Publications of the Astronomical Society of the Pacific **105**: 1422–1426, 1993 December

The Photometric Variability of K Giants

JOHN R. PERCY

Erindale Campus, University of Toronto, Mississauga, Ontario L5L 1C6, Canada Electronic mail: percy@utorphys.bitnet Received 1993 June 28; accepted 1993 September 1

ABSTRACT. We have photometrically monitored 49 of the more than 200 K giants in the Yale Catalog of Bright Stars which are named or suspected variable stars. Only two (HR 3275 and HR 5219) are clearly variable; a few more program stars and K- and M-giant comparison stars are marginally variable. Most of these appear to be RS Canum Venaticorum or SR variables.

1. INTRODUCTION

Surveys of the photometric variability of red giants, going back to Stebbins and Huffer (1930), have indicated that K giants are *not* usually variable; variability sets in at about M1 III, and its incidence, amplitude, and time scale *tend* to increase with decreasing temperature. Nevertheless, there are 16 named and 215 suspected variables among the approximately 1600 (!) K giants in the *Yale Catalog of Bright Stars* (YCBS); Hoffleit and Jaschek 1982). The purpose of this paper is to investigate the status of some of the suspected variables and, if they are actually variable, to determine the nature and cause.

Of the 16 named K-giant variables in the YCBS, at least five and probably more are actually not variable, five are probably RS Canum Venaticorum stars, and two are VV Cephei stars. It should also be noted that K supergiants (and to a lesser extent, K bright giants) show a larger incidence of variability or suspected variability, as noted, for instance, by Maeder (1980).

An interesting case is HR 9008 (τ Cassiopeiae), listed as VAR? in the YCBS, with a possible amplitude of 0.3. Some observers have claimed recent variability, while others (Percy 1985; Halbedel 1989) have seen none. Halbedel (1993) suspects a recent (1991, 1992) slight brightening by 0.03 in V, whereas recent photoelectric observations by the American Association of Variable Star Observers (H. J. Landis, private communication) show, if anything, a slight fading by 0.01 in V.

Why be concerned whether K giants are variable? First of all, to "tidy up" the YCBS, and our general information on star variability. Most of all, however, to discover whether there might be a class of variable stars (nonradial pulsators, for instance?), which might have escaped detection until now. The early F-type "variables without a cause" (Krisciunas 1993), including 9 Aurigae, HD 96008, γ Doradus, and HD 164615, are a case in point.

2. OBSERVATIONS

The 49 program stars were monitored automatically with a 25-cm reflector through the APT (Automatic Photoelectric Telescope) Service of the Fairborn Observatory, on Mt. Hopkins in Arizona. Michael Seeds, the Principal Astronomer, manages the observation, data reduction, and quality control (Seeds 1989). The APT imposes some restrictions on the declination of the stars (generally north of the equator), on the presence of other bright stars near them, and on the availability of suitable comparison stars. The program stars eventually selected are listed in Table 1, along with the comparison and check stars. The program stars are taken from among the suspected K-giant variables in the YCBS, and should be an unbiased sample. Note that many of the comparison and check stars are also K giants. None of them were known (as of the fourth edition of the YCBS) to be suspected variables.

The stars were monitored for three months each during 1992. If the time scale of the variability was much longer than this, it would not have been detected.

3. RESULTS

The results of the survey are summarized in Table 1 which gives, for the program, check, and comparison stars, the name, V, (B-V), and spectral type. For the program and check stars, the mean ΔV relative to the comparison star, and its standard deviation σ , are also given. Finally, an assessment of the variability is given: constant if $\sigma \leq 0.01$, constant (?) if $0.01 < \sigma \leq 0.015$, variable (?) if $0.015 < \sigma \leq 0.02$, and variable if $\sigma > 0.02$. Notes on individual stars are given below.

4. NOTES ON INDIVIDUAL STARS

HR 393/385/416. One of these may be slightly variable, but this conclusion depends largely on one point.

HR 808. May be variable by up to $\Delta V = 0.07$.

HR 940. The range is small ($\Delta V \sim 0.03$) but probably significant; the time scale appears to be > 100 days (Fig. 1). Given the M0 III spectral type, the slight variability is not surprising.

HR 1411. The star appeared, from several measurements, to have faded by $\Delta V \sim 0.1$ around JD 2448910 (Fig. 2). Previous measurements of this Hyades member show very little scatter.

HR 2097. May be variable with $\Delta V \sim 0.04$ and a time scale of a few days.

HR 2854. May be variable with $\Delta V \sim 0.04$ and a time scale > 100 days. The star is a 389-day spectroscopic binary.

HR 3275. The range is $\Delta V \sim \Delta B \sim 0.05$, and the time scale is 25-30 days (Fig. 3).

© 1993. Astronomical Society of the Pacific

TABLE 1	
Results of a Survey of the Photometric Variability of a S	Sample of Suspected Variable K Giants

Prog	Program Star Check Star								Compar	ison S	tar							
HR	v	B-V	SpT	ΔV	σ	R	HR/HD	v	B-V	SpT	ΔV	σ	R	HR/HD	V	B-V	SpT	R
393 828 843 951 1407	6.49 5.82 4.53 4.35 4.97	+1.08 +1.20 +1.56 +1.03 +1.13	gKO K1 III K7 III K2 III K2 III	+0.599 -0.555 -1.702 -0.749 ±1.094	0.028: 0.022 0.010 0.005 0.066	v? v? c c c?	416 869 882 940 1396	5.63	+1.24 +0.43 +1.23 +1.58 +0.98	KO IV F6 V K2 III MO III G7 III	+0.545 -0.796 -1.323 +1.174 +0.827	0.017: 0.030 0.006 0.011 0.044	v? v? c? c?	385 808 819 1015 1411	5.87 6.46 6.25 5.09 3.84	+1.07 +0.93 +1.24	G8 III + K2 III G8 III K3 III K0 III	v? v? c v
1709 1830 2037 2113 2480	5.50 5.79 4.78 4.53 5.44	+1.22	gK4 k1 III K1.5 II K2 III K4 III	-0.382 +0.726 -1.559 -1.677 -0.511	0.004 0.009 0.004 0.015 0.011	c? c? c? c? c?	1837 1834 2057 2007 2697	4.71 6.000 5.97		K2 III K5 III K0 III G4 V K2 III	+0.315 -0.364 -0.327 -0.232 -1.555	0.009 0.011 0.008 0.013 0.009	c? c? c? c? c	1691 1787 2051 2097 2643	5.89 5.08 6.31 6.22 5.93	+1.29	G9 III-IV KO KO	c? c? c v? c
2561 2864 2983 3141 3275	6.05 4.54 5.31 4.68 4.25	+1.28 +1.54 +1.49	K3 III K1 III K4-5 III K4 III K4.5 III	+1.672 -0.832 -0.927 -1.713 -1.779	0.009 0.010 0.010 0.009 0.014	c c c v	2477 2854 3021 3122 3309	4.32 6.18	+1.43	K0 III K3 III G2 III + K2 III G5 V	+0.993 -1.027 -0.037 -1.461 +0.298	0.008 0.019 0.005 0.009 0.013	c v? c c?	2560 2820 2978 3172 3287	4.35 5.30 6.21 6.41 6.02	+0.10 +0.93 +1.05	KO III	с с с с?
3550 3660 3827 3845 4178	5.41 5.27 5.00 3.91 5.12	+1.32	gK5 K5 III K1 III K2.5 III K2 III	-1.025 -1.056 -0.708 -2.426 -0.627	0.015 0.014 0.012 0.045: 0.011	c? c? c? c? c?	3599 3747 3834 3758 4181	5.85 6.45 4.68 6.27 5.00	+0.27	gK3 F3 V K3 III F0 V K3 III	-0.636 +0.163 -1.030 -0.069 -0.734	0.012 0.028 0.009 0.012 0.010	c? v? c c	3635 3506 3755 3907 4176	6.48 6.25 5.71 6.35 5.75	+1.04	KO III G9 III	c? c? c c
4518 4610 4668 4693 4925	3.71 6.13 5.00 5.54 5.99	+1.17 +1.14 +1.09	k@ III K2 III K0.5 III K2 III-IV K2 III	-2.403 -0.609 -0.960 +0.608 -0.467	0.008 0.014 0.008 0.007 0.009	c v? c c	4430 4569 4593 4737 4937	6.35 6.22 5.59 4.36 6.59	+0.96 +1.01	K2 III G8 III K0 III K2 III F0 V	+0.248 -0.516 -0.361 -0.581 +0.135	0.032 0.008 0.013 0.007 0.013	v c c? c? c?	4480 4575 4581 4733 4896	6.10 6.76 5.96 4.95 6.44			с с с с
5159 5200 5219 5247 5370	5.36 4.07 4.74 5.01 4.86	+1.52 +1.66 +1.42	K2 III K5 III K5 III K3 III K3 III	-1.158 -1.667 -1.250 -0.906 -2.075	0.018 0.011 0.016 0.005 0.009	c? c v c c	5086 5243 5195 5263 5352	6.17 6.16 5.62 6.23 5.80	+0.50	K5 F6 V K0 III A7 III M3III	-0.323 +0.462 -0.376 +0.315 -1.082	0.011 0.011 0.011 0.009 0.030	с с с v	5087 5225 5161 5229 126269	6.51 5.70 5.98 5.90 6.90	+0.85 +0.20	G5 III G5 III	с с с с
5448 5709 5710 5744 5841	6.03 5.51 5.35 3.29 6.45	+1.38 +1.02 +1.19 +1.16 +1.09		-0.198 -0.490 -0.511 -2.635 -0.454	0.008 0.014 0.007 0.010 0.009	с с? с с	5402 5676 5772 5768 5744	6.27 5.26 5.51 6.38 3.29	+1.23 +0.03 +1.09 +1.16	gK2 A2 V K0 III K5 K2 III	+0.068 -0.719 -0.366 +0.413 -3.612	0.009 0.010 0.009 0.010 0.012	c c c c?	5416 5674 5690 5755 138367	6.10 5.99 5.89 5.90 6.87	+1.52 +1.51 +1.44	KO III K5 K5 III K5 III F6 IV-V	с с с с
5899 6018 6228 6299 6318	4.76 4.76 5.15 3.20 4.82	+1.54 +1.01 +1.53 +1.15 +1.48	KO III-IV K5 III K2 III	-0.696 -1.569 -1.752 -3.197 -0.413	0.010 0.011 0.009 0.013 0.011	c c? c v? c?	5966 6046 151090 6390 6372	5.63	+0.99 +1.34 +0.88 +1.04 +0.69	G8 III K3 III K0 V K0 III G5-8 IV-V	-0.342 -0.672 -0.352 -0.042 +1.125	0.015 0.007 0.015 0.017 0.017	c? c v? v? v?	5924 6043 151879 6358 6280		+1.20 +0.91 +1.45	MO III K2 III G5 K5 III K2 III	c c v? c?
6363 6695 6895 7798 7956	6.09 3.86 3.84 5.58 4.92	+1.09 +1.35 +1.18 +1.08 +1.32	K1 II K2.5 III K0 III	-0.517: -2.155 -1.090 -0.867 -0.598	0.015: 0.032 0.015 0.010 0.007	? v? c? c? c	6286 6711 6882 7733 8005	5.41 6.14	+1.32 +0.94 +1.60 +1.50 +1.52	K2 III gG5 MO III K4 III gK5	-0.634: +0.024 +0.481 -0.321 -0.049	0.013: 0.010 0.013 0.007 0.008	? c? c c	6306 6673 6868 7841 7921	6.62 6.04 4.95 6.41 5.51	+1.33 +1.59 +1.13 +0.88	M1 III K2 III G8 II	? c? v? c c
8485 8930 8943 8986	4.49 5.22 4.98 6.57	+1.39 +1.02 +1.38	KO III	-0.374 -0.833 -0.648 -0.164	0.012 0.014 0.009 0.020	c? c? c? c?	8536 8950 8955 8941	6.18 6.35	+0.49 +1.58 +0.46 +0.98	F5 IV K5 F6 V G8 II	+2.002 +0.126 +0.700 -0.338	0.118 0.016 0.009: 0.017	? c? c? c?	8498 8927 8948 8964	4.13 6.05 5.63 6.44			c? v? c v?

 TABLE 2

 Probable and Possible Variable Stars

Star(HR)	Spt	Туре	Range(V)	Time Scale	Status	
940	MO III	SR?	0.03	>100 days	probable	
1411	KO III	?	0.1	fading	н	
3275	K4.5 III	RS CVn?	0.05	25-30 days		
4430	K2 III	ell	0.09	40 days	EE uMa	
5219	K5 III	RS CVn?	0.05	25 days	AW CVn	
5352	M3 III	SR.	0.15	50,>100 days	probable	
5924	MO III	SR.	0.07	20 days?	н	
6868	M1 III	SR?	0.05	≥ 40 days	"	
808	K2 III	?	≤0.07	?	possible	
2097	KO	?	0.04	few days		
2854	K3 III	?	0.04	> 100 days	"	
3747	F3 V	δ Sct?	0.1	?		
4610	K2 III		0.04	weeks?	"	
6280	K2 III		0.05	30 days?	"	

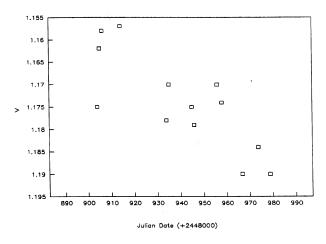
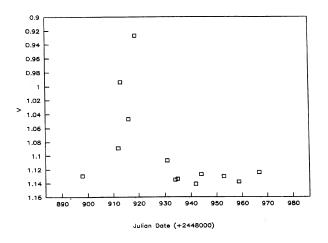
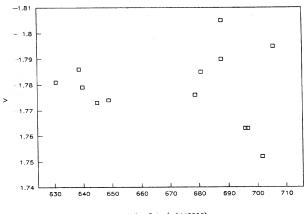


FIG. 1—The V light curve of HR 940 relative to HR 1015; the B light curve is similar.

1424 PERCY




FIG. 2—The inverse V light curve of HR 1411; (since the variations 1407–1411 and 1396–1411 are similar, we conclude that 1411 is the variable). The B light curve is similar.

NSV 4030. The range is $\Delta V \leq 0.05$ according to the *New* Catalog of Suspected Variable Stars (Kholopov 1982). The star shows Ca II emission according to the catalog of Glebocki et al. (1980).

HR 3747. The range is $\Delta V \sim \Delta B \sim 0.1$; there is no obvious time scale. Given the F3 V spectral type, this could be a δ Scuti star.

HR 3845/3907/3758. There are two discordant observations on one night, one incomplete and the other with a large internal error.

HR 4430. This star (EE Ursae Majoris) is now known to be a chromospherically active ellipsoidal variable with a period of 74.861 days. The photometric period varies around 38-39 days, and the range V is about 0.1 (Strassmeier et al. 1989). Our measurements (Fig. 4) show $\Delta V \sim 0.09$ and $\Delta B \sim 0.11$, on a time scale of about 40 days. HR 4610. The variability is marginal ($\Delta V \sim \Delta B \sim 0.04$) and the time scale may be a few weeks. The star's desig-

Julian Date (+2448000)

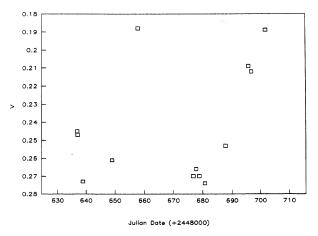


FIG. 4—The V light curve of HR 4430 (EE UMa) relative to HR 4480; the B light curve has a slightly larger range. The star is a chromospherically active ellipsoidal variable.

nation CSV 102691 (*Catalog of Suspected Variables*, Kukarkin et al. 1951) probably refers to the fainter visual companion.

HR 4937. The variability is marginal. Casas and Gomez-Forrellad (1989) used it as a comparison star, and did not mention any variability. Given the F0 V spectral type, it could be δ Scuti star.

HR 5159. The variability is marginal, and depends largely on one point. The star's designation NSV 6401 may refer to the 8th magnitude G-type visual companion.

HR 5219. This star (AW CVn) is classified as an SR: type with $\Delta V=0.1$. Since the star has Ca II emission (Glebocki et al. 1980), it is more likely an RS CVn star. Our measurements (Fig. 5) show a range $\Delta V \sim \Delta B \sim 0.05$ and a time scale of 25 days.

HR 5352. The range is $\Delta V \sim \Delta B \sim 0.15$ (Fig. 6). Two or more time scales (50 and > 100 days) may be present, as in many small-amplitude red variables. Given the M3

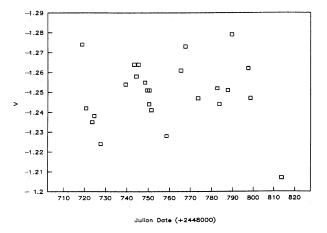


FIG. 3—The V light curve of HR 3275 relative to HR 3287; the B light curve is similar.

FIG. 5—The V light curve of HR 5219 relative to HR 5161; the B light curve is similar. The time scale appears to be 25 days.

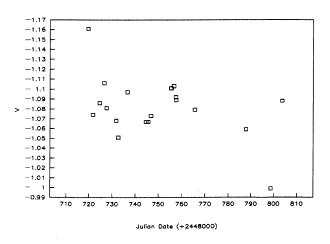


FIG. 6—The V light curve of HR 5352 relative to HD 126269; the B light curve is similar. Spectral-type M3 III; evidently an SR variable.

III spectral type, the variability is not unexpected.

HR 5709. One discordant (and incomplete) measurement on JD 2448771.

HR 5924. Evidently an SR variable with $\Delta V \sim \Delta B \sim 0.07$ and a time scale of 20 (?) days (Fig. 7). The spectral type is M0 III. Percy and Fleming (1992) found the star constant.

HD 151090. The variability is marginal, and the time scale, if any, is 20–30 days.

HR 6280. The range is $\Delta V \sim \Delta B \sim 0.05$, and the time scale, if any, is about 30 days (Fig. 8).

HR 6299/6358/6390. One or more of these may be slightly variable.

HR 6372. Marginally variable.

HR 6695. The variability is marginal, and depends largely on one point. This is actually a K1 II "hybrid giant."

HR 6868. There are only 11 points, but they seem to

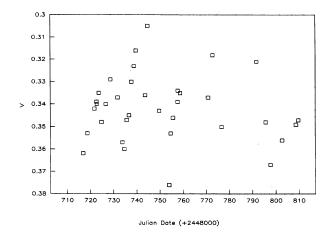


FIG. 7—The V light curve of HR 5924 relative to HR 5966; the B light curve is similar. Spectral-type M0 III; evidently an SR variable.

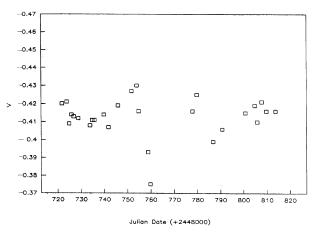


FIG. 8—The inverse V light curve of HR 6280; (since the variations in 6318–6280 and 6372–6280 are similar, we conclude that 6280 is the variable). The variability is small, but the measurements all have small internal errors.

indicate a variability of $\Delta V \sim \Delta B \sim 0.05$, and a time scale ≥ 40 days (Fig. 9).

HR 8536. There are several measurements which are discordant by up to $\Delta V \sim 0.4$ (!), but they have large internal errors.

HR 8964. The variability is marginal, with $\Delta V \sim \Delta B \sim 0.05$, and a time scale, if any, of about a month.

5. DISCUSSION AND CONCLUSIONS

We have monitored a significant fraction of all the K-giant known or suspected variables in the Yale Catalog of Bright Stars. Almost all of them were constant (over three months or less). A few (Table 2) were marginally variable. Several comparison stars (Table 2) were marginally or definitely variable. These were either SR variables (M III type) or RS CVn variables (K III type). We cannot rule out the possibility that a few K giants are SR

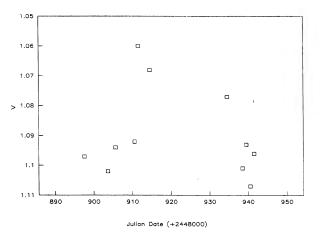


FIG. 9—The V light curve of HR 6868 relative to HR 6895; the B light curve is similar.

1426 PERCY

variables with $\Delta V \leq 0.05$, but the evidence is weak, and the number of such stars is small.

I thank Professor Michael Seeds for managing the APT Service so effectively, and Nancy Wong for organizing, tabulating, analyzing, and graphing the data. This research benefited from access to the SIMBAD data base, maintained by the CDS in Strasbourg, France; I thank Marlene Cummins for performing the literature search. This research was supported by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

Casas, R., and Gomez-Forrellad, J. M. 1989, IAU Inf. Bull. Var. Stars, 3337, 1

Glebocki, R., Musielak, G., and Stawikowski, A. 1980, Acta Astron., 30, 453

Halbedel, E. M. 1989, IAU Inf. Bull. Var. Stars, 3394

Helbedel, E. M. 1993, IAU Inf. Bull. Var. Stars, 3851

- Hoffleit, D., and Jaschek, C. 1982, The Bright Star Catalog, 4th ed. (New Haven, Yale University Observatory)
- Kholopov, P. N. ed. 1982, New Catalog of Suspected Variable Stars (Moscow, Nauka)
- Krisciunas, K. 1993, Delta Scuti Star Newsletter (Vienna, University of Vienna), 23
- Kukarkin, B. W., Parenago, P. P., Efremov, Y. I., and Kholopov,P. N. 1951, Catalog of Suspected Variable Stars (Moscow, Nauka)
- Maeder, A. 1980, Astron. Astrophys., 90, 311
- Percy, J. R. 1985, J. AAVSO, 14, 52
- Percy, J. R., and Fleming, D. E. B. 1992, PASP, 104, 96
- Seeds, M. A. 1989, in Remote Access Automatic Telescopes, ed. D. Hayes and R. Genet (Mesa, Fairborn), p. 163
- Strassmeier, K. G., Hall, D. S., Boyd, L. J., and Genet, R. M. 1989, ApJs, 69, 141
- Stebbins, J., and Huffer, C. M. 1930, Publ. Washburn Obs., 15, 138