of smaller bodies, as well as by gas drag, which damps
eccentricities and inclinations. The evolution of the planetesimal size distribution
is determined by the gravitationally enhanced collision cross-section, which favors
collisions between planetesimals with smaller velocities. Deviations from the 2-body
approximation for the collision cross-section are caused by the central star’s tidal
influence; this limits the growth rates of protoplanets. Runaway growth of the largest
planetesimal in each accretion zone appears to be a likely outcome. The subsequent
accumulation of the resulting protoplanets leads to a large degree of radial mixing in the
terrestrial planet region, and giant impacts are probable. Gravitational perturbations
by Jupiter probably were responsible for preventing runaway accretion in the asteroid
belt, but detailed models of this process need to be developed. In particular, the method
of removal of most of the condensed matter (expected in a nebula of slowly varying
surface density) from the asteroid region and the resulting degree of radial mixing in
the asteroid belt have yet to be adequately modeled. Accumulation of Jupiter’s core
before the dispersal of the solar nebula may require more condensable material at 5 AU
than predicted by standard minimum-mass solar-nebula models.

I. INTRODUCTION

The nearly circular and coplanar orbits of the planets argue for planetary
formation in a flattened disk orbiting the Sun (Kant 1755; Laplace 1796).
Astrophysical evidence suggests that such disks are the natural byproducts of
the collapse of molecular cloud cores leading to star formation (Chapters by
Beckwith and Sargent and by Basri and Bertout). The most highly developed
theory for explaining planetary growth within such a circumstellar disk is
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,; accretion (aggregation) of solid planetesimals via binary collisions, followed
g. in the case of Jovian type planets by accretion of gas onto solid cores (Safronov
& 1972; Hayashi et al. 1985).

In this chapter, we review the dynamics of the accretion process from
kilometer sized planetesimals to terrestrial planets and the cores of giant
planets. The formulas presented herein are valid for single stars of any mass;
however, the complexities of planetary accretion in multiple star systems are
not treated. We assume as our initial conditions the presence of a disk of stellar
composition in orbit about the star. Moreover, our calculations begin when the
bulk of the condensed material in the nebula has settled out and agglomerated
into bodies at least ~1 km in size. The microphysics of the growth of the sub-
centimeter grains is very different than the dynamical processes important to
later stages of planetary accretion, and growth in the intermediate-size range is
believed to be very rapid (Chapter by Weidenschilling and Cuzzi). Our review
also neglects the accretion of the gaseous envelopes of the giant planets, except
insofar as an atmosphere may enhance the planetesimal accretion cross-section
of a protoplanet. This final stage of giant planet growth is reviewed in the
Chapter by Podolak et al.

Strictly speaking, the planet formation process is unlikely to be as purely
sequential as we have lain out. Grain growth and even the accretion of large
planetesimals described in detail herein may well begin during the epoch when
a protoplanetary disk is still accreting and redistributing matter (cf. Chapters
by Shu and by Adams and Lin). Given that the theories of each of these
epochs are still rather primitive, a sequential study of each stage is probably
adequate. However, to the extent that planetary growth depends on, e.g.,
the initial size distribution of planetesimals, we must recognize that various
processes currently being treated as separate events occur simultaneously and
affect each other.

The star’s gravity is the dominant force upon planetesimals, and other
forces are generally included as perturbations on the planetesimal’s Keplerian
orbit. The dominant perturbations to a planetesimal’s heliocentric trajectory
are usually due to gravitational attraction of other planetesimals and proto-
planets. (We use the term protoplanets to refer to exceptionally large plan-
etesimals, not the giant gaseous protoplanets once popularized by Cameron
[1962].) When a single protoplanet is the dominant perturber in a given region
of the protoplanetary disk, it is convenient to treat its perturbations separately.
The dominant nongravitational forces upon planetesimals are mutual inelastic
collisions (which may lead to accretion and/or fragmentation), and gas drag.
Whole body magnetic forces are believed to be negligible for the dynamics
of bodies of kilometer size and larger. However, if electromagnetic induction
heating (Herbert 1989) is sufficient to melt planetesimal interiors, then the
outcome of physical collisions could be altered.

The distribution of planetesimal velocities is one of the key factors which
control the rate of planetary growth. In Sec. II, we review the physical factors
important to determining the equilibrium velocity distribution of a swarm
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-+ of planetesimals of various sizes when accretion is neglected. The growth
i rate of a protoplanet in a uniform surface density disk of planetesimals with
& known velocity dispersion is discussed in Sec. IIL. In Sec. IV, we follow
the simultaneous evolution of planetesimal masses and velocities and show
that under a wide variety of initial conditions the largest body in any given
accretion zone grows very rapidly and “runs away” from the mass distribution
of other accreting bodies in its region of the solar system. The limits to such
runaway accretion are quantified in Sec. V. In Sec. VI, we review models of
the final stages of planetary accretion, with emphasis on the growth times of
planets and the possibility of giant impacts. We conclude with a summary of
the major results of planetesimal dynamics and a list of outstanding questions
in Sec. VIIL.

II. PLANETESIMAL VELOCITIES FOR A STATIC
MASS DISTRIBUTION

The simplest analytic approach for calculating the evolution of planetesimal
velocities uses a “particle-in-a-box” approximation in which the evolution of
the mean square planetesimal velocities are calculated via the methods of the
‘kinetic theory of gases. Originally, the particle-in-a-box calculations were
developed by Safronov (1972) using relaxation time arguments similar to
those used by Chandrasekhar (1942) in stellar dynamics. More recently, these
calculations have been refined by employing modern kinetic theory methods
(Hornung et al. 1985; Stewart and Wetherill 1988; Barge and Pellat 1990;
Ida 1990). A kinetic theory approach appears to be the only viable method
for treating the initial stages of planetesimal accumulation because the num-
ber of initial planetesimals is extremely large. During the final stages of
planetesimal accumulation, the number of planetesimals eventually becomes
'small enough that a more direct treatment of individual planetesimal orbits is
feasible. With a modest number of planetesimals, the most straightforward
approach would be a numerical n-body integration of the planetesimal orbits,
but the exceedingly long time scales required for the final stages of plane-
tary accumulation (e.g., between 10 and 100 Myr in the inner solar system)
severely limit the usefulness of this method. An alternative approach that
has enjoyed considerable success is to assume that the planetesimals follow
slowly precessing elliptic orbits that are occasionally altered by rare close
encounters with other planetesimals. A Monte Carlo procedure is then used
to choose successive pairs of planetesimals that interact according to the two-
body gravitational scattering formula. This Monte Carlo approach has been
extensively developed by Wetherill (19805,1985,1986,1988,19900).

A. Random Velocity Distribution

In the particle-in-a-box approximation, one ignores the details of individual
planetesimal orbits and uses a probability density to describe the distribution

of orbital elements in the planetesimal population. Specifically, the orbital
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,; perihelia and longitudes of the ascending node are assumed to be random
‘z;%. and the orbital eccentricities e and inclinations i are assumed to be Rayleigh
& distributed, ,
L 2 .
ei e i
fle, i) = [ — ——] (1
( @)@ e %)

where m is the mass of the individual planetesimals and o is the surface
mass density of planetesimals with a particular semimajor axis; (€?) and
(i%) are the mean square eccentricity and inclination. Although the form of
Eq. (1) is difficult to justify rigorously, the randomization of orbits caused
by planetesimal interactions in n-body simulations has been found to yield
orbital distributions similar to Rayleigh distributions (Wetherill 1980b; Ida
and Makino 1992a).

Another important property of planetesimal orbits is the fact that plan-
etesimals with different semimajor axes orbit the star with different mean
velocities. This Keplerian shear is usually introduced into a local velocity
distribution by postulating a local mean velocity that reproduces the differen-
tial rotation between coplanar circular orbits. Because the orbital phase angles
are averaged out in this approximation, the deviations from coplanar circular
orbits are reduced to a distribution of random velocities relative to the local
mean velocity of a circular orbit. The distribution of random velocities that is
locally equivalent to Eq. (1) is a triaxial Gaussian distribution in cyllndrlcal

coordinates,
Qo v, 2+ 4vp? v,2 + Q222
b = - - 2
Folz.v) 2n2¢,2¢c,2m exp[ 2¢,2 2c,? ] @)
where 2¢,2 = (e?)vg?, 2¢,2 = (i%)vg?, vy is the azimuthal component of

velocity relative to the local circular Keplerian velocity, vg = (GM, /r)!/2,
and Q = vk /r is the orbit frequency. The integral of f, over velocity space
yields the local number density,

Qo —Q2%z2
= | &, = ex ) 3
f o= oo 3

B. Velocity Evolution

Given the local random velocity distribution in Eq. (2), one can write down
a kinetic equation for the time evolution of the random velocity distribution
caused by mutual planetesimal interactions:
GM,r
AN [

¥ ¥
5 Icoll + 3.7 lgrav- (4)

+vg) - VrVK:| vf=

The two terms on the right-hand side of the kinetic equation denote the two
kinds of planetesimal interactions: (1) physical collisions which dissipate
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++ some or all of the relative kinetic energy of the colliding bodies; and (2)
i gravitational scattering which conserves the relative kinetic energy but results
g in a rotation of the relative velocity vector. Physical collisions are usually
modeled with a Boltzmann collision operator for hard spheres that has been
modified to allow for inelastic collisions (see Trulsen 1971; Hornung et al.
1985). Most published calculations of planetesimal accumulation assume
collisions are completely inelastic because physically plausible rebound ve-
locities rarely exceed the mutual escape velocity except for the very smallest
planetesimals in the distribution (cf. Sec. III). Violent collisions that produce a
size distribution of collision fragments are more likely to occur once sizeable
protoplanets are formed. In order to account for the gravitational enhancement
of the collision cross-section, a correction factor must be applied to the hard
sphere collision operator. An accurate determination of this enhancement
factor is rather difficult in general, owing to the tidal influence of the star; a
detailed discussion of its calculation is presented in Sec. III.

Gravitational scattering between planetesimals can be modeled with a
Fokker-Planck operator similar to that used in stellar dynamics (cf. Binney
and Tremaine 1987). The use of a Fokker-Planck operator requires two
assumptions. First, the result of a close encounter must be well approximated
by the 2-body Rutherford scattering formula, which ignores the gravitational
influence of the star for the duration of the encounter. Between successive
encounters, the star’s gravitational influence is properly taken into account by
the left-hand side of Eq. (4). Numerical integrations of the 3-body problem
indicate that the average perturbations given by the 2-body approximation are
valid within a factor of 2, so long as the random velocities are greater than 0.07
times the surface escape velocity of the two bodies at contact (Wetherill and
Cox 1984). More extensive numerical investigations of the 3-body problem
support the accuracy of the Fokker-Planck relaxation and energy exchange
rates provided that the encounter velocities do not become too small (Ida
1990). Second, the relative velocity between planetesimals must be primarily
determined by their random velocities, rather than by Keplerian shear. This
assumption is valid for the early stages of planetesimal accumulation, when
a very large number of planetesimals can be found within a spherical volume
of radius equal to the scale height ¢,/ <2 of the planetesimal disk.

The essential reason why the Fokker-Planck operator cannot correctly
model a gravitational encounter more distant than a scale height is that the
Fokker-Planck operator implicitly assumes that gravitational encounters are
local events. In particular, it assumes that the two interacting planetesimals
have the same local mean velocity, so that their relative velocity is entirely
determined by the random velocity distribution (Eq. 2). This assumption is
violated for distant encounters, where the relative velocity between planetes-
imals is largely determined by the difference in their semimajor axes (i.e., by
Keplerian shear). Although it is possible to write down formal expressions
for the velocity evolution due to distant encounters (see Chapter by Ohtsuki
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- et al.), an explicit analytic formula is generally not available to replace the
gu Rutherford scattering law, except in a few limiting cases.

e One such limiting case occurs when the separation in semimajor axes is

large compared to both the orbital eccentricities and the Hill sphere radius £
(see Sec. III.C), and is also small compared to both semimajor axes (Hénon
and Petit 1986; Hasegawa and Nakazawa 1990). Weidenschilling (1989)
evaluated the contribution of distant gravitational encounters in this limit and
concluded that they may safely be neglected compared to close gravitational
encounters except when a few protoplanets are so large that their surface
escape velocities exceed the local random velocity by a factor of >100. For
these reasons, the maximum encounter distance is set equal to the disk scale
height in the Fokker-Planck operator.

Once the interaction terms have been specified, an approximate solution to
Eg. (4) can be obtained by linearizing the kinetic equation about the Gaussian
velocity distribution f , stated in Eq. (2):

3 8 er &‘O &‘0
— +2Quyg— — 5
’ [8t + Vg 90, ( > ) 3U9]f1 5t lconl + = st |grav 5)

where |f 1| <<|f |- Note thatf , does not appear on the left-hand side of Eq. (5)
because it is an integral of the free orbital motion. Linearization is an excellent
approximation because the orbit frequency greatly exceeds both the collision
rate and relaxation rate due to gravitational scattering. Evolution equations
for the mean square random velocities are obtained by taking second-order
velocity moments of the linearized kinetic equation. The rate of change of
the mean square random velocity is given by

B(nv fd3 ( ) ®)

In general, one obtains two coupled equations for the two components
of the random velocity associated with the orbital eccentricity and inclination
(Hornung et al. 1985). However, during the early stages of planetesimal accu-
mulation the ratio of rms inclination to rms eccentricity is likely to be nearly
constant due to an approximate equipartition of energy between the planar
and vertical orbital motions. Barge and Pellat (1990) have derived a value of
this ratio of approximately 0.6 by simultaneously solving coupled equations
for the “thermal’” motions in the vertical and horizontal directions. This value
may be compared with values close to 0.5 that were obtained by Wetherill
(1980b) using a Monte Carlo simulation, and by Ida and Makino (1992a)
using direct n-body calculations. Calculations of steady-state planetesimal
velocities indicate that the difference between 0.5 and 0.6 is unimportant
‘compared to the other approximations described above.

. Thus, setting ¢, /c, = 0.5 in Eq. (2), a single equation is derived for the
velocity evolution of a test body of mass m; interactin § with a swarm of field
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s bodies of mass m;. Following Stewart and Wetherill (1988), we split the
= equation into four separate contributions and add a fifth term that models the
e velocity evolution caused by gas drag in the solar nebula. The rate of change
“*  1nv;, the rms velocity of bodies of mass m;, is given by:

dv,

= =A+B+C+D+E @)

where the five terms on the right-hand side are:

1. “Viscous stirring” resulting from gravitational scattering:

klnA[(9L 124/3) (m; +mp) v 24+ (SL—4/3) (v 2 —m; v )]
(8)

where p is the density (specific gravity) of the planetesimals of mass m,
Vie? = 02402, L = In[(2+v/3)/(2—+/3)] ~ 2.634, and A = sin(Wpax/2)/
sin(Wpin/2). The angle W is related to the impact parameter b according to
the Rutherford scattering formula,

o\ —1/2
sin (%) = (1 + ib;) 9

where b, = G(m; + mk)Vik“z. The minimum deflection angle, Wiy, is
calculated with an impact parameter b = bp,x = max(v;/ 2, v/ Q). The
maximum deflection angle, Wy, is calculated using the impact parameter
corresponding to the 2-body gravitational capture cross section,

3
T4y

26, 1'?
b=bmin=R,=R;+Rp) |1+ — 10
m g ( i+ k)[ +(Ri+Rk):| ( )
2. Viscous stirring caused by inelastic collisions:
ﬁ SL V ka(viz - ka) + 2m,‘U,'2
B = — — ) —mR . 11
8 f 12 V; P e (m[ + mk)2 ( )

3. Velocity damping due to energy dissipated by inelastic collisions:

2 a2 .2
= _\/— <11'\/— 24) k R 2mk(vl Vk ) + 2mzvl ) (12)
: Vi

(m; +my)?

4. Energy transfer from large bodies to small ones via dynamical friction:

2
_4mLG G o InA (myv? — mivi?). (13)
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T 5. Energy damping caused by gas drag:

. C
Egl E=-m (—D> Pg Ri*v;(vi +n) (14)
2m,~

where Cp is the drag coefficient, p, is the gas density, and 7 is the velocity of
a body moving in a circular Keplerian orbit relative to the that of the nebular
gas, which orbits at a slower velocity because it is partially supported by
thermal pressure (cf. Adachi et al. 1976; Weidenschilling 1977a).

The viscous stirring terms are so denoted because their sum is propor-
tional to the product of the shear stress and the rate of strain generated by
the differential rotation of the local mean velocity. The physical source of
the energy for the viscous stirring terms is the kinetic energy contained in the
sheared mean flow. Mutual planetesimal interactions transform this energy
into the random motion associated with orbital eccentricities and inclinations.
In a uniformly rotating disk, these two terms would vanish. The dynamical
friction term tends to drive the system toward an equipartition of random
kinetic energy. In a broad distribution of planetesimal sizes, energy equipar-
tition is never actually achieved because the viscous stirring terms tend to
drive the system away from the equipartitioned state towards a state in which
velocities are independent of mass. For the special case of m; = m; and
v; = W, these expressions are similar to those found by Safronov (1972) and
Kaula (1979a) using relaxation time estimates. The equation for gas drag is
adapted from the theory of Adachi et al. (1976). In this formula, the drag
coefficient Cp appropriate for the large Reynolds number flows occurring
around planetesimals in the circumstellar nebulae is ~0.5 (Whipple 1972).

The steady-state velocities predicted by Eqs. (7-14) are displayed in Fig. 1
for several different mass distributions. The mass distributions are labeled by
the exponent ¢ in the differential power law dn/dm o m ~7; the planetesimal
masses range from 10'® t0 9.766 x 10?* g in each case. In all the cases plotted,
the largest planetesimals have the smallest velocities as a result of the transfer
of energy from large bodies to small bodies via dynamical friction. This result
is distinctly different from what one obtains from Safronov’s relaxation time
theory, which omitted dynamical friction. The power law with exponent g =
2 is a transitional case because equal amounts of mass are distributed in each
logarithmic mass interval in that case. Mass distributions with ¢>2 have most
of their mass in the smaller bodies and are therefore more efficient at draining
away the energy from the larger bodies. For large values of g, the velocity
distribution achieves its maximum value at an intermediate mass planetesimal
where the viscous stirring by gravitational scattering is strong relative to both
inelastic collisions, which dominate for small planetesimals, and dynamical
friction, which slows the largest bodies. Somewhat surprisingly, omitting
the gas drag term from Eq. (14) would hardly change the velocity curves in
Fig. 1 at all. Apparently, the absence of gas drag is mostly compensated by
a larger energy loss due to inelastic collisions if the steady-state velocities
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Figure 1.  Steady-state random velocities calculated from Eqs. (7-14) for five dif-
ferent power law mass distributions. The curves are labeled by the exponent ¢ in
the differential power law n(m)dm o« m~?dm. The horizontal dotted line gives the
escape velocity of the largest body. In all cases, the surface mass density of solids
was 20 g/cm?, the masses ranged from 10'® t0 9.766 x 10** g and the gas density
was 1.18 x 10° g/cm3.

increase by only a few percent. We suspect that gas drag would have a more
significant affect if planetesimals less massive than 10! g were included in
the simulations.

C. Relationship Between Random Velocities and Planetesimal
Orbital Elements

Planetary accretion occurs within disks of planetesimals on nearly Keplerian
orbits about a central star. The particle trajectories can be described using
Keplerian orbital elements. Particle-in-a-box calculations approximate the
relative orbital motions of planetesimals with a random (or relative) velocity.
The relationship between random velocity and orbital elements is by no means
straightforward; several different relationships have been used by various
authors, causing a great deal of confusion in the field (especially because all
of these different quantities are denoted by the symbol v). We attempt to
clarify the situation below.

The appropriate conversion between orbital elements and random veloc-
ities depends on the specific aspect of the accretion problem being exam-
ined. Four different conversions have been used, each of which assumes the
epicyclic approximation (e, i <<1):

1. The velocity of a planetesimal relative to the mean circular orbit in the
disk midplane with the same semimajor axis as that of the planetesimal,
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.f i.e., its epicyclic velocity plus a contribution due to inclination:

g | vep = (€2 + i) o (15)

2. The velocity of a planetesimal relative to the local mean circular orbit,
averaged over an epicycle:

5¢2 2 12
Vie = (—8-— + —2-) Vg. (16)

This is the local rms velocity one would calculate from the velocity
distribution equations (cf. to transform between Eqs. [1] and [2]) and is
also the velocity which appears in Egs. (7-14).

3. The velocity of a planetesimal relative to other planetesimals in the
swarm, averaged over an epicycle and over a vertical oscillation:

5 2 1/2
Ve = (_z_ + i2) VK. 17).

This is the local rms relative velocity that one would calculate from the
product of two velocity distributions:

Vsw? = /d3v1d3v2f1(vl)f2(vz)(v1 —vp)?/n’.

4. The weighted averaged approach velocity of a planetesimal to a proto-
planet on a circular orbit averaged over an epicycle. The averaging is
weighted by a factor of 1/v? in order to produce the appropriate 2-body
approximation to the gravitational enhancement in cross sections for the
calculation of accretion rates (cf. Greenzweig and Lissauer 1990):

12
ves = (€2 +iH)1/2 (i—%) vk (18)

where k = (4(I >+ 1)/3)7"/?,1 = sini/e, and where K(k) = fo%(l —

k%sin?0)~1/2d9 and E(k) = [ g (1 —k? sin? 6)'/2d6 are complete elliptic
integrals of the first and second kinds. '

ITII. COLLISION CROSS-SECTIONS AND GROWTH RATES

The size distribution of planetesimals evolves principally due to physical
collisions among its members. Stresses caused by tidal forces during close
encounters between planetesimals may also fragment very weak bodies, but
such disruptive encounters require special circumstances (Boss et al. 1991),
and thus can be neglected or folded into the formalism of fragmentation via
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°+  physical collisions. The evolution of the size distribution of planetesimals can
21 be studied using coagulation theory (cf. Sec. IV). The inputs required in the
o, coagulation calculations are the collision frequency and physical assumptions
¢+ regarding the outcome of collisions.
The velocity at which two bodies of radii R; and R, and masses m; and
m; collide is given by:
= (v +v.)!? (19)

where v is the relative velocity of the two bodies far from encounter and v, is
the escape velocity from the point of contact:

1/2 .
my+mp
=|2G—— ) 20

( R1+R2) 20)

The rebound velocity is equal to €v,., where € <1 is the coefficient of restitu-
tion. If ev.<v,, then the two bodies remain bound gravitationally and soon
re-collide and accrete. Net disruption requires both fragmentation, which
depends on the internal strength of the bodies, and post-rebound velocities
greater than the escape speed. As we saw in Sec. II, relative velocities of
planetesimals are generally less than the escape velocity from the largest typ-
ical bodies in the swarm. Thus, unless € is very close to unity, the largest
members of the swarm are likely to accrete the overwhelming bulk of material
with which they collide. Fragmentation is likely to be most important for very
small planetesimals.

In this section, we shall give formulas for the calculation of the collision
rates between planetesimals. For the case of the largest bodies in the swarms,
which eventually are to grow to planetary size, the rate of collision with
material is essentially identical to the accretion rate.

A. The Particle-in-a-Box Approximation

We wish to compute the accretion rate of a given body, which we shall refer
to as the protoplanet, embedded within a uniform surface density and velocity
dispersion disk of bodies which we shall call planetesimals. The simplest
model for computing the collision rate of planetesimals ignores their motion
about the central star entirely. This problem can be treated using methods
of the kinetic theory of gases (Safronov 1972; Wetherill 1980a). Collisions
occur when the separation between the centers of two particles becomes less
than the sum of their radii, R;. The accretion rate of a body in a swarm of
planetesimals of density p;,, (not to be confused with the density or specific
~ gravity of the individual bodies, p) at relative velocity v (= v.) is given by:

p 2 Ve )2 2
Mpip = pswVTTR [1 + (—) ] = PswVTTR" (1 4+ 20) 21
v

where the second term in the parentheses represents the gravitational enhance-
ment of the accretion cross section. The Safronov number, 8 = (v,/v)?/2, is
frequently used to quantify the effects of gravitational focusing.
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S Note that in a disk of given surface mass density o, the volume density
g of the planetesimal swarm is inversely proportional to v, assuming the mean
g: ratio of horizontal to vertical motions (eccentricities to inclinations) remains
cl fixed: s '
o o o2 3082
Psw ~ N (22)

Nﬁ=2asiniw2vz 2 v

where H = asini is the half-thickness (= scale height) of the disk and the
factor of +/3 assumes the velocity dispersion is isotropic. Substituting Eq. (22)
into Eq. (21), we find that the mass accretion rate of a protoplanet depends on
v only through the gravitational focusing factor:

Mpip = %—%UQnRsz[l n (%)2]. (23)

The exact value of the constant in front of the right-hand side of Eq. (23)
depends on the velocity distribution; thus, various values have been quoted in
the literature and used in estimating growth times for planets.

B. Formulas for the 2-Body Approximation Including Kepler Shear

The particle-in-a-box approximation discussed above works well locally as
long as encounters are rapid compared to an orbital period, i.e., that relative
velocities are high. Actual planetary encounters can be much more compli-
cated than the simple particle-in-a-box model. In addition to the gravitational
forces between the colliding bodies, the gravity of the star needs to be taken '
into account and the 3-body problem must be solved in order to calculate
accretion rates. For sufficiently rapid relative velocities, the encounter is
brief enough that the tidal effect of stellar gravity can be neglected during
the interval in which the gravitational forces between the secondaries is im-
portant. Stellar gravity must, however, still be incorporated to determine the
flux and velocities of approaching bodies. As the problem is broken into a
set of 2-body calculations (which, unlike the 3-body problem, may be solved
analytically), this method is known as the 2-body approximation.

The dynamics of planetesimal-protoplanet encounters are the same in
the 2-body approximation as in the particle-in-a-box case. The additional
problem is finding the average density of planetesimals which a protoplanet
encounters and the appropriately weighted encounter velocities “at infinity” in
terms of the orbital elements of the bodies. Intermediate steps in the derivation
of the accretion rate are omitted in the discussion below, but may be found in
Greenzweig and Lissauer (1990, henceforth GL90).

Several simplifying assumptions are required in order to produce a simple
analytic expression for the 2-body accretion rate analogous to Eq. (23). First,
we assume that orbital eccentricities and inclinations are sufficiently small that
terms quadratic in e and sini may be neglected (i.e., we make the epicyclic
approximation); this assumption is valid for all but possibly the very final
stages of accretion. On the other hand, the radial and vertical oscillations of
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the planetesimals during one orbital period, ae and a sin, are assumed to be
' large compared to the particle-in-a-box accretion radius of the protoplanet,
§ R (14,2 /v*)1/2; accretion rates for the planer case (i.e., where i = 0) for both
'+ zero and nonzero eccentricities are given by GL90. We also assume that the
pre-encounter inclinations and eccentricities of the planetesimal orbits relative
to that of the protoplanet are the same for all planetesimals. (If the protoplanet
is on a circular orbit, as is often the case [cf. Sec. II], then the relative
eccentricity is identical to the eccentricity of the planetesimals; see Eq. [10]
of GL90 for the general definition of relative eccentricity.) Distributions in
e, i and R may be accounted for by integrating the results presented below
over these distributions (cf. Sec. II1.D).
Under the assumptions stated above, the accretion rate of a protoplanet
is given by (cf. Egs. 30-32 of GL90):

, 2 R’
M1 = Pp(e, i)thTn =T

F(I)Fp (24)

where P, (e, i) is the normalized 2-body collision probability as defined by
Nakazawa et al. (1989), T is the protoplanet’s orbital period, and

F()=4 *———”1;“12)13(@ (25)

where [ is defined by Eq. (18) above. The 2-body gravitational enhancement
factor, F;p, is the ratio of a protoplanet’s 2-body collision rate to that of a
nongravitating protoplanet of identical size:

2
Fap=1+"5 =1+26 (26)
v

where v = vg.

C. The 3-B0dy Gravitational Enhancement Factor

The 3-body problem can be solved analytically only for a few special equilib-
rium cases; thus, numerical integrations are necessary to calculate the 3-body
gravitational enhancement factor F,. The general problem of computing F,
for a variety of planetesimal velocity dispersions over the entire range of
different protoplanet masses, radii and orbital locations plausible during the
planetary accretion epoch would be intractable were it not for a very useful
set of scaling laws based on Hill’s (1878) equations. A desirable feature of
Hill’s equations is their lack of dependence on the ratio of the protoplanet’s
mass to that of the star as long as m;/M,<<1. The radius of a protoplanet’s
Hill sphere is

1/3
mi /

h= 27).
M,
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8 An encounter with a planetesimal whose mass is not negligible compared
'g to that of the protoplanet is best described by replacing m; in Eq. (27) by
g: m; + my. Itis also useful to define the Hill eccentricity ey, Hill inclination
b iy, and relative Hill semimajor axis by as:
ea . i a —a
= —, =—,by= . 28
en =3 in =3 bn ; (28)
and the scaled accretion radius of a protoplanet as:
R
ry = IS (29)

Three-body integrations of planetesimal-protoplanet encounters can be scaled
to protoplanets of different masses, sizes and separations from stars of any
mass if ey, iy and ry remain fixed (Nishida 1983; GL90). Note that ry is
the same for all protoplanets of a given density at a fixed distance from any
particular star. A detailed analytic development of the Hill scaling of the
accretion problem is presented by GL90.

Following Ida and Nakazawa (1989), we define the collision probability,
P(ey,iy,ry), as the ratio of the rate at which bodies hit a protoplanet in
a uniform surface density disk to the flux of bodies with semimajor axes in
the range —1<by <1 which would pass the planets if their orbits about the
star were unperturbed. The value of P(ey, iy, ry) may be calculated from
numerical experiments (Ida and Nakazawa 1989; GL90). The mass accretion
rate may be obtained from P using the relationship:

M3p =P(€H,iH,rH)0h2-2-T£ (30)
and F, may be determined by dividing Msp by the accretion rate for a non-
gravitating planet of the same size.

Numerical results for P (ey, iy, 0.005), which represents, e.g., a pro-
toplanet of density p = 3.4 g cm™3 orbiting 1 AU from a 1 M, star, are
presented for a variety of different values of ey and iy by Ida and Nakazawa
(1989) and GL90. Figure 2 shows the dependence of F; on random velocities
for ry = 0.005 and ey = 2iy. Similar plots for other values of ry are
presented in GL90. Note that the 2-body approximation is valid for v/v,<0.1,
3-body accretion rates exceed those given by the 2-body formula by up to a
factor of 2 when 0.02<v/v,<0.1, and F, rises less steeply than the 2-body
formula at smaller v/v,, approaching the value of ~1.7 x 10* as v—0.

D. Cross Sections for a Gaussian Velocity Distribution

The formulas quoted above are valid for uniform surface density disks in
which all planetesimals either approach the protoplanet at the same speed
(particle-in-a-box case) or have the same unperturbed values of e and i (2-
body and 3-body cases). While these homogeneous cases provide insight
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Figure 2.  The 3-body gravitational enhancement of the accretion cross-section
of a protoplanet on a circular orbit plotted as a function of planetesimal random
velocities (v.,). The radius of the protoplanet is r; = 0.005, which represents,
e.g., a protoplanet of density p =3.40 g cm=> orbiting 1 AU from a star of mass
1 M. The ratio of the mass of the protoplanet to that of the star used in the
numerical calculations is 1 = 107%; however, the results should be valid for any
u<<1. Individual points correspond to results for separate runs; in each run all of
the planetesimals have identical eccentricities and inclinations with ey = 2iy, and
are distributed in semimajor axis as a uniform surface density swarm. Error bars
represent statistical (/) uncertainties in the numerical experiments. The dotted
line represents the limiting case of planar circular orbits. The dashed curve is the
2-body approximation given by Eq. (24). Figure from GL90.

into the dynamics of the orbits leading to collisions, they do not represent a
realistic disk of planetesimals. Planetesimal motions are much better approx-
imated by a Rayleigh distribution in e and i (Eq. 1) or, equivalently, a triaxial
Gaussian distribution in local velocities (Eq. 2). Using the particle-in-a-box
approximation, Vityazev and Pechernikova (1981) found that when v<<v,,
the average eccentricity of colliding planetesimals is ~3~1/ 2(¢2)'/?; this im-
plies a factor of ~3 enhancement in accretion rates. Greenzweig and Lissauer
(1992) compute formulas for the accretion rate of a protoplanet embedded in
a uniform surface density disk of planetesimals with such a velocity distribu-
tion. They find that in the 2-body approximation, accretion rates when v<<v,
are enhanced compared to the case where all planetesimals have e and i equal
to the rms of the Rayleigh distribution by a factor which depends weakly on
I (= sini/e) and always exceeds 2.6. Numerical 3-body integrations show
‘comparable enhancements, except when (e HZ)I/ > <1 (Greenzweig and Lis-
sauer 1992); at very low eccentricities, the enhancement disappears due to
the flattening of the accretion rate as e — 0 (cf. Fig. 2). Qualitatively similar
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8 results have been reported by Ida and Nakazawa (1988) and Ohtsuki and Ida
'g (1990).

2

< IV. EARLY STAGES OF PLANETESIMAL ACCUMULATION

The velocity dependence of the collision cross section described above leads to
a strong coupling between the evolution of the velocity and size distributions
of planetesimals. The study of planetary accumulation therefore requires a
simultaneous calculation of the velocity evolution and size evolution of the
planetesimal swarm. The early stages of planetesimal evolution has been
modeled by several authors (Greenberg et al. 1978,1984; Nakagawa et al.
1983; Ohtsuki et al. 1988; Wetherill and Stewart 1989). All of these papers
use some variant of the particle-in-a-box approximation, but they differ in
their treatment of the velocity evolution and their method of simulating the
planetesimal size evolution. The most important result that has emerged
from this work is that the evolving planetesimal size distribution can follow
two qualitatively distinct paths that are characterized by very different time
scales. The slower evolutionary path exhibits an orderly growth of the entire
size distribution so that all the planetesimals remain tied to the continuous
size distribution throughout the early stages of planetesimal accumulation.
The term runaway accretion refers to a different evolutionary path where
the largest planetesimal in the local region grows much more rapidly than
the remainder of the population and therefore becomes detached from the
continuous size distribution. Recent modeling efforts have focused on the
task of delineating the circumstances under which runaway accretion may
or may not occur (Ohtsuki et al. 1990; Ohtsuki and Ida 1990; Wetherill
1989,1990a). In this section we review the causes of runaway accretion and
discuss the relevance of this process to planet formation.

A. Solutions of the Coagulation Equation

The origin of runaway accretion can be best understood in the context of
various solutions to the discrete form of the coagulation equation,

dnk 1
o =3 2 Auning —m ) Auni 3D
i+j=k i

which describes the time evolution of the number of bodies n; with mass
my. The merger of smaller bodies increases n;, whereas the incorporation of
bodies of mass m; into larger bodies causes n; to decrease. Analytical solu-
tions to Eq. (31) are known for a few simple forms of the collision probability
A (Safronov 1972; Trubnikov 1971; Wetherill 1990a). Although none of
these special cases accurately represent the velocity-dependent collision prob-
abilities described in Sec. III, the few analytical solutions to the coagulation
equation provide a rigorous test for the accuracy of any numerical algorithm
used to solve the coagulation equation. Two such solutions which exhibit
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1 orderly growth rather than runaway accretion are the cases when A;; equals
'~ a constant and when A;; is proportional to the sum of the masses, m; + m;.
o Ohtsuki et al. (1990) used these two solutions to show how numerical al-
c: gorithms that employ fixed mass-coordinate divisions to represent the mass
distribution can produce erroneous results. They conclude that numerical
calculations of planetesimal accumulation which use a mass ratio between
neighboring mass coordinates that exceeds /2 can substantially overestimate
the rate of planetary growth.

In contrast to the fixed mass-coordinate algorithms used by most previous
workers, Wetherill and Stewart (1989) represented the size distribution with a
number of moving “batches,” each containing a large number of bodies of the
same mass. In this Lagrangian-type scheme, the mass value characterizing
each batch is allowed to grow by the sweep-up of smaller bodies as well as by
merger with other bodies in the same batch. Wetherill (1990a) has presented
test calculations using this method which show better agreement with the two
analytical solutions described above than was obtained by Ohtsuki et al.

A more stringent test of any numerical procedure for solving the coagula-
tion equation is the ability to reproduce the solution when A ;; is proportional
to the product of the masses m; m; because this is a case known to exhibit
runaway growth of the largest body. As pointed out by Wetherill (1990a), the
analytical solution for this case is best understood by replacing Eq. (31) with
a set of equations which explicitly separate out the evolution of the largest

body in the distribution:
d
_:Tk - % ; ijnin; — ykny Zin,- — ykgkny (32)
i+j=k i
— =vyk k 33
5 =7 Rzk: n (33)

where the masses have been normalized such that A;; = yij and k  is the
normalized mass of the largest body. The last term on the right-hand side of
Eq. (32) represents the mass lost from bin “k” as a result of collisions with
the largest body. These equations are consistent with a time independent total
mass n, where

noe =kgr + ank~ (34)
k
The solution of Eq. (32) was found by Trubnikov (1971) to be

no(km)*~ ¥

k! k 3)

ni(n) =

where n = n,yt is a dimensionless time variable. The time evolution of the
runaway body is obtained by substituting the solution (35) into Eq. (34) and
solving for k.
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8 Wetherill (1990a) has utilized the above solution to verify the accuracy
g of the numerical procedure used by Wetherill and Stewart (1989) in their
§I calculation of planetesimal evolution. A crucial attribute of Wetherill and
< Stewart’s calculation is the probabilistic procedure used to simulate abrupt

changes in the mass of the largest body. During a time step of length Az, the
number of merging collisions between bodies in batch “i”” and bodies in batch

66 9

J)" Vijs is given by the formula
Vij = n,'}’le,‘jA[. (36)

When “i” and *j” represent very large bodies, v ;; often falls between 0 and 1.
It is physically reasonable to interpret a fractional value of v;; as a collision
probability per time step because collisions between very large bodies do not
really occur during every time step. The procedure used by Wetherill and
Stewart is therefore to create a new batch containing one body only when
m; + m; exceeds the mass of the largest body by a factor § (where 1.07
<8<1.15) and v;; exceeds a random number between 0 and 1. Numerical
calculations using this procedure are able to reproduce the runaway growth
predicted by Eqgs. (34) and (35) quite accurately, aside from a small time
lag that depends on the value chosen for § (Wetherill 1990a). Alternative
numerical procedures which fail to simulate the abrupt changes in the size of
the largest body can artificially suppress runaway growth. Taken together,
these studies of the coagulation equation provide an important lesson: it is
always advisable to test one’s numerical procedures-against known solutions
of the coagulation equation before drawing any conclusions about the physical
causes of runaway accretion of the planets.

B. The Causes of Runaway Accretion

The three analytic solutions of the coagulation equation described above
indicate a bifurcation between solutions which display orderly growth and
solutions which display runaway growth of the largest body. The decisive
factor that determines which branch the solution will take during planetesi-
mal accumulation is the velocity dependence of the collision rate described in
Sec. III. In general, a velocity distribution which exhibits smaller velocities
for the larger bodies (as is shown in Fig. 1) will increase the effective mass
dependence of the collision rate and will therefore increase the likelihood of
runaway accretion. Wetherill and Stewart (1989) presented a series of calcu-
lations which serve to delineate the conditions required for runaway accretion
to occur. In those calculations which omitted the energy equipartition terms
proportional to (m;v;> —m;v;?) in Eqs. (7-14), orderly growth of the planetes-
imal size distribution was found. These results show qualitative agreement
with the earlier results of Safronov (1972) and Nakagawa et al. (1983), who
also neglected the energy equipartitioning caused by gravitational scattering.

When Wetherill and Stewart (1989) included the energy equipartition
terms in their velocity evolution equations, they found runaway growth of the

© University of Arizona Press ¢ Provided by the NASA Astrophysics Data Sy


http://adsabs.harvard.edu/abs/1993prpl.conf.1061L

Ca PLANETESIMALS TO PLANETS 1079

" largest planetesimal to occur. Complementary calculations by Ohtsuki and

:Q, Ida (1990) confirm the result that runaway accretion occurs when the random

g: velocities decrease with increasing planetesimal mass. Another mechanism

~* which may decrease the velocities of the largest bodies is the enhanced gas
drag that would result from gravitational concentration of nebular gas around
massive planetesimals (Takeda et al. 1985). Ohtsuki et al. (1988) present
calculations including this enhancement of gas drag which also display run-
away accretion. These recent investigations were motivated to large degree
by the pioneering work of Greenberg et al. (1978) that first reported runaway
accretion. However, Wetherill and Stewart were unable to reproduce run-
away growth when using the same physical assumptions that were stated by
Greenberg et al., and the validity of those early results remains controversial
(cf. Spaute et al. 1991; Kolvoord and Greenberg 1992).

As energy equipartition via gravitational scattering plays a pivotal role in

the bifurcation between orderly and runaway growth, is important to establish

- the limits of validity of the velocity evolution equations discussed in Sec. II.
Ida (1990) has presented an extensive series of 3-body orbit integrations in
order to determine directly the ability of a protoplanet on a circular orbit to alter
the velocity distribution of the surrounding planetesimal swarm as well as the
ability of a planetesimal swarm to damp the eccentricity and inclination of a
protoplanet via dynamical friction. Ida finds that the energy equipartition rate
agrees well with the 2-body results at high velocities. However, when ey of the
smaller planetesimals drops below 2, the rate of equipartition stops increasing
with decreasing velocity (unlike the 2-body case, where the rate increases
indefinitely). Ida’s work therefore implies that dynamical friction continues to
‘operate at low velocities, but the energy equipartition rate attains a maximum
asymptotic value that is given by setting ey = 2 in the 2-body formula.
When the velocity evolution Egs. (7-14) are modified to include the limiting
equipartition rate, one finds that the steady-state velocities of the largest
planetesimals are somewhat greater than shown in Fig. 1. Nevertheless, the
velocities of the largest bodies are still found to be substantially smaller than
ey = 2insize distributions where most of the mass is contained in the smaller
planetesimals. In light of this result, it appears likely that runaway growth of
the largest planetesimals will occur in spite of the hrmtmg equipartition rate
found by Ida.

Although the causes of runaway accretion are fairly well established,
the precise rate of runaway growth remains somewhat uncertain because the
statistical arguments used to derive the velocity evolution equations begin to
break down once runaway growth has begun. The Fokker-Planck operator
used to derive Eqgs. (7-14) implicitly assumes that successive gravitational
encounters are uncorrelated, so that random velocities evolve in a random-
walk fashion. However, once a protoplanet grows much more massive than
any other body in the local accretion zone, each successive gravitational
encounter with this protoplanet tends to be correlated with the preceding
encounter. In the limit that one can neglect mutual interactions among the
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E smaller planetesimals, the smaller planetesimals will always approach the
=) protoplanet with the same velocity owing to the conservation of their Jacobi
g constant with respect to the protoplanet. Wetherill and Stewart (1989) placed
b limits on the importance of this effect by presenting an accretion calculation

which omitted perturbations by the largest body in the zone. The rate of
runaway accretion was accelerated in that case, due to the reduced random
velocities.

When a single protoplanet is the dominant perturber in a zone, the ve-
locity dispersion ceases to be isotropic. Because of the coupling between
azimuthal and radial motions, the protoplanet is able to excite eccentricities
in planetesimals initially on circular orbits, but due to the symmetry of the
equations of motion about the plane of the protoplanet’s orbit, the protoplanet
cannot excite inclinations in coplanar planetesimals. Numerical studies of
planetesimals with initially small ey and iy imply much more rapid growth
of eccentricity than inclination (Ida 1990; GL90). The rate of planetary
growth can be greatly accelerated in such hot, flat disks. (For details, see the
discussion surrounding Eq. [50] in GL90.)

Realistically, the precise rate of runaway growth is determined by the
relative frequency of encounters with the protoplanet compared to the rate
of velocity evolution due to gas drag and mutual interactions among the
smaller planetesimals. Hayashi et al. (1977) have stressed the importance of
calculating the evolution of both semimajor axes and eccentricities in order to
determine the long-term evolution of the Jacobi “constant” when all of these
processes are active. More detailed simulations of this problem are needed to
better constrain the maximum accretion rate during runaway growth.

C. The Problem of the Asteroid Belt

The absence of a large terrestrial planet in the region between the orbits of Mars
and Jupiter provides a strong constraint for models of solar system formation.
Numerical simulations of planetesimal accumulation in the primordial asteroid
belt yield runaway growth of a protoplanet more massive than 10>’ g on a time
scale of several times 10° yr if the influence of Jupiter is neglected (Wetherill
1989). Gravitational perturbations by Jupiter could have curtailed runaway
in the asteroid belt only if Jupiter’s core had also formed on a time scale of
several times 10° yr. The early runaway growth of Jupiter’s core has therefore
emerged as a desirable feature in scenarios of planet formation.

The accumulation of Jupiter’s core on a time scale of <1 Myr appears
to be possible if the surface density of condensable materials at Jupiter’s
orbit was >20 g cm~2 (Lissauer 1987; Wetherill 1989). This large a surface
density is not predicted by standard minimum-mass solar-nebula models.
(A minimum-mass solar nebula is a model circumsolar disk which contains
only the amount of condensable material currently present in the planets,
augmented with volatiles to solar composition and spread out to give a smooth
density distribution in radius. The total mass of the protoplanetary disk in such
models is 0.01 t0 0.02 M .) One possibility is that the surface density of solids
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'+ may have been enhanced at Jupiter’s orbit due to water ice condensation and
= by diffusive transport of condensable water vapor from the inner solar system
& (Stevenson and Lunine 1988). However, we believe that the more likely
explanation is that the surface mass density of the protoplanetary disk in the
region where the giant planets accreted was a factor of several greater than
that predicted by minimum-mass models. This “excess” mass not only could
account for the rapid formation of the cores of the giant planets (Sec. V; cf.
Lissauer 1987), but also offers a source of condensable material large enough
to have produced the ~50 Mg, of comets believed to exist in the Oort cloud
at the present epoch, even after losses over the age of the solar system have
been accounted for (Fernandez and Ip 1984; Duncan et al. 1987; Weissman
1990). Moreover, disk stability analysis, which suggests a preferred mass of
protoplanetary disks equal to ~1/3 that of the central star (Chapter by Adams
and Lin; cf. Shu et al. 1990), and observations of relatively massive disks
around many young stars (Chapter by Beckwith and Sargent), reinforce our
opinion that minimum-mass models of the solar nebula are headed towards
the dustbin of history.

Although Jovian perturbations are widely invoked to explain the asteroid
belt, the precise mechanism that halted planet formation is still a subject of
some dispute. The only way to stop planet growth is to increase the planetesi-
mal velocities to a value substantially greater than the surface escape velocity
of the largest bodies in a local region. The difficulty with invoking gravita-
tional perturbations by Jupiter for this purpose is that the resultant eccentricity
pumping is only appreciable at narrow resonance locations. Several authors
have discussed how the dissipation of the nebular gas could have shifted the
resonance locations, thereby causing Jupiter’s resonances to sweep through
the entire asteroid belt (Heppenheimer 1980; Torbett and Smoluchowski 1980;
Ward 1981). Detailed models which predict the time scale for removal of the
gas are required to evaluate this suggestion properly. Changes in Jupiter’s
semimajor axis due to accretion of gas and/or ejection of planetesimals from
the solar system could also have caused Jovian resonances to have swept
across the asteroid belt (Safronov and Gusseinov 1989).

Another possible way to pump up velocities in the asteroid belt is to
postulate a population of Jupiter-zone planetesimals that are scattered into
the asteroid belt once Jupiter becomes sufficiently massive. Recent Monte
Carlo calculations of this scenario show that the necessary large velocities are
produced in the asteroid belt if the Jupiter zone planetesimals are as massive
as the Earth and if one of these bodies becomes trapped in the asteroid belt for
an extended period of time (Ip 1987; Wetherill 1989). This result is somewhat
unsatisfying, because one must then require this Earth-size body to end up near
a strong Jupiter resonance in order to provide a mechanism for its removal.
It is also not clear that such a population of Jupiter-zone planetesimals would
be created during the rapid runaway growth of Jupiter’s core.

One variant of the previous model is that a planet-sized body did form at
~3 AU from the Sun. This body could then have excited the eccentricities of
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i the current asteroids prior to being ejected from the solar system by resonant

p perturbations from Jupiter. In this case, asteroid belts might not be a common
2 feature among planetary systems otherwise much like our own. More detailed
X simulations of planetesimal accumulation which accurately model Jupiter

perturbations should help narrow the possibilities (cf. Wetherill 1991¢).

V. LIMITS TO RUNAWAY GROWTH

Runaway accretion with high F, requires low random velocities, and thus
small radial excursions, 2ae, of planetesimals. This implies that a proto-
planet’s feeding zone is limited to the annulus of planetesimals which it can
gravitationally perturb into intersecting orbits. Thus, rapid runaway growth
must cease when a protoplanet has consumed most of the planetesimals within
its gravitational reach (Lissauer 1987).

For the case of a protoplanet on a circular orbit, the standard theory of

the restricted 3-body problem places an upper bound on the initial semimajor
axis, by, that may lead to collision. Neglecting gas drag and interactions
with other planetesimals, a planetesimal whose orbital elements satisfy the
inequality:
%bHZ —ey
cannot enter the protoplanet’s Hill sphere (see, e.g., Artymowicz 1987). For
example, a particle which initially has ey = iy = 0 and by>2+/3~3.5
remains in superior orbit to the protoplanet, although it’s path may be perturbed
(this perturbation preserves the left-hand side of Eq. (37), which is a version
of the Jacobi constant). For a single encounter (one synodic period), GL90
find that planetesimals with initial ey = iy = 0 and by >2.6 do not approach
closer than 0.1 4 from the protoplanet; however, Kary et al. (1993) show that
most planetesimals with initial ey = iy = 0 and 1.3<by <3.2 come within
0.1 h of the protoplanet during 20 synodic periods. For nonzero “initial”
eccentricity and/or inclination, the accretion zone expands slightly, but for e
and i low enough for F, to be large, planetesimals with |by|>4 cannot be
accreted. Thus, the accretion zone of a protoplanet embedded in a disk of low
random-velocity planetesimals extends over the region:

2 _ig?>9 37

lbu| < B (38)

where B depends on the magnitude of other perturbations on the planetesimals,
and typically is ~3.5 to 4 in a quiescent disk.

The size of a protoplanet’s Hill sphere expands as it accretes matter. The
mass of a protoplanet which has accreted all of the planetesimals within an
annulus of width 2Ar is:

r+Ar
m= / 2o (r)dr' = 4xr Aro (r). (39)

Ar
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s Setting Ar = Bh = Br(m/3M ,)'/3, we obtain the isolation mass to which a
iz protoplanet orbiting at a distance r from a star of mass M, may grow:

& ArBrio)? 2 \3/2 1/2
Y m= (”—r% =210 x 1072 (Br 0) (MQ) Mg  (40)
(3M.,) 24/3 M,

where the mass of the Earth Mg, = 5.98 x 10?7g, r is expressed in AU and o in
g cm~2 (Lissauer 1987). For example, assuming B = 2+/3, a minimum-mass
solar nebula with 0 = 10 g cm~2 at 1 AU implies protoplanet isolation at
0.066 Mg; whereas 0 = 3 g cm~2 at 5 AU implies protoplanet isolation at
1.36 Mg. '

Runaway growth can persist beyond the isolation mass given by Eq. (40)
only if additional mass can diffuse into the protoplanet’s accretion zone. Three
plausible mechanisms for such diffusion are scattering between planetesimals,

- perturbations by protoplanets in neighboring accretion zones and gas drag.
The process of radial drift due to scattering within the vicinity of a protoplanet
has not yet been analyzed quantitatively and remains a major open question.

~ Drift due to gas drag has been modeled in more detail. Weidenschilling
and Davis (1985) suggested that a protoplanet can enhance the effects of
gas drag on material orbiting just outside its accretion zone in the following
manner: As planetesimals drift slowly inwards due to gas drag, they eventually
encounter and are trapped into small integer commensurabilities (resonances)
with the protoplanet. The eccentricities induced at such resonances lead to
high-velocity collisions which grind planetesimals into small debris. Small
planetesimals are very strongly affected by gas drag; they cannot be stopped by
protoplanet resonances, and thus rapidly drift into the protoplanet’s accretion
zZone. v ‘ ,

Alternatively, radial motion of the protoplanet may bring it into zones not

depleted of planetesimals. Gravitational torques due to excitation of spiral
density waves in the gaseous component of the protoplanetary disk have
the potential of inducing rapid radial migration of protoplanets; however, as
the migration rate depends on the difference between comparable positive
and negative torques (due to excitation of waves at resonances interior and
exterior to the protoplanet’s orbit, respectively), the magnitude of this effect

is extremely difficult to quantify (Goldreich and Tremaine 1980; Ward 1986).

Recently it has been suggested that gravitational focusing of gas could vastly

increase the rate of inward drift of protoplanets due to gas drag (Takeda et al.

1985; Ohtsuki et al. 1988). This result would have profound implications for

models of planetary accretion. However, the fluid calculations assumed low

Reynolds number, which may be appropriate for a turbulent protoplanetary

disk, but not for a laminar one. The effects of the stellar gravitational field
upon the flow pattern also must be examined.

Radial drift of planetesimals relative to a protoplanet increases the pro-
toplanet’s isolation mass only if the protoplanet is able to efficiently accrete
those planetesimals which approach its orbit. The case of planetesimals de-
caying inwards (due to gas drag) towards a planet on a circular orbit has been
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,; studied by Kary et al. (1993). They find that unless the planet’s accretion ra-
‘23. dius is R0.01 h (which would imply a distended thick atmosphere), a majority
e of the planetesimals miss the planet, and continue to drift inwards towards the

star. Thus, radial drift is not as promising a mechanism to increase a planet’s
isolation mass as was previously believed.

V1. FINAL STAGES OF PLANETESIMAL ACCUMULATION

The self-limiting nature of runaway growth strongly implies that massive pro-
toplanets form at regular intervals in semimajor axis throughout the inner solar
system. The mutual accumulation of these protoplanets into a small number
of widely spaced planets necessarily requires a stage characterized by large
orbital eccentricities, significant radial mixing, and giant impacts. Mutual
gravitational scattering can pump up the relative velocities of the protoplanets
to values comparable to the surface escape velocity of the largest protoplanet,
which is sufficient to ensure their mutual accumulation into planets. The large
velocities imply small collision cross sections and hence long accretion times.
In the outer solar system, the limits of runaway growth are less severe; it is
feasible that runaway growth of Jupiter’s core continued until it attained the
necessary mass to rapidly capture its massive gas envelope (Lissauer 1987).

A. Simulations of Terrestrial Planet Formation

The transition from runaway growth in isolated accretion zones to the mutual
accumulation of protoplanets in large eccentricity orbits has so far only been
studied qualitatively. The limiting runaway mass given by Eq. (40) suggests
that runaway growth in the inner solar system will yield protoplanets of mass
~10?® g, with their semimajor axes spaced 0.01 to 0.02 AU apart. At this stage,
most of the original mass will be contained in the large protoplanets, so their
random velocities will no longer be strongly damped by energy equipartition
with the smaller planetesimals. Even if the protoplanets form in circular
orbits, mutual gravitational perturbations among several bodies can eventually
induce eccentricities of order 0.01 (ey~5), which is sufficient to enable their
orbits to cross so the protoplanets can suffer close gravitational encounters.
Stagnation of protoplanets in isolated orbits is unlikely because the width of
the accretion zone at the end of runaway growth roughly coincides with the
maximum orbit separation from which neighboring pairs of protoplanets can
significantly perturb each other.

Once the protoplanets have perturbed one another into crossing orbits,
their subsequent orbital evolution is governed by close gravitational encoun-
ters and violent, highly inelastic collisions. Wetherill (1980a,1985,1986,1988,
1990b) has described numerous simulations of this final stage of accretion,
exploring a wide range of initial conditions. Surprisingly, the results of these
simulations are not strongly affected by the earlier runaway growth stage. Re-
gardless of whether the simulations start from a swarm of 500 bodies of mass
10% g or just 30 protoplanets of mass several times 1020 g, the end result is
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+ the formation of 2 to 5 terrestrial planets on a time scale of about 100 Myr. An
=  important feature of Wetherill’s simulations is that planetesimal orbits execute
& arandom walk in semimajor axis due to successive gravitational encounters.
“ The resulting widespread mixing of material throughout the terrestrial planet
region greatly diminishes any chemical gradients that may have existed dur-
ing the early stages of planetesimal formation. Although, some correlations
between the final heliocentric distance of a planet and the region where most
of its constituents originated are preserved in the simulations (Wetherill 1988).
Nevertheless, Mercury’s high iron abundance is therefore less likely to arise
from chemical fractionation in the solar nebula and more likely to be caused
by a catastrophic giant impact during the final stages of accretion (see Sec.
VLB below).

Although radial mixing does occur, the total mass and orbital angular
momentum of the swarm is nearly conserved during its accumulation into
planets. The energy lost as heat in collisions, however, amounts to a few
percent of the total orbital energy, resulting in a significant spreading of the
disk. Thus, in order to end up with the same angular momentum distribution
as is observed for Mercury, Venus, Earth and Mars, one must confine the initial
swarm of protoplanets to a narrow annulus with most of the mass between
0.7 and 1.1 AU (Wetherill 1988). More plausible initial mass distributions
which vary smoothly with heliocentric distance are incapable of reproducing
the observed angular momentum distribution of the inner planets unless the
planetesimal swarm can be supplied with extra “free” energy from an external
source, €.g., Jupiter. By free energy, we mean energy in excess of that required
for a circular orbit at a given semimajor axis:

Ef=E-QL (41)

where E is orbital energy and L is the magnitude of the orbital angular
momentum. Thus, the free energy may be increased by the removal of energy
and angular momentum, provided AE/AL<S.

The problem of removing excess angular momentum from the terrestrial
planets is intimately tied to the larger problem of explaining the extreme
depletion of mass between the orbits of Mars and Jupiter. A large radial
redistribution of mass is apparently required, but the candidate mechanisms
proposed to accomplish this redistribution are poorly constrained at present.
Whatever process pumped up the velocities of the asteroids must have yielded
a vast quantity of small collision fragments that would have been susceptible
to gas drag. These collision fragments would tend to spiral in toward the
Sun, thereby enhancing the density of solids in the terrestrial planet zone.
Large protoplanets may also experience significant orbital decay by exciting
spiral density waves in the gaseous disk (Ward 1986,1988,1989b). Ward
calculates that protoplanets more massive than 10?”g suffer significant orbital
evolution inwards towards the protostar on a 1 to 10 Myr time scale via
this process. Numerical simulations of planetesimal accumulation which
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" include orbital migration due to density wave torques also show significant

e redistribution of mass and angular momentum in the terrestrial planet zone
§ (Wetherill 19906,1991b). More detailed studies are needed to determine if
o density wave torques can fully resolve the angular momentum problem in the

inner solar system.

B. Giant Impacts

The mutual accumulation of numerous protoplanets into a small number of
planets must have entailed many collisions between protoplanets of compara-
ble size. As, in the post-runaway era, the random velocities keep pace with the
escape velocity of the larger protoplanets, collisions between smaller bodies
result in disruption instead of aggregation. The largest bodies are resistant
to collisional disruption because their gravitational binding energy exceeds
the kinetic energy of the collision. When the largest protoplanet reached a
mass comparable to the Earth’s mass, bodies near the size of Mercury became
marginal cases, with collisions just as likely to strip off material as to add to
the final mass of the planet. This result led Wetherill (1988) and Vityazev et
al. (1988) to suggest that Mercury’s silicate mantle was stripped off in a giant
impact, leaving behind an iron-rich core (cf. Benz et al. 1988). Wetherill’s
simulations also lend support to the giant impact hypothesis for the origin of
the Earth’s Moon (e.g., Stevenson 1987); during the final stage of accumula-
tion, an Earth-size planet is typically found to collide with several objects as
large as the Moon and frequently one body as massive as Mars. The oblig-
uities of the rotation axes of the planets provide independent evidence of the
occurrence of giant impacts during the accretionary epoch (Safronov 1966,
~ Lissauer and Safronov 1991).

C. Accretion Time Scales

Growth of planet-sized bodies from kilometer-sized planetesimals involves an
increase in radius of 4 to 5 orders of magnitude. The planetary accretion rates
given by Eqgs. (19-26) all vary as the surface area of the planet R,>. Thus,
for all other parameters constant, a planet’s radius grows at a (statistically)
uniform rate, and most of the growth time is spent in the last decade of
radial expansion. The late phases of planetary growth are therefore crucial
to determining the overall length of the accretionary epoch. Thus, a stage
of runaway growth which ends in isolated protoplanets which must pump up
velocities in order to collide and continue their agglomeration to planetary
size, leads to accretion time scales similar to those models in which runaway
never occurs.

Of course, protoplanet radius is not the only parameter in the equations
which varies with time. Runaway accretion starts slowly (small F,) and
accelerates with time; thus it is possible that the “initial” size distribution of
planetesimals significantly influenced the growth times of the planets. For
example, a “protoplanet” initially of radius 10 km, at 5.2 AU froma 1 Mg, star,
in a disk of surface mass density ¢ = 15 g cm~2 whose velocity dispersion
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1 is controlled by planetesimals 5 km in radius, would require ~2 x 10° yr to
i grow large enough that F, = 3000 (at which point ey = 2 and protoplanet
& perturbations become an important factor in exciting noncircular motions of
i planetesimals; cf. GL90). This protoplanet would take a subsequent ~6 x 10°
yr to attain a mass of 15 Mg (Lissauer 1987). A protoplanet in an equivalently
skewed initial distribution of larger planetesimals would take much longer to
reach F, = 3000, whereas the runaway would proceed much faster in a swarm
of smaller planetesimals, because the radius doubling time for the protoplanet
~ would be shorter.

VII. CONCLUSIONS

~ The planetesimal hypothesis provides a viable theory of the growth of the
terrestrial planets, the cores of the giant planets and the smaller bodies present
in the solar system. The formation of solid bodies of planetary size should be
a common event, at least around stars which do not have binary companions
orbiting at planetary distances. The formation of giant planets, which contain
significant fractions of H, and He, requires rapid growth of planetary cores,
so that gravitational trapping of gas can occur prior to the dispersal of the
gas from the protoplanetary disk. According to the scenario which we have
outlined, the largest bodies in any given zone are the most efficient accreters,
in the sense that they double in mass the fastest. Such runaway accretion of a
few large solid protoplanets can lead to core formation in ~1 Myr, provided
disk masses are a few times as large as those given by minimum-mass models
of the solar nebula. Thus, it appears possible that giant planets may also be
common, although this conclusion must be regarded as much more tentative.
The ultimate sizes and spacings of solid planets are determined by their
ability to gravitationally perturb each other into crossing orbits. Such pertur-
bations often are due to weak resonant forcing, and occur on time scales much
longer than the bulk of planetesimal interactions discussed herein. These
interactions are not yet fully understood, although a great deal of progress has
been made in recent years (Wisdom 1983; Chapter by Duncan and Quinn).
Although quantitative formulas for scaling planetary sizes and spacings will
require a better grasp of these processes, a few qualitative remarks can be
made. First, a more massive protoplanetary disk will probably produce larger
‘but fewer planets. Second, stochastic processes are important in planetary
accretion, so nearly identical initial conditions could produce quite different
outcomes, e.g., the fact that there are 4 terrestrial planets in our solar system as
‘opposed to 3 or 5 or 6 is probably just the luck of the draw (cf. Wetherill 1988).
Third, migration of some planetesimals over significant distances within the
protoplanetary disk probably occurred, leading to a radial mixing of material
which condensed in differing regions of the solar nebula. Fourth, although
the spacing of giant planets is probably determined by similar processes to
that of solid planets, their ultimate sizes may depend more on such factors as
how fast they grew relative to the dispersal of the nebula and their potential
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8 ability to halt their own growth by gravitationally truncating the gaseous disk
g (Lin and Papaloizou 1979a).

g: Many aspects of planetary growth remain poorly understood. The aster-
Y oid belt currently contains much less than a planetary mass of material, and

that material is spread over countless bodies which move at high velocities
relative to each other. Models of the protoplanetary disk suggest this is un-
likely to be due to an initial absence of condensed material. Perturbations
by Jupiter and/or Jupiter-scattered protoplanets have been invoked for pre-
venting planetary growth in the asteroid zone by increasing relative velocities
of planetesimals, and for clearing material from that region; however, many
problems remain with these scenarios (cf. Sec. IV.C). Planetesimal dynamics
in the Uranus-Neptune region are complicated by the fact that bodies in this
region are not tightly bound to the solar system: The difference between
circular orbit velocity and escape speed from the solar system at 30 AU is
less than the escape speed from the Moon. Using a planetary accumula-
tion model analogous to those which Wetherill has successfully applied to
the late stages of growth of the terrestrial planets (cf. Ipatov 1987), Ipatov
(1989) finds that the mass of material ejected into hyperbolic orbits from the
Uranus-Neptune region during the accretionary epoch exceeds the amount
of solid matter incorporated into these planets by approximately an order of
magnitude. Moreover, much of the material remaining in heliocentric orbit
has spread to tens of AU beyond the original outer boundary of the disk.
However, Ipatov’s calculations start with planetesimals of identical size and
neglect dynamical friction; these assumptions suppress runaway growth and
thus lengthen the accretion time scales to unreasonably large values. Further
studies of planetesimal accumulation in the outer regions of protoplanetary
disks are needed to answer the many interesting questions raised by this study
(Lissauer et al., in press).
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