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ABSTRACT 

Rational function minimax approximations are given for the complete Fermi-Dirac integrals of orders f, 
and f. In each case, three sets of approximations are provided with maximum relative error ^ 10-4, 10-8, and 
10-12, respectively. These approximations can be used to compute the Fermi-Dirac integrals efficiently over the 
entire range. Approximations to the corresponding inverse functions with an accuracy of ^ 10-4 and 10~8 are also 
obtained. 
Subject headings: atomic processes — methods: analytical 

1. INTRODUCTION 

The complete Fermi-Dirac integrals are usually defined by 

f00 tndt 
F^) = J0 ”>-1- (1) 

These integrals appear in various applications of Fermi-Dirac 
statistics in the nonrelativistic limit, the most frequently used 
values of n being and f. In physical problems, one 
often needs the inverse function which we denote by Xn(f) 
where for a given value of Fn(x) we have to find the corre- 
sponding value of x. For example, the number density of elec- 
trons in a degenerate electron gas is given by 

(2) 

where ne is the number density of electron, h is Planck’s con- 
stant, me is the rest mass of an electron, kB is the Boltzmann’s 
constant, T is the temperature, and rj is the degeneracy parame- 
ter. In many physical problems, the number density may be 
known, and one has to calculate the corresponding value of the 
degeneracy parameter rj. 

A direct evaluation of the integral involves significant effort 
and may not be very useful, particularly when a large number 
of integrals at different values of x are needed. As a result, a 
number of tables for these integrals are available (for example, 
McDougall & Stoner 1939; Cox & Giuli 1968). Recently, 
Cloutman ( 1989) has given extensive tables for Fn(x) which 
are accurate to 12 significant figures for the range -5 < x < 25. 
Beyond this range the known asymptotic approximation for 
the integrals can be used to calculate Fn(x), while interpola- 
tion within the tables can give the function value at nontabu- 
lated points. In fact, Cloutman ( 1989) has also given an inter- 
polation routine which is claimed to give a relative accuracy of 
10-10. But, this interpolation procedure requires a table 
of 1200 entries to be stored in the computer memory. Fur- 
ther, this interpolation routine can not be used to calcu- 
late F_1/2(x). 

Most transcendental functions like trigonometric or expo- 

nential function can be evaluated much more efficiently using 
rational function approximations. It would therefore be inter- 
esting to try rational function approximation for evaluating 
Fermi-Dirac integrals. A number of rational function approxi- 
mations for F_1/2(x), F1/2(x), and F3/2(x) have been given by 
Cody & Thacher ( 1967 ). The maximum relative error in these 
approximations varies between 10-2 and 10-8. In this work, 
we propose to use a slightly different form for approximation 
and aim to extend the relative accuracy to the 10-12 level in 
order to match the tables of Cloutman ( 1989 ). For each value 
of n, three sets of approximations are obtained with maximum 
relative error approximately 10-4, 10-8, and 10-12. Depend- 
ing on the required accuracy either of these sets can be used to 
compute Fn(x) efficiently for any given value of x. The evalua- 
tion of the rational function is more efficient by a factor of 2 as 
compared to the interpolation routine and requires much less 
computer memory, since only about 40 coefficients need to be 
stored. 

For this purpose, it is best to obtain the minimax approxi- 
mations where the coefficients in the rational function are cho- 
sen to minimize the maximum error over the required inter- 
val. Such approximations can be generated using the second 
algorithm of Remes ( see Antia 1991). Once an approximation 
to Fn(x) is obtained, the corresponding inverse function can 
be easily calculated by solving the nonlinear equation for x. 
This process may require several evaluations of Fn(x), which 
would entail considerable effort if the integrals are calculated 
directly. In fact, it is possible to obtain approximations to the 
inverse function also. 

2. RATIONAL FUNCTION APPROXIMATIONS 

It would not be very effective to obtain rational function (or 
any other) approximation to Fn(x) over the infinite range. 
Cody & Thacher ( 1969 ) divided the range into three parts and 
obtained the approximating rational function over each of 
these three intervals separately. In this paper, we break the 
range into two parts and seek approximations of the form 

xR'mikl(e
x) for x <2 

xn+lR2m2k2(x~2) for x>2 

101 
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where 

R i m\k\ 

R 2 m2k2 

= ^ + g1x+ » » - 
^ bQ + bxx + • • • + bklx

kx 

_ c0 + + » - - + cm2x
m2 

dg + diX + • • • + dk2x
k2 (4) 

For fixed values of m!, &!, the coefficients a,, are chosen to 
minimize the maximum relative error in the approximation 

Fn(x) 
(5) 

over the interval 0 < ex < e2. Similarly, the coefficients in 
R2

m2k2(x-2) are determined by minimizing the maximum rela- 
tive error over the interval 0 < x~2 < \. The degrees 
k2 are chosen to achieve the required precision. 

The coefficients of rational function approximation can be 
obtained using the second algorithm of Remes. For this pur- 
pose, the subroutine REMES described in Antia ( 1991 ) was 
used with some minor modifications. It was found that in 
many cases the iteration in the Remes algorithm has to be 
terminated because the number of extrema in the error curve 
are less than the required number (i.e., m + k + 2). To im- 
prove the chances of convergence an additional extremum was 
introduced between the first two when the number of extrema 
was less than required. This modification was found to be 
fairly effective in improving the chances of convergence. 

The Remes algorithm requires the function value to be evalu- 
ated at any required point within the specified range. Further, 
to obtain approximations with relative error of less than 10-12 

the function value should be accurate to more than 20 signifi- 
cant figures. Since a large number of function evaluations are 
required, the function value was calculated using polynomial 
interpolation in a table of approximately 1000 entries. In order 
to achieve the specified relative accuracy of 10_25, a polyno- 
mial of degree 20-30 was required. For low-accuracy approxi- 
mations, a polynomial of degree eight was found to be enough 
to yield an accuracy of 10 _13. By varying the spacing within the 
table it should be possible to reduce the degree of required 
interpolating polynomial, but that was not attempted. The ta- 
ble of values itself was generated using either the asymptotic 
formulas (see Cloutman 1989) or by explicit evaluation of the 
integral using an adaptive quadrature routine. 

The results are summarized in Table 1, which gives the val- 
ues ofmi,kl,m2,k2,as well as the maximum relative error in 
these approximations. Comparing these results with those of 
Cody & Thacher ( 1969 ) it can be seen that we require a slightly 
higher degree of rational function to achieve the same level of 
accuracy. This difference is mainly because the range for 
Rm2k2(

x~2) is curtailed to 0 < jc~2 < ^ in their work since the 
infinite interval is divided into three subintervals, instead of 
two, in the present work. It may be noted that at lower accu- 
racy of 10“4 there is no significant difference in the required 
degree in the two cases. On the other hand, if we attempt to 
generate one rational function approximation, even over a lim- 
ited range of -5 < x < 25 considered by Cloutman ( 1989), 
then it requires ra = /: = 6 to get an accuracy of approximately 
10-4. Higher accuracy with single approximation over such a 
range is rather difficult to achieve. 

TABLE 1 
Maximum Error in Minimax Approximations for Fn(x) 

k, m2 err« 

-0.5 
0.5 
1.5 
2.5 

-0.5 
0.5 
1.5 
2.5 

-0.5 
0.5 
1.5 
2.5 

1.35 X 10"5 

1.54 X 10"5 

6.54 X 10'5 

2.63 X 10'5 

3.31 X 10~9 

3.82 X 10"9 

1.94 X 10"9 

5.84 X 10"9 

1.30 X 10"13 

1.51 X 10-13 

5.07 X 10"13 

1.80 X 10"13 

2 
2 
2 
2 

6 
6 
6 
6 

IT 
10 

2 
2 
2 
2 

7 
6 
6 
5 

11 
11 

4.75 X 10"5 

5.54 X 10"5 

4.59 X 10"5 

7.02 X 10"5 

1.93 X 10"9 

5.33 X 10"9 

4.51 X lO"10 

1.10 X 10"9 

1.23 X 10"12 

5.47 X 10"13 

Tables 2-5 give the coefficients a,, b¡, c,, and di in the ratio- 
nal function approximations for F_l/2{x), Fl/2(x), Fz/2(x), 
and F5/2{x), respectively. These coefficients are not indepen- 
dent, since all of them can be multiplied by any nonzero con- 
stant without changing the value of the rational function. The 
coefficients listed in the tables are normalized to make the 
coefficient of the highest degree term in the numerator unity. 
Using this normalization one multiplication can be saved 
while evaluating the rational function at any value of its argu- 
ment. Once the coefficients are calculated, the evaluation of 
the rational function Rmk{x) requires 2{m + k) + 1 floating 
point operations. In addition, ex or xn+l has to be evaluated 
once. The number of floating point operations can be reduced 
by almost a factor of 2 if the rational function is converted to 
equivalent continued fraction (see Antia 1991 ). This number 
may be compared with about 60 floating point operations re- 
quired by the interpolation routine of Cloutman (1989). A 
fortran function routine FERMI to calculate Fl/2{x) to an 
accuracy of 10-4 is given in the Appendix. This routine can be 
easily modified to use more accurate approximations or to 
calculate Fn{x) for different values of n. 

The Remes algorithm also yields the maximum error in 
these approximations. However, the coefficients appearing in 
the tables are rounded versions of the coefficients calculated by 
the subroutine, and hence it is necessary to estimate the maxi- 
mum error in these approximations independently. This esti- 
mate can be obtained by finding all extrema of the relative 
error. In all cases, the maximum error in approximations with 
rounded coefficients was found to be only marginally higher 
than that obtained by the Remes algorithm. Further, each of 
the approximations was separately checked at about 2000 ran- 
dom arguments against the original function routine. The 
function routine itself was checked against the tables of Clout- 
man (1989). 

3. APPROXIMATIONS TO THE INVERSE FUNCTIONS 

After having obtained approximations to Fn(x), we can eas- 
ily calculate the value of x corresponding to a given F by itera- 
tively solving the corresponding nonlinear equation. However, 
if a large number of such values are required, it will be more 
efficient to use direct approximation to the inverse function 
Xn(f) itself. Such approximations can once again be generated 
using the Remes algorithm. Since Xn(f) vanishes for some 
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TABLE 2 
Coefficients of Rational Function Approximations for F_1/2(x) 

Q-i b, d, 

ml = 2 

2.31456E+01 
1.37820E+01 
1.00000E+00 

ky = 3 

1.30586E+01 
1.70048E+01 
5.07527E+00 
2.36620E—01 

m2 = 2 

1.53602E—02 
1.46815E-01 
1.00000E+00 

k2 = 2 

7.68015E-03 
7.63700E—02 
5.70485E—01 

mj = 4 

8.830316038E+02 
1.183989392E+03 
4.473770672E+02 
4.892542028E+01 
1.000000000E+00 

k{ = 5 

4.981972343E+02 
1.020272984E+03 
6.862151992E+02 
1.728621255E+02 
1.398575990E+01 
2.138408204E—01 

m2 = 6 

-4.9141019880E—08 
—7.2486358805E—06 
-7.4382915429E-04 
-3.2856045308E—02 
-5.6853219702E—01 
-1.9284139162E+00 

1.0000000000E+00 

—2.4570509894E—08 
-3.6344227710E-06 
-3.7345152736E-04 
— 1.6589736860E—02 
-2.9154391835E-01 
— 1.1843742874E+00 

7.0985168479E-01 
-6.0197789199E-02 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

ml = 1 

1.71446374704454E+7 
3.88148302324068E+7 
3.16743385304962E+7 
1.14587609192151E+7 
1.83696370756153E+6 
1.14980998186874E+5 
1.98276889924768E+3 
1.00000000000000E+0 

/ci = 7 

9.67282587452899E+6 
2.87386436731785E+7 
3.26070130734158E+7 
1.77657027846367E+7 
4.81648022267831E+6 
6.13709569333207E+5 
3.13595854332114E+4 
4.35061725080755E+2 

m2 = W 

-4.46620341924942E-15 
-1.58654991146236E-12 
-4.44467627042232E—10 
-6.84738791621745E-08 
-6.64932238528105E-06 
-3.69976170193942E-04 
-1.12295393687006E—02 
-1.60926102124442E—01 
-8.52408612877447E-01 
-7.45519953763928E—01 
2.98435207466372E+00 
1 .OOOOOOOOOOOOOOE+OO 

k2= U 

-2.23310170962369E— 15 
-7.94193282071464E-13 
-2.22564376956228E—10 
-3.43299431079845E-08 
-3.33919612678907E—06 
-1.86432212187088E-04 
-5.69764436880529E—03 
-8.34904593067194E-02 
-4.78770844009440E—01 
-4.99759250374148E—01 

1.86795964993052E+00 
4.16485970495288E—01 

TABLE 3 
Coefficients of Rational Function Approximations for F1/2(x) 

Vi bt Ci di 

ml = z 

2.18168E+01 
1.31693E+01 
1.00000E+00 

/ci = 3 

2.46180E+01 
2.35546E+01 
4.76290E+00 
1.34481E—01 

m2 = 2 

4.7301 IE-02 
5.48433E—01 
1.00000E+00 

k2 = 2 

7.09478E—02 
7.37041E—01 
3.82065E—01 

Wi = 4 

7.940307136E+02 
1.072518408E+03 
4.106017002E+02 
4.607473842E+01 
1.000000000E+00 

/cj = 5 

8.959677183E+02 
1.526979592E+03 
8.307577602E+02 
1.638158630E+02 
9.960923624E+00 
1.04771233 IE-01 

m2 = 6 

7.265461948E-08 
1.678032858E-05 
1.365376899E—03 
4.647886226E—02 
5.231390123E-01 
1.567714263E+00 
1.000000000E+00 

1.089819298E-07 
2.503603684E-05 
2.017068914E—03 
6.719888328E—02 
7.00119763 IE-01 
1.309399040E+00 
1.727377764E—01 

0 
1 
2 , 
3 
4 
5 
6 
7 
8 
9 

10 
11 

mx = l 

5.75834152995465E+6 
1.30964880355883E+7 
1.07608632249013E+7 
3.93536421893014E+6 
6.42493233715640E+5 
4.16031909245777E+4 
1.1123%6n539te%E+2 
1.00000000000000E+0 

kx = l 

6.49759261942269E+6 
1.70750501625775E+7 
1.69288134856160E+7 
7.95192647756086E+6 
1.83167424554505E+6 
1.95155948326832E+5 
8.17922106644547E+3 
9.02129136642157E+1 

m2 = 10 

4.85378381173415E-I4 
1.64429113030738E-11 
3.76794942277806E—09 
4.69233883900644E—07 
3.40679845803144E-05 
1.32212995937796E—03 
2.60768398973913E-02 
2.48653216266227E—01 
1.08037861921488E+00 
1.91247528779676E+00 
1.00000000000000E+00 

Ac2 = 11 

7.28067571760518E—14 
2.45745452167585E-11 
5.62152894375277E—09 
6.96888634549649E—07 
5.02360015186394E-05 
1.92040136756592E-03 
3.66887808002874E—02 
3.24095226486468E—01 
1.16434871200131E+00 
1.34981244060549E+00 
2.01311836975930E-01 

-2.14562434782759Ë—02 
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TABLE 4 
Coefficients of Rational Function Approximations for FV2{x) 

bi di 

ml = Z 

1.35863E+02 
4.92764E+01 
1.00000E+00 

kl = 2 

1.02210E+02 
5.50312E+01 
4.23365E+00 

m2 = 2 

1.54699E—01 
1.20037E+00 
1.00000E+00 

k2 = 2 

3.86765E-01 
6.08119E-01 

-1.65665E-01 

ml = 4 

9.895512903E+02 
1.237156375E+03 
4.413986183E+02 
4.693212727E+01 
1.000000000E+00 

k{ = 5 

7.443927085E+02 
1.062245497E+03 
4.720721124E+02 
7.386867306E+01 
3.424526047E+00 
2.473929073E—02 

m2 = 6 

6.7384341042E—08 
7.4281282702E-06 
4.6220789293E—04 
1.1905625478E—02 
1.3661062300E-01 
6.5500705397E—01 
1.0000000000E+00 

k2 = 6 

1.6846085253E-07 
1.7531170088E-05 
1.0476768850E—03 
2.3334235654E-02 
1.9947560547E—01 
4.7103657850E-01 

-1.7443752246E—02 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

m, = 6 

4.32326386604283E+4 
8.55472308218786E+4 
5.95275291210962E+4 
1.77294861572005E+4 
2.21876607796460E+3 
9.90562948053193E+1 
1.00000000000000E+0 

ki = 1 

3.25218725353467E+4 
7.01022511904373E+4 
5.50859144223638E+4 
1.95942074576400E+4 
3.20803912586318E+3 
2.20853967067789E+2 
5.05580641737527E+0 
1.99507945223266E—2 

m2 = 9 

2.80452693148553E-13 
8.60096863656367E—11 
1.62974620742993E-08 
1.63598843752050E—06 
9.12915407846722E-05 
2.62988766922117E-03 
3.85682997219346E-02 
2.78383256609605E-01 
9.02250179334496E-01 
1.00000000000000E+00 

k2 = 10 

7.01131732871184E-13 
2.10699282897576E-10 
3.94452010378723E-08 
3.84703231868724E-06 
2.04569943213216E-04 
5.31999109566385E—03 
6.39899717779153E—02 
3.14236143831882E-01 
4.70252591891375E-01 

-2.15540156936373E-02 
2.34829436438087E-03 

TABLE 5 
Coefficients of Rational Function Approximations for F5/2(x) 

at bt d, 

mi = 2 

1.54674E+02 
4.80784E+01 
1.00000E+00 

kx = 2 

4.65428E+01 
1.85625E+01 
9.93679E—01 

m2 = 2 

5.69090E-01 
7.68654E+00 
1.00000E+00 

1.99168E+00 
— 1.71711E+00 

1.36953E+00 

mi = 4 

1.178194436E+04 
1.110612718E+04 
2.722654825E+03 
1.645171224E+02 
1.000000000E+00 

ki=4 

3.545200171E+03 
3.655199255E+03 
1.066529195E+03 
9.326993632E+01 
1.690677494E+00 

m2 = 6 

1.4405190262E—06 
1.5534321883E-04 
6.9564011735E-03 
1.2618111665E-01 
9.0276909572E—01 
1.9952283074E+00 
1.0000000000E+00 

k2 = 5 

5.0418165971E-06 
4.7113349177E-04 
1.7503664846E-02 
1.8378232714E-01 
2.9430307063E-01 
3.298079041 IE-02 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

rrii = 6 

6.61606300631656E+4 
1.20132462801652E+5 
7.67255995316812E+4 
2.10427138842443E+4 
2.44325236813275E+3 
1.02589947781696E+2 
1.00000000000000E+0 

1.99078071053871E+4 
3.79076097261066E+4 
2.60117136841197E+4 
7.97584657659364E+3 
1.10886130159658E+3 
6.35483623268093E+1 
1.16951072617142E+0 
3.31482978240026E-3 

m2 = 10 

8.42667076131315E— 12 
2.31618876821567E-09 
3.54323824923987E-07 
2.77981736000034E-05 
1.14008027400645E—03 
2.32779790773633E—02 
2.3956484593830 IE-01 
1.24415366126179E+00 
3.18831203950106E+00 
3.42040216997894E+00 
1.00000000000000E+00 

k2 = 9 

2.94933476646033E—11 
7.68215783076936E—09 
1.12919616415947E—06 
8.09451165406274E-05 
2.81111224925648E—03 
3.99937801931919E—02 
2.27132567866839E—01 
5.31886045222680E—01 
3.70866321410385E—01 
2.27326643192516E-02 
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TABLE 6 
Maximum Error in Minimax Approximations for Xn(f) 

n nii ki errmax m2 k2 errr 

-0.5   3 3 4.17 X 10"5 2 2 3.50 X 10"5 

0.5   2 2 1.89 X 10"5 2 2 3.02 X 10"5 

1.5   2 2 4.27 X 10"7 2 2 2.29 X 10"5 

2.5   1 2 1.99 XI0"6 2 2 7.95 X 10"6 

-0.5  5 6 1.10 X10“9 6 6 3.03 X 10”9 

0.5   4 3 2.67 XIO“10 6 5 4.19 X 10~9 

1.5   3 4 2.72 XIO"10 6 5 2.26 X 10"9 

2.5   2 3 3.02 XIO"9 6 6 6.17 X 10"9 

value of /, it is not possible to obtain an approximation with 
finite relative error over the entire region. This problem may 
be overcome by looking for approximations to Xn{f)/[f - 
^i(0)] which is nonzero for all values of/. However, Fn(0) is 
not known exactly, and further, it is difficult to calculate the 
inverse function Xn{f) very accurately near its zero. Conse- 
quently, it is difficult to ensure high relative accuracy in such 
approximations. 

For these reasons, we divide the range into two at /= 4 and 
look for approximations of the form 

for /<4 î6ï 
nU ; ~ l/1/(1+n)*W/-1/(1+'’)) f°r /— 4, 

where R1^ and R2
m2k2 are again defined by equation (4). This 

form of approximation takes care of the asymptotic form of 
the function as /-* ±oo. Over the interval 0 < / < 4 the 
minimax approximation is obtained by minimizing the maxi- 
mum relative error in approximating ex/f by the rational 
function Rln^f). The logarithm of this translates into abso- 
lute error for x = Xn(f). Hence, in the neighborhood of the 
zero ofXn(f), the relative error in such approximations could 
be higher. 

The results are summarized in Table 6, which gives the val- 
ues ofml,kl,m2,k2,as well as the maximum relative error in 
these approximations. The coefficients in these approxima- 
tions are listed in Tables 7-10. From Tables 1 and 6 it can be 
seen that for the same accuracy, approximation to the inverse 
function requires a smaller degree of the rational function as 

TABLE 7 
Coefficients of Rational Function Approximations for X_l/2(f) 

ai Ci dt 

mx = 5 

7.8516685E+02 
-1.4034065E+02 

1.3257418E+01 
1.0000000E+00 

ki = 3 

1.3917278E+03 
-8.0463066E+02 

1.5854806E+02 
-1.0640712E+01 

m2 = 2 

8.9742174E-03 
-1.0604768E—01 

1.0000000E+00 

k2 = 2 

3.5898124E-02 
-4.2520975E—01 
3.6612154E+00 

mi = 5 

-1.570044577033E+4 
1.001958278442E+4 

-2.805343454951E+3 
4.121170498099E+2 

-3.174780572961E+1 
1.000000000000E+0 

ki = 6 

-2.782831558471E+4 
2.886114034012E+4 

-1.274243093149E+4 
3.063252215963E+3 

-4.225615045074E+2 
3.168918168284E+1 

-1.008561571363E+0 

m2 = 6 

2.206779160034E-8 
— 1.437701234283E—6 

6.103116850636E-5 
-1.169411057416E-3 

1.814141021608E—2 
—9.588603457639E—2 

1.000000000000E+0 

8.827116613576E-8 
-5.750804196059E-6 
2.429627688357E—4 

-4.601959491394E-3 
6.932122275919E—2 

-3.217372489776E—1 
3.124344749296E+0 

TABLE 8 
Coefficients of Rational Function Approximations for Xl/2(f) 

a-i bi Ci di 

mi = 2 

4.4593646E+01 
1.1288764E+01 
1.0000000E+00 

kx = 2 

3.9519346E+01 
-5.7517464E+00 
2.6594291E—01 

m2 = 2 

3.4873722E+01 
-2.6922515E+01 

1.0000000E+00 

2.6612832E+01 
-2.0452930E+01 

1.1808945E+01 

mi = 4 

1.999266880833E+4 
5.702479099336E+3 
6.610132843877E+2 
3.818838129486E+1 
1.000000000000E+0 

ki = 3 

1.771804140488E+4 
-2.014785161019E+3 
9.130355392717E+1 

-1.670718177489E+0 

m2 = 6 

— 1.277060388085E—2 
7.187946804945E—2 

-4.262314235106E-1 
4.997559426872E— 1 

-1.285579118012E+0 
—3.930805454272E— 1 

1.000000000000E+0 

-9.745794806288E—3 
5.485432756838E—2 

-3.299466243260E— 1 
4.077841975923E—1 

-1.145531476975E+0 
-6.06709168918 IE-2 
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TABLE 9 
Coefficients of Rational Function Approximations for XV2(f) 

bi Ci di 

ml = 2 

3.5954549E+01 
1.3908910E+01 
1.0000000E+00 

^ = 2 

4.7795853E+01 
1.2133628E+01 

-2.3975074E—01 

m2 = 2 

-9.8934493E—01 
9.0731169E-02 
1.0000000E+00 

-6.8577484E—01 
6.3338994E—02 

-1.1635840E—01 

mx = 5 

1.715627994191E+2 
1.125926232897E+2 
2.056296753055E+1 
1.000000000000E+0 

K = 4 

2.280653583157E+2 
1.193456203021E+2 
1.167743113540E+1 

-3.226808804038E— 1 
3.519268762788E—3 

m2 = 6 

—6.321828169799E—3 
—2.183147266896E-2 
— 1.057562799320E— 1 
—4.657944387545E-1 
—5.951932864088E—1 

3.684471177100E-1 
1.000000000000E+0 

-4.381942605018E-3 
-1.513236504100E—2 
-7.850001283886E—2 
-3.407561772612E-1 
-5.074812565486E-1 . 
-1.387107009074E— 1 

TABLE 10 
Coefficients of Rational Function Approximations for X5/2(f) 

bt Ci di 

1.5331469E+01 
1.0000000E+00 

ki = 2 

5.0951752E+01 
1.9691913E+00 

-2.7251177E-02 

m2 — 2 

-5.1891788E—01 
-9.1723019E-03 

1.0000000E+00 

k2 = 2 

-3.6278896E—01 
-6.1502672E—03 
-3.3673540E—02 

nix = 2 

2.138969250409E+2 
3.539903493971E+1 
1.000000000000E+0 

ki = 3 

7.108545512710E+2 
9.873746988121E+1 
1.067755522895E+0 

-1.182798726503E—2 

m2 = 6 

-3.312041011227E-2 
1.315763372315E-1 

-4.820942898296E— 1 
5.099038074944E— 1 
5.495613498630E-1 

-1.498867562255E+0 
1.000000000000E+0 

-2.315515517515E—2 
9.198776585252E—2 

-3.835879295548E— 1 
5.415026856351E— 1 

-3.847241692193E— 1 
3.739781456585E-2 

-3.008504449098E—2 

compared to that for Fn(x). A fortran function routine 
FERINV for calculating XY /2(/) is also given in the Appendix. 

4. SUMMARY 

Rational function minimax approximations to Fermi-Dirac 
integrals F_l/2(x), Fl/2(x), F3/2(x), and F5/2{x) are obtained 
with varying accuracy. Three sets of approximations with 

maximum relative error of approximately 10-4, 10“8 and 
10-12 are obtained for each of these integrals. These approxi- 
mations can be used to compute the value of the integrals 
efficiently over the entire range of the argument x. Rational 
function minimax approximations to the corresponding in- 
verse function Xn{f) with an accuracy of approximately 10-4 

and 10"8 are also obtained. For the inverse function the rela- 
tive error could be larger in the neighborhood of its zero. 

APPENDIX 

A1. FERMI: FUNCTION ROUTINE to calculate F1/2(x) 

DOUBLE PRECISION FUNCTION FERMI (X) 
IMPLICIT REAL*8 ( A—H, O—Z ) 
DIMENSION Al ( 12 ), bl ( 12 ) , A2 ( 12 ) , B2 ( 12 ) 

C Initializing the degree and coefficients of rational function approximation. 

DATA AN,Ml,Kl,M2,K2/0.5D0,2,3,2,2/ 
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DATA (A1(I),1=1,3)/2.18168D+01,1.316930+01,1.000000+00/ 
DATA (B1(I), 1=1,4)/2.461800+1,2.355460+1,4.762900+0,1.344810-1/ 
DATA (A2(I),I=l,3)/4.730110-02,5.484330-01,1.000000+00/ 
DATA (B2(I),1=1,3)/7.09478D-02,7.370410-01,3.820650-01/ 

IF(X.LT.2.D0) THEN 
XX=DEXP(X) 
RN=XX+A1 ( MI ) 
DO 100 I=M1—1,1,—1 

100 RN=RN*XX+A1(I) 
DEN=B1(Kl+1) 
DO 200 I=K1,1, —1 

200 DEN=DEN*XX+B1(I) 
FERMI=XX*RN/OEN 

ELSE 

XX=1.D0/X**2 
RN=XX+A2 (M2 ) 
DO 300 I=M2—1,1, —1 

300 RN=RN*XX+A2(I) 
DEN=B2(K2+1) 
DO 400 I=K2,1,-1 

400 DEN=DEN*XX+B2(I) 
FERMI=(X**(AN+1.D0))*RN/DEN 

END IF 

RETURN 
END 

a2. FERINV: function routine to calculate X1/2(/) 

DOUBLE PRECISION FUNCTION FERINV(F) 
IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION A1 ( 9 ), B1 ( 9 ), A2 ( 9 ), B2 ( 9 ) 

C Initializing the degree and coefficients of rational function approximation. 

DATA AN,Ml,Kl,M2,K2/0.5D0,2,2,2,2/ 
DATA (A1(I),1=1,3)/4.45936460+01,1.1288764D+01,1.0000000D+00/ 
DATA (Bl(I), 1=1,3)/3.95193460+01,-5.7517464D+00,2.6594291D-01/ 
DATA (A2(I) ,1=1,3)/3.48737220+01,-2.6922515D+01,1.0000000D+00/ 
DATA (B2(I),1=1,3)/2.66128320+01,-2.0452930D+01,1.1808945D+01/ 

IF(F.LT.4.DO) THEN 
RN=F+A1 (Ml ) 
DO 100 I=M1—1,1, —1 

100 RN=RN*F+A1(I) 
DEN=B1(Kl+1) 
DO 200 I=K1,1,-1 

200 DEN=DEN*F+B1(I ) 
FERINV=DLOG(F*RN/DEN) 

ELSE 

FF=1.D0/F** (1.D0/1.D0+AN) ) 
RN=FF+A2 (M2 ) 
DO 300 I=M2—1,1, —1 

300 RN=RN*FF+A2 ( I ) 
DEN=B2(K2+1) 
DO 400 I=K2,1,-1 
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400 DEN=DEN*FF+B2(I) 
FERINV=RN/(DEN* FF) 

ENDIF 

RETURN 
END 
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