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This chapter describes the evolution of solid particles in the solar nebula (or other
circumstellar disk). Motions of bodies <km in size were dominated by gas drag rather
than gravity. An original population of microscopic grains had to produce > km-sized
planetesimals before gravitational accretion of planets could begin. Planetesimals
probably formed by coagulation of grain aggregates that collided due to differential
settling, turbulence, and drag-induced orbital decay. Growth of such aggregates de-
pended on sticking mechanisms and their mechanical properties, which are poorly
understood. Their growth was aided by concentration of larger bodies toward the cen-
tral plane of the disk. The nebula could remain optically thick during this process. It is
unlikely that a particle layer formed by settling would undergo gravitational instability,
as a small amount of turbulence (e.g., «~107* in a convective disk) would keep the
particle layer from reaching the critical density. This conclusion is independent of the
particle size, as even large bodies do not effectively decouple from the gas. Even in a
laminar disk, shear in the particle layer would generate enough turbulence to keep it
stirred up. This shear-induced turbulence produces complex flow patterns that could
result in radial transport and size sorting of particles.

I. INTRODUCTION

The most widely accepted theory of the origin of planets is that they formed
by accretion from an initial population of small solid bodies, or planetesimals,
in orbit about the Sun. When their orbits intersected, collisions and binding
by self-gravity resulted in growth of larger bodies, which eventually reached
planetary size. The usual assumption, used as the starting a point for most
calculations of planetary accretion (cf. Chapter by Lissauer and Stewart), is
that planetesimals had initial sizes in the range 1 to 10 km. This is large
enough so that they moved in Keplerian orbits, relatively unaffected by forces
other than gravity. In a dynamical sense, there was little difference between a
km-sized planetesimal and a planet some 10* times larger. In contrast, smaller
bodies were dominated by their interactions with nebular gas, while it was
present. Planetesimals must have formed from smaller bodies, i.e., surviving
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S presolar grains and/or condensates from the gas of the solar nebula. With
g presently available observational techniques, dust is the dominant, perhaps
§I only, detectable solid matter in protostellar disks and surrounding newly
< formed stars (see Chapter by Strom et al.). The dust is the principal source

of opacity in optically thick disks. The presence of larger bodies, either
planetesimals or planets, must be inferred indirectly. We cannot tell whether
dust means that large bodies have not yet formed, or that they are merely
hidden within a dusty cocoon.

At one time, it was generally accepted that planetesimals formed by
gravitational instability. In that model, dust grains settled to the central plane
of the gaseous disk, forming a layer of enhanced concentration. This dust
layer became thinner until its density reached a critical value about equal to
the Roche density:

pe = 3Mg /271> (1)

where My, is the solar mass, and r the distance from the Sun. At this density,
the layer would become unstable to perturbations by its own self-gravity, and
develop condensations with a characteristic size

re ~ 4w Gog ) QP | (2)

where G is the gravitational constant, o; the surface density of the dust layer,
and Q= (GM@/r3)% the Kepler frequency. The mass of a condensation would
be ~o;A2%; plausible values of o, imply that the resulting planetesimals would
have sizes ~1 to 10km. The quantitative aspects of this model were developed
independently by Safronov (1972) and Goldreich and Ward (1973).

The simplicity of this model is appealing, but there are problems that ren-
der it untenable, at least in the extreme form of direct conversion of pm-sized
dust grains to km-sized bodies by gravity alone, without any other sticking
mechanism. Wetherill (1980a) warned that “. . . it would be a mistake to
conclude that the solar system must have developed dust-layer instabilities
simply because this does not require specification of sticking processes that
are poorly understood, but that quite possibly may have occurred anyway.”
Weidenschilling (1988) pointed out that gravitational instability depends on
quiescent nebula. An extremely small amount of turbulence in the gas would
prevent the dust layer from reaching the critical density; in order to do so,
its thickness must be <10~%7. This condition implies turbulent velocities <
one particle diameter s~!, which are implausible for dust grains and unlikely
even for macroscopic bodies. Over the last two decades both theory and
observations have led away from the simple picture of the solar nebulas a

- passive reservoir of raw material for making planets. Rather, it was a dy-
namic, evolving, and sometimes violent place. Small solid bodies were more
strongly affected by drag of nebular gas than by gravitational forces, and
gas was probably turbulent. Formation of planetesimals must have involved
some collisional sticking, at least to form bodies large enough to settle toward
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.. the central plane and begin to decouple from the gas. In the follow sections
a. we describe briefly some of the effects of particle/gas interaction in the so-
& lar nebula (for a fuller account, see Adachi et al. [1976], Weidenschilling
"' [1977a,1980,1984,1988] and Nakagawa et al. [1981,1986]).

II. STRUCTURE OF THE NEBULAR DISK

A zero-order description of the solar nebula is a flattened disk of gas in
orbit about the proto-Sun. The process of formation of planetesimals was
dominated by the first-order corrections to this picture, i.e., the disk had a
finite thickness; its mean rotation was not strictly Keplerian, and may have
had turbulent motions; and most importantly, some small fraction of its mass
consisted of solid matter. Present observational methods do not constrain the
structures of protostellar disks at this level of detail; of necessity, the “solar
nebula” described here is essentially schematic.
For simplicity we assume that the surface density X has a power law
distribution:
T(r) = Zo(r/ro)™" 3)

where X, is the value at some arbitrary radius r,. The masses and orbital radii
of the planets are roughly consistent with n=3/2 (Weidenschilling 1977b). We
assume the disk’s structure is in equilibrium between gravitational, centrifugal,
and pressure forces. If ¥ is low enough (disk mass <0.1 M), the disk’s
gravity can be neglected, and the force normal to the plane of the disk is
simply the vertical component of solar gravity:

where z is the distance from the midplane. If the local temperature T is
independent of z, then the gas pressure at the midplane is (Safronov 1972)

P.=QXc/4 (5)

where c is the mean thermal velocity of the gas molecules (nearly equal to
sound velocity), and at other values of z is

P(z) = P, exp(—z/H?) (6)

where H = ,/mc/2Q is the characteristic half-thickness of the disk. Other
plausible temperature profiles, e.g., adiabatic gradient in the z direction, yield
similar values. Typical model disks have H <0.1r.

Equation (5) implies a radial pressure gradient. Most disk models have
both = and T (hence c) decreasing with r, while  oc r=3/2, If we assume
that T (r) = T,(r/r,) %, then

Po(r) o r= k24312 7
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.; | and 3P /dr <0, unless T actually increases with r more rapidly than r®+%/2,
“{3' The pressure gradient partially supports the gaseous disk against the Sun’s
e gravity; for equilibrium, its rotation must be slightly slower than the Kepler

velocity V. The fractional deviation is (Weidenschilling 1977a)

AV —(n+k/24+3/2) KT/
Vi 2 (GMg/1)

®)

where R is the gas constant and u the mean molecular weight. Thus, AV /V,
is of order ¢?/V;?, or the ratio of the thermal energy of a gas molecule to its
orbital kinetic energy. This quantity is typically only a few times 107>, but
even this small deviation from Keplerian rotation has important consequences
for solid bodies within the disk.

A. Turbulence

The solar nebula must have been turbulent during its formation from the
collapsing protostar, because of velocity discontinuities as the infalling matter
struck the disk (Cassen and Moosman 1981). The infall probably did not stop
suddenly, but decayed, not necessarily monotonically, over some interval.
Another possible source of turbulence was a massive outflow from the proto-
Sun, impinging on the surface of the disk (Elmegreen 1978b).

Some researchers (ter Haar 1950; Safronov 1972; Hayashi et al. 1985)
have concluded that in the absence of such extrinsic stirring mechanisms any
residual turbulence would have decayed quickly. This conclusion was based
on the stability of a rotating disk against convection in the radial direction
This stability would allow a quiescent period of indefinite length, during
which planetesimals, or even planets, could form. However, the concept of
a laminar nebula was challenged by Lin and co-workers (Lin and Papaloizou
1980; Lin and Bodenheimer 1982; Ruden and Lin 1986), who developed a
self-consistent model for turbulence driven by the differential rotation of the
disk. If convection occurs normal to the plane of the disk, eddies cause the
effective viscosity to be large. Shear in the viscous, differentially rotating disk
causes dissipation of energy, and the resulting heating drives the convection.
Lin and Papaloizou showed that the disk is unstable to convection in the z
direction if it is optically thick and the opacity increases sufficiently rapidly
with temperature; both conditions are met if the opacity is due to small grains
suspended in the gas. The ultimate energy source for the turbulence is the
disk’s potential energy in the solar gravity well (viscous spreading causes a
net inward flow of gas).

Published models of turbulent accretion disks generally define the tur-
bulent viscosity v; = aHc, where « is a coefficient chosen to make this
expression correct (cf. Weidenschilling 1988a). This expression is appropri-
ate for turbulence acting on the full vertical scale (H) of the nebular gas. If
H is taken to be the length scale of the largest turbulent eddies, then the max-
imum random velocities of gas in those eddies is of order ac, but this should
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.~ be regarded as no more than a crude estimate. Lin’s early models suggested

i1 a~21/3, with convective velocities a significant fraction of the sound speed. A

o, more elaborate analysis of convective instability modes in a rotating disk led

L+ Cabot et al. (1987a, b) to conclude that likely values of « were in the range

1107* to 1072, or v, ~ 10'3 to 10'5 cm? s~!. The corresponding turbulent
velocities V;, are <0.01 c, or less than a few tens of meters per second in the
inner part of the disk, and less in the outer regions.

The size of the largest eddies is set by the dimensions of the disk. The
energy in those eddies cascades through a spectrum of smaller eddies, down to
a size where they are damped by molecular viscosity. Dimensional arguments
(Tennekes and Lumley 1972) imply that the rate of dissipation per unit mass
is of order ‘

e~ V3L ©))

where V,, and L are the velocity andlength scales of the largest eddies. The
smallest eddies have the so-called “inner scales” of velocity, length and time
given by

u; ~ (ve)%
£ ~ (V¥ /e)s (10)

t; ~ (v/€)?

where v is the molecular viscosity. On smaller scales, the flow is locally
laminar, though varying with time. For example, if V, = 10 m s~! and
L = H ~ 0.05 AU, then u;, £;,t; are respectively a few cm s~!, a few
hundred meters, and a few hours.

III. AERODYNAMICS OF SOLID BODIES IN THE NEBULA

The behavior of an individual solid body in the nebular gas (laminar or
turbulent) is largely determined by a single parameter, its response time to the
force exerted by gas drag:

t,=mV /F, (11)

where m is the particle’s mass and V its velocity relative to the gas. The drag
force F; depends on V' and two dimensionless parameters, the Reynolds and
Knudsen numbers. The Reynolds number Re is the ratio of inertial to viscous
forces; for a particle of diameter d, Re = V d/v. The Knudsen number Kn is
defined as A/d, where X is the mean free path of the gas molecules. At the
low gas densities in the solar nebula, A is typically >1 cm, so K is large for
typical grains and even aggregates of many grains. In this regime, ¢, has the
simple form

| ' = dps/2pc 12
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Figure 1. View of a fractal aggregate of dimension D~2.1, generated by a computer
model of P. Meakin (cf. Weidenschilling et al. 1989). Fluffy structures resembling
this aggregate are found in laboratory studies of particle coagulation (Meakin and
Donn 1988), and should have been produced in the solar nebula.

where p is the gas density and p; is the particle’s density. Expressions for ¢,
in other in other regimes are given by Weidenschilling (1977a).

Equation (12) refers to a spherical particle of diameter d. However,
coagulation of solid grains does not produce spherical particles, but rather
aggregates with highly irregular shapes (Fig. 1). Such structures have fractal-
like properties, i.e., their bulk densities decrease with increasing size (Meakin
and Donn 1988), with p; o dP~3, where D is the fractal dimension of the
aggregate. Particle aggregates typically have D~2, so density varies inversely
with size. In the regime of large Kn, ¢, is proportional to the ratio of particle
mass to its projected area. Computer models by P. Meakin (cf. Weidenschilling
et al. 1989) give the mass/area ratio for fractal aggregates with D~2 shown
in Fig. 2. As one would expect, a low-density aggregate of irregular shape is
more strongly coupled to the gas (has smaller ¢.) than a dense, compact body
with the same mass. The larger cross section also means that the opacity due
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Figure 2. Mass/area ratio (or response time #,) for aggregates of different fractal
dimension D, vs number of grains (or mass). D = 3 corresponds to a spherical
particle of constant density. Aggregates with D~2 have larger cross sections and
smaller ¢,, i.e., are more closely coupled to the gas by drag forces than are compact
particles of the same mass.

to grains remains relatively high, despite their coagulation.

Solar gravity affects the particle’s motion on a time scale of 1/£2, the
inverse of the Kepler frequency. If f,<<1/€2, drag force dominates and
the particle moves with the angular velocity of the gas. A solid body is
not supported by the pressure gradient in the gas, and so there is a residual
gravitational force in the radial direction. The particle drifts radially inward
(relative to the gas) at a terminal velocity

V, = =2Qt AV. (13)

Similarly, the vertical component of solar gravity (Eq. 4) causes a particle at
distance z from the central plane to settle vertically at a rate

V, = —Q%21,. (14)

A sufficiently large body has #,>>1/€2; its motion is dominated by gravita-
tional forces. Such a body follows a Keplerian orbit, moving faster than the
gas. This “headwind” of magnitude A V causes the orbit to decay. A circular
orbit of semimajor axis a decays at a rate

V, = da/dt = —2AV /(Q,). (15)

The radial velocity has a maximum value of AV when ¢, = 1/Q (Weiden-
schilling 1977a). Bodies of different sizes (or #,) have relative velocities that
are readily found from Egs. (13-15). Effects of drag on eccentric and inclined
Keplerian orbits are discussed by Adachi et al. (1976).
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In addition to these systematic motions induced by the nebula’s non-

= Keplerian rotation, particles may have other motions driven by turbulence in
§I the gas. The relevant parameters controlling their behavior are the response
s time ¢,, the inner time scale of the turbulence ¢;, and the turnover time of the

largest eddies, ¢,. If #,<t;, a particle is effectively coupled to all motions of the
gas, down to the smallest eddies. If z,>1,, it is decoupled from the turbulence
at all scales, and can cross the largest eddies. For intermediate values of ¢,,
the particle responds to eddies larger than some size between the smallest and
largest scales. The smallest scales are given by Eqgs. (10), while in a rotating
system it is generally a good assumption that £, ~ 1/ .

Diffusive transport of particles relative to the mean (nonturbulent) com-
ponent of gas flow is accomplished mainly by the largest eddies. The viscosity
v, due to gas turbulence can be expressed as v2z,, where v2 is the mean square
of the fluctuating part of the gas velocity, and f, is the mean eddy mixing
time. A particle acquires its random velocity v, by drag interactions with
fluid eddies, described by the equation v, = (v — v,)/f.. Because vv/s,,
v,/v should depend on the time scale ratio #,/,, known as the Stokes number
(Crowe et al. 1985,1988). The Schmidt number is defined as S csﬁ/vg and,
by analogy with the fluid viscosity, a particle diffusion coefficient D = v,/Sc
may be written Vf,, where Vf, is the mean square fluctuation of the particle ve-
locity (see Appendix below). Safronov (1972) assumed that z,~1/€2, and also
argued that a particle would build up a typical velocity v, =V, /(1 + . /1),
implying S¢c = (1 + t./t,)>. A more careful analysis, including averaging
over a size spectrum of rotating eddies, indicates that the Schmidt number
becomes simply (Volk et al. 1980)

Sc=1+1t,/t

or .
Vp =Vi/(1+1./1)2. (16)

For small Stokes numbers, Sc is near unity since the particles respond to the
eddies almost immediately, like the fluid molecules themselves. The Schmidt
number becomes large at high Stokes numbers because of the reduced coupling
of the particles to the eddies.

The relative velocity between two particles embedded in turbulent gas
is more complex, and depends on ¢, #;, and the value of ¢, for each particle.
These relative velocities are needed to study collisions between particles and
accretion that may result (Sec. V). A first solution by Volk et al. (1980)
neglected the inner cutoff scale of the turbulence spectrum. An improved
solution by Mizuno et al. (1988) takes this cutoff into account; its effect
is to decrease the relative velocities of small grains for which ¢t,<#;. Two
bodies with the same value of 7, have no systematic relative motion, but
will have nonzero relative velocities due to turbulence (small particles may
have significant thermal motion as well). Relative velocities as a function of
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Figure 3. Relative velocities between two particles of unit density vs size in alaminar
nebula. - The nebular parameters are those of the model of Hayashi et al. (1985) at
r=1AU,z=0: p=14x10"°gem™3, T =280 K, AV = 5400 cm s~!. Relative
motions are due to thermal motion and radial and transverse velocities induced
by non-Keplerian rotation of the gas. Thermal motion dominates for d<0.01 cm;
relative velocities are low for equal-sized bodies.

particle size are shown in Figs. 3 and 4 for one set of nebular parameters with
- the gas assumed to be either laminar or turbulent.

IV. COUPLED MOTIONS IN A PARTICLE-GAS LAYER

Goldreich and Ward (1973) recognized that if a particle layer reached a density
greater than that of the gas, the particles would dominate. Their velocities
relative to the gas would not be given by Egs. (13-15); rather, the particle
layer would tend toward Keplerian motion, and the gas within that layer
would be dragged with it. Weidenschilling (1980) showed by dimensional
arguments that such shear would be unstable, and should produce turbulence
in the particle layer. Any density gradient in the z direction is too small
to prevent the dust layer from becoming turbulent. This localized shear-
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Figure 4. Same as Fig. 3, but with turbulence added; V, = 1000 cm s™'. Bodies
with d~100 cm have 7,221/€2; in this size range relative velocities are "*V even for
equal-sized bodies.

induced turbulence would occur even if the gaseous disk had no other source
of turbulence, such as convection.

Nakagawa et al. (1986) developed an analytic solution for the coupled
equations of motion for a two-phase inviscid system of particles and gas. The
solutions are expressed as functions of the mass loading, i.e., the ratio of
densities of the particle layer and the gas. To a good approximation, if the
particles are small, the deviation from Keplerian motion within the layer is
given by

AV' = AV /(14 pp/p) (17)

where p, and p are the space densities of the particles and gas, respectively.
Nakagawa et al. assumed purely laminar motions; their solution is inappro-
priate if such a layer became turbulent. The presence of sufficiently large
(X1 cm) particles could cause some damping of turbulence, but it is not clear
whether it is possible to have particles that are simultaneously large enough
and abundant enough to damp the turbulence effectively. This question is
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%1 clearly a fruitful subject for future work.

S The shear due to collective motion of the particle/gas layer becomes sig-
. nificant for mass loadings of order unity. Weidenschilling (1988b) speculated
: that this effect could lead to a quasi-stable, long-lived state. Formation of a
layer with solids/gas mass ratio of order unity might induce enough turbulence
to prevent further settling. Any decrease (increase) in layer’s thickness would
increase (decrease) the intensity of shear and turbulence, tending to restore
its original state. It appears that the only escape from such a state would be a
change in the particles themselves, i.e., coagulation into bodies large enough
to decouple from the gas and settle in spite of the turbulence. This scenario
needs to be tested by numerical modeling; preliminary results of such an effort
are described in Sec. VL.B.

A. Viscosity in the Boundary Layer

The particle layer interacts with the surrounding gas primarily in a region
of limited thickness, or boundary layer, in which the shear velocity and
particle concentration vary most strongly. In a boundary layer of thickness &
surrounding the particle layer, the orbital velocity of the nebular gas changes
by an amount AV . Shear flows with velocity scale AV and length scale
d develop turbulence when their Reynolds number Re = AV §/v exceeds a
critical value Re*~50 to 500. The difference in orbital velocity is typically
tens of meters per second and §~103 km. For these values, the boundary layer
is indeed turbulent. Thereafter the turbulent viscosity in the boundary layer
becomes

v, ~ (AVS/Re?™). (18)

In a system rotating at angular velocity €2, the boundary layer thickness itself
depends on the viscosity as :

5~ (/)1 (19)
leading to a crude mixing length estimate of the boundary layer viscosity:
v ~ AV?/QRe*?. (20)

For eddies with length scale §, this implies turbulent velocities of order
AV /Re* in the boundary layer.

Shear flow has been studied in laboratories for decades, and the thickness
of the boundary layer and the properties of the turbulence have been well char-
acterized. In fact, numerical techniques now exist for modeling the structure
of individual eddies and coherent structures within the turbulence. Canuto and
Battaglia (1988) have derived expressions for turbulent viscosity and particle
velocities that take into account anisotropic turbulence in a rotating system.
However, for the purposes of modeling the nebula, homogeneous, isotropic
turbulence in the shear-generated boundary layer is not a bad assumption.
Several parameterizations exist for obtaining its magnitude. Champney and
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S Cuzzi (1990) have used two such parameterizations to study the turbulence
= induced by the particle layer in an otherwise laminar nebula. A simple model
o due to Prandtl, which is still an improvement over Eq. (20), is

v = C8*(V x V,) (21)

where C~0.1 is a constant determined in the laboratory and V, is the (vector)
gas velocity. In more sophisticated models in computational fluid dynamics, a
“two-equation” model is often used, in which the turbulence at a point is a bal-
ance between ongoing creation and dissipation processes, and is transported
as i1s any other quantity. This latter model may be adapted to a two-phase
environment in which the particles can damp turbulence, as well as generate
it by maintaining the velocity gradient. Champney and Cuzzi (1990) have
made preliminary studies of the merits of these two models, and further work
18 underway. The overall conclusion, at present, is that in the boundary
layer v,~10'° cm? s~!. The turbulent viscosity calculated in this way for the
boundary layer alone is much less than the values ~10'3 to 1013 cm? s~! for
turbulence through the entire thickness of the disk with a~10~% to 102, The
viscosity is confined to a boundary layer surrounding the particle layer, with
thickness rather well estimated by Eq. (19).

Given the viscosity in the boundary layer, one may calculate the shear
torque between the particle layer as a whole and the surrounding, more slowly
rotating pressure-supported nebular gas. Goldreich and Ward (1973) assumed
the particle layer acted as a rigid, impermeable rotating disk embedded within
the gas. This situation, the Ekman problem, has been thoroughly studied
in theoretical and laboratory work, and inspection of the analytical solutions
leads to considerable insight into the more complex nebula problem (see, e.g.,
Batchelor 1967). The shear torque exerted between the disk and the fluid is

S = pv, AV /8 = pAV?/Re*. (22)

The result of this torque is a loss of angular momentum by the particle layer,
which causes it to drift inwards at a rate that depends on the boundary layer’s

~ turbulent viscosity v;. Goldreich and Ward considered the orbital decay of a
dust layer due to shear between it and the more slowly moving gas on either
side. They did not discuss the effects on the gas, possibly thinking of it as
merely providing a vast reservoir of angular momentum and not significantly
affected by the particle layer. Nevertheless, interesting dynamical structure is
present in both the particles and the gas in this important region of interaction,
driven primarily by the turbulence that the particle layer itself generates. For
example, the angular momentum lost by the particle layer is transferred to the
gas in the boundary layer, which must then move outward (Weidenschilling
1980). Study of these motions in more detail requires a numerical model.
Such a model is described in Sec. VI.B.
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g V. COAGULATION AND SETTLING OF PARTICLES

For an assumed structure of the nebular disk, the expressions in Sec. I1I yield
the velocities of particles as functions of their sizes and location. In principle,
one can use these values to compute the evolution of their spatial distribution
in the disk. Also, by assuming mechanical properties (i.e., whether particles
stick together in collisions), the evolution of the size distribution from some
assumed initial state can be computed. Of course, the spatial and size distri-
butions are coupled, and their evolution must be calculated simultaneously.
In practice, all such efforts are subject to simplifying assumptions to render
the problem tractable for analytic or numerical solution.

A. Coagulation in a Laminar Nebula

Safronov (1972) derived the settling velocity of a particle (Eq. 14). Because
V, « z, the distance from the central plane decreases exponentially with an
e-folding time of ($2t,)"L. If there is no turbulence and the particles do
not coagulate, the entire dust layer becomes thinner and denser uniformly,
in homologous fashion. Safronov considered settling with coagulation, in
which a single large particle falls through a field of small grains and grows by
sweeping them up. If only vertical motion of the particle is considered, it can
grow to a maximum size dm.x = 0 /405, Where oy is the surface density of the
grain component of the disk. Plausible values of o, and p; give dmax of the
order of a few cm. The initial growth rate of the particle is exponential with
a time constant <4pc/o,92. It reaches dmax (and z—0) in a few thousand
orbital periods. Goldreich and Ward (1973) independently derived a similar
result. These analytic models refer only to the first (and largest) particles to
“rain out” to the central plane of the disk. Modeling the subsequent buildup
of a particle layer and depletion of the smaller particles at large values of z
requires numerical simulation. Nakagawa et al. (1986) described the settling
and coagulation in a model that included collective effects of the particles upon
the gas; i.e., AV varied with particle concentration. In order to make this
problem analytically tractable, they had to make two mutually inconsistent
assumptions; that growth was by the sweeping up of the small particles by
the largest ones, and that settling was uniform, as if all particles had the same
size, '

Numerical models were developed independently by Weidenschilling
(1980) and Nakagawa et al. (1981). These were one-dimensional models that
computed the vertical distribution of particles at a given radius in the disk. The
evolution of the size distribution due to coagulation was calculated in a series
of levels, with mass transported between layers by settling (both assumed a
laminar nebula, with transport only toward the central plane). Their results
were very similar; assuming perfect sticking, a dense particle layer forms in
the central plane within a few times 10° yr at r = 1 AU. The largest bodies
grow to 10% to 10° cm in size, much larger than Safronov’s value of dimax,
because the radial motion of the particles allows more growth. A modest
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E (but still significant) fraction of the mass of solids remains as small particles
i suspended in the gas to much later times (10~10° yr), due to their slow settling
§I velocities. Thus, the disk could remain optically thick long after planetesimals
By formed. Both Weidenschilling and Nakagawa et al. assumed that settling of

the large aggregate bodies would eventually result in gravitational instability
of the particle layer, but neither model had fine enough spatial resolution to
show this result directly. Also, they neglected the possibility of turbulence in
the disk.

B. Turbulent Coagulation

Although it is widely accepted that the solar nebula passed through a stage
as a turbulent accretion disk, there has been relatively little study of the
consequences of turbulence for planetesimal formation. Most cosmogonical
scenarios assume that planetesimals either formed despite turbulence (even
values of « as large as 1/3), or else that any turbulence eventually decayed
completely, and they formed after the disk became perfectly laminar. Particle
coagulation in a turbulent disk has been considered by Wieneke and Clayton
(1983), Morfill (1983,1988), Mizuno et al. (1988) and Mizuno (1989). These
studies concerned radial transport of solid matter in the disk, while averaging
the distribution and properties of particles vertically through the thickness of
the disk. Only Mizuno computed actual size distributions of particles, rather
than some effective mean size. The formation of planetesimals, whether by
gravitational instability of a particle layer or direct collisional growth, appears
to be intimately linked with concentration of particles toward the central plane
of the disk. Thus, averaging through the disk thickness can cast little light on
planetesimal formation.

Weidenschilling (1984) modeled the vertical distribution of particles at
a given radius in a turbulent disk. The numerical method was based on the
one-dimensional model described above (Weidenschilling 1980), but particles
were allowed to settle toward the central plane only if they were large enough
so that their settling velocities exceeded their turbulent diffusion velocities.
The nebular model used had high turbulent velocities (¢~1/3), as suggested
by the convective disk models of Lin and Bodenheimer (1982). The vigorous
turbulence resulted in high collision rates, and if perfect sticking was assumed,
large particles would accrete much more rapidly than for a laminar disk.
However, this assumption of perfect sticking seems unrealistic. If the particles
were assigned plausible impact strengths, in the range 10* to 10° erg cm=3,
accretion came to a halt after a few centuries, with the largest aggregates
(<1 cm in size), being destroyed in collisions as rapidly as they formed.
Battaglia (1987) performed a similar calculation for the low-o disk model
of Cabot et al. (1987a, b). He concluded that even for the lower turbulent
velocities in that model nebula, unrealistically high strengths were required
to allow aggregates to grow large enough to decouple from the gas and settle
to the central plane.

The results of Weidenschilling and Battaglia can be readily understood
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" in terms of their assumptions about the collisional behavior of the particles.

=) They assumed that for a given material there exists a critical energy density E .,

g such that the target is shattered if an impact yields a higher value. For lesser

“* impact energies, “cratering” erosion excavates and removes some amount of
mass that is proportional to the impact energy; the excavated mass is then Cex
times the impact energy, where Cex is the excavation coefficient. Then the
excavated mass exceeds the projectile mass, i.e., there is net erosion, if the
impact velocity V;, is >(2/Cex) 3 , and net mass gain occurs at lower V;. E . and
Cex are related by the condition that there is a largest cratering impact that the
target can sustain without shattering. If the largest crater contains a fraction
f of the target’s mass, then C ¢ =fp /E; typically, f~0.1 (Weidenschilling
1984).

Solid particles embedded in turbulent gas have relative velocities that
increase with size, up to a maximum value roughly equal to the eddy velocity
V, for bodies with t,~t¢,. It is significant that a body of this size has velocity
of >~V relative to all smaller bodies, up to those of its own size. This means
that the target body will be eroded by collisions with smaller particles, losing
mass rather than gaining, if V; is Z(Z/Cex)% = 2 E. [fp s)%, or unless E.
exceeds the critical value fo ;V2/2. If E, is smaller than this value, solid
bodies can never grow large enough to decouple from the turbulence (f,>,).
If E. is R psV 2/2, even collisions of equal-sized bodies will not disrupt them.
For fp SV,2/2 <E . <ps V,2/2, a body will grow due to impacts of much smaller
bodies, but may be shattered by large impacts; its fate will depend on the
size distribution of those it encounters. Taking p; = 2 g cm~3, f = 0.1,
we see that, e.g., V, = 10> cm s™! requires £.210° erg cm™3 for collisional
growth to occur. This simple model explains why Weidenschilling (1984) and
Battaglia (1987) required high values of E in order to form large bodies by
collisional coagulation. For any value of E. we can find the maximum value
of turbulent velocity that allows coagulation (although lower values of V; do
not necessarily assure it, unless the particles also stick when they collide).

Similar results can be obtained for the systematic velocities due to non-
Keplerian rotation of the disk. However, bodies of comparable size (or z,)
have low relative velocities. The maximum relative velocity between bodies
of very different sizes is ~A V, so collisions always result in mass gain if
E.Zfp s AV?/2. For typical values of AV (~10* cm s~! at 1 AU), growth is
assured if E,2107 erg cm™3. This value is quite high, of the order of values
measured for solid rock (Fujiwara et al. 1989). However, the model of impact
behavior was extrapolated from experiments involving solid projectiles and
targets; even for these, there is some indication that impact strength does
not correlate with more conventional properties such as compressive strength
(Fujiwara et al. 1989). It is possible that Cex is much smaller than assumed
by Weidenschilling, or even zero, i.e., that fluffy aggregates stick rather than
“crater” each other below some critical velocity or energy density, as in the
model of Donn (1990), discussed below.
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¥ C. The Problem of Particle Sticking

§ The major unsolved problem is the degree to which particles stick together in
c collisions, and the mechanism (or mechanisms) by which they adhere. It is

common experience under a wide range of laboratory condition that very small
(< um-sized) particles stick together into larger aggregates. The dominant
sticking mechanism in this size range is van der Waals bonding; this force is
relatively insensitive to the compositions of the particles. Electrostatic forces
may also play a role in coagulation. Weidenschilling (1980) argued that
van der Waals forces alone would suffice to produce ~cm-sized aggregates
of grains in a laminar nebula, where relative velocities are due to thermal
motion and differential settling. This conclusion should be valid for a nebula
with moderate turbulence (o <1072); particles in this size range are strongly
coupled to the gas, so their turbulent motions are correlated and have little
effect on their relative velocities.

The growth of larger bodies poses more of a problem. Relative velocities
increase with size and differences in size (cf. Fig. 3), and there is a real
possibility of outcomes other than sticking: rebound, erosion with net loss
of mass, and even disruption of the colliding bodies. There are few relevant
experimental data on the collisional behavior of weakly bonded aggregates.
Weidenschilling (1988c) performed drop tests of unconsolidated pumice dust
into a dust target and concluded that net mass loss would occur for impact
velocities approximately >10* cm s~!. Pinter et al. (1989) and Blum (1989)
have conducted experimental collisions of sub-cm-sized fluffy aggregates at
relative velocities up to a few meters per second. They found coagulation
occurred with sticking probabilities of a few tens of percent. Their estimate
that fragmentation would occur at relative velocities 2600 cm s~! implies
impact strengths of order 10° erg cm™>. The aggregates consisted of glass
spheres bonded by a coating of hydrocarbons; their degree of similarity to
actual nebular material is uncertain.

Donn (1990) argues that collisions of porous bodies would result primar-
ily in their interpenetration, with essentially complete agglomeration up to
relative velocities of ~103 cm s~!, and net mass gain to =5 x 103 cm s~!. His
analysis is based mainly on the behavior of porous materials under static com-
pression, and needs to be verified by collisional experiments. Donn assumes
very high porosities, making the aggregate bodies very compressible. We
note that in most solar nebula models, peak velocities relative to most other
particles are reached for roughly meter-sized bodies. Thus, bodies of this size
are likely to be fairly well compacted, and may not coagulate as effectively
as Donn’s model implies.

As seen in Figs. 3 and 4, relative velocities decrease for bodies with sizes
larger than ~10? cm, so if meter-sized bodies can form by collisional coag-
ulation, then there is no obstacle to the formation of km-sized planetesimals.
The crucial gap is in the centimeter-to-meter range. The collisional strengths
that seem necessary for growth in this size (or velocity) range are higher than
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. expected for aggregates composed of small grains. There are alternatives to
= assuming that the aggregates are extremely strong. The relative velocities
e, are caused mainly by differential motion due to non-Keplerian rotation of the
~* gas. The maximum velocities are ~A V, so there is less of a problem in
the outer part of the disk where velocities are lower (Eq. 8). It is possible
that the nebula’s temperature and radial structure were such that AV was
lower than implied by most nebular models. Less plausibly, accretion might
have produced a narrow size distribution so that relative velocities of particles
comprising most of the mass were less than A V. The most probable expla-
nation is that a concentration of small (cm-sized?) aggregates decreased A V
in a layer near the central plane (Eq. 17, cf. Sec. VI.B), allowing growth to
proceed with lower relative velocities and minimizing collisional breakup.

VI. RECENT RESULTS OF NUMERICAL MODELS

The formation of planetesimals involves complex feedbacks between all of the
processes described above, and no current model describes the full situation.
Recent work has approached the problem from complementary perspectives,
by emphasizing or suppressing different aspects of the problem. Below, we
describe two such efforts which together paint a fairly realistic picture of, at
least, the scope of possible situations. As a natural outgrowth of the discussion
above, we first describe a model of particle growth by coagulation, which
neglects coupling of the mean flow regimes and treats the gas eddy velocity
in an ad hoc fashion. We then describe a complementary model of the fully
coupled gas-particle flow dynamics near the midplane, which neglects particle
growth and treats only a single typical particle size. The results of the two
approaches are instructive and illustrate the variety of possible states in which
a protoplanetary nebula might be found (possibly all, at different times). In
the coagulation models, it is seen that (depending on the assumed turbulent
gas velocity) a flattened state in which the particle mass density significantly
exceeds that of the gas may or may not occur. In the coupled flow models, it
is seen that even in a globally laminar nebula, relatively flat (thousands to tens
of thousands of km vertical thickness) particle layers of mass density which
exceeds that of the gas by 1 or even 2 orders of magnitude are stable against
gravitational settling for particles smaller than tens of meters or so, due to
shear-induced turbulence.

A. Coagulation and Settling with Turbulence

- Weidenschilling has recently developed an improved code for modeling co-
agulation and settling in a turbulent disk. As in the earlier models (Weiden-
schilling 1980,1984) this is a one-dimensional computation, with the nebula
divided into a series of layers at a given radial distance. The size distribution
of particles in each layer is computed as it evolves due to collisions; sources of
relative velocity include thermal motion, systematic settling, and turbulence.
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E In contrast to the earlier models, transport between layers by turbulent dif-
g fusion is computed explicitly. Particles can diffuse upward if their turbulent
§ diffusion velocity (cf. Eq. 16) exceeds the settling velocity (Eq. 14). The
e spatial resolution (number and thickness of layers) is improved over earlier

work, as is the resolution of the size distribution. A complete description of
the model and results is published elsewhere (Weidenschilling 1993).
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Figure 5.  Size distribution at different levels for a laminar nebula, at r = 1 AU, at
the time when the solids/gas mass ratio reaches unity at z = 0. Numbers give values
of z in units of scale height H. At the highest level, aggregates reach a maximum
size ~1073 cm; the low density (4 x 10~> times that at z = 0) allows rapid settling
of larger particles. At z =0, most of the mass is in bodies ~10? to 10° cm in size.

Because of uncertainties in the mechanisms for producing turbulence and
its consequent strength, calculations are performed for “generic” turbulence.
The largest eddies are assumed to have an arbitrary velocity V, and size H,
with a Kolmogorov spectrum of smaller eddies down to the appropriate inner
scale (Egs. 9 and 10). In the examples shown here, aggregate particles are
assumed to have fractal properties with dimension 2.11 (Meakin and Donn
1988; Weidenschilling et al. 1989) in the size range 10™* to 1072 cm. At sizes
>1 cm, their density begins to increase again to a limiting value of 1 g cm™3
at sizes >10? cm. The qualitative justification for this variation is that while
grain assemblages formed by low-velocity collisions will be fluffy, higher-
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1 velocity collisions of larger aggregates will cause compaction (the qualitative
5 Tesults are not affected by these assumptions about particle density).

0.100 r=1AU _|
Vf =0
t: 0—2000 y
0.075 —
P
=
NS
N 0.050 —
0.025 ]
0.000 l '

107> 107* 10™® 1072 107" 10°
Solids/Gas Mass Ratio

Figure 6.  Vertical distribution of solids/gas mass ratio with time. At ¢ = 0, the ratio
is assumed to be 4.2 x 1073, independent of z. Contour interval is 200 yr.

In these calculations and those in Sec. VI.B, the nebular parameters are
taken from the model of Hayashi et al. (1985). In the two examples shown
here, an initial population of single grains, -all of size 10™* cm, is initially
uniformly mixed with the gas. Perfect sticking is assumed in order to set a
lower limit on the evolution time. The calculations are carried out until the
particle/gas mass ratio reaches unity at z = 0, at which time collective effects
become important, and a different method must be used (Sec. VL.B).

Figures 5, 6 and 7 illustrate the results for a purely laminar, nonturbulent
disk. Figure 5 shows the size distribution at the various levels when the
solids/gas ratio reaches unity, after a model time of 1677 yr (the much longer
settling time reported by Weidenschilling et al. [1989] appears to be an artifact
of the coarse resolution of their size distribution). Several peaks in the
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Figure 7. Cumulative distribution of normal optical thickness above a given value of
z, vs time. Rosseland mean opacities from Pollack et al. (1985) are used. Opacities
due to particles smaller than the peak emission wavelength are assumed proportional
to the mass loading, with geometric extinction by (opaque) particles of larger size.
The optical half-thickness drops from the initial value of =800 to =100 after 2000 yr,
for perfect sticking of particles.

distribution correspond to sizes at which thermal motion (10~* to 10~3 cm),
vertical settling (~1072 to 10~! cm), and radial motion (~10 cm) dominate
the collision rate. A fourth peak at 10% to 10° cm, appears at z = 0, where the
largest bodies have settled. The changing vertical distribution of the dust/gas
ratio is shown in Fig. 6, through most of the disk; the solids are depleted by
~~1 order of magnitude in this time. Figure 7 shows the distribution of the
optical thickness.

Turbulence with velocity of 10° cm s™! has very little effect on relative
velocities and coagulation rates of small particles, because their motions
are highly correlated. However, the vigorous vertical diffusion of small
particles affects the overall rate of growth and settling. There is very little
variation of the size distribution with z (Fig. 8). The time to reach a high
mass concentration at the central plane is much longer than for the laminar
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Figure 8.  Same as Fig. 5, but for turbulence with velocity 10° cm s~! through
the thickness of the nebula. The size distribution has less variation with z, due to
diffusion of particles between levels. Most of the mass is in large bodies ~10°
to 10* cm near the central plane. The computation was halted after 10* yr, when
solids/gas ~0.4 at z = 0 (see text).

case, partly because particles must grow larger to settle appreciably, and also
because the high-density layer near z = O is thicker due to stirring by the
turbulence, and requires more total mass to reach a given solids/gas ratio.
After 210* yr, most of the mass is in bodies ~10° to 10* cm in size. Bodies
~10? cm are strongly depleted because of the peak in radial velocity at that
size, which causes them to grow rapidly through this size range, or to be swept
up by the larger bodies.

From Fig. 9 it is seen that the dust/gas ratio varies only slightly with z
through most of the disk’s thickness, but it decreases steadily with time as
small aggregates diffuse downward and are accreted by the large bodies near
the central plane. (Figure 10 shows the evolution of the optical thickness.)
The thickness of the densest layer is a few times 10™* AU (5 x 10* km). The
calculation was halted after 10* yr because the solids/gas mass ratio reached a
peak value ~0.4, and then began to decrease. This decrease is due to the fact
that the settling rate for large bodies (actually, the rate of damping inclinations
for Keplerian orbits by gas drag) is proportional to 7, ~! (Adachi et al. 1976),
while the random velocity induced by turbulence (Eq. 16) varies as f. 12,
Therefore, sufficiently large bodies (f,>>1/Q) are stirred more effectivel

© University of Arizona Press ¢ Provided by the NASA Astrophgsics Data Sy


http://adsabs.harvard.edu/abs/1993prpl.conf.1031W

£

h 1052 S. J. WEIDENSCHILLING AND J. N. CUZZI

.; than they are damped. In this simulation, the solid bodies may continue to
“gu grow by collisions to much larger sizes, but will never form a layer that is
e sufficiently thin and dense to become gravitationally unstable.

N | I
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V, = 1000
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107% 10™* 1073 1072 107" 10°
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Figure 9.  Vertical distribution of solids/gas mass ratio with time for V; = 10> cm
s~!. Contour interval is 1000 yr.

These simulations assumed perfect sticking of particles and thus give only
a lower limit to the time scales for growth and settling. If an arbitrary sticking
efficiency B (<1) is assumed, then the results are very similar, but with all
time scales increased by a factor of 1/8. The outcomes of such simulations
may well be different if fragmentation is allowed, as the sticking efficiency
would be expected to vary with relative velocity (or size). Also, the long time
scale associated with the turbulent case implies that radial transport of solids
would be significant. The small grains that are coupled to the gas will diffuse
both inward and outward over a distance of order (V,Ht) 3 , in this case more
than 0.5 AU. In addition, orbital decay of the largest bodies exceeds 1 AU,

meaning that they would be lost into the Sun (ﬁresumabg replaced by others
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1 spiraling inward from larger distances). Thus, the one-dimensional model is
=  incomplete at best, and its results should be interpreted cautiously. Further
& progress will require a two-dimensional model with both vertical and radial
“ resolution.

B. Fluid-Dynamical Modeling of a Dense Particle-Gas Layer

Simulations of settling with coagulation generally produce a significant con-
centration of large (meter-sized?) bodies toward the central plane of the disk.
Whether the nebula is assumed to be laminar or turbulent, such a layer can
attain a solids/gas mass ratio of order unity or greater. At such densities,
coupling of the particles and gas, as described in Sec. III, becomes signif-
icant. The complex flow patterns that result must be modeled numerically
by computational fluid dynamical methods. Current models are limited to a
single particle size, without coagulation; in effect, particles interact with each
other only by their mutual coupling with the gas (Champney and Cuzzi 1990;
Cuzzi et al. 1993). The numerical methods used are described in the chapter
Appendix. :

This model is sufficiently stable and robust to allow modeling of particle
layers with mass density exceeding that of the gas by more than 2 orders of
magnitude. Due to the present neglect of particle collisional viscosity, these
results are of questionable quantitative validity for particle mass densities
much larger than that of the gas; nevertheless, major new qualitative aspects
of the entire family of viscous, two-phase solutions may be readily observed
in cases with a particle density of 1 to 10 times that of gas, where particle
viscosity does not play a dominant role.

For example, Figs. 11 and 12 show the gas and particle velocities rela-
tive to their assumed unperturbed values (pressure supported orbital motion,
AV = 5.4 x 10° cm s~!, with zero radial and vertical velocity for the gas,
Keplerian orbital motion with zero radial velocity and simple vertical settling
for the particles). In this simulation, there is no turbulence in the disk, except
that which is generated locally by shear near or within the particle layer. In
both figures, initial and final particle density profiles are shown, with mass
density along the top axis (the gas density at this location, chosen at 1 AU, is
1.4 x 10~° g cm™3). The fundamental property is the large vertical gradient
in the gas orbital velocity; this leads to turbulence which diffuses the parti-
cles into a much thicker layer than that in which they were assumed to lie
initially. In cases where a thicker initial layer was assumed, the layer flattens
into the identical final state, which thus represents a steady-state balance be-
tween gravitational settling and vertical diffusion for these nebula and particle
properties.

In model calculations to date, using the Schmidt number model describe
in Sec. I (Cuzzi et al. 1993), it appears that particles of unit density must grow
to at least 10° to 10° g (depending on location) before being able to settle out
from the nebula into a gravitationally unstable state. If they are more “fractal”
or fluffy than solid in nature, they need to become more massive by about
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Figure 10. Same as 7, but with V; = 10° cm s™!. The nebula becomes optically thin
atr = 1 AU on a time scale of 10* yr.

an order of magnitude. Initially flattened particle layers of mass density 10
to 100 times that of the gas are seen to “puff up” to vertical thicknesses of
several thousand km, as long as particle diameters are <100 cm. For minimum
mass solar nebulae, this keeps the particle layer mass density p, well below
the critical value for gravitational instability, confirming the conclusions of
Weidenschilling (1980,1988) that collisional coagulation is a fundamental
process in the formation of planetesimals.

The mean velocity profiles are seen to relate to the location of the particle
layer. Well above the layer, when the particles exert no significant influence
on the gas, the solutions of Weidenschilling (1977) and Nakagawa et al.
(1986) are appropriate, i.e., particles experience a strong headwind in the
pressure supported gas, their orbital velocity falls below Keplerian, and they
drift radially inwards. At deeper levels within the layer, the particles are
increasingly shielded from the headwind as the surrounding gas is speeded
up more closely to the Keplerian velocity (several thousand cm s~! faster
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Figure 11.  Particle velocities relative to planar Keplerian motion, for a layer of
midplane mass density initially 10 times that of the gas at 1 AU. The particle orbital
velocity profile is shown by the short-dashed curve, and the particle radial velocity
profile is shown by the solid curve. The particles have d = 100 cm and p; = 0.1
g cm™>. The values shown are steady state, and have converged after ~100,000
Cray YMP timesteps, or ~2 yr. The initial and final profiles of mass density in
the particle layer are shown by the long-dashed curves; the initial profile is flatter,
and the layer “puffs up” over the course of the run due to the diffusive effects of
shear-driven gas turbulence. The steady-state density of the center of the layer is
~7 times the gas density, while the critical density for gravitational instability of
the particle layer at this location is ~10~7 g cm=3, or ~10 times larger.

than its pressure-supported value). The lack of a headwind causes the inward
drift of the particles to diminish. Simultaneously, as the particles begin to
drive the gas to orbital velocities which exceed its pressure-balanced value,
the gas acquires an outward radial drift in the boundary layer consistent with
Ekman layer analogy (Weidenschilling 1980). Another way to understand
this is as the result of transfer of angular momentum between the more rapidly
rotating particle layer and the more slowly rotating surrounding gas. The
effect is confined to a region of thickness comparable to the boundary layer,
because that is where the velocity gradients are sufficiently large to generate
a significant viscosity and shear stress. The particle drift rates in the upper
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Figure 12.  Gas velocities relative to pressure supported motion, for the final profile
of mass density in the particle layer. The gas orbital velocity profile is shown by the
short-dashed curve, and the gas radial velocity profile is shown by the solid curve.
These are mean flow velocities; in addition, there is turbulence with fluctuations of
comparable magnitude within the layer.

reaches of the layer are in fairly good agreement with the “Ekman” estimates
discussed earlier, but deeper within the layer the solid material is less affected.
Naturally, this assumes there is no source of turbulence other than the local
shear, and that the gas viscosity at this stage and in this region is considerably
less than the “alpha model” values of 10!3 to 10'5 cm? s~!. Within the particle
layer, the gas drifts inward along with the p rticles. In some cases, the vertical
shear in the radial velocities can compete with the vertical shear in the orbital
velocities in contributing to the viscosity, which emphasizes that this is a
highly coupled problem.

In detail, the drift rates of gas and particles will probably change once
viscosity due to particle collisions is included. For example, one simple
estimate of the particle viscosity may be obtained from the expression widely
used in studies of planetary rings (Goldreich and Tremaine 1978), using the
expressions relating V2 to V2 from Eq. (16) (Dobrovolskis 1991, personal
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where T, is the dynamical optical depth of the layer (i.e., that due to particles
of sizes comparable to the mean mass). Substituting, we obtain

o~ 2 PO g 24)

psd psd

where pp~ 10~® g cm 3 is the volume mass density in the particle layer, d~60
to 100 cm is the typical particle diameter, and p;~1 g cm~2 is the density of an
individual particle. The particle viscosity is comparable to the gas viscosity
for the models presented above. When included, this effect will probably
increase the inward radial drift of the densest part of the layer, causing a
simultaneous increase in the outward flow of the surrounding gas.

VII. CONCLUSIONS

The preceding sections sketch out parts of the possible course of growth
of particles from um to km sizes in the context of current ideas about the
solar nebula. It seems likely that planetesimal formation involved at least an
early stage of collisional sticking and coagulation of particles. This process
depended on poorly constrained properties of the nebula (e.g., temperature,
pressure gradients, turbulence) and of the particles themselves (stickiness,
mechanical strength, fractal dimension). Many variables need to be examined
in more detail, especially collisional behavior of particle aggregates, for which
relevant experimental data are sorely lacking.

It is apparent that if grains have a reasonable probability of sticking in
collisions, then their size distribution and the vertical distribution of solids
in the disk evolve rapidly compared with the expected astrophysical lifetime
of the disk (~10° yr). The assumption used by some observers, that size
distribution is similar to that of interstellar grains, is not likely to be valid.
Moreover, the actual size distribution may not resemble a simple power law,
and may vary with location (radial and vertical) in the disk.

In the later stages of accumulation, collective effects (a dense parti-
cle layer dragging the gas) could have important consequences. Within the
particle layer, AV is decreased, which may promote accretion of fragile
aggregates; however, there is increased turbulence generated by the shear
associated with this layer’s motion, which can have the opposite effect. Com-
plex flow patterns can occur, with radial gas motion inward at the central
plane, and outward in the boundary layer. In addition to vertical sorting
(larger bodies nearer the center of the layer), there may be radial segregation
as well, if smaller particles are entrained in the boundary layer. If this stage

© University of Arizona Press ¢ Provided by the NASA Astrophysics Data Sy


http://adsabs.harvard.edu/abs/1993prpl.conf.1031W

S 1058 S.J. WEIDENSCHILLING AND J. N. CUZZI
S is long-lived, there could be significant mixing of solids formed at different
g distances from the Sun. It is not clear that any such effects would leave visible
& traces in the meteoritic record, but the possibility should be considered. The
& . . . . e s
L computational fluid dynamical model described here is still in the early stages

of development; the obvious next step will be to include a spectrum of particle
sizes and coagulation within the particle layer.

The later stage (~ m to km) of planetesimal formation has not yet been
examined in detail. Two (at least) possible outcomes can be inferred. If the
bodies in the turbulent, shearing layer near the central plane can grow large
enough by mutual collisions, they may decouple from the gas sufficiently to
allow further settling. In that case, there might be gravitational instability in
a layer of > meter-sized bodies, rather than one made of dust grains. On the
other hand, a plausible amount of global turbulence, e.g., due to convection in
the disk, could prevent gravitational instability no matter how large the solid
bodies grow. In that case, collisional coagulation will be the only mechanism
of growth at all sizes. These outcomes are model dependent; indeed, both
could have occurred in different parts of the disk, or at different times.

Regardless of the actual mechanism by which planetesimals formed, that
process was not so efficient as to deplete the dust in the solar nebula and
render the disk optically thin. Detection of dust in a circumstellar disk does
not rule out the presence of planetesimals, or even planets, within it.

The parts of this chapter do not make a seamless and self-consistent
scenario for the origin of planetesimals. One should remember that the
accretion of planets from planetesimals involves growth in size by a factor
10*, while the formation of km-sized bodies from um-sized grains covers 9
orders of magnitude. There is still room for plenty of work within that range.

APPENDIX: MODELING OF A PARTICLE-GAS LAYER

Here we present for reference a self-consistent formulation for computational
fluid dynamical simulation of a viscous two-phase (particles plus gas) layer
near the central plane of the solar nebula. A more detailed description of this
model is given by Champney and Cuzzi (1990) and Cuzzi et al. (1993).

A. Solution of the Mass and Momentum Equations
The full equations of motion in cylindrical coordinates are:

ap ap ow op pou  pu
at+w32+p32 +uar+¥+7—0 (A.1)

at 0z ar  pdz
GM 197, 1 9(rz,,)
R3 z—App(w——wp)—l—; 3z +'p—r ar (A.2)
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"T“V — App(v = Vp) + %aa:" ia(g"’) +% (A4)

%%’i+ pa:" +pp3;”” + pa:” +ppaaur” + p”ru” =
s e s e 83)
a;p+wpa£p+upa;;p=_§£42—Ap(wp—w) (A.6)
%+wpa—:zﬁ+up%=\:é—%r—Ap(up—u) (A.7)
%\% + wp aa‘;p +up 8avrp = __uprvp —Ap(Vp —V) (A.8)

where u, v, w are the mean velocity components in the radial (r), transverse
(0), and vertical z directions, and p is the spatial density. Quantities without
subscripts refer to the gas, and the subscript p refers to the particles. A is a
drag coefficient (equal to 1/pt,), R?* = r? + z2, v, is the turbulent kinematic
viscosity of the gas phase, and Sc is a dimensionless parameter known as
the Schmidt number, which is discussed in Sec. III. The terms 7;; are the
components of the viscous stress tensor for the gas phase. In the above
equations, no similar terms are included for particle viscosity. Initially in the
nebula, the particle volume density is sufficiently low that this is an acceptable
approximation. However, as increasingly dense layers are studied, this does
become a concern.

Champney and Cuzzi (1990) and Cuzzi et al. (1993) present a numerical
model which includes all of the viscous and nonlinear terms, and overcomes
the significant numerical challenges by using a perturbation technique in
which an analytical solution is first subtracted from the problem. The ana-
lytical, or unperturbed, solution consists of Keplerian orbital motion for the
particles, pressure supported orbital motion for the gas, and hydrostatic equi-
librium in the vertical direction for the gas. In the unperturbed solution, the
vertical particle velocity is merely the terminal settling velocity. These so-
lutions are subtracted from the exact equations, and the remaining terms are
solved numerically.
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i In Secs. III and IV we discussed solutions for the mean gas and particle
P velocities, and for the gas turbulent (eddy) viscosity. The effects of the tur-
2 bulent boundary layer on dispersion of the particles is modeled as a diffusion
L term in the particle mass conservation equation (Eq. A.5) where the term v, /S¢
is the particle diffusion coefficient D. Certain subtleties are associated with
derivation of the diffusion term from averaged versions of the exact equations
(see Champney and Cuzzi 1990), but models of this form are extensively used
in two-phase fluid engineering applications.
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