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ABSTRACT
We study percolation in mass and galaxy distributions obtained in three-dimensional simulations of the
CDM, C + HDM, and the power law (n = —1) models in the Q = 1 universe. Percolation statistics is used

here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or
cellular type. We have developed a very fast code (based on the 1985 algorithm described by Stauffer) which
calculates the statistics of clusters along with the direct detection of percolation. We found that two
parameters—pu,, (eq. [3]), characterizing the size of the largest cluster, and p? (eq. [4]), characterizing the
weighted mean size of all clusters excluding the largest one—are extremely useful for evaluating the perco-
lation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show
that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribu-
tion. The percolation thresholds for the mass distributions are p, = 0.023 + 0.005 in the C + HDM and p, =
0.044 + 0.005 in CDM models compared to p, = 0.16 for a Gaussian random field. For galaxy samples with a
few thousand galaxies the thresholds are p, c.ypy = 0.06 + 0.02 and p, cpy = 0.10 £+ 0.02 compared to p, =
0.31 for a Poisson distribution. Percolation in regions having the shape of a parallelepiped is discussed in the

context of the applications of percolation statistics to real galaxy catalogs.

Subject headings: cosmology: theory — dark matter — galaxies: clustering —
large-scale structure of universe — methods: numerical

1. INTRODUCTION

Angular and spatial distributions of galaxies show structures
which are often referred to as cellular or filamentary. The
former reflects a visual impression that galaxies are concen-
trated to narrow walls separating large isolated voids of gal-
axies and the latter means that galaxies are concentrated to
one-dimensional threads forming a kind of three-dimensional
web. No statistics which can quantitatively and unam-
biguously measure these impressions has been suggested
despite many attempts.

Zel’dovich (1982) was the first to realize that this is a topo-
logical question. He suggested the following explanation of the
formation of the cellular structure in the pancake scenario
associated (at that time) with the neutrino-dominated (30 eV)
universe. He argued that if a few percent of the volume is filled
randomly with some substance and the rest of the volume
remains empty, then the filled regions will be isolated and the
empty space will look like a single ocean. (Of course, lakes on
islands are also possible.) In order to make a few percent of the
filled volume look like a connected structure one must provide
a special arrangement of the filled regions in space. To support
this line of reasoning quantitatively he suggested using perco-
lation statistics. Soon after, one of the authors of this paper
suggested using the percolation statistics as a descriptor of the
observational distribution of galaxies and as a cosmological
test (Shandarin 1983). The later development of this method
was recently reviewed by Dominik & Shandarin (1992), and we
will not repeat it here.

Instead we briefly describe the main idea of the percolation
technique and its relation to the topology of the structure. In
this paper we deal with three-dimensional cubic lattices in
parallelepiped-like regions and define percolations in such
systems. For example, let us take a three-dimensional cubic

lattice of size N3 and assign the labels “filled” to some of the
cells and “empty” to all the rest according to some specified
rule. For instance, if the density is given on the lattice, one can
label the cells with the density higher than a specified threshold
as filled and the others as empty. After assigning the labels each
cell becomes a member of a cluster. Each cluster consists of the
cells of one type which satisfy the requirement of the neighbor-
hood. Two cells of the same type are considered to be neigh-
bors if (1) they have a common side (at most six cells can be the
neighbors of a cell due to this requirement) or (2) satisfy the
principle: the neighbor of my neighbor is my neighbor. Some-
times the first requirement is modified, and the cells having a
common ridge or corner are also included in the list of the
immediate neighbors (Mo & Borner 1990; de Lapparent,
Geller, & Huchra 1991). These modifications, without chang-
ing the principal idea of percolation analysis, do change the
values of the percolation thresholds. One disadvantage of such
modifications is that they have not been studied theoretically.
In particular the percolation thresholds in Poisson and Gauss-
ian distributions are not known.

The numbers of cells in a cluster is called the size or volume
of the cluster and, generally speaking, can be any number from
1 to N3. Percolation theory studies the transition of an infinite
system (N — oo) from the state in which every cluster is finite,
to one in which an infinite cluster exists. In finite systems, a
cluster which spans the entire region plays the role of the infin-
ite cluster. For example, in a finite cubic region such a cluster
connects the antipodal sides. The formation of such a cluster
may be considered a phase transition (e.g., from insulator to
conductor).

The phenomenon of percolation can be observed in a variety
of systems: various lattices (simple cubic, body centered cubic,
face centered cubic, etc.), various dimensions, discrete or con-

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...413...48K

PERCOLATION TECHNIQUE 49

tinuous systems. However, the essence of percolation is a
sudden formation of the infinite cluster as some parameter
characterizing the system changes gradually.

The percolation technique applied to galaxy distribution is
very different from that used in solid state physics (see, e.g.,
Ziman 1979) or, say, for models of solar activity (Wentzel &
Seiden 1992). In both cases the percolation phenomena models
some physical process. The application of percolation analysis
to galaxy distributions suggests using percolation statistics as a
descriptor, although the connection with the physical pro-
cesses of gravitational instability can also be traced (Zel’dovich
1982; Shandarin & Zel’'dovich 1989). Two aspects of this appli-
cation are worth emphasizing. First, one may expect that per-
colation statistics can be an objective quantitative measure of
filamentary and/or cellar structures, and second, the perco-
lation statistics can be an additional objective discriminator
between various cosmological scenarios of the formation of the
large-scale structure in the universe. These two aspects are
relatively independent because the former emphasizes the dif-
ference with “structureless” distributions like Poisson and
Gaussian and the latter the difference between the distribu-
tions in question (see the discussion below). In this paper we
address both issues.

Percolation thresholds are primarily topological character-
istics of random fields and are related to the Euler character-
istic. In the case of Gaussian random fields in one-, two-, and
three-dimensional spaces the genus curve changes the sign at
percolation limits (Tomita & Murakami 1988) which agrees
with Ziman’s (1979) speculation.

The application of percolation analysis to real galaxy cata-
logs encounters several problems mentioned in the early
studies (Shandarin 1983; Bhavsar & Barrow 1983; Einasto et
al. 1984; Dekel & West 1985; Klypin 1987; Mo & Borner
1990; de Lapparent et al. 1991; Dominik & Shandarin 1992).
Discreteness, typically complex shapes of samples, inhomoge-
neity related to the selection function, and small statistics are
among them. In this paper we discuss the problems of discrete-
ness and boundaries of the samples using simulated three-
dimensional samples of galaxies in CDM, C + HDM, and the
n = —1 power law models. We suggest a new technique to deal
with the discreteness and also test three methods of estimating
the percolation thresholds, two of which are quite insensitive
to the boundary effects. We reserve the study of the inhomoge-
neous samples to a separate paper.

Concluding the introductory remarks we would like to
emphasize a few general points:

1. Percolation is a phase transition characterizing a system
as a whole not only the percolating cluster. As a matter of fact,
all clusters excluding the largest one specify the percolation
transition in the same way as the percolating cluster does it.

2. Our analysis of realistic cosmological models does not
support the conclusion (based on the analysis of toy models)
that the dependence of percolation properties on the mean
density of galaxies is a serious problem of this method.

3. The strong dependence of percolation properties on the
volume of the sample found in some studies was probably
caused by an inadequate technique used for measuring perco-
lation thresholds.

We discuss these issues in greater detail below. The rest of
the paper is organized as follows. In § 2 we briefly describe the
cosmological models which we studied using the percolation
technique. Section 3 describes the specifics of our version of the

percolation method and the results of the tests. In § 4 we
present the analysis of the cosmological models. Finally, § 5 is
the summary of our results.

2. COSMOLOGICAL MODELS

Numerical simulations of three cosmological models—the
CDM, C + HDM, and n = —1—were done using standard
Particle-Mesh (PM) code (Hockney & Eastwood 1981; Kates,
Kotok, & Klypin 1991).

In C + HDM model the dark matter is a mixture of 30% of
hot particles (e.g., tau-neutrinos with the rest mass of 7.2 eV)
and 70% of cold particles (Holtzman 1989; Klypin et al 1992).
Both the CDM and C + HDM models were normalized to the
biasing parameter b = 1.5. The n = — 1 model were normal-
ized to b = 2. All models were simulated in a 50 Mpc box
(h =0.5). The C + HDM simulation and one of the CDM
simulations used the same set of random numbers. The com-
parison of the two simulations emphasizes the difference
between the C + HDM and the CDM models. Note that the
CDM and C + HDM models are not very different on the
scales within the box: the linear normalization at r,,, ,,, = 8
h™! Mpc is the same, and the slope of the power spectra are
also quite similar at these scales. So it is really a challenge for a
method to detect difference between the models.

The above models were simulated on a 256° mesh. The
CDM simulations and the n = —1 simulation had 1283 par-
ticles each, while the C + HDM simulation has 1283 cold par-
ticles and six sets of hot particles of 128 each. The CDM and
C + HDM simulations were started at z = 15. The power-law
simulation, which has much higher amplitude of fluctuations at
the smallest resolved scale (195 kpc), was started at redshift
z =99. In total three realizations of the CDM model and one
realization for each of the C + HDM and n = — 1 models were
simulated. A detailed description and analysis of the CDM and
C + HDM models may be found in Klypin et al. (1992). Figure
1 shows positions of about 10% randomly selected particles in
a thin (2 Mpc) slice in the C + HDM simulation (left) and in
the CDM simulation with the same initial phases (right). The
slice was chosen to pass through a dense region near the center
of the plot. The magnified inner part of the region where about
half of the particles are plotted shows the small-scale difference
between the two models: C + HDM model in Figure 2 and
CDM model in Figure 3.

We also briefly studied percolation in the C + HDM model
simulated in a 100 Mpc box on 5123 mesh having 256 cold
particles and 2 x 2563 hot particles.

To identify “ galaxies ” in the model, we simply find all local
maxima of the total density above some threshold. Positions of
the maxima were treated as the galaxy coordinates. In the
C + HDM simulation the number of galaxies was 835, 1824,
and 4617 for density thresholds of 100, 50, and 25, correspond-
ingly. In the CDM simulation with the same initial phases the
number of galaxies was 751, 1640, and 3318 for density thresh-
olds of 200, 100, and 50, correspondingly. Thus, with the same
density threshold the CDM model produced about twice the
number of galaxies as the C + HDM model and doubled
threshold results in about half the number of galaxies. The
n = —1 model produced many more galaxies: for the density
threshold of 50 it had 5650 galaxies. Thus the number of gal-
axies in the simulations was not very large and is similar to
what one might expect in a volume-limited catalog at the
present time or in the near future. Assuming the Schechter
luminosity function with parameters M,=—-192,a=—11,
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FI1G. 1.—Positions of randomly selected particles (about 10% of total) in a thin (2 Mpc) slice in the C + HDM simulation (left) and in the CDM simulation with

the same initial phases (right). Coordinates are scaled in Mpc (h = 0.5).

and ¢, = 0.02 h®> Mpc~3 (de Lapparent, Geller, & Huchra
1989) one may expect to find about a thousand galaxies 3.2
magnitude weaker than M, in a cube like ours. The low limit
of the maximum density imposes a limit on the mass of gal-
axies. For example, the density threshold 50 imposes the
restriction on the mass of galaxies M > 2.5 x 10'° M.

3. PERCOLATION TECHNIQUE

In this paper we use percolation analysis on three-
dimensional cubic lattice assuming that each cell can be imme-
diately linked to no more than the closest six neighbors. In
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F1G. 2—Distribution of cold particles in the C + HDM model in 10
Mpc x 10 Mpc x 2 Mpc region close to the center of Fig. 1. The number of
particles in 13,680, which is a half of the total number in the region.

percolation theory jargon, this is called site percolation on a
simple cubic lattice. It is worth stressing that in recent studies
(de Lapparent et al. 1991; Mo & Boérner 1990) different
schemes were used, allowing more connections, which of
course makes percolation happen easier that is, at lower filling
factors. Unfortunately it also reduces the percolation threshold
for the Poisson distribution, which means that the signal-to-
noise ratio does not improve. An advantage of our definition of
the neighborhood is that it has been very well studied. Before
we present the results of our tests let us describe the phenome-
non of percolation in greater detail.
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FI1G. 3.—Same as in Fig. 2, but for the CDM simulation. The number of
particles is 13,185.
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As we stressed in the Introduction, the most essential
concept of percolation theory (in infinite systems) is the critical
transition from the state where there are only finite clusters, to
the state where an infinite cluster exists. Probably the simplest
way to illustrate the formation of an infinite cluster is to
observe the growth of the diameter of the largest cluster in a
system: at the transition it becomes infinite. In an ealier paper
by one of the authors (Shandarin 1983) the growth of the
largest cluster was used mainly for an illustrative purpose,
rather than a suggestion that it is the only or the best method
of detecting percolation in a system. Unfortunately, in some
later papers (e.g., Bhavsar & Barrow 1983; Dekel & West 1985)
this property of the percolation phenomena was treated almost
as a synonym for percolation and occasionally was used for
estimating the percolation threshold in samples which are not
well suited to this technique (e.g., a cone). That was part of the
reason for the reported problems in applying the percolation
statistics of cosmology.

The formation of a cluster spanning the entire volume
(which we call the “direct test for percolation™) is only one
manifestation of the critical behavior of a system near the per-
colation transition. Although quite intuitive, it has serious dis-
advantages when used as an estimator of the percolation
thresholds. First, it is not clear how to apply the direct test to
samples having shapes other than a cube or parallelepiped, for
example, a sphere or a cone. Second, the direct test is very
sensitive to what happens near the boundaries: a fluctuation or
an incompleteness of the catalog could significantly affect the
results. The diameter of the largest cluster as a measure of the
percolation threshold is free of the first disadvantage but
suffers from the second. Fortunately they are not the only
features of percolation. There are others which much better
suit the purpose of measuring the percolation thresholds. One
is related to the growth of the size (the size equals the volume
equals the number of cells) of the largest cluster and another to
the weighted mean size of all clusters, excluding the largest one.
It is clear that the growth of the diameter of the largest cluster
is strongly suppressed when its end points reach the bound-
aries of the region. On the contrary, because the volume can
grow by joining the cells along its whole surface, most of which
are perfectly inside the region, it is less sensitive to boundary
effects. Using both parameters in cosmology was suggested by
Klypin (1987), and the size of the largest cluster was used as an
estimator of the percolation threshold by de Lapparent et al.
(1991).

When describing the percolation transition, it is convenient
to introduce the multiplicity function n(v) which is the average
numer (per lattice site) of clusters of size v. The multipiicity
function depends on the fraction of filled cells p, which we call
the filling factor . In general, every cell has one of three options:

1. It can be empty with the probability 1 — p;

2. It can be a member of the infinite cluster with the prob-
ability u; or

3. It can be a member of a finite cluster with the probability

Y, v x n(v).
The sum of all probabilities is of course unity:
l—p+pu,+yvxnp)=1. 1)
At the percolation threshold the whole system experiences a

dramatic transition. For instance, at the percolation verge p,
the multiplicity function is simply a power law (Stauffer 1979,
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1985); n(v; p.) oc v~ %, T & 2.1. But it is not true in the general
case where it falls exponentially at high v. In principle, the form
of the multiplicity function could be used to detect the critical
point. However, keeping in mind the limited amount of obser-
vational data, it seems more reasonable to begin with an
analysis of the lowest moments of the multiplicity function,
which also exhibit singular behavior. The singular terms for
the lowest moments are as follows:

2 n)oc|p—p. P77,

v

Y vxn@oc(p—rp),
Y v’ xno|p—p|7, Q)

where a, f, y are critical exponents (e.g., Stanley 1971). It also
can be shown from equations (1) and (2) that u, oc (p — p,)®.

In this paper we deal mostly with two parameters: the frac-
tion of volume occupied by the largest cluster, normalized to
one cell,

Ho = Vmax/ N, ©)

and the mean weighted size of the clusters excluding the largest
one:

. Y, v% x n(v)
HENBY )

where N, = N, x N, x N, is the size of the lattice, and the
summation is over all clusters excluding the largest one. We
have introduced the additional factor N2/® in the denominator
(compared to the standard defintion of u? in theory of
percolation) to make plotting of the results easier. According
to percolation theory, the critical exponents are f ~ 0.4 and
y = 1.7 (Stauffer 1985). We expect that u, grows rapidly and
u? has a sharp peak in the vicinity of the percolation threshold.

@

3.1. Poisson Lattice

A Poisson distribution of cells with the probability p for a
cell to be filled is a simple but quite interesting model. In spite
of its simplicity, the growth of clusters in the model provides a
reasonably accurate model for a number of critical phenomena
(Stanley 1971). We show in § 4 that in the vicinity of the perco-
lation threshold the growth of largest cluster in both the CDM
and the C + HDM models is similar to that in the Poisson
model. We use the Poisson model for the purpose of testing the
code and studying the dependence of percolation properties on
the size of the lattice and the shape of the volume.

The dependence of the percolation parameters on the size of
the cubic lattice is shown in Figure 4 for 333, 633, 1273, and
2563 lattices. One hundred different sets of random numbers
were averaged for each lattice except the 2563 lattice, for which
40 sets were used in the vicinity of the percolation transition
(three closest points) and 10 sets for other filling factors. The
top panel shows the fraction of percolating realizations for a
given filling factor p. This is the direct test for percolation. The
middle panel shows the fraction of cells in the largest cluster p.,
(eq. [3]) as a function of the filling factor. Here p,, approaches
zero at p < p. and the asymptote p, oc (p — p,)°* at p > p. .
The bottom panel shows the dependence of the weighted mean
volume of the remaining clusters u? (eq. [4]). With the growth
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F1G. 4—Percolation in the Poisson distribution on the lattices from 333 to
256 is shown. The error bars correspond to 1 o dispersion. The top panel
shows the fraction of percolating systems for given filling factor p (direct test
for percolation). The middle panel shows the fraction of cells in the largest
cluster, p,. The bottom panel shows the dependence of the mean square of the
volume of clusters, u?, excluding the largest one. The vertical dotted line marks
the percolation threshold on very large lattices.

of the lattice size, the maximum of u?(p) becomes narrower and
its position approaches the percolation threshold p,. The verti-
cal dashed line marks the percolation threshold measured on
very large lattices (e.g., Stauffer 1985). The central panel shows
that the transition to the percolating phase is quite sharp on all
lattices. Even using the smallest 33° lattice, one can estimate
the percolation threshold with a relative accuracy better than
5% which corresponds to the range 0.296 < p. < 0.327. The
bottom panel shows that the u? statistics is somewhat noisier
for small lattices. We show the dispersions of both u, and u? in
units of corresponding mean values in Figure 5. One can see
that the noise in yu, is relatively large in the nonpercolating
regime even for our largest lattice and falls rapidly in the per-
colating regime. The p? statistics shows the opposite behavior;
however, the noise is generally higher. In a sense, the u_, and p?
statistics are complementary.

3.2. Anisotropic Lattices

In applying the percolation technique to real galaxy cata-
logs, there is the problem of inhomogeneity of the catalogs
caused by the dependence of the selection function on the dis-
tance. One way of dealing with this problem is the introduction
of correction for the effect of the selection function. In the
context of the percolation analysis, it was used in two slightly
different forms by Bhavsar & Barrow (1983) and de Lapparent

filling factor

F16. 5—Relative level of fluctuations for two estimates of the percolation
threshold p, (top panel) and p? (bottom panel) shown in Fig. 4. The vertical
dotted lines marks the percolation threshold on very large lattices. The types of
lines are as in Fig. 4.

et al. (1991). Bhavsar & Barrow, who studied percolation in
pointlike systems, used the neighborhood radius varying with
the distance, and de Lapparent et al. proposed using a lattice
with cells of varying sizes. The volume of both a sphere and a
cell is approximately inversely proportional to the mean
density of galaxies. Although somewhat technically different,
both methods suffer from a common disadvantage. To see it
clearly let us discuss the following gedanken experiment. Let us
imagine that we have a very large volume-limited sample of
galaxies. For the purpose of testing the percolation technique
we produce a subsample by simulating the selection of galaxies
with a specific selection function. Now if we find the perco-
lation thresholds separately for two parts of the subsample:
one in a nearby region where the subsample is complete and
the other in a remote region where the subsample becomes a
Poisson distribution, they may be very different despite that
they were similar in the original sample. Assuming that the
original distribution is of a filamentary type, the percolation
threshold in the nearby region is small. In the remote region it
may be equal to the Poisson value. Combining them together,
we may end up in the mixture dominated by the Poisson part.
The suggested corrections (the variable radius of spheres, or
size of cells) does not help at all because it cannot restore the
lost information and does not reduce the contribution of the
Poisson part.

We can suggest a different approach which does not mix
close and remote regions. Let us divide the volume of a sample
into layers perpendicular to the line of sight. The thickness of a
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layer must be chosen to keep the density roughly constant
within the layer, and the layers must be analyzed separately.
Obviously free of the disadvantage of the first technique it can
be affected by the anisotropy of the layers. In order to satisfy
the requirement of the homogeneity, at least some of the layers
must be relatively thin. In particular, one can expect that on
lattices having the shape of a flattened square parallelepipeds
the percolation threshold must approach the two-dimensional
value in the limit of small thickness. The fully study of this
effect must produce the percolation threshold as a function of
distance for each model and a specified selection function. And
this function must be compared with a similar function calcu-
lated from a real galaxy catalog.

Here we only make a rough estimate of the significance of
this effect. In Figure 6, we show the dependence of the perco-
lation threshold on the thickness of the lattice. As an sample
we show percolation properties on a series of lattices having
the same square base of 127% and the thickness varying from 1
to 8; we also show the percolation parameters for the full cubic
lattice 1273, In the anisotropic regions, the direct percolation
test was applied only along the two largest sides. The perco-
lation parameters were evaluated for 100 realizations of
random numbers of each lattice. As expected, the percolation
parameter decreased from the two-dimensional value (p, =
0.57) when the lattice had only one layer of cubic cells to
almost the three-dimensional value when it had thickness 8
(roughly 0.34-0.35 instead of 0.31). Similar calculations for the
333 lattice show very similar results, but with greater disper-
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F1G. 6.—Dependence of the percolation thresholds on the thickness of the
parallelpiped given in mesh units; 1 corresponds to the two-dimensional
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sions due to smaller statistics. In the structureless Poisson dis-
tributions, the percolation thresholds depend only on absolute
thickness of the lattice.

3.3. Discrete Distributions

When we dealt with the Poisson models, we could increase
the filling factor until percolation occurred. Studying perco-
lation in mass distribution one can vary the filling factor by
changing the density threshold when labeling the cells. Galaxy
samples are discrete distributions and usually do not percolate
without smoothing. One can think of a number of smoothing
filters: the Gaussian smoothing (Mo & Bérner 1990; Dominik
& Shandarin 1992), the variation of the sizes of cells (Einasto et
al. 1984; de Lapparent et al. 1991), a construction of spheres of
varying radius about each galaxy (Shandarin 1983; Bhavsar &
Barrow 1983; Dekel & West 1985; Klypin 1987).

Here we suggest a very simple smoothing technique, which,
in addition to being very efficient computationally, also
roughly preseves the Poisson characteristics when applied to a
Poisson sparse distribution. Applying the smoothing once
means that (1) every originally filled cell remains filled, and (2)
each originally empty cell changes its type if and only if it has
at least one closest (of six total) neighbor being originally filled.
Applied sequentially this procedure eventually fills the gaps
between galaxies and a percolating cluster forms. Roughly
speaking the procedure blows a cube around each galaxy with
the size measured in cell units equal to the number of times the
procedure has been applied.

To study percolation in our galaxy samples we must be able
to start from very low filling factors. As mentioned above in
our simulation we selected only a few thousand galaxies which
corresponds to a filling factor p < 3 x 1073 on the 2563 lattice.
Testing this technique, we randomly labeled a few thousand
cells as filled on the 256 lattice and applied the smoothing
procedure until percolation occurred. We found that the per-
colation threshold in such a system is about p, = 0.28, com-
pared to the p. = 0.31 in real Poisson distributions. It is worth
mentioning that the Gaussian filter tends to transform this
distribution to the Gaussian one having a percolation thresh-
old about p, = 0.16 (Dominik & Shandarin 1992). Another
disadvantage of the Gaussian filter is that it brings about an
additional parameter which is the density threshold. The major
disadvantage of our method is that it cannot increase the filling
factor continuously.

4. PERCOLATION IN COSMOLOGICAL MODELS

4.1. Dark Matter

Three cosmological models were simulated to study con-
nected structures: the CDM, C + HDM, and the model with
the power-law initial spectrum (n = —1). In all models the
percolation properties of the mass distribution were studied on
a 256° lattice. The density threshold p,,, served as a free
parameter. Cells with density above p,,, were labeled as filled
and all the rest as empty. Thus, the filling fraction p was a
function of the threshold density p,,,. The size of the largest
cluster u_, and the mean size of all the rest of the clusters but
the largest one u? averaged over three realizations of the CDM
model are shown in Figure 7. The two panels show the typical
features of percolation: the fast growth of the largest cluster
and a peak in p?(p). Similarly to the Poisson distribution, the
fluctuations in the critical region are quite large (especially for
©?), but the critical transition can be easily identified some-
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Fi1G. 7—Percolation in the CDM model, averaged over three realizations.
The dashed curve in the top panel is the fit u,, = 0.22(p — p,)°-5, the dashed
curve in the bottom panel is u*> = 0.3(p — p,)~*-". In both cases p, = 0.043.

where between p = 0.04 and p = 0.05. The percolation thresh-
old can be evaluated more accurately by fitting the data points
by equation (2). Both u.(p) and p%(p) can be reasonably well
approximated above the percolation threshold as pu.(p) =
0.2(p — p.)°* and p*(p) = 0.3(p — p.)~". We found that the
exponent 0.5 approximates u_, slightly better than the Poisson
value 0.4, but the difference is small, and we do not claim that it
is significant. This gives the percolation threshold p. = 0.043
+ 0.005 for the dark matter in the CDM model normalized to
the biasing parameter b = 1.5. Results of the direct test (the
detection when the largest cluster links the opposite sides of the
cube) are consistent with this estimate. We also roughly esti-
mated the uncertainty in the percolation threshold from varia-
tions of the value from one sample to another and by
comparing various statistics (the direct test, u,, u?). For the
C + HDM simulation the same procedure gives the threshold
p. = 0.0230 + 0.005, which is significantly lower than that in
the CDM model. Figure 8 compares the CDM (middle curves)
and C + HDM (left curves) simulations having the same set of
initial random numbers. The results for the n = —1 model are
also shown (right curves). The growth of the largest cluster is
approximated as A(p — p,)°-° (dashed curves) with the param-
eters Acpy = 0.23, Acipypm = 020, p. cpy = 0.0448, and
Pe.c+upm = 0.0230. For the n = —1 model the approximation
is i, = 0.25(p — p.)°*, Pew= 1 = 0.073. The dashed curves in
the bottom panel are u> = 0.3(p — p,)~!*7 with the same perco-
lation thresholds as above.

We found that in the vicinity of the critical point, the growth
of the largest cluster can be approximated by roughly the same
exponent, f = 0.4-0.5, independently of the model. The only
difference is the amplitude. To show this we have plotted u, as

Filling factor

Fi1G. 8.—Percolation properties of the C + HDM, CDM, and n= —1
models are shown correspondingly from left to right. The C + HDM and
CDM models have the same set of random numbers. The dashed curves in the
top panel are the fits u, = A(p — p.)? with p, = 0.0230, 0.0448, 0.073, 4 = 0.20,
0.23, 0.25, and B = 0.5, 0.5, 0.4 for the C + HDM, CDM and n = — 1 models

respectively. The dashed curves in the bottom panel are the fits u? =
.3(p — p,)~ *-7 with the same percolation thresholds as above.

a function of p — p, on logarithmic scale. Figure 9 shows log
(u4) for the CDM model (averaged over three realizations) and
the C + HDM simulation as well as for the Poisson distribu-
tion. The size of the largest cluster u, for the Poisson distribu-
tion was scaled down by a factor of 6.7. All three models
predict almost the same relative rate of growth of the largest
cluster. The only difference is that the volume of the largest
cluster in the Poisson distribution is considerably larger than
the C + HDM and CDM simulations.

In order to distinguish between filamentary and cellular
structures, we made the percolation analysis of empty cells
which were the cells having the density below the threshold. We
found that even for densities as low as p < 0.1{p) there was
percolation through empty cells. As a matter of fact, in the case
of the CDM model there was a single void occupying most of
the volume (85%) and only a few very small voids. We could
not reach lower densities because of discreteness. Thus, high-
density walls do not isolate voids and therefore do not form a
cellular structure in our models. Of course, it does not exclude
the existence of isolated walls (pancakes) in the distribution of
the dark matter. We also cannot exclude that a cellular struc-
ture forms at even lower density thresholds that would be in
agreement with the results obtained for two-dimensional dis-
tributions (Dominik & Shandarin 1992).

One can use the concept of the percolation analysis to for-
mulate a quantitative topological criterion of a cellular struc-
ture. A structure can be defined to be cellular if the percolation
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suppressed when the fraction of empty cells is large:
p.(empty) > 0.16 = 1 — 0.84 for continuous distributions or
p.(empty) > 0.31 = — 0.69 in discrete distributions. This defi-
nition emphasizes the topological aspect of a cellular distribu-
tion and may include the case when the thickness of walls is
not much less than the diameters of voids.

The above percolation thresholds characterize the stage of
the evolution identified with the present time. However, the
percolation thresholds change with time. At the initial time
(z = 15 for the CDM and the C + HDM, or z =99 for the
n= —1 model) the percolation threshold was p, jnc.r =
0.16-0.18, which is close to the percolation threshold for
Gaussian fields and may be identified with the percolation level
of density fluctuations in the linear regime. Later the threshold
decreases in all models indicating the formation of elongated
anisotropic structures. In the n = — 1 model the threshold had
aminimum p, ,- _, = 0.04 at the redshift z ~ 2 and grew up to
the level 0.073 by the present time. The CDM and the
C + HDM simulations also show a minimum in p.(z) but at
about z=03 (p.cpm = 0035, p.ciupm = 0.022). The
minimum is quite shallow: in the CDM model the value
similar to the threshold at z = O was also at z = 2.7.

The threshold density at the percolation p, also varies with
time. In the linear regime the density threshold was slightly
greater than twice the mean density (p, = 2.2-2.4). As the fluc-
tuations enter the nonlinear regime, the density p, increases.
Approximately at the same time, when p,(z) has a minimum,
the density p, had a maximum which was different in different
models: Pec,c+HDM N 6O<p>s Pc,com X 55<p>’ Pen=-1 =
3.1{p). After passing the minimum, the density threshold
decreases. At z = 0 it is practically the same in the C + HDM
model p,. c+upm & 6.0{p); however, it is significantly lower in
other models: p. cpy = 3.3(pD, pen= -1 = 0.25(p).

Percolation in the mass distribution in the C + HDM model
simulated in a 100 Mpc box is illustrated in Figure 10. The
simulation has the same spatial resolution as in the 50 Mpc

Filling factor

F1G. 10.—Percolation in the mass distribution in the C + HDM model
simulated in a 100 Mpc box. Solid lines show the percolation parameters for
the full cube (5123). Dashed lines with error bars are the parameters averaged
over four slices of 128 cells thick ; and dot-dashed lines are averaged over eight
slices of 64 cells thick.

box, but occupies a larger volume. The percolation threshold
for the simulation was p. = 0.008-0.015, p, = (8-12)<{p). In
this simulation we studied percolation by splitting the box into
four or eight equal flattened parallelepipeds in addition to per-
colation in the full cube. Comparing two statistics we estimate
the percolation threshold p, = 0.008-0.026 with a slight indi-
cation that it is systematically higher in thinner parallele-
pipeds, which is not unexpected.

4.2. Galaxies

Dark halos, which were identified with galaxies, are not dis-
tributed identically to the dark matter. This was indicated by
the analysis of the correlation functions and velocities (Klypin
et al. 1992). Although dark halos are more strongly clustered,
even on large scales, it does not necessarily mean that the
distribution of galaxies (halos) is more filamentary than that of
the dark matter. The density threshold p, at percolation was
not very high: about 3—6 in the CDM and C + HDM models,
and even less than unity in the n = — 1 model. This may mean
that there are relatively low density dark matter “bridges,”
which link small numerous clumps to the largest ones and
which actually account for the fast growth of the percolating
cluster in the mass distribution. However, many of these
“bridges” do not have galaxies. As a result, in the galaxy
distribution the percolation may happen at larger filling
factors. There is also another cause for the difference in perco-
lation properties in the galaxy and dark matter distributions. It
is the noise due to the discreteness of galaxy distributions. As
we mentioned above, a distribution of pointlike objects
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(galaxies) must be somehow smoothed before clusters can be
formed. No matter how the smoothing is done (say, by using
filters on lattices, as we do, or by surrounding each galaxy with
a sphere as in the original percolation prescription), it results in
thicker structures and greater filling factors at percolation. The
effect is inevitable—this is the price for the lost information on
small scales.

Dekel & West (1985) were concerned that the percolation
threshold scales with the mean number of objects in a way
which depends on the dimensions of the underlying set.
Although their arguments were based mainly on the analysis of
overly simplistic toy models and they used different methods
for measuring percolation thresholds, we studied this effect in
our models.

Figure 11 shows the results of the percolation analysis of the
distribution of galaxies identified with the maxima of density
higher than 50¢{p). The constant threshold results in different
numbers of objects in different simulations. The difference
between the largest sample in the n = — 1 model and the smal-
lest one in the C + HDM model is about a factor of 3. Com-
paring the percolation thresholds obtained from the u? and p_,
statistics, we estimate p, as follows: p, ¢ ypy = 0.08, p. cpm =
0.11, p. ,— —; = 0.15 with the uncertainty about +0.02. The
thresholds were estimated by fitting the data with equation (2).
Although the difference between the CDM and C + HDM
models is not large, Figure 11 demonstrates that the perco-
lation analysis does distinguish the models. The same smooth-
ing filter was applied to 3200 randomly distributed particles,
which was close to the number of galaxies in the CDM simula-
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F1G. 11.—Percolation in galaxy distributions is shown: the C + HDM
model (solid line); three CDM simulations (dashed curve with error bars); the
n = —1 model (dot-dashed curve); and the Poisson distribution of 3200 points
(long dashed curve with error bars). The density threshold 50{p) or the mass
limit 2.5 x 10'® M, was used to identify galaxies in every model.
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tions. On the one hand, the percolation threshold of the sparse
Poisson distribution (p, = 0.28-0.32) is not much different
from the known value (p. = 0.31). But on the other hand, it is
significantly greater than in our cosmological models. We con-
clude that all three cosmological models are very filamentary
as well as that there is a significant difference in the percolation
properties between them.

The dependence of the percolation thresholds on the
number and the mass of galaxies is shown in Figure 12. the
density thresholds identifying galaxies were 50, 100, 200 in the
CDM model and 25, 50, 100 in the C + HDM simulation.
There is some indication that the curves may shift to the
smaller thresholds as the number of objects grows, but the
effect is obviously quite weak. Figure 13 illustrates percolation
in different models when the number of galaxies is kept almost
the same (N, = 4150-4250). We found the following thresh-
olds: p, c+upm = 0.06, p. cpy = 0.10, and p, ,_ -, = 0.16. The
difference between CDM and C + HDM models now looks a
little more distinct which is in a rough agreement with the
previous result. In this figure the number of galaxies in the
C + HDM model is 2.3 times greater than that in Figure 11.
Therefore, less smoothing is needed to reach the percolation
level of the filling factor. We conclude that although the effect
discussed by Dekel & West (1985) strictly speaking exists, it
does not seem to be very important in realistic models.

The analysis of voids in the galaxy distributions gave a result
similar to that for the mass distribution. Applying our smooth-

'5_T]I|[IIIIIIIII|1III_

I CDM

|

Mo
)
T T IIIHI I

1 lllllll

o
Y]
[

o]
I

1

|

.05

Hw
T T IIIH]

1 IIIIl]I

h

1

I

! 1
I

1

i

]

i /

.02 —

Pl
_01llf’ll/llllllllllllllll

0 1 2 3 4
Filling factor

F1G. 12—Volume of the largest cluster for the galaxy distributions speci-
fied by different masses and therefore having different numbers of galaxies.
Both the CDM and the C + HDM simulations had the same initial phases of
fluctuations. For both models the solid curves correspond to M > 2.5 x 10'°
Mg (Nepy = 3318, Neoypw = 1824); the dashed curves correspond to
M >5x10"" My (Nepy = 1640, N¢,ypy = 835); and the dashed-dotted
curves correspond to M > 1.25 x 101 M, (N, ypy = 4617), and M > 10'*
Mg (NCDM =751).
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F1G. 13—Volume of the largest cluster when the number of galaxies was
about the same. The solid curve shows the C + HDM simulation; the dashed
curve with error bars is for the CDM model (averaged over three realizations);

and the dot-dashed curve is for the n = — 1 simulation. The number of galaxies
is roughly the same: N = 4150-4250.

w

ing filter (see § 2) 20 times (thus, each isolated galaxy was
blown up to a cube of 40 cells in size), the stage when the
fraction of the volume in voids was only 40%, there was still a
percolating void, encompassed most of the empty cells. We
conclude that the galaxy distributions in the models in ques-
tion also do not look like thin walls separating large voids.
Thus, mathematical models, assuming that the galaxy distribu-
tions looks like thin walls separating voids (e.g., Voronoi
tesselation), are not very good approximations for the CDM or
C + HDM cosmological models. The CDM and C + HDM
models, rather, assume the existence of a system of thin fila-
ments, connected in “knots” where clusters of galaxies or
groups are located. However, walls (pancakes) can also be
present.

5. SUMMARY

We have developed a very fast numerical code allowing the
detection of percolation on three-dimensional cubic lattices in
parallelepiped regions, along with cluster analysis of both the
density and point/galaxy distributions. The code is based on
the algorithm published in Stauffer (1985). In the case of point
distributions, we suggested and tested a new very simple and
efficient smoothing technique allowing the study of percolation
in point systems using our percolation code.

In order to evaluate the percolation thresholds, we calcu-
lated two parameters characterizing the percolation transition
along with the direct detection of percolation. One of them is
U, the size (= volume) normalized to the size of the lattice (eq.
[3]), and the other u?, the weighted mean size of all clusters
excluding the largest one (eq. [4]). We found that both can be
used for the purpose of evaluating the percolation thresholds,
but for small lattices (less than roughly 64%) the former is some-
what less noisy. A very significant advantage of these two
parameters over the direct detection of percolation or the
diameter of the largest cluster is that they are much less sensi-
tive to the boundary effects.

As expected, we found that the percolation threshold in
square parallelepipeds (N? x M) increases with decreasing M:
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for example, it approaches the two-dimensional threshold
when M — 1 for the Poisson distributions. However, in the
Poisson distributions, which have no scale, for M = 8 the per-
colation threshold is only about 10% greater than in cubic
regions independent of N (except for the level of noise) in the
range 33 < N < 127. The change in percolation properties
through the transition from three-dimensional to two-
dimensional lattices is regular and can be easily taken into
account if asymmetric regions needed to be studied. This effect
is definitely present in the analysis of de Lapparent et al. (1991)
(at least when they studied the slices separately), resulting in
the increase of the percolation threshold. On the other hand,
using the scheme allowing connection with 26 neighbors
(compared to 6 in the standard percolation analysis) they defi-
nitely decreased the percolation threshold. Even the sign of the
net result is difficult to assess without additional analysis.

We studied percolation properties of three cosmological
models: CDM, C + HDM, and the power-law model with the
slope n = —1in the Q = 1 universe using N-body simulations.
Both the mass and galaxy distributions were studied. We found
that for all models the percolation thresholds evaluated by
different methods (direct percolation, the largest cluster, and
the mean size of all clusters except the largest one) give consis-
tent results.

The percolation thresholds of the mass distributions are sig-
nificantly different in the three models. As expected, the perco-
lation threshold in the C + HDM is the smallest p, = 0.023; in
the CDM model p, = 0.044; and in the n = —1 model p, =
0.073. Our estimate of uncertainty of the thresholds is +0.005.
All thresholds are significantly smaller than the Gaussian value
p. = 0.16. Therefore we conclude that as concerns the mass
distribution the percolation statistics measures the degree of
filamentarity and is able to distinguish between different
models.

The percolation thresholds in the simulated galaxy distribu-
tions are significantly greater than those in the mass distribu-
tions: p, = 0.06 + 0.02 for the C + HDM simulation, p, =
0.10 + 0.02 for the CDM simulations, and p, = 0.15 + 0.02 for
the n = —1 model. This is not surprising because the random
component is much higher due to a small number of galaxies in
the samples: from about 800-5000 on the 2563 lattice.
However, the percolation threshold is much less than p, = 0.28
corresponding to the sparse Poisson distribution of a similar
number of points. Therefore, we conclude that the simulated
galaxy distributions in both models are very filamentary.

The study of percolation through empty cells is a test on the
cellular structure. Our results suggest that neither mass nor
galaxy distributions in CDM or C + HDM models look like
large isolated voids separated by thin walls. However, this does
not exclude the existence of thin pancakes which do not make
a cellular structure or a system of isolated voids separated by
thick walls, of the kind briefly described above. In this case the
density threshold is quite low.

Estimating the percolation threshold in the CfA slices de
Lapparent et al. (1991) used a parameter f,,. which equals y,,
in our notation and f, corresponding p. However, we wish to
warn against a direct comparison of the results, because they
used a nonstandard scheme when linking cells.

Our analysis of the percolation properties of a few currently
popular cosmological models has shown the potential merits
and disadvantages of the percolation method. It also shows
additional features discriminating the models. However, to
make a practical prediction of the percolation properties of
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1 different cosmological models which can be compared with
observations one needs to make additional important steps.
More realistic catalogs should be simulated in larger volumes
including modeling a real selection function and a redshift
space. We are going to do this in a separate paper.
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the percolation code. We are grateful for the research support
from NSF grant AST 90-21414 and NASA grant NAGW-2923
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