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Abstract. Applying standard models of the formation and evo-
lution of cataclysmic variables (CVs) we synthesize theoreti-
cally the present intrinsic CV population in a self-consistent
way. This is done by combining published CV formation rates
with a large number of evolutionary sequences covering all pos-
sible initial configurations. The influence of different assump-
tions entering the determination of the birth rate and of different
prescriptions to compute magnetic braking is investigated quan-
titatively. As a main result we find that the detailed treatment
of the common envelope phase has little influence, and that the
most often cited prescriptions for magnetic braking give sim-
ilar distributions. A theoretically predicted observable period
histogram shows the principal effect of observational selection
and proves that a pronounced “period gap” exists in the distri-
bution of the total CV population when the disrupted magnetic
braking model is applied to describe the evolution of individual
CVs.
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1. Introduction

Cataclysmic variables (CVs) are short-period binaries consist-
ing of a white dwarf (WD) primary and a low-mass main-
sequence companion. The orbital distance is so small that the
secondary fills its critical Roche volume and transfers matter
through the inner Lagrangian point to the WD, which is — at
least in the absence of a strong magnetic field — surrounded by
an accretion disk (see e.g. Warner 1976). A possible evolution-
ary channel leading to such close systems involves a common
envelope (CE) phase after a dynamically unstable mass trans-
fer from a giant to an unevolved secondary (proposed for the
first time by Paczynski 1976). After the spiralling-in and the
ejection of the giant’s envelope, the core of the giant (the later
WD) and the more or less unaffected secondary form a close
(but detached) pre-CV (see e.g. deKool 1992, heréafter DK).
The transition to the semi-detached state of a CV and the sub-
sequent long-term evolution in the CV phase with mass transfer
from the secondary to the WD are both thought to be driven

by orbital angular momentum losses ./, caused by gravitational
radiation (GR; Kraft et al. 1962) and magnetic braking (MB;
see e.g. Verbunt & Zwaan 1981). In particular, some peculari-
ties in the observed period distribution of CVs (the “period gap”
between ~ 2 hand ~ 3 h, the “minimum period” at ~ 80 min.,
see e.g. Ritter 1990; Fig. 1 of Ritter & Kolb 1992) lead to the
disrupted magnetic braking model for the secular evolution of
CVs (Spruit & Ritter 1983; Rappaport et al. 1983), where it is
assumed that MB becomes abruptly ineffective when the sec-
ondary enters the fully convective state (for recent reviews see
King 1988; Ritter 1991). Although the fundamental ideas about
the formation and evolution of CV's were formulated for the first
time several years ago, the presently discussed refined models
still contain some poorly known parameters. As far as the evo-
lution is concerned, these are mainly the functional dependence
of the orbital angular momentum losses Jus due to magnetic
braking on system parameters (in the following referred to as
“MB law”), which up to now cannot be derived from first prin-
ciples, and the possible time-dependence of the WD mass. A
promising way to constrain such parameters involves the study
of collective properties of CVs: the comparison of observed dis-
tributions of global system quantities (like orbital period P, WD
mass M, secondary mass M;) with the corresponding theoret-
ically predicted observable distribution functions.

From the observational point of view, this requires the de-
termination of system parameters for a large number of CVs. At
present, the orbital period is known with sufficient precision for
~ 200 systems; the components’ masses are more difficult to
measure and thus known with lower accuracy in general and for
fewer systems (see e.g. Ritter 1990). Nevertheless, the steadily
increasing number of publications reporting observational work
on CVs shows that this situation is likely to improve in the near
future.

On the other hand, in order to arrive at theoretically pre-
dicted observable distributions — which is the aim of our work
— it is necessary to deal with a number of different problems,
summarized and arranged in a logical sequence by the following
three questions:

How many CVs form at a given time t and what initial con-
figuration do they have ? More precisely: If we define as a gen-
eration of CVs all those CVs born at the same time ¢ (within a
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certain time interval dt), the first problem consists of comput-
ing the distribution of each CV generation over a certain initial
configuration space (in other words: to determine the birth rate).

How does a generation of CVs evolve? Each generation
evolves, hence the present distribution of a generation today
differs from its initial distribution. Superimposing the contribu-
tions of all generations which have been born since the forma-
tion of our galaxy yields the intrinsic distribution of the present
population of CVs.

What fraction of the present population of CVs do we see?
Taking into account observational selection effects transforms
the intrinsic distribution into the (predicted) observable distri-
bution, which can differ significantly.

The lack of any quantitative model of the formation rate and
the impossibility to cover the whole initial configuration space
by evolutionary sequences of CVs applying available computa-
tional tools — which would have required a tremendous amount
of CPU-time — forced earlier work in this field to treat the prob-
lem with fairly crude approximations: Rappaport et al. (1983)
tried to arrive at a predicted P-histogram for CVs — later also
Hameury et al. (1990), but for AM Her stars only — based on a
quantitatively insufficient bipolytrope description of the secular
evolution. Both groups used only a few computed sequences and
combined them with very simple assumptions about the birth
rate and observational selection. The study of Ritter & Burkert
(1986) concentrated on observational selection and relied on an
even simpler treatment of CV evolution (where the secondary
is assumed to be always in thermal equilibrium, i.e. a ZAMS
star). Finally Shafter (1992) applied Politano’s results describ-
ing the CV formation rate (Politano 1988), but restricted himself
to the same simple treatment of the secular evolution as Ritter
& Burkert (for a further comment on Shafter see Sect. 5).

The detailed computations of the CV birth rate performed
by Politano (1988) and deKool (DK), together with the avail-
ability of the generalized bipolytrope model for the secondary
to describe the secular evolution (Kolb & Ritter 1992; hereafter
KR) enable us now to calculate for the first time a self-consistent
and (within the approximations of the model) complete intrinsic
CV population.

The empbhasis of this paper is on the second of the questions
formulated above: Section 2 solves the problem of transform-
ing the known birth rates to the present day CV population and
correcting for observational selection in a formal language. The
actual numerical procedures for computing intrinsic distribu-
tion functions and the underlying physical models are explained
in Sect. 3. The results — various intrinsic population models,
computed using different sets of input parameters (birth rates,
MB-laws) — are presented and compared in Sect. 4, where we
also show the main effect of observational selection. A summary
and discussion of important results and simplifications (Sect. 5)
conclude this paper.
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2. CV population synthesis: a formal approach
2.1. Determination of intrinsic distributions

We begin with a formal description of the problem to convert
given CV birth rates into intrinsic distributions by means of the
known secular evolution of CVs. The formalism is as general as
possible to allow its application on various quantities and prob-
lems. The treatment of comparable problems in some former
publications (Ritter & Burkert 1986; Ritter et al. 1991) is re-
stricted to special circumstances and results naturally from our
general description when applied to the situation in question (an
example is discussed at the end of this paragraph).

Consider the m-dimensional configuration space @ C R™
defined by a set of m system quantities Q1, . .., Q,, (like WD
mass, secondary mass, orbital period, . ..). A CV is represented
by the vector ¢ = (q1...9m) € @ consisting of the values
g; for the quantities @); in this system. The set @); should be
complete with respect to a certain underlying CV-model in the
sense that a newborn CV which appears in ) with a certain
initial configuration * = (z;...%y) € @ is unambiguously
identified by x and the time ¢ € [0, Tg] C R of its birth. Here
t is measured on a galactic time axis 7 defined such that at
7 = 0 our galaxy has formed, and that 7§ is its present age (i.e.
7 = T denotes the present). The subsequent secular evolution
changes the configuration of a CV and finally leads to the state
Y =(1...Ym) € Q of the CV today (at 7 = Tg) — hereafter
referred to as the final configuration.

More generally speaking, the secular evolution maps each
initial configuration (¢, ) to the corresponding final configura-
tion y, i.e. defines a mapping

ev : RxQ — @
tx) — y.

6]

The differential CV formation rate b(t,x) measuring the
number density of systems (per pc® in the galactic mid-plane)
forming at 7 = ¢ with the initial configuration @, per time in-
terval d¢ and intervals dz,...,dz,,, can be interpreted as a
distribution function on R X @,

b:Rx@Q — R
(¢, ) — blt, @),

2

describing the initial state of the whole CV population. At
present (7 = 1) the latter consists of

16

ng=//b(t,:c)d:c1...da:mdt

0 Q

3

systems per pc? in the galactic mid-plane. The mapping ev trans-
forms the distribution b into a new distribution 7,
n:Q — R

y — n(y),

Q)

describing the final state of the CV population — or, in other

words, the intrinsic distribution of the present population of
CVs.
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To perform this transformation we consider an extension of
ev, the mapping f

f RxQ — RxQ
t,x) — (2,9),

®)

where the additional variable z has to be chosen in such a way
that f is a one-to-one transformation, i.e. that the inverse map-
ping f~! exists and that f is differentiable (in the following we
shall assume that the mapping ev and the quantities @), are such
that an invertible and differentiable mapping like f always ex-
ists). Locally, in the vicinity of (¢, o), f can be approximated
by the Jacobian matrix Jy(to, o):

9z 0z ., 0z
ot 8.’1}1 amm
%ﬂ gu . du
t X oz
J¢(to, o) = ) " (6)
ot Oz OTm (to,x0)

Thus f maps the volume element dVy = dtdz;...dz,, sur-

rounding the point (¢, o) to a volume element — containing

the image (29, yo) — of size

dVC’? =dzdy; ... dym, = ldetJfI(two) dvgp . @)
If 7 denotes the distribution of the final state of the CV

population in the extended configuration space R x @), i.e. the

distribution resulting when b is transformed by the mapping f,

then the number of systems (per pc?) in dVp and mapped to
dvy is

dns = b(to, o) AV = (20, yo) AV . 8)

Using Eq. (7) this can be solved for 7i:

(2, y) = mﬁbﬂ} : ®
: AR RERN)

where the right hand side has to be taken at f~!(z,y) = (¢, ),
i.e. at the pre-image of (z, y) with respect to f. Finally, the m-
dim. distribution function n results from 7 by integrating over
the additional variable z:
n(y) = / u(z,y)dz . (10)

An obvious choice for z is the formation time ¢ itself. With
z = t the Jacobian of Eq. (6) simplifies to

o(y)
detJ(to, o) = 5051 )
etJ¢(to, o) o(x) (to,T0) "
and Eq. (10) reads
Ts b
[ b dt . 12
" 0/ 10)/0@)| | 414, -
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Let us now apply this formalism to a simple evolutionary
model: If the newborn CV is completely characterized by the
initial values for the WD and secondary mass, M; ; and M ;
(see below, Sect. 3.1), and if further the secular mean of the
WD mass remains constant throughout the evolution (as it is
the case if the binary loses all the transferred matter during nova
explosions), then M ; is a useful supplementary variable. With
x = (M, Ma;), y = (My, M) and z = M, ; the Jacobian
of Eq. (6) simply reduces to the derivative —OM,/dt < 0,
evaluated at the pre-image of (M ;, M;, M>), and thus is equal
to the mass transfer rate +M, = My(Ma;, My, M) < 0 in
a CV which has the secondary mass M, and was born with
(M, My ).

To understand this consider a CV with present secondary
mass M, (constant) WD mass M, and born at 7 = tg with
M, ; = M o. Let 7 denote the system’s age, i.e. today 7 = #( =
T —to. A change of ¢y to to+dt (but with fixed M; o) changes the
present secondary mass from M, to My+dM,; and is equivalent
to the change of the present system age from 7 to £y — dt, which
also leads to the new secondary mass M + dM,. Thus

_ oM,
ot

dM-
d—f (M o, My, My)
=

f="(Mi 0,My,Mo)
My (M, o, My, M) .

13)

The same interpretation is possible for all derivatives dy;/Jt in
the Jacobian matrix Eq. (6).

Accordingly, in our simple example the intrinsic distribution
is given by

M2,max

bl
n(Mla MZ) = |f (My i, M, M)

|Mo (Mo ;, My, My)|

dMy; (14)

2

where the integration bounds derive from the requirement
M,; > M, and from the stability criterion for mass transfer
in CVs (M ; < My max , see Sect. 3.1). Equation (14) is equiv-
alent to Eq. (6) of Ritter & Burkert (1986), where, however,
M, is assumed to be independent of M, ; and thus outside the
integral.

2.2. Observable distributions

The intrinsic distribution n(y) computed in the previous para-
graph is a distribution function of the CV number density n
per pc? in the galactic mid-plane. In contrast, the predicted ob-
servable distribution /V(y) has to be a distribution of the total
number of observable CVs. Both, n and N, are connected by a
volume integration in the real, physical space:

N(y) = / n(y) d(h) AV =: n(y) s(y) . (15)

Viy)
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Here the function d(h) describes the dependence of the CV
number density on the distance i from the galactic mid-plane,

e.g.

1/ h\?

with a typical scale height Hcy on order of 200 — 300 pc, see
Ritter & Burkert (1986). The volume V (y) is determined by
the maximum distance 7,ax up to which CVs with a configura-
tion y (i.e. a certain luminosity) can be detected. Clearly, 7max
depends in general on y and on the direction of observation
— V() is not just a sphere. As is obvious from Eq. (15), the
observable distribution N (y) can be obtained from n(y) by a
simple multiplication with the differential selection factor s(y),
which contains the whole information about observational se-
lection.

(16)

3. The numerical model

In the following, we briefly describe the birth rate models which
serve as an input for our study, the simplifying assumptions
about the secular evolution of CVs, and the numerical realiza-
tion of the concepts introduced in the previous section — a
procedure finally leading to a self-consistent intrinsic CV pop-
ulation model.

3.1. Formation of CVs, birth rates

Up to now, the only available computations of a differential CV
formation rate were performed by Politano (1988; for a short de-
scription see also Politano 1990; Ritter et al. 1991) and deKool
(DK). Both studies rely on the same analytical fits to results
from calculations of single star evolution on an extended grid
of stellar masses. Assuming a (constant) total star formation
rate and certain initial distributions for orbital distance, primary
mass and mass ratio gp in main-sequence binaries (where both
components are ZAMS stars) lead the authors then to a quanti-
tative determination of the outcome of the evolutionary channel
generating CVs. As usual, the complex CE-phase involved was
described by a single parameter acg, measuring the efficiency
of envelope ejection, thus fixing the orbital separation of the re-
maining close CV precursor. Subsequent operation of magnetic
braking (only if the secondary is not fully convective) and grav-
itational radiation was assumed to drive a system into contact
(for a full description of the input physics see Politano 1988 and
DK).

The prehistory of anewborn CV is generally short compared
to the nuclear timescale of the secondary, so we neglect effects
of nuclear evolution and assume that the secondary is initially
chemically homogeneous (with a standard Population I mixture,
X =0.70, Z = 0.02) and in thermal equilibrium. Accordingly,
the initial configuration of a CV is completely described by
the initial WD mass M ; and the initial secondary mass M, ;
(or, equivalently, the initial mass ratio g; = M, ;/M,;) — via
the mass-radius relation for ZAMS stars, Roche geometry and

U. Kolb: A model for the intrinsic population of catalysmic variables

Fig. 1. Surface plot depicting the CV birth rate log b(log M, ;, log g;)
computed by Politano (1988) as a function of the initial WD mass M
and the initial mass ratio i = M ;/Ma, in arbitrary normalization.
There are two ridges visible along lines of constant secondary mass
(M = 0.37TMo and M>; = 0.085M¢); both are purely numerical
and indicate the onset of magnetic braking and the low-mass end of
the ZAMS, respectively

Kepler’s third law. We furthermore assume for simplicity that
the CV formation rate b was at any time the same as at present,
ie.

0b/0t=0; bt,x) = (TG, x) ; = (M, M) . a7

As an example, Fig. 1 shows model Pol (see Table 1), the
formation rate as computed by Politano (1988). The two most
remarkable features — both leaving signatures in the resulting
CV population models to be discussed below — of such a dis-
tribution of newborn CVs are: a) the separation into two dis-
tinct groups comprising the systems with low-mass He-WDs
(M ; < 0.46Mg) and high-mass C/O-WDs (M} ; 2 0.51Mg;
O/Ne/Mg-WDs are not considered separately); b) the fact that
for a given M, ; the birth rate is largest in the vicinity of the
maximum possible value Mj yqx for M ;.

The gap in M;; is a relic of the binary’s prehistory and
reflects the difference between the core mass (the later WD
mass) of a primary which succeeds in filling its Roche lobe
for the first time just before the onset of He-burning, and of a
primary which is slightly too small at that time, thus filling its
Roche lobe not until the beginning of its AGB phase (see e.g.
DK). The maximum mass M> max, On the other hand, is due to
stability requirements for the mass transfer in CVs, which can
be approximated by

0.8 for M,; > 0.8Mg

Ml’i > LN
@it ¥ 1.5 for My, < 0.8Mg

M, ;

)

18)

(e.g. Politano 1988). To provide a smooth transition of e in
the regime 0.5 < M, ;/Mg < 0.8 Politano improved this sim-
ple criterion according to calculations performed by Hjellming

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993A%26A...271..149K

FI9O3ACA 7771

U. Kolb: A model for the intrinsic population of catalysmic variables

10 ___I ‘ T TT T T T l 1T l T T T I T T ]_-‘
of ]
5 6f .
@) C ]
- r ]
2F =
O;l l | |_-
-—l—[ T l-
2L -
a0 F ]
a0 ~4 .
ot ]
_6_ —]
-I I 11 | | - ‘ [ - l - l |-} |'
0 0.2 04 06 0.8 1

log P [h]

Fig. 2. Upper frame: The secular evolution of a CV born with
M, = 1.0Mg, M, = 0.9My, computed with the bipolytrope code
and assuming the MB-law VZtotal (see Table 2). Plotted is the sys-
tem’s age ¢ (in 10° yr) as a function of orbital period (in h). Lower
frame: The corresponding distribution function g;(log P) as defined
in Eq. (29) for the sequence shown in the upper frame (full line), and
for a corresponding sequence computed with a full stellar evolution
code (sequence no. 1 of KR; dotted), both in arbitrary normalization.
Systems in the detached phase do not contribute to g;

Furthermore, if the formation rate b does not depend on ¢
(as it is assumed in our study, see Sect. 3.1), then g;(log P)
is proportional to the slope of the graph (or, more precisely,
to the sum of the slopes over all branches of the graph) in a
diagram where the age of a CV born with (M, 3, M5 ;) is plotted
as a function of log P (see Fig. 2). This is also obvious from
physical arguments: a high “velocity” |P| in period space is
equivalent to a low occupation probability

P

g1(log P) —
1P|

1
ldlog P/dt] > 29

in a given period bin.

As an example Fig. 2 plots in the upper frame the relation
t (log(P/h)) for an evolutionary sequence computed with the
bipolytrope code, and in the lower frame (full line) the re-
sulting distribution g;(log P), adopting an arbitrary value for
b(M i, M> ;). The dotted line represents sequence no. 1 of KR,
obtained with Mazzitelli’s full stellar evolution code, and proves
once again the satisfying overall agreement between results of a
full stellar evolution computation and the calibrated bipolytrope
approximation. The logarithmic scale for g; allows to account

155
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Fig. 3. The distribution function g(log P), defined in Eq. (30), for
M; = 1.0Mp, 0.1 < M ;/Mp < 1.0, MB-law VZtotal, assuming
the formation rate model bConst (upper frame) and Pol (lower frame).
The normalization is arbitrary

for the difference in evolutionary time scales above and below
the period gap.

By comparing the upper and lower frame of Fig. 2 the main
features of g; (log P) become immediately obvious: the “spikes”
at the minimum period and at turn-on of mass transfer below
the period gap (in both cases P = 0, hence g;(log P) — oo; due
to the finite resolution of the histogram in Fig. 2 the g;-value
remains finite); and the step at log(P/h) = 0.15, characterizing
the end of the evolutionary sequence after arriving at an age of
100 yr. The computation with the full stellar evolution code was
pursued only up to an age of 5.5 10° yr, so that the correspond-
ing step in g; is at a lower P. Above the period gap one has to
be careful when interpreting the detailed structure of g;(log P):
the local maximum at log(P/h) = 0.63 is a numerical artefact
of the bipolytrope description, caused by the transition of the
central polytropic index cpn from the steep part of the calibra-
tion curve cpn(M,) to the asymptotic flat part for small M, (see
Fig. 5 in KR). This transition manifests itself also as a local
maximum of the mass transfer rate in sequences computed with
the bipolytrope code, a feature not present in the corresponding
sequences computed with a full stellar evolution code (see e g
Figs. 8 and 9 in KR, at P/h = 4.5 and at log(t/yr) =~
respectively).

Figure 3 shows the distribution

g(log P) = / illog P, Mg, My dMa, | (30)
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Fig. 4. The intrinsic period distribution n(log P) for models pm1 (upper
frame) and pm3 (lower frame), see Table 3. The dotted line in the lower
frame shows the contribution of CVs with He-WDs. The function n
results from a superposition of the subdistributions g,(log P) for all
possible values of M, ; (see Fig. 3) and is not normalized

i.e. the superposition of all subdistributions g;(log P) belong-
ing to a fixed value M;; = M, but to different initial sec-
ondary masses, assuming the formation rate model bConst (up-
per frame) and Pol (lower frame). The “period gap” of g; be-
tween log(P/h) =~ 0.37 and ~ 0.51 due to systems in the de-
tached phase is now partly filled up by young systems, which are
born in this period interval and still located there. However, for
log(P/h) > log(Peir/h) = 0.4675 the gap population is much
smaller than for log(P/h) < 0.4675, because secondaries with
initially small radiative cores react like their fully convective
counterparts in adiabatic response to mass transfer with an ini-
tial expansion, leading to an increase of the orbital period until
thermal relaxation restores the usual secular trend P < 0. The
extent of the excursion towards longer P is roughly proportional
to the angular momentum loss rate (for a detailed discussion
see Ritter & Kolb 1992) and thus larger by a factor ~ 20 for
log(P/h) > 0.4675 — actually so large that CVs leave the in-
terval 0.47 < log(P/h) < 0.51 within only ~ 107 yr towards
longer periods, hence keeping this region “clear” of systems
(see Fig. 8, and also Fig. 2 of KR).

Finally, Fig. 4 depicts the period distribution n(log P) of the
total present CV population (within the restrictions and sim-
plifications of Sect. 3), i.e. the superposition of all subdistri-
butions g,(log P) for all possible WD masses, assuming the
formation rate prescription bConst (upper frame; model pm1)

U. Kolb: A model for the intrinsic population of catalysmic variables
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Fig. 5. The intrinsic distribution function n(log M) of the mass transfer
rate M = | M| (in Meyr™") for models pm1 (upper frame) and pm3
(lower frame), see Table 3, not normalized. The dotted line in the lower
frame shows the contribution of CVs with He-WDs

and Pol (lower frame; model pm3), see Table 3. The distribu-
tion of model pm1 is clearly smoother than the one of pm3;
that is simply because in the former all CVs contribute with
equal strength, whereas in the latter systems born with the high-
est possible secondary mass dominate (see Sect. 3.1), so that
structures in the corresponding subdistributions are preserved
in n(log P). The general increase of n towards shorter orbital
periods also has a simple explanation: only very young CVs
born with high P-values populate the region of the longest peri-
ods; towards shorter periods one finds not only the young CVs
born there, but also older systems descending from longer peri-
ods. The local maximum of g;(log P) at log(P/h) =~ 0.63 (see
above) is not smeared out in the total distribution n, since all
subdistributions extending beyond log(P/h) = 0.63 show this
numerical artefact at almost the same period. As Fig. 4 shows
a pronounced “intrinsic period gap” restricts itself to the in-
terval 0.47 < log(P/h) < 0.50, although the period range of
the detached phase of CVs born with high initial secondary
masses, 0.37 < log(P/h) < 0.51 (see Fig. 2; the borders de-
pend slightly on the WD mass), is still visible.

4.2. The intrinsic distribution of mass transfer rates

The analysis of the period distribution outlined in the previous
paragraph can be applied in a similar way to the distribution of
mass transfer rates M. The results of such a population synthe-
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Table 1. Parameters of the different CV formation rate models

153

T

model bs/pc?yr~ ' acg  go-distribution remarks

Pol 1.05- 1077 1 qgo = 1 strongly preferred

dK1 370-1072 1 go = 1 preferred

dKlin 11.5-10712 1 independent choice

dK03in 8.77-107'2 0.3  independent choice

bConst - - - b(log M, ;,log M> ;) = const.

M2max - - - b(log M1, log M> ;) = bo6(log M> ; — log M> max)

(1989) when computing model Pol (Politano, private commu-
nication).

A different computational technique (a Monte Carlo ap-
proach) enabled deKool to investigate easily the influence of
various parameters on the CV formation rate; therefore, we
have available three more models for b(M ;, M, ;), namely dK1,
dK1in and dK03in (see Table 1), which are the “standard mod-
els” 1, 3, and 4 defined in DK, apart from the fact that the origi-
nal MB-law according to Verbunt & Zwaan (1981) was applied
(deKool, private communication) — instead of the modified
version used in DK and in Politano (1988).

In particular, these additional birth rate models allow the
investigation of the influence of acg (acg = 1 in dKlin, acg =
0.3 in dKO3in) and of the gop-distribution (a strong preference
of gy = 1 in dK1, and the independent choice of primary and
secondary mass in the main-sequence binary from the same
mass function in dK1in). Model dK1 is similar to model Pol
(where the preference of gy = 1 is even stronger) and yields,
apart from the normalization, no significant difference in the
resulting intrinsic CV populations.

We complete the set of birth rate distributions by two artifi-
cial, extreme cases: model bConst assumes a constant value for
b(log M, ;,log M3 ), i.e.

ob -0 ob -0
along,i - 610g M2,i -
for —0.6 < logM,;;/Mg < 0.15 and 0.1 < M,;/Mg <
M max (b = 0 elsewhere), whereas in model M2max all CVs
are thought to be born with the largest possible secondary mass
M max = M i/ qeric allowed by the stability criterion (18), i.e.

ob
Olog M, ;

(19)

=0, b(log My ;,log M, ;)

X 6(10g M2,i - 10g MZ,max)- (20)

Table 1 summarizes our 6 birth rate models and the main
input parameters in which they differ. The second column lists
the total birth rate
b= [ [ 00015320 bz by @)
as a surface number density of CV systems, i.e. the number den-
sity integrated perpendicular to the galactic plane. The original
data of deKool consisted of CV number densities in the galactic
mid-plane; we used Eq. (16) with Hcy = 250 pc to obtain the
value by in Table 1 (however, note that we don’t make use of
by in our purely differential study).

3.2. Secular evolution

The different birth rate models serve as an important input for
our CV population synthesis. They are combined with compu-
tations of the secular evolution of CVs in the following way:
Instead of solving the integral Eq. (10) we explicitly execute
the mapping ev defined in Eq. (1) by covering the 2-dim. initial
configuration space with a mesh (M ;, M2,i)j , and computing
for each grid point the corresponding secular evolution. In view
of CPU-time limitations, the large number of evolutionary se-
quences required can be achieved only if a simplified model for
the secular evolution is applied. The generalized bipolytrope
model for the secondary (see KR for any details) proves to be
a suitable tool: calibrated to a full stellar evolution code (in our
case Mazzitelli’s code, see e.g. Mazzitelli 1989) it succeeds in
reproducing the time evolution of all quantities of interest for
our study with an accuracy < 5% when compared to results
obtained with the full code (for an extended discussion of the
limtations of the bipolytrope model see KR). Unfortunately, it
is not possible to treat high-mass secondaries (2 1Mg) within
the bipolytrope approximation, mainly because for these the
convective envelope becomes too small (see KR). Accordingly,
the coverage of the initial configuration space is restricted to
systems with M, ; < 1.0M and we miss ~ 20% of the total
CV population (see Sect. 5).

The adopted calibration of the bipolytrope code (the same as
in KR) leads to the value Mcony,0 = 0.3655M, for the limiting
stellar mass where ZAMS models become fully convective. A
CV with this secondary mass would turn on mass transfer at the
“critical” orbital period log(Pe/h) = 0.4675.

Magnetic braking Jy is assumed to operate only in case of
secondaries with a radiative core, otherwise we use gravitational
radiation as the only sink of orbital angular momentum. We in-
vestigate the influence of the MB-law by applying four different
prescriptions (summarized in Table 2): the semi-empirical ap-
proaches according to Verbunt & Zwaan (1981) and according
to Mestel & Spruit (1987; see also Hameury et al. 1988) with the
values fyz = 1 and nys = 1.2, pms = 1 for the free parameters,
respectively, a modified Verbunt & Zwaan law where only the
convective envelope’s moment of inertia enters (instead of that
of the whole star, see Eq. (2) of KR), and an artificial case with
J/J = constant.

Again for simplicity (and subject to future generaliza-
tions), we keep M constant throughout the evolution, assuming
that the system loses all the transferred matter during nova-
explosions with the WD’s specific orbital angular momentum
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Table 2. Parameters of the different MB laws

model free parameters reference

VZtotal  fvz =1, 1y = g onml Verbunt & Zwaan 1981

VZconv  fvz =1, 7 = rgconv Eq. (2) in KR

MS nms = 1.2, pms = 1.0 Mestel & Spruit 1987;
Hameury et al. 1988

JConst (J/J)=-5.7-10"yr"

(observations and nova theory tend indeed to favour (M;) = 0,
see e.g. Hameury et al. 1989 and Sect. 5) —equivalentton = 0,
v = M,/M; in Egs. (3) and (4) of KR.

The mesh covering the initial configuration space consists
of ~ 50 x 200 equidistant grid points in the direction of M ;
and M, ;, respectively. For each grid point we computed the
secular evolution of the corresponding newborn CV up to an
age of Tg = 10'° yr and stored all essential quantities of the
evolutionary sequence in a table comprising 200 — 400 time
grid points, distributed according to evolutionary requirements.
Each entry in such a table belongs to a certain system age
and can be interpreted as the final (i.e. present) configuration
of a CV bomn at time t = Tg — t € [0, Tg], contributing to the
intrinsic distribution n with the weight b(M, ;, M, ;). From this
data set we explicitly record n as a function of the variables
y = (log M, log M>, log P,log M), i.e. n is a 4-dim. distribu-
tion function (M := |Ma| denotes the mass transfer rate). Any
subdistribution, e.g. the period distribution, can be obtained by
a simple integration over the remaining variables. The specific
choice for y is such that the inclusion of observational selection
effects is as easy as possible.

3.3. Observational selection

Although we refrain from discussing any detailed model of ob-
servational selection, we wish to demonstrate its principal impli-
cations. For that purpose we consider the simplest conceivable
model: a magnitude limited sample taken from a CV population
which is uniformly distributed in physical space. The maximum
distance up to which a system can be observed from earth is as-
sumed to be determined by its bolometric accretion luminosity

GM]M2
R,

(R, is the WD’s radius, G the constant of gravitation); the ob-
servable volume then scales with Lgc/f .

Accordingly, we will show below (Sect. 4.5) a predicted
observable CV distribution /N (y) computed with

M. . 3/2
s(y) (Ellel)

for the differential selection factor s defined in Eq. (15).

Laee = — (22)

(23)

4. Results: a comparison of population models

This section presents the resulting intrinsic CV “population
models” (designated by “pmj”, where j = 1,...,9, see Ta-
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ble 3, Sect. 4.4) for different combinations of the parameters
introduced in Sect. 3.

To facilitate the following descriptions, we will refer to sys-
tems passing their intermediate phase without mass transfer sub-
sequent to the secondary’s transition to the fully convective state
as “systems in the detached phase”. Note that these are not CVs,
since the latter are semi-detached by definition. Moreover, we
denote the period at which a system enters and leaves the de-
tached phase by P, and H, respectively. _

A qualitative understanding of the intrinsic distribution
functions is best provided by means of a step by step synthesis
of the intrinsic period histogram, as demonstrated in the next
paragraph.

4.1. The intrinsic period distribution

For a slightly different application of the formalism developed
in Sect. 2 we define the mapping

[ I — F

: 24)
(ta Ml,i) Mz,i) L (Pa Ml,i7 Mz,i)

from an initial configuration space / (with the variables ¢, M ;
and M, ;) to the final configuration space F, consisting of P,
M, ; and M, ;, where P is the present period of a CV born with
initial masses M j, M» ; att € [0, 1g]. With regard to M, ; and
M, ; the mapping f is just the identity. Since a specific CV may
cross the same period P twice (e.g. after passing the minimum
period, or during the phase of turn-on of mass transfer, when
thermal relaxation supersedes the initial adiabatic response of
the secondary, see KR), f is not invertible. Nevertheless, f can
be reduced to a finite number L € IN of branches f;, defined
on certain subsets [; C I of the initial space I:

fiiLcl—F, l=1,...,L. 5)

Each f; isinvertible, and the sum over all branches f; restores the
original mapping f. Following the ideas of Sect. 2 and taking
into account the Jacobian

oP

detJy, (to, My i, M) = o

(26)

(to, M\ ,i, M ;)

of fi in (¢o, M1, M>;) we obtain for the period distribution
n(P)

n(P) = / [, vy ant b @7
where
b
(P, My ;, Ma) = ————' (28)
l ; laP/at' fl—l(P,Mn,inz,i)
Thus, if the subdistribution

g1(log P) := #i(log P, M, i, M> ;) is considered as a function of
log P for a given set (M, M, ;), the P-distribution n(log P)
can be interpreted as the superposition of all subdistributions
g1(log P) for all possible sets of initial values (M, ;, M ;).
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sis for models pm1 and pm3 are shown in the upper and lower
frames of Fig. 5, respectively. The distribution falls clearly into
two parts, one with high and one with low M-values — re-
flecting the different time scales of orbital angular momentum
losses (which drive the mass transfer) of systems above and
below the period gap. The “ripples” showing up in the region
—-8.5 < M/Mgyr~' < —8.0 are again related to the prop-
erty of the bipolytrope description leading to a local maximum
M max of the mass transfer rate in evolutionary sequences around
the orbital period P/h =~ 4.5 (Fig. 8 of KR). Accordingly, the
corresponding subdistributions g;(log M) o< |M /M| grow to
infinity at M = Mpayx (M =0 = g; — 00).

On the other hand, the broad absolute maximum of n(log M)
for model pm1 at log(M /Mgyr—') ~ —10.3 is real and be-
longs to CVs located below the period gap, but still above the
minimum period. This phase of the secular evolution is charac-
terized by an almost constant mass transfer rate (M ~ 0 = g,
large), depending almost solely on M;. The spread in M, thus
translates into the width of that maximum. The missing WDs
between the low-mass He-WDs and the high-mass C/O-WDs
in a realistic distribution of birth rates (Fig. 1) cause the central
dip at log(M /Mgyr™!) ~ —10.4 in the maximum of model
pm3, leaving two distinct peaks (the left one belonging to the
He-WDs, as the dotted line in Fig. 5 indicates).

The linear part of log n for log(M /Mgyr—) < —10.6,log n
o —alog M +b, a~ 1/2, finally represents the secular evolution
beyond the minimum period Pp,, where M rapidly decreases
with time. Each contributing subdistribution g; discontinously
drops to 0 at a smallest mass transfer rate characterizing the old-
est CVs born T = 10'° yr ago. The smooth edge of n(log M)
near log(M /Mgyr~!) ~ —12 results from the dependence of
this lower limit for M on (M ;, My ).

4.3. Further intrinsic subdistributions

For completeness we show in Fig. 6 the intrinsic distribution of

secondary masses for models pm1 and pm3, and list — without

further discussion — some characteristic features of n(log M>):
log(M,/Mg) ~

-0.3 local maximum due to bipolytrope model

-0.4371 limiting mass Mcony,0

-0.58 limiting mass M.,y , Where secondaries
of CVs born with large M, ; become
fully convective

-1.15 M, at minimum period Py,

The remaining 1-dim. subdistribution n(x) of the com-
puted 4-dim. distribution n(M;, M,, P, M) not yet discussed
is the one of the WD mass. However, since we assume
M; = const. throughout the evolution, the present intrinsic
M -distribution is the same as the one of newborn CVs, i.e.
n(My) o< [ b(Mj;, M, ;) dM, ;. A representation of such a dis-
tribution can be found in DK (Fig. 7).

An interesting view on the 2-dim. subdistribution
n(log P,log M) for model pm3 over the log P-log M-plane
(Fig. 7), the preferred diagram in the context of secular evo-
lution, concludes the discussion of the shape of various sub-
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Fig. 6. The same as Fig. 5, but for the distribution function n(log M>)
of the secondary mass

distributions. It is instructive to compare this figure to Fig. 8,
where evolutionary tracks of CVs in the log P-log M-plane are
shown, tracks along which the subsets of the present CV popu-
lation with the corresponding (M) ;, M ;)-value are distributed.

4.4. Differential comparison of population models

In the following we investigate the influence of different CV
formation rates (as tabulated in Table 1) and different MB-laws
(Table 2) on the resulting CV population.

Table 3 summarizes the nine population models to be dis-
cussed below and lists relative “occupation numbers” N;/Nx
of various period intervals ¢. These intervals are defined with
respect to the region 0.37 < log(P/h) < 0.51 (enclosing the
detached phase of CVs born with a 1Mz WD and high sec-
ondary mass), which we call — somewhat arbitrarily — the “pe-
riod gap”. It will turn out below that this interval is approxi-
mately the gap in the predicted observable period distribution.
Hence, N, denotes the number of CVs above the period gap
(i.e. with log(P/h) > 0.51), N, the number of CVs below the
period gap (log(P/h) < 0.37), and Ny, the number of (semi-
detached!) CVs within the period gap (0.37 < log(P/h) <
0.51). The total number of CVs in the population model is thus
Ny, = N, + N, + Ny. Finally, Ny denotes the total number
of systems presently situated in the detached phase (/Vy is not
included in Ny).

In general, the occupation numbers obey roughly the relation

Ny i Nip : Npy=05:05:99. (€29)
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Table 3. Summary of the population models; see text and Tables 1, 2 for further

explanations. The last column gives an internal model number.

model birthrate MB-law N,/Ns Ni/Ns Ny/Ns Ng/Ns internal
pml bConst VZtotal  0.0035  0.0093 09872  0.0266  D1/M003
pm2 maxM2 VZtotal  0.0105  0.0050 0.9845 0.0886 D-/MO13
pm3 Pol VZiotal  0.0047  0.0052 0.9901 0.0385 D2/M002
pm4 dK1 VZtotal  0.0045  0.0066 0.9889  0.0400  D3/M007
pmS dKlin VZtotal ~ 0.0020 0.0074  0.9906 0.0186  D5/MO009
pm6  dKO3in  VZtotal 0.0021  0.0089 09890 0.0184 D6/M010
pm7 Pol MS 0.0051  0.0052 0.9897  0.0396  D9/MO006
pm8 Pol JConst 0.0059  0.0052 0.9889 0.0400 D10/MO012
pm9 Pol VZConv  0.0087  0.0053 09860 0.0343  D8/MO005

Fig. 7. The 2-dim. intrinsic distribution n(log P,log M) over the
log P-log M-plane for model pm3 (see Table 3), not normalized

T T
-8 _
T . :
S A
CO : ]
= ol E _
5 | = -
~ i | ]
= [ i 7
o 10‘ i ]
w U P B
L i l |
L i [ i
i | | i
R T I TP W TR PN SRS T PR N

0.4 0.6
log P [h]

Fig. 8. Evolutionary sequences of CVs in the same plane as in Fig. 7,
computed with Mazzitelli’s stellar evolution code and assuming the
MB-law VZtotal (M, = const. = 1.0Mg). The sequences differ in
the initial secondary mass (those with M,; < 0.9Mg are already
published in KR): M,; = 1.2M¢ (full line), 0.9Mq (long dashes),
0.6M (short dashes), 0.4M¢ (dotted), 0.36 M, (dash-dotted). The
vertical line at P ~ 2.16 h marks the critical period Pey

For realistic population models Ny is on the order of a few
percent (Ng/Nyx, = 2 —4%), and =~ 70% of all CVs are beyond
the minimum period.

To account for the small ratio N,/N, we choose the fol-
lowing ““scaled” representation of the resulting intrinsic distri-
bution of orbital periods (the most important one in view of
observational constraints, and thus the only one shown here for
all population models; sometimes we use the notation 7pm; to
address the period distribution of model pmj): we divide the
period range at the critical period log(P./h) = 0.4675 and
normalize the function n according to
/ n(log P)dlog P =1 (32)
in each part separately. In other words: above P the function
n is multiplied by a certain amplification factor af > 1 with
respect to the normalization of n below Pg. The value for a f
is given in the corresponding figure caption.

4.4.1. The influence of the birth rate

For reasons which will become obvious, we begin our discus-
sion with a comparison between population models pm1 and
pm?2 (Fig. 9), which are based on the artificially chosen, very
simple (but extreme) descriptions bConst and M2max for the
CV formation rate (see Table 1). The period distribution of pm1,
already discussed in Sect. 4.1 (Fig. 4, where itis shown onalog-
arithmic scale), is characterized by its overall very smooth shape
(full line in Fig. 9). In contrast, model pm2 (dotted line) ex-
hibits edges and small discontinuities, reflecting structures from
individual subdistributions belonging to a fixed (M ;, M, ;)-
value. These stand out so clearly because for each value of
M ;i only one evolutionary sequence with My ; = My max(M )
contributes to the total distribution, and a comparatively coarse
M ;-grid was used to generate model pm?2.

The main differences between the models clearly arise from
the lack of CVs with small initial secondary masses, in other
words, from the relative dominance of high-mass CVs in pm?2.
Consequently, the period distribution of pm2 — when compared
to pml — shows a larger ratio N,/N, (see Table 3) and is
less concentrated above the period gap towards shorter peri-
ods. Moreover, below the period gap the “oldest” CVs are miss-
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Fig. 9. The influence of the initial secondary mass spectrum: the scaled
intrinsic period histogram for the population models pm1 (full line;
af = 277, birth rate bConst) and pm2 (dotted; af = 93; birth rate
M2max). A vertical line indicates the position of the critical period
log(Perie /h) = 0.4675, the quantity a f denotes the amplification factor
for n above Pyt (see text for an explanation of the scaled plots)
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Fig. 10. The influence of the initial WD mass spectrum: the scaled
intrinsic period distribution for certain subgroups of model pml:
CVs with M;; < 0.33Mg (full line; af = 1) and CVs with
M ; > 0.50M (dotted line; af = 207). See also Fig. 9

ing, which now have the smallest secondary masses and which
are responsible for the extension of the branch of n(log P) be-
yond Py, towards longer orbital periods. The local maximum
of npmy at log(P/h) ~ 0.3 and the adjoining period interval
0.15 < log(P/h) < 0.30 characterized by Onpmz/dlog P > 0
(as compared to Onpmi/0log P ~ 0 in this region) result from
the fact that there is a smallest allowed initial secondary mass
in pm2, corresponding to the smallest WD mass where b # 0.
The extreme model populations pm1 and pm2 provide infor-
mation about the influence of the initial secondary mass spec-
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Fig. 11. The influence of acg: scaled intrinsic period distribution for
model pmS5 (full line; af = 501; acg = 1) and model pm6 (dotted;
af = 476; acg = 0.3), see also Table 3 and Fig. 9
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Fig. 12. The influence of the go-distribution: scaled intrinsic period
distribution for model pm4 (full line; a f =219; go = 1 preferred) and
model pm5 (dotted; af = 501; independent choice), see also Table 3
and Fig. 9

trum. In order to demonstrate the role of the initial WD mass
spectrum Fig. 10 depicts two subdistributions of pm1: systems
with low-mass WDs, M ; < 0.33Mg (“He-WDs”; full line),
and systems with high-mass WDs, M;; > 0.50M (“C/O-
WDs”, dotted line). The former are not present above the pe-
riod gap, since in that case the stability criterion forbids initial
secondary masses M ; > Mcony 0. Below the period gap both
groups leave clear signatures in the period distribution, above
as well as beyond the period minimum: the branch above Py,
is characterized by dn/dlog P < 0 and dn/dlog P 2 0 for
low-mass and high-mass WDs respectively, whereas the broad
peak of the branch beyond Py, is shifted towards longer or-
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bital periods for high-mass WDs (i.e. larger values for Ppin,
but also longer periods for the oldest CVs born 10 yr ago
and now far beyond Pp;,). In the case of low-mass WDs the
spike at Ppin belonging to subdistributions for individual M, ;-
values (n «x P/ P — o0) remains visible in the integrated
P-distribution.

We now turn to a more realistic prescription of the formation
rate b and investigate in particular the influence of the CE pa-
rameter acg and the initial gy-distribution of the main-sequence
binaries on our computed CV population.

Figure 11 depicts the P-distribution of model pm5 (ocg =
1, full line) and model pm6 (acg = 0.3, dotted line), based
on birth rate models dK1in and dK03in — see Tables 1 and 3.
Obviously, the P-distribution is not sensitive to a,cg. The main
consequence of reducing acg is to reduce the number of He-
WDs (see DK, Figs. 7¢,d); hence a transition from pm5 to pm6
weakens the contribution of the subdistribution belonging to He-
WDs and thus shifts the maximum of the branch of n beyond
P, towards longer orbital periods and increases (flattens, i.e.
makes it less negative) the slope 9n/91log P of the branch of n
above Py, see Fig. 10 and the discussion above. This explains
the marginal differences between pmS5 and pm6 below the period
gap.

Finally Fig. 12 attends to models pm4 (full line) and pm5
(dotted line) which differ in the initial gy-distribution of main-
sequence binaries (whereas both populations are computed with
ace = 1, see Table 3). As can be seen from Figs. 6a,c and 7a,c
in DK, the main effect of changing the gy-distribution from the
case where gy = 1 is preferred (pm4) to the case with the inde-
pendent choice of primary and secondary mass (pmS5) concerns
the resulting secondary mass spectrum of a newborn CV gen-
eration (the WD mass spectrum is much less sensitive): in the
former case the CVs with high initial secondary mass dom-
inate, in the latter the secondary masses are more uniformly
distributed. This provides an immediate explanation for the dif-
ferences between npms and npms — which are qualitatively the
same as between pm2 and pm1 (Fig. 9), namely a larger ratio
N, /Ny, aless strongly concentrated distribution towards shorter
periods above the gap, and a shift of the broad peak beyond Ppn
towards smaller P-values (when pm4 is compared with respect
to pm9).

4.4.2. The influence of the magnetic braking law

The previous paragraph dealt with CV population models con-
structed by means of a “standard” prescriptions for computing
Jusg, the Verbunt & Zwaan law with fyz = 1 (model VZtotal in
Table 2). We now wish to compare four competing MB-laws and
keep the birth rate b (model Pol, see Tablel) fixed. This proce-
dure introduces a minor inconsistency, since magnetic braking
also enters the computation of the CV formation rate. However,
numerical experiments show that changing the functional de-
pendence of the angular momentum loss rate (within reasonable
limits) has little effect on b (DK). In line with this finding is the
close similarity of our population models pm3 (based on Poli-
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Fig. 13. The influence of the MB-law I: scaled intrinsic period distribu-
tion for model pm3 (full line; a f = 212; MB-law VZtotal) and model
pm7 (dotted; a f = 193; MB-law MS), see also Table 3 and Fig. 9
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Fig. 14. Secular evolution with different MB-laws. The run of | Jus /J|
(in 10~%yr~!; upper frame) and the mass transfer rate log M (in
Mgyr~!; lower frame) as a function of secondary mass M, (in M)
for three different evolutionary sequences, computed with the bipoly-
trope code and based on different MB-laws (Table 2): VZtotal (full
line), MS (dotted), JConst (dashed), as for models pm3, pm7 and pmS8,
respectively (M, = 1.0Mg, M, ; = 0.9M for all sequences)
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Fig. 15. The influence of the MB-law II: scaled intrinsic period dis-
tribution for model pm3 (full line; af = 212; MB-law VZtotal) and
model pmS8 (dotted; a f = 167; MB-law JConst), see also Table 3 and
Fig. 9
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Fig. 16. The effective mass-radius exponent (e as a function of sec-
ondary mass M, for the evolutionary sequences no. 1 (full line) and
no. 5 (dotted) of KR, where M, = 1.0Mq, M,; = 0.9Mg, and the
MB-law VZtotal and VZconv was assumed, respectively (oscillations
reflect numerical noise). The dashed curve shows the mass-radius ex-
ponent (. of the main sequence

tano’s calculations) and pm4 (based on deKool’s calculations,
i.e. on a different MB-law, see Sect. 3.1).

Before resuming the discussion of P-distributions we stress
that any differential comparison of CV evolution involving dif-
ferent MB-laws requires an adequate calibration of the MB-laws
to each other. Since none of the former comparative studies in
literature dealing with magnetic braking (the most recent one
was Shafter 1992) paid any attention to that — in our opinion —
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Fig. 17. The quantity g, defined in Eq. (35), as a function of secondary
mass M, for the evolutionary sequences no. 1 (full line) and no. 5
(dotted) of KR. The dashed curve is obtained if g is computed with (.
instead of (e (see Fig. 16 and text)
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Fig. 18. The influence of the MB-law III: scaled intrinsic period dis-
tribution for model pm3 (full line; af = 212; MB-law VZtotal) and
model pm9 (dotted; a f = 113; MB-law VZconv), see also Table 3 and
Fig. 9

important point, we formulate here one possible realization of
the gauge process explicitely as a rule:

Choose the free parameters of the different magnetic braking
prescriptions such that the corresponding evolution of a specific
CV born with a sufficiently high secondary mass (e.g. with the
highest allowed one) leads in each case to a detached phase as
similar as possible (in extent and position) in period space.

In other words: changing the MB-law must preserve the
values of P, and P,.

In our case, such a preparation results in the values of the
free parameters listed in Table 2; the reference MB-law was the
standard prescription according to Verbunt & Zwaan as quoted
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above. This gives rise to a detached phase which is on average
(2.34 £ P/h < 3.24) slightly too narrow in P and at too
long orbital periods when compared to the observed period gap
between 2 h and 3 h — a systematic difference not affecting our
differential study; for a further discussion of this point see also
Sect. 5.

‘We now turn to the surprising result depicted in Fig. 13: the
MB-laws most often cited — according to Verbunt & Zwaan
(1981; model pm3, full line) and Mestel & Spruit (1987;
model pm7, dotted line) — lead to almost indistinguishable P-
distributions when calibrated as described. Hardly any differ-
ence is detectable below the gap, above the gap npm is slightly
steeper towards P,. The ratio N, /V;, is also very similar in both
cases, with slightly more systems above the gap for pm7.

In view of this unexpected similarity it seems worthwhile
to investigate the extreme case of a constant relative angular
momentum loss rate, Jyp/J = const. (model pm8): Figure 14
shows the run of Jyp/J and log M as a function of the sec-
ondary mass for three evolutionary sequences which were used
to calibrate the MB-laws to each other, and provides all essen-
tial informations needed to understand the differences between
the scaled P-distributions of models pm3 (full line in Fig. 15)
and pm8 (dotted line in Fig. 15). Below the gap npm3 and npms
are almost identical, but above nyyg is relatively larger for long
periods (where M is smaller, see Fig. 14) and relatively smaller
for shorter periods (where M is larger). The incline of Tipmg NEar
P, is much steeper, i.e. there are significantly less CVs in the
“radiative part” of the period gap (P < P < P,) — a con-
sequence of the initial phase with P > 0 (see Sect. 4.1), which
has a larger extent in period space for sequences of model pm8
(since |J/J| is larger for pm8 near F,). In contrast, the aver-
age mass transfer rate is smaller for pm8 above the gap, i.e. the
evolution is slower, so N, /N, is larger as for pm3.

Moreover, model pmS8 clearly demonstrates that the charac-
teristic shape of the period distribution above the period gap,
i.e. the two steep parts (where |On/dlog P| is large), inter-
rupted by a plateau-like part around log(P/h) = 0.7 (with small
|On/0log P)), is due to the structure of the secondary and its
reaction to mass transfer, not to the specific MB-law (remem-
ber that the feature at log(P/h) ~ 0.63 is a numerical artefact).
The plateau can be traced back to a similar structure in the P-
subdistributions g;(log P) belonging to subsets of CVs with the
same initial masses M ;, M, ; (see Fig. 2), i.e. to a property of a
secular evolution starting with (M j, M, ;). This point deserves
further attention:

Assuming Roche geometry and R = Ry, R = Rg (R and
R are the secondary’s radius and Roche radius, respectively)

during the phase of mass transfer, the period derivative P is re-
lated to the orbital angular momentum loss rate (0'1n J/0t); _,
according to

P 3Cx—1(0InJ

P et ( n ) , (33)
P Ceff - CR ot M,=0

where (e := d1n R/dIn M, denotes the effective mass-radius
exponent of the secondary, and (g := d1n Rg /0 1n M, the mass-
radius exponent of the secondary’s Roche radius. Equation (33)
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derives from Eq. (8) in Ritter & Kolb (1992), if the approxima-
tion

8 1/3
Rr & <81(1+q)> @

(Paczyniski 1971) for the Roche radius is used (a is the orbital
distance), leading to the expression F' ~ (3¢gr — 1)/2 for the
quantity I defined in Eq. (10) of Ritter & Kolb (1992).

Inserting Eq. (33) into Eq. (29) and taking note of the defi-
nitions 7 := [#1n J/8t| ™" and

(34)

. Ceff - CR
. 3€eff -1

we finally obtain for the period distribution of a CV subset char-
acterized by one single (M ;, M, ;)-value the expression

(35)

gilog P) c gy . (36)

Figures 16 and 17 plot (. and the quantity g as a function of
the secondary mass for the evolutionary sequences no. 1 and 5
of KR, which were computed with Mazzitelli’s full stellar evo-
lution code — hence free from any numerical artefacts or short-
comings introduced by the bipolytrope description. Also shown
(dotted line) is the run of (¢ and g when the simplest approach
to describe the secular evolution of CVs is applied, namely the
assumption that the secondary always obeys the main-sequence
mass-radius relation — i.e when (. is replaced by the slope
¢ = (dInR/dIn M), of the main sequence. It becomes ap-
parent that the approximation (e = (. indeed reproduces the
qualitatitive evolution — apart from the early phases subsequent
to the turn-on of mass transfer. In particular, the characteristic
intermediate plateau of n(log P) above the period gap (which
is already present in g) results from the “hump” of (.(M) in the
range 0.4 < M/Mg < 0.7 (see Fig. 16), afeature which in turn
is related to the influence of the dissociation of Hy-molecules
in the outermost layers of the star (mentioned for the first time
by Copeland et al. 1970).

At the end of this paragraph we turn to model pm9, the only
one which is significantly different from our standard model
pm3. The underlying modified Verbunt & Zwaan law (VZconv,
see Table 2) has the remarkable property that |Jyg /J| increases
(slightly) with decreasing period (see Fig. 4 in KR), in contrast
to all other MB-laws discussed previously. The resulting overall
smaller mass transfer rate in the corresponding evolutionary
sequences above the period gap explains the larger ratio N, /N,
and the significantly larger fraction of CVs at longer periods
for pm9, i.e the flatter run of nyn9 above the gap (see Fig. 18).
Again almost no difference between pm3 and pm9 is visible
below the gap.

4.5. The observable period distribution

In this last paragraph we supplement the above presentation of
models for the intrinsic CV population by a brief discussion of
the considerable changes in the P-distribution when the princi-
pal effects of observational selection are taken into account by
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Fig. 19. Correcting for observational selection: the scaled observable
period distribution N (log P) of model pm3 (full line; af = 6.44 1072),
computed with the selection factor Eq. (23), and the underlying intrin-
sic period distribution of pm3 (dotted; af = 212; MB-law VZconv),
see also Table 3 and Fig. 9

Table 4. Occupation numbers for predicted observable distributions.

model N,/Ny Na/Nz  No/Ns
pm3 09346  0.0064  0.0590
pm6 08217 00212  0.1572
pm9 08921 00132  0.0948

multiplying the intrinsic distribution with the selection factor
defined in Eq. (23). The application of a more detailed model
for observational selection (an extension of the work by Ritter
& Burkert 1986) and the comparative discussion of the resulting
predicted observable distributions obtained from our different
population models is outside the scope of this paper, but work
on that is currently under progress (for first results see Diinhuber
& Ritter 1992).

Figure 19 shows the observable period distribution
N(log P) of model pm3 — as well as the corresponding un-
corrected distribution 7 to facilitate the following comparison.
The suppression of low-luminosity CVs (with small M) in N
leads to the disappearence of most systems beyond P;,; nev-
ertheless, a peak near P, remains, a feature which is clearly
not present in the observed P-distribution.

The small spike at log(P/h) = 0.12 is a further numeri-
cal artefact of bipolytrope models and marks the transition be-
tween different approximations for intermediate and high de-
generacy (see KR). Similarly, the property of the bipolytrope
models connected with changes of the core’s polytropic index
(see Sect. 4.1) probably exaggerates the absolute maximum of
N near log(P/h) ~ 0.63. The intermediate minimum of N in
the range 0.65 < log(P/h) < 0.75, on the other hand, seems to
be a real feature, arising from the functional dependence of (.
on stellar mass discussed in the previous paragraph.
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As can be seen from Fig. 19 the “period gap” of N is lo-
cated between log(P/h) =~ 0.37 and log(P,/h) =~ 0.54, i.e. is
similar to the detached phase of systems with high initial sec-
ondary mass and a WD mass which corresponds roughly to the
mean WD mass of the underlying formation rate model. The
population density of the gap is smaller (but non-vanishing) to
the right of P, and smallest in the vicinity of Py (in our
case 10g(Perie/h) = 0.4675). The descending part of N at B, is
somewhat steeper than the rising part at F,.

As far as the occupation numbers of the different period
regimes are concerned (Table 4), our simple approach for ob-
servational selection predicts too many CVs situated above the
gap (N, /Ns = 80% —90%), but the correct order of magnitude
for those to be found within the gap (N, /Ny = 0.5% — 2%).

5. Discussion and conclusions

Based on models for CV formation rates by DK and Politano
(1988), and on the generalized bipolytrope description for the
secular evolution of CVs (KR), we could for the first time syn-
thesize fully self-consistent models describing the total CV pop-
ulation. The derived distribution functions for orbital period,
mass transfer rate, secondary mass and WD mass refer to the
intrinsic CV population, not to the ensemble of CVs we actually
observe. The prediction of such observable distributions would
require to correct the intrinsic distributions for observational
selection effects, which is the topic of a forthcoming paper. In
order to decide about the importance of the still free or little-
known parameters within the theories describing the formation
and evolution of CVs it is (in principle) necessary to investigate
how these affect the predicted observable distributions. Never-
theless, our study shows that some firm results can already be
drawn from their influence on the intrinsic distributions.

Our main results can be summarized as follows:

1) Intrinsically we find ~ 99% of all CVs below the period
gap (= 70% beyond the minimum period), a number which is
expected to be of that order, since the ratio of evolutionary time
scales

E;EzIO...

T™MB

100 (3N
below and above the gap is large. The remaining 1% fall in two,
roughly equal parts, distributed within and above the period
interval of the gap, respectively.

2) The ratio of the number of systems which are at present
in the detached phase (crossing, invisible to us, the gap) to the
total number of CVs amounts to only about 2% — 4%.

3) The intrinsic CV population is not sensitive to the de-
scription of the CE-phase (i.e. to the parameter acg), whereas
changes in the initial distribution of mass ratios of newly form-
ing main-sequence binaries (from which CVs descend) influ-
ences noticeably the ratio of CVs above/below the gap as well
as the shape of the resulting distribution functions.

4) It turns out that the shape of the intrinsic distribution
above the gap is determined mainly by the secondary’s stellar
structure, the MB-law is only a “second order” effect. As long
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as competing MB-laws do not differ drastically there seems to
be little hope to decide about the precise functional dependence
of Jug on sysytem quantities from a comparison with the ob-
served period histogram. Although the fairly different prescrip-
tions VZtotal (see Table 2), where the relative orbital angular
momentum loss rate |Jyp/J| decreases with decreasing orbital
period, and VZconv, where |Jyp/J| increases with decreasing
P, should be distinguishable, the more realistic MB-laws ac-
cording to Verbunt & Zwaan (1981) — VZtotal — and Mestel
& Spruit (1987) lead, when calibrated adequately to each other
(see the extended discussion in Sec. 4.4.2), to almost the same
intrinsic populations, actually very similar to the one computed
assuming a constant value for |Jyp/J|.

In this context we wish to comment on the work of Shafter
(1992), who tried to test the Verbunt & Zwaan and Mestel &
Spruit MB-laws by comparing the predicted ratio of dwarf no-
vae to nova-like systems as a function of orbital period with the
observed one. However, his underlying model of secular evo-
lution, the assumption of a strict mass-radius relation for the
secondary throughout the evolution, cannot account for devia-
tions from thermal equilibrium and is thus unable to reproduce
a“period gap” in a self-consistent way. Rather, Shafter assumed
ad hoc a gap between 2 h and 3 h, without recognizing the ne-
cessity to calibrate the MB-laws to each other (see Sect. 4.4.2).
Nevertheless, the main conclusions of Shafter’s work — the im-
possibility to distinguish at present between these MB-laws —
remains valid also after our more detailed analysis.

When discussing magnetic braking we further have to men-
tion the recent paper by Tout & Pringle (1992) about the spin-
down of rapidly rotating, convective stars. The authors devel-
oped a fully self-consistent picture of a magnetic dynamo, gen-
erated by differential rotation and convection, giving rise to a
magnetically controlled stellar wind, which in turn causes a
spin-down. The considerations of Tout & Pringle are in prin-
ciple applicable to the CV case, although they refer to fully
convective stars and thus are in conflict with our explanation
of the period gap (it is not immediately clear how their results
can be generalized for stars with a radiative core). However, this
contradiction is toned down in view of the fact that the authors’
expression (7.3) for Jyp contains still one completely free pa-
rameter v, measuring the efficiency of the regeneration term in
the dynamo equations. Moreover, Tout and Pringle themselves
point out that the details of the functional dependence of Jyp
should not be overrated with regard to the poorly understood
physical processes entering. After all, the MB-law proposed by
Tout & Pringle, though representing a promising new picture in
itself, does not improve our understanding of the secular evolu-
tion of CVs.

Before we proceed to the next point of our main results,
the discussion of the predicted observable period distribution,
it seems worthwhile to take a critical look at some basic simpli-
fications which we used to obtain the CV population models.

First, we assumed that the WD mass does not change when
the systems evolve, a restriction which facilitated our computa-
tions since it reduces the multi-dim. intrinsic distribution func-
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tion Eq. (10) by one order. Although observations and theoreti-
cal predictions drawn from thermonuclear runaway models for
classical novae indicate that the WD mass can neither grow nor
shrink substantially in the long-term mean (the observed chem-
ical composition of nova envelopes shows that M, < 0 in many
cases), there is still considerable uncertainty about this point. It
is related to the question of a CE-phase during nova explosions
(see e.g. Livio et al. 1990; Shankar et al. 1991; Kato & Hachisu
1991) and of diffusion and mixing of core material into the en-
velope of the WD (see e.g. Iben et al. 1991; Shankar et al. 1992)
and thus topic of a number of recent investigations. Hence, to
allow for a changing WD mass is a desirable extension of our
population synthesis.

The second important simplification in our approach con-
cerns the neglect of any time dependence of the CV formation
rate b. In reality we expect 9b/9t # 0, since a) the star forma-
tion rate in our galaxy may have changed with history — ob-
servations and models for the chemical evolution of our galaxy
indicate the occurence of an initial star formation burst (see e.g.
Rana 1991; Burkert 1992) —, and b) even with an underly-
ing constant star formation rate b would be time-dependent: the
time interval between the formation of a main-sequence binary
and its possible later appearance as a CV is a function of the
initial binary parameters. The CV birth rate data computed by
DK contain information about the time dependence due to the
latter effect (see Figs. 8a, b of DK), but we omitted these for
the time being to avoid the extension of our input tables into a
third dimension.

The third simplification, the restriction to CVs with an initial
secondary mass < 1M, due to limitations of the bipolytrope
description, represents a more difficult problem. The direct con-
sequence — our models exclude ~ 20% of the total CV popu-
lation — is not as severe as it may seem at a first glance: Fig. 8
and former investigations (Sect. 3.2 in KR) show that evolution-
ary tracks of CVs born with high initial secondary mass con-
verge to acommon track in the characteristic evolution diagram
combining orbital period and mass transfer rate. Accordingly,
systems with M, ; > 1Mg would evolve in a well-known way
and the majority of them should add up to the intrinsic distribu-
tions presented in Sect. 4 for periods < 8 h without changing
much. Only the youngest of them would populate the period
regime above ~ 8 h, about which thus no detailed information
can be given. However, this reasoning ignores the fact that for
the CVs in question the secondaries are expected to be slightly
evolved: with increasing stellar mass the nuclear timescale be-
comes shorter and eventually non-negligible against the pre-CV
evolution timescale. Such evolved stars can no longer be ap-
proximated by the simple generalized bipolytrope description
calibrated to the homogenous ZAMS (see KR) and require full
stellar evolution computations. Work on this is under progress
(Singer, Kolb & Ritter, in preparation).

Finally it should be noted that our models do not reproduce
precisely position (P° =~ 2 h) and width (P? — P° =~ 1 h) of the
observed period gap and the observed value P2, ~ 80 min for
the minimum period. Rather, the gap in our predicted observable
P-distribution is located at too long orbital periods (P ~ 2.3 h)
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. and is slightly too wide (P, — P} = 1.1 h); Py, is too small
' (Phin &~ 65 min). This mismatch does not affect our differential
study of population models, which was not designed to achieve a
perfect agreement (remember that our reference MB-law VZto-
tal was used with the “standard” strength fy7 = 1, disregarding
the consequences for the resulting detached phase in the evolu-
tion of a CV). On the other hand there is indeed a difficulty in
adjusting the position and the width in period of the detached
phase at the same time. Changing the strenth of magnetic brak-
ing above the gap influences not only P,, but also the convective
limiting mass Moy and thus Fj; changing the functional depen-
dence of MB (with fixed strength, i.e. fixed adequately chosen
average (Jvp/J)) has only little effect. An additional parameter
is needed, namely changing the limiting mass Mony o for ZAMS
stars. As e.g. Hameury (1991) has shown, this mass depends on
input physics of the stellar structure.

Some authors introduce a further free parameter by allowing
for a certain (small) amount of magnetic braking also below the
period gap, i.e. for fully convective stars (see e.g. Hameury et
al. 1990 and 1991). This cannot influence F,, but — in principle
~ B if | Jor| + | Jmp| is large enough and thus the shrinkage of
the orbit during the detached phase fast enough, the secondary
may not have reached thermal equilibrium yet when mass trans-
fer resumes. The thus larger radius of the secondary at turn-on
would cause a larger value for P, as well. However, there are in-
dications that magnetic braking is unimportant below the period
gap (at least for AM Her stars, see Ritter & Kolb 1992).

The value of P, on the other hand, depends strongly on
low-temperature opacities (7' < 2 10° K) in the outer layers
of the secondary, hence the considerable uncertainties of the
latter propagate into a similar uncertainty of the former (see e.g.
Rappaport et al. 1982). The orbital angular momentum loss rate
has only alittle influence ( Py, o< J% 13! according to Paczyriski
& Sienkiewicz 1981, 1983), but a systematic increase of Py, is
found if corrections for rotational and tidal deformation of the
secondary are taken into account (see Nelson et al. 1985, where
Py increases by = 10% because of these corrections).

Despite all these simplifications and uncertainties of the un-
derlying models our synthesized CV population yields a quali-
tatively and quantitatively reasonable prediction for the observ-
able period distribution of a magnitude-limited sample of CVs,
taken from a homogenously distributed CV population in phys-
ical space (Fig. 19), an overall very satisfying result. This turns
us back to the summary of our main results, which we continue
with the discussion of the fifth and last point:

5) The population synthesis shows that the disruption of
magnetic braking, responsible for the detached phase of indi-
vidual CVs, leads indeed to a pronounced “period gap” in the
period distribution of the complete CV population — an infer-
ence always assumed to be correct, but never proved explicitely
before. In other words: CVs born in the gap do not fill the gap.
We find a fraction of 0.5% — 2% of all CVs in the gap, a value
consistent with observations. Our result is also much more re-
liable than previous crude estimates, see e.g. DK. Moreover,
concerning the location and its width, the resulting period gap
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is comparable to the detached phase in period space of CVs born
with high M, ; and some mean value for M, ; (= 0.7Mg).

In contradiction with observations, however, is the result-
ing large fraction (80% — 90%) of CVs above the period gap
(this finding favours the independent choice of primary and
secondary mass in the initial main-sequence binary, since the
corresponding birth rate models give the lowest value for that
fraction), and the spike at Py, visible in N(log P), Fig. 19,
which is not present in the observed period histogram (see e.g.
Ritter 1990). Preliminary results from more refined models con-
sidering a sample of CVs limited by the visual (instead of the
bolometric) luminosity indicate that the discrepancy for long-
period systems disappears, whereas the problem near P, re-
mains.

More detailed models will have to show whether our very
simple description of observational selection is insufficient, or
whether we still lack an essential ingredient in our intrinsic
population models, e.g. in the understanding of the secular evo-
lution of CVs. A closer investigation of possible fluctuations of
the mass transfer rate M on short time scales (as it was sug-
gested to explain the spread in the observed values of M at a
given orbital period, see e.g. Warner 1987, Patterson 1984 and
the discussion in Hameury et al. 1989) and of the consequences
of the expected CE phase during nova-explosions (i.e. the fric-
tional orbital angular momentum losses, see Livio et al. 1991)
may be interesting in this context.
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