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SUMMARY 
We have used an all-sky redshift survey of galaxies detected by the IRAS satellite to 
investigate the topology of the Universe to a depth of 200 h~l Mpc. Qualitatively, the 
distribution of galaxies out to this distance resembles a Gaussian density field with a 
sponge-like topology: high- and low-density regions are topologically similar and 
surfaces of constant density are interconnected. Quantitatively, we have used the 
genus-threshold density relation of Gott et al to test the hypothesis that the galaxy 
distribution grew out of initially Gaussian density fluctuations and to measure the 
effective slope of the power spectrum of fluctuations over a range of length-scales 
between 10 and 50 h~l Mpc. To estimate random and systematic uncertainties in our 
analysis, we have used artificial ‘galaxy’ catalogues constructed from N-body 
simulations and a variety of Monte-Carlo techniques. We find that the observed genus 
curves are consistent with the Gaussian hypothesis. As an example of a non-Gaussian 
field, we have tested a Voronoi foam model with ~ 100 h~1 Mpc cells. We find that 
such a model can be ruled out at - 5 a. Our topological analysis is consistent with a 
power spectrum of galaxy fluctuations of the form P(k)0^ Id1, with n— -1, over the 
full range of scales considered. On scales ^15 Mpc, the QDOT power spectrum 
has a similar slope to that of the mass distribution in the standard cold dark matter 
model, but it falls off less steeply on larger scales; the maximum discrepancy occurs at 
~30 h~l Mpc and is significant at about 2a. Our power spectrum results are 
consistent with previous counts-in-cells analyses of the same survey, but the present 
method (which is sensitive to the slope of the spectrum rather than to its amplitude) 
weights the data quite differently. 

Key words: surveys - galaxies: clustering - galaxies: distances and redshifts - galaxies: 
formation - large-scale structure of Universe - infrared: galaxies. 

Quantifying the large-scale structure of the Universe is a 
difficult task and a variety of techniques have been devel- 
oped to approach it. The first large data sets were the two- 
dimensional catalogues of Shapley & Ames (1932) and 
Zwicky et al. (1961-68), and the Shane & Wirtanen (1967) 
galaxy counts. Large structures and clustering were readily 

1 INTRODUCTION 
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apparent and statistics such as the angular correlation func- 
tion were developed to quantify deviations from a random 
distribution. The advent of complete redshift surveys (Davis 
et al. 1982) revealed a complex network of voids and fila- 
mentary structures in the galaxy distribution. As new redshift 
surveys were completed, structures approaching the size of 
the survey volume were suggested (Geller & Huchra 1989). 
Only deeper surveys with well-defined selection criteria can 
clarify this issue. The clustering of galaxies in three dimen- 
sions has proved to be one of the most important constraints 
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on models of galaxy formation. A successful model must 
reproduce the observed clustering pattern of galaxies as 
measured by statistics such as the two-point correlation func- 
tion (Peebles 1980), match the observed large-scale velocity 
flows (Burstein, Faber & Dressier 1990), contain voids as 
large as Bootes (Kirshner et al 1981) and have features as 
extended as the ‘Great Wall’ (Geller & Huchra 1989). One 
important characteristic of the galaxy distribution is its top- 
ology: does it consist of isolated high-density clumps in a 
low-density background (an isolated cluster or ‘meatball’ 
topology), isolated voids surrounded by walls of galaxies (a 
‘swiss cheese’ or ‘bubble’ topology), or mutually interlocking, 
multiply connected high- and low-density regions (a ‘sponge’ 
topology)? 

In the standard inflationary models for galaxy formation, 
present-day structures grew from small-amplitude, random- 
phase (or, equivalently, Gaussian) quantum noise in the early 
Universe (Bardeen, Steinhardt & Turner 1983). The statisti- 
cal properties of a random phase distribution are completely 
specified by its power spectrum. In the linear regime, over- 
densities grow as ôp/p^a, where a is the expansion factor. 
Therefore, in comoving coordinates, positive and negative 
fluctuations grow in place, increasing only in amplitude, and 
contours of the density field selected by volume fraction do 
not change with time. When ôp/p~ 1, the high-density 
regions begin to collapse rapidly and the initial power spec- 
trum, which was frozen into the density field, becomes dis- 
torted. Biased galaxy formation (the preferential formation of 
galaxies in regions of high background density) can also dis- 
tort the relation between initial mass density and final galaxy 
density. However, moderate dynamical evolution and biased 
galaxy formation both tend to preserve a monotonie relation 
between initial mass density and final galaxy density, i.e. they 
map high-density regions of the initial conditions into high- 
density regions of the final galaxy distribution, low-density 
regions into low-density regions and so on. If we smooth the 
data over a scale larger than the characteristic clustering 
length and define isodensity contours in terms of the frac- 
tional volume they enclose, we can recover properties of the 
initial density fluctuations, as verified by Weinberg, Gott & 
Melon (1987; hereafter WGM). 

Until recently, studies of the topology of the galaxy distri- 
bution were limited to qualitative remarks about the high- and 
low-density regions (Gott, Melon & Dickinson 1986; here- 
after GMD), although it was apparent from N-body simula- 
tions that the visual impression of the density field depends 
strongly upon the initial mass fluctuations (Efstathiou et al 
1988). Hamilton, Gott & Weinberg (1986) rederived an 
expression showing that the relation between the integrated 
curvature (or, equivalently, the genus) of density contours 
and the contour threshold density has a universal form for 
random-phase density fields, with a normalization deter- 
mined by the slope of the power spectrum (see also Dorosh- 
kevich 1970; Adler 1981; Bardeen et al 1986). In subse- 
quent studies, Gott, Weinberg & Melott (1987; see also WGM 
and Melott, Weinberg & Gott 1988) applied this relation to 
numerical simulations and other models and showed that it 
could be used to test the hypothesis of random-phase initial 
fluctuations. Gott et al (1989) used various redshift surveys 
to measure the topology on a range of length-scales between 
3 and 50 h~x Mpc. (We denote the Hubble constant by 
//0 = 100 /î km s-1 Mpc-1.) On smoothing scales less than 

10 /U1 Mpc, they used the CfA survey (Huchra et al 1983), 
Tally’s (1987) all-sky catalogue of nearby galaxies, the 
Schneider et al (1990) diameter-limited survey of dwarf 
galaxies and the Giovanelli & Haynes (1985; hereafter GH) 
catalogue. A deeper subset of the GH survey and the Abell 
(1958) cluster catalogue were used to measure the topology 
on scales of 24 and 50 /z-1 Mpc respectively. All of these 
studies taken together provide a strong test for any theory of 
galaxy formation. Gott et al (1989) compared the data with 
heavy neutrino models, the cold dark matter model (CDM) 
and ‘bubble’ models and concluded that CDM provided the 
best fit to the data over the scales considered. 

Although the GH and Abell cluster samples gave the most 
information on the large scales of interest to us here, they 
must be regarded with caution for the following reasons. The 
GH sample could be biased towards a ‘meatball’ topology 
because it deliberately targets the massive filamentary 
Perseus-Pisces supercluster which dominates the survey, so 
it might not constitute a fair sample of the local Universe. 
(However, while the GH sample shows a ‘meatball’ topology 
at 6 h~l Mpc, it is consistent with a Gaussian topology at 12 
and 24 /z-1 Mpc.) The Abell catalogue should also be used 
with caution because it has been selected by eye and may be 
affected by contamination and projection effects (Lucey 
1983; Frenk et al 1990). It should also be noted that only a 
few per cent of galaxies actually lie in Abell clusters and it is 
not clear that the topology of the cluster distribution should 
match that of the galaxy distribution. 

The Queen Mary and Westfield College, Durham, Oxford 
and Toronto (QDOT ) ‘one-in-six’ redshift survey of galaxies 
detected by the IRAS satellite (Lawrence et al, in prepara- 
tion) samples the density field in the Universe to a redshift 
z«0.07, well beyond the Local Supercluster. There are 
2163 galaxies in the survey, randomly sampled at a rate of 
one-in-six from the IRAS point source catalogue of sources 
with 60-//m flux greater than 0.6 Jy; the survey covers almost 
the whole sky at galactic latitudes 16| > 10°. [See Lawrence et 
al (in preparation) for a detailed description of the survey.] 
Regions of sky contaminated by interstellar dust (the infrared 
‘cirrus’) and a patch of sky not covered by the IRAS satellite 
are coded into a mask which excludes about 17 per cent of 
the whole sky. The random sampling strategy allows the 
maximum information on large scales to be obtained from a 

v/kms 
Figure 1. The redshift distribution of galaxies in the QDOT survey. 
The histogram represents the actual data and the solid curve is the 
result of integrating the QDOT luminosity function (solution 19 in 
table 3a of Saunders et al 1990). 
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given amount of telescope time (Kaiser 1986). The QDOT 
redshift survey is well suited to investigate structure on large 
scales because it provides near full sky coverage with galaxies 
selected in a uniform way. The distribution of recession velo- 
cities, n{v), shown in Fig. 1 has a median of 9000 km s~1 and 
a long tail which samples a fairly large range of scales. A sep- 
arate survey of all IRAS galaxies brighter than 1.94 Jy has 
been carried out by Strauss et al (1990). 

Several results have already emerged from analyses of the 
QDOT data. The survey has been used to constrain the cos- 
mological density parameter, Q, by mapping the local pecu- 
liar gravity field and comparing the velocity predicted for the 
Local Group (Rowan-Robinson et al 1990) and for a sample 
of 1000 galaxies (Kaiser et al 1991) with observations. 
Efstathiou et al (1990) and Saunders et al [1991) have esti- 
mated the variance of QDOT galaxy counts-in-cells and find 
fluctuations on large scales in excess of those predicted in the 
standard cold dark matter (SCDM) model. Saunders et al 
also obtained a marginal detection of skewness in the count 
distribution on large scales. The great depth of the QDOT 
survey allows a comparison with the topological analyses of 
the GH and Abell cluster surveys on scales greater than 10 
h~l Mpc. The QDOT survey provides higher ‘signal-to- 
noise’ (smoothing elements per survey volume) for this type 
of study than any previous galaxy survey on scales greater 
than ~ 12/z-1 Mpc. 

We shall compare our results with theoretical predictions, 
particularly with those of the standard cold dark matter 
theory. This is the best-studied and, in many ways, the most 
successful cosmogonic model to date. Certainly on scales less 
than ~ 10 h~l Mpc, the theoretical predictions are roughly 
consistent with many observed properties of galaxies and 
their spatial distribution (see Frenk 1991 for a recent 
review). On larger scales the model predicts significantly less 
superclustering than has been measured in recent surveys, 
including the QDOT survey. It is perhaps worth summariz- 
ing here the main tenets of the SCDM model. The SCDM 
model is based on four premises: (i) the dark matter consists 
of weakly interacting, ‘cold’ elementary particles; (ii) the 
Universe has critical density; (iii) the primordial fluctuations, 
which seed the formation of structure, are of the type pre- 
dicted by the inflationary theory of the early Universe, i.e. 
Gaussian, adiabatic and scale-invariant. A less fundamental 
element of the SCDM model is the hypothesis (iv) that the 
distribution of galaxies is biased relative to the distribution of 
mass according to the ‘high-peak model’; galaxies are 
assumed to form only near high peaks of the suitably 
smoothed linear density field so that, on large scales, the rms 
fluctuations in the galaxy distribution are a constant multiple 
of the corresponding mass fluctuations. (This model is some- 
times referred to as the ‘linear biasing model’.) 

The QDOT survey has already proved extremely valuable 
in testing directly some of the tenets of the SCDM model. 
The dynamical analyses of Rowan-Robinson et al (1990) 
and Kaiser et al (1991) provide support for assumption (ii) 
above. Since standard Big Bang nucleosynthesis limits the 
density of baryons to less than about 10 per cent of the 
critical value (Olive et al 1990), this result also provides 
indirect support for assumption (i). The counts-in-cells 
analyses of Efstathiou et al (1990) and Saunders et al 
(1991) test a combination of model assumptions, particularly 
assumption (iii) concerning the shape of the primordial den- 
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sity fluctuation spectrum and assumption (iv) concerning the 
way in which these fluctuations are manifested in the galaxy 
distribution. As mentioned above, both of these studies 
indicate large-scale power in excess of that predicted by the 
SCDM model. The present analysis is sensitive to the shape 
of the fluctuation spectrum and to the assumption of random 
phases, but it is less sensitive than the counts-in-cells 
analyses to the details of the assumed biasing prescription. 

In this paper we use a combination of analytic and numeri- 
cal tools to compare the topology of the QDOT survey with 
predictions of the SCDM model. For the latter, we rely 
heavily on artificial ‘QDOT’ surveys constructed from 
N-body simulations. Details of the simulations are given by 
Frenk et al (1990), while the general procedure for con- 
structing flux-limited ‘galaxy’ catalogues from simulations is 
described by White et al (1987). For the present analysis, we 
matched this procedure to the particular circumstances of 
the QDOT survey. We assumed the luminosity function 
given by solution (19) of Saunders et al (1990) (which 
includes a model for density evolution and k-corrections). 
The artificial ‘QDOT catalogues’ have the same luminosity 
function, redshift distribution and sky coverage as the real 
data and were masked in exactly the same way. They assume 
a biasing parameter 6 = 2, in the notation of Frenk et al 
(1990). 

In the next section we describe qualitatively the density 
field traced by IRAS galaxies and we make visual compari- 
sons with artificial surveys constructed from the SCDM 
model and from power-law fluctuation spectra. In Section 3 
we review the basic theory necessary for a topological analy- 
sis of galaxy redshift surveys, namely the genus-density rela- 
tion and its connection to other estimators of the power 
spectrum. Section 4 describes the analysis of the QDOT data 
and an estimate of the errors in the genus curve using our 
artificial ‘QDOT’ surveys. We also compare the genus curve 
of the data with Gaussian and non-Gaussian models. In Sec- 
tion 5 we estimate the slope of the power spectrum over a 
range of length-scales. The errors in the slope are calculated 
using the results of Section 4 and Monte-Carlo simulations. 
In Section 6 we summarize our results and their relation to 
the counts-in-cells analyses of the same data. 

2 QUALITATIVE TOPOLOGY 

Whilst the most luminous IRAS galaxies are predominantly 
interacting, starbursting disc systems (Joseph & Wright 1985; 
Sanders et al 1988; Lawrence et al, in preparation), most of 
the galaxies in the QDOT survey appear to be ‘normal’ late- 
type spirals, similar to the Milky Way, which avoid the cores 
of rich clusters but appear to trace the same large-scale struc- 
ture as optically selected galaxies (Babul & Postman 1989). 

Visual impressions of the three-dimensional galaxy dis- 
tribution of the QDOT survey have been given by Saunders 
(1991) and Kaiser c/ a/. (1991). These pictures portray the 
wealth of structure that can be identified in the catalogue. 
Topological analysis uses contours of constant density and 
these provide an interesting visual representation of the 
structures that make up the high and low regions of the den- 
sity field, in a way which complements the previous repre- 
sentations. 

We obtain a smoothed density field by weighting the 
observed galaxy distribution with the inverse of the selection 
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Figure 2. The selection function of the QDOT survey. The solid line is obtained from equation (2), integrating the luminosity function of 
Saunders et al (1990); the dotted line is the result of applying equation (3). The dashed line gives the number of independent resolution 
elements (equation 11 ) out to distance r. 

function and then smoothing with the Gaussian function 

(1) 
71 A 

where r is distance and A is the smoothing length. W is 
normalized so that its integral over all space is unity. [To 
maintain consistency with the conventions of Gott et al 
(1989), our definition of smoothing length differs from that 
of Saunders et al. (1991) by a factor of 1/Æ.] The selection 
function, S(r\ is defined as the expected number of survey 
galaxies at a distance r in an unclustered distribution, 

<f>(L)dL, 
J ^lim 

(2) 

where L lim is the minimum observable luminosity at distance 
r and 0(L) is the galaxy luminosity function. The solid line in 
Fig. 2 shows the selection function we adopt, obtained from 
equation (2) using the luminosity function of Saunders et al 
(1990; solution 19). For comparison, the dotted line in Fig. 2 
shows the selection function calculated directly from the data 
via 

1 
D 3 ? 

max, / 
(3) 

where DmàX l is the maximum distance out to which the ith 
galaxy can be detected and co is the solid angle of the survey. 
Equation (3) overestimates the local density below 30 h'1 

Mpc but agrees fairly well with the estimate from equation 
(2) beyond that distance. 

We now make plots of the QDOT data by carving out a 
sphere from the survey, tabulating the smoothed density field 
on a lattice and drawing isodensity contours which enclose 
the regions above or below a given threshold. Our galaxy is 
located at the centre of the sphere with the galactic plane 
running horizontally across the plot. The Galactic Centre lies 
towards the right-hand side in the positive x-axis direction. 
In Fig. 3(a) we plot the density field out to a distance 
rmax ^ 75 h~l Mpc using a smoothing length A = 12 h~l Mpc. 
The surfaces in this figure correspond to high-density 
regions contoured at the level which encompasses one third 

of the total volume of the sphere. The dominant feature is the 
Hydra-Centaurus complex, consisting of the Hydra- 
Centaurus and Pavo-Indus superclusters, which joins 
smoothly to Coma and A1367 in the northern hemisphere. 
From this vantage point the large overdensity of the Local 
Supercluster (LS) is hidden partially by the clusters forming 
the Hydra-Centaurus complex. The surface in Fig. 3(b) 
encloses the low-density regions which encompass one third 
of the total volume. This map is dominated by the Local Void 
which joins to the Eridanus Void in the southern hemisphere. 
Tully Void 3 (Tully 1987) is also clearly seen. 

Figs 3(c) and (d) show similar plots but now out to a larger 
scale, rmax= 100 h~l Mpc, with A = 15 h~l Mpc. As before, 
the surfaces encompass roughly one third of the total volume. 
In Fig. 3(c) the Local Supercluster now lies insignificantly at 
the centre of the picture with A1367, Coma, A2197 and 
Hercules joining together to form part of the Great Wall in 
the northern hemisphere. Joined to this huge structure with a 
bridge of galaxies passing through the galactic plane are 
Perseus-Pisces and N1600 which make up the frightening 
Pisces-Cetus complex. The Hydra-Centaurus and Pavo- 
Indus clusters are still visible in this plot. The superclusters 
S2 and S6 were identified by Saunders et al ( 1991 ). Fig. 3(d) 
shows the corresponding low-density regions on the same 
scale and with the same smoothing. The Tully Voids are all 
present along with the Eridanus and Local Voids which join 
together smoothly to form a continuous surface. The struc- 
tures in these pictures have an overdensity of about ±la 
from the mean density. 

In Fig. 4(a) the threshold is now such that the surface 
encompasses about a tenth of the total volume of the sphere. 
These high-density regions correspond to roughly 1.7 a 
peaks of the density field. The interconnected structures 
visible in Fig. 3(c) have mostly broken up and only isolated 
overdense superclusters, such as Hercules and Pavo-Indus, 
remain. Fig. 4(b) shows the high-density regions out to 
rmax =150 h~l Mpc smoothed with A = 24 h~l Mpc. 
Hercules, the dominant feature in this plot and in the whole 
QDOT survey, extends from 100 h~l Mpc to beyond the 
edge of this diagram. The superclusters Aquarius-Capri- 
corn, Near-Horologium and S2 dominate the southern 
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The topology of the QDOT survey 481 

Figure 3. Isodensity contours in the QDOT survey enclosing roughly one third of the total volume. The Galactic Centre points towards the 
right-hand side of the plot, along the positive jc-axis, with galactic longitude running anticlockwise around the sphere, (a) High-density regions 
within a sphere of radius 15 h~l Mpc smoothed with a Gaussian of width A = 12 Mpc. (b) Low-density regions on the same scale and with 
the same smoothing as (a), (c) High-density regions to a depth of 100 /L1 Mpc smoothed on scale A = 15 h~l Mpc. (d) Low-density regions on 
the same scale and with the same smoothing as (c). 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

2M
N

RA
S.

25
6.
 .

47
7M

 

482 B. Moore et al. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

2M
N

RA
S.

25
6.
 .

47
7M

 

The topology of the QDOT survey 483 

Figure 4. High-density regions of the QDOT survey. The coordinates are as in Fig. 3. (a) The high-density field of Fig. 3(c) but at a higher 
threshold so that roughly only one tenth of the total volume is enclosed, (b) High-density regions enclosing the same volume as in (a), but in a 
sphere of radius 150 /T1 Mpc smoothed with A = 24 /z“1 Mpc. (c) and (d) The density field of (a) but at the median density contour so that each 
plot shows one half of the total volume. The structures are interlocking and sponge-like, as expected in a Gaussian random field. 
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Figure 4 - continued 
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Figure 5. (a) High- and (b) low-density regions of an artificial ‘QDOT’ survey constructed from an SCDM N-body simulation with the same 
selection function, flux limit and volume as the QDOT survey. The smoothing lengths and volumes are the same as those in Figs 3(c) and (d), 
with which these plots should be compared. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

2M
N

RA
S.

25
6.
 .

47
7M

 

486 5. Moore et al. 

hemisphere. The structures shown in Fig. 4(b) have over- 
densities similar to those in Fig. 3, approximately la from 
the mean. Over 200 galaxies lie within these superclusters. If 
we raise the threshold so that only 2 a peaks remain visible, 
then we only see the Hercules supercluster, represented by 
27 galaxies. Finally, on the same scale and with the same 
smoothing length as Fig. 4(b), Figs 4(c) and (d) show the 
interlocking median density contour of the high- and low- 
density regions. The similarity between the high- and low- 
density regions and their apparent connectedness are typical 
of the sponge-like topology expected for the median density 
contour of a Gaussian random field (GMD). 

For comparison with the QDOT data depicted in Fig. 3(c), 
Fig. 5(a) shows a plot of the density field in an artificial cata- 
logue constructed from an SCDM N-body simulation (see 
Section 1). Fig. 5(b) shows the corresponding low-density 
regions. The galaxy distribution in the artificial catalogues is 
treated in an identical way to the real QDOT survey data. 
Visually, the topology of the high- and low-density regions of 
the model appears quite similar to that of the QDOT survey. 
On this smoothing scale the SCDM power spectrum can be 
approximated by a power law, P(k)<* k", with n = 0.25. 

It is illuminating to compare plots of the QDOT survey 
and SCDM model with plots of distributions with different 
power spectra. Fig. 6(a) shows high-density regions in a 
smoothed Gaussian density field laid down using a power- 
law fluctuation spectrum with n= l. The absence of large- 
scale overdensities is characteristic of such a power spectrum 
which produces lots of small-scale power or ‘choppiness’. 
Similarly, Fig. 6(b) shows a smoothed density field with 
n = —2. This spectrum has large coherent fluctuations that 
extend beyond the 100 h~l Mpc sphere depicted here. The 
power-law spectra produce scale-free density fields which we 
normalize by keeping A/rmax fixed for the models and the 
data. 

The plots in Figs 5 and 6 contrast the structures we would 
expect to observe in Gaussian models with different initial 
power spectra. Characterizing the differences between these 
density fields is the subject of the next two sections. 

3 QUANTITATIVE TOPOLOGY 

3.1 Basictheory 

The genus of a contour surface at some arbitrary threshold 
density is defined as 

As an example, consider the simple case of a density contour 
surrounding two isolated spherical clusters of radius rs. The 
Gaussian curvature at all points on each sphere is K = r~2 

and the total area is A= 2{4jir¡), which gives Gs= - 2. This 
accords with equation (4) since we have two isolated regions 
and no holes. A contour threshold can be specified by its 
overdensity with respect to the mean p, ôp/p = (p -p)/p. 
The mean density contour of a Gaussian random field has a 
positive genus since its surface is all in one piece and it is 
multiply connected with many holes. The integrated curva- 
ture is negative because the two principal radii of curvature 
tend to point in opposite directions. 

A formula for the genus per unit volume, gs, was inde- 
pendently derived for Gaussian density fields by Dorosh- 
kevich (1970), Adler (1981), Bardeen et al (1986) and 
Hamilton «/. ( 1986): 

& = Af(l-v2)e“v2/2, (6a) 

where 

i m 
(2jr)' 

1 
(2jt)' 

2\\3/2 

k2Pr(k) d3k 3 P'(k)d3k 
3/2 

(6b) 

Here v is the number of standard deviations by which the 
contour threshold overdensity is above or below the average 
density and P'(k) is the power spectrum of the density field 
smoothed using equation (1), P,{k) = P(k) exp( - A;222/2). 
Smoothing introduces a short-wavelength cut-off in the 
power spectrum. 

For a Gaussian random field positive and negative fluctua- 
tions are statistically indistinguishable; hence the genus curve 
is symmetric about the mean density. The transition from 
positive to negative genus occurs at v = ± 1 which marks the 
change from multiply connected contours to isolated clusters 
or voids. The shape of the gs(v) curve is independent of the 
power spectrum but its amplitude depends on the form of the 
smoothed power spectrum through equation (6b). The curve 
is independent of the normalization of P{k), since any multi- 
plicative constant cancels out. 

For typical power spectra the normalization factor N 
depends mainly on the logarithmic slope of the spectrum at 
the smoothing scale, A. For the simple case of a power-law 
spectrum, P{k)^k1,Ncan be calculated explicitly: 

genus = (Number of holes) - (Number of isolated regions), (4) 

where we have adopted the definition of WGM in which a 
‘hole’ means a hole like that in a doughnut. An isolated (i.e. 
compact) region may be above or below the threshold den- 
sity. For example, a torus has a genus of zero and an isolated 
sphere has a genus of -1. GMD used the Gauss-Bonnet 
theorem to express the genus, Gs, in terms of the integral 
over the contour surface of the Gaussian curvature, K, 
defined as the reciprocal of the product of the two principal 
radii of curvature, 

G = KdA. (5) 

N= 
(2jz) X 

3 + n 3/2 
n> ~3. (7) 

By studying the topology using different smoothing lengths, 
we constrain the shape of the power spectrum over a range 
of scales. 

If the density fluctuations are non-Gaussian then the genus 
curve may be skewed. For example, if galaxies sat mainly in 
isolated clusters which resided in a connected, low-density 
background, the genus curve would be skewed to the left 
(WGM); one would have to look at a very small volume frac- 
tion of the data before isolated voids could be detected. On 
the other hand, if galaxies sat on the surfaces of ‘bubbles’, 
surrounding large voids, the genus curve would be skewed to 
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Figure 6. High-density regions of random density fields with power-law fluctuation spectra of spectral index n = l (a) and - 2 (b). The 
smoothing lengths and volumes are the same as those used in Fig. 3(c). 
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488 5. Moore et al. 

the right. In this case the characteristic asymmetry in the 
genus curve could be detected if the typical void diameter 
were ^ 2A (WGM). A symmetric genus curve does not guar- 
antee that the density field is Gaussian, but any Gaussian 
field must have, on average, the symmetric genus curve of 
equation (6a). 

For non-linear density fields WGM suggest specifying con- 
tour thresholds through the fractional volume / occupied by 
the high-density regions and relating these thresholds to the 
corresponding values of v in a Gaussian field: 

e -t
2/2 dt. (8) 

In a linear Gaussian density field this method yields the same 
result as specifying the threshold density directly in standard 
deviations from the mean. Non-linear gravitational evolution 
quickly distorts the Gaussian relation between density and 
fractional volume, but it tends to maintain a monotonie rela- 
tion between initial and final density, mapping high-density 
regions of the initial conditions into high-density regions of 
the final conditions, low-density regions into low-density 
regions and so on. Furthermore, most proposed models of 
biased galaxy formation make the mass-to-light ratio a 
steadily increasing function of mass density, so contours of 
constant galaxy density are very close to the contours of con- 
stant mass density that enclose the same fractional volumes. 
Defining contour thresholds in terms of fractional volume 
takes advantage of these monotonie relations and allows one 
to recover contours of the smoothed, linear density fluctua- 
tions from the smoothed galaxy distribution. One can 
thereby address the question of whether the primordial fluc- 
tuations were Gaussian, even though the galaxy distribution 
today is non-Gaussian. The monotonie relations between 
initial mass density and final galaxy density are not exact. 
The effects of non-linearity and certain types of biasing on 
the genus curves of initially Gaussian models are discussed 
by Melott et al (1988) and Park & Gott (1991). These 
studies show that non-linear evolution depresses the ampli- 
tude of the genus curve and that the combination of non- 
linearity and biasing tends to introduce a small shift in the 
direction of a ‘meatball’ topology. On the smoothing scales 
used in our QDOT analysis, we expect that at least the 
effects due to non-linearity should be small. 

In our analysis we tabulate the smoothed density field on a 
cubic lattice. The curvature of a particular contour is con- 
centrated at the vertices where square faces meet. (The faces 
have zero curvature.) The curvature at a vertex i on the sur- 
face is equal to its angle deficit Di = 2ji — YjA1 where A¿ are 
the surrounding vertex angles (see GMD). The genus of the 
surface can then be calculated directly as Gs= 
We use the program contour described by Weinberg (1988) 
which uses this technique to measure the curvature of density 
contours. 

3.2 Relation to counts-in-cells analysis 

Efstathiou et al (1990) and Saunders et al (1991) have per- 
formed counts-in-cells analyses of the QDOT survey in 
cubical and Gaussian cells respectively. The variance of cell 

counts is related to the galaxy power spectrum, P¿k), by 

Alr) = Pg(k) W2{kr) d3k, (9) 

where W{kr) is the Fourier transform of the cell window 
function. The variance is directly proportional to the ampli- 
tude of the power spectrum and, by measuring the variance 
in cells of several physical scales, r, one can measure the 
shape of the spectrum. In the linear biasing model, the galaxy 
power spectrum is just a constant multiple, b2, of the under- 
lying mass power spectrum. Since the variance is a mean- 
squared quantity, it is most sensitive to the regions of highest 
galaxy density, e.g. the Hercules supercluster in the QDOT 
survey. 

A crucial feature of our topology analysis is that contours 
are defined in terms of enclosed fractional volume, or the 
corresponding value of v from equation (8). As discussed in 
Section 3.1, the goal of this strategy is to recover contours of 
the initial density fluctuations from the present-day 
smoothed galaxy density field. One consequence is that the 
genus curve is independent of the amplitude of density fluc- 
tuations, so it provides no direct information on the ampli- 
tude of the power spectrum. However, the amplitude of the 
genus curve depends on the slope of the power spectrum 
near the smoothing length, or, more precisely, on the coher- 
ence scale, (k2)~1/2, which determines the typical size of con- 
tour holes in a smoothed Gaussian field. Our analysis never 
assumes a linear relation between galaxy and mass fluctua- 
tions, only that a higher galaxy density corresponds to a 
higher mass density. It therefore assigns much less weight 
than counts-in-cells analyses to the highest density cells of 
the galaxy distribution. We show in Section 6 that the top- 
ology and counts-in-cells methods yield consistent results on 
the shape of the power spectrum. Since they measure the 
spectrum in different ways and weight the data quite differ- 
ently, this consistency is reassuring. 

The variance of cell counts alone gives no information on 
whether the underlying density field is Gaussian. However, 
the distribution/(A) of counts-in-cells of fixed size [equiva- 
lent to the one-point distribution P(<3) of the field smoothed 
with the cell window function] can reveal non-Gaussian 
behaviour. Saunders et al (1991) report marginal detections 
of skewness in the count distributions of the QDOT data at 
smoothing lengths of 14 and 28 h~l Mpc (converting to our 
definition of Gaussian filter length). As pointed out by Coles 
& Frenk (1991) and Juszkiewicz (in preparation), skewness 
in the present-day galaxy distribution does not necessarily 
imply that the primoridal fluctuations were non-Gaussian, 
since non-linear evolution and biased galaxy formation 
naturally generate skewness from Gaussian initial conditions. 

Defining contours in terms of fractional volume automati- 
cally eliminates any information on the one-point distribu- 
tion of the smoothed density field. Topology and cell-count 
analyses are therefore sensitive to entirely independent sorts 
of non-Gaussian behaviour. While non-linearity and biasing 
can distort the genus curves of initially Gaussian models on 
scales smaller than the galaxy correlation length (Melott et al 
1988; Park & Gott 1991), significant departures from Gaus- 
sian topology on the 10-50 h~l Mpc scales studied in this 
paper would probably indicate non-Gaussian features in the 
initial conditions. It would be perfectly consistent to find a 
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Gaussian topology and a non-Gaussian count distribution on 
these scales if the primordial fluctuations were Gaussian and 
the non-Gaussian P(ô) developed from some combination of 
non-linear evolution and biased galaxy formation. 

4 ANALYSIS 

4.1 The data 

Our techniques for analysing redshift data are similar to 
those of Gott et al. (1989) with two exceptions: we treat the 
boundary differently when smoothing and we estimate error 
bars on the genus curve from Monte-Carlo simulations 
rather than bootstrap analysis. To construct a smooth density 
field, we bin the galaxies onto a 643 array and convolve it 
with the Gaussian filter of equation (1), setting the width A 
equal to the mean intergalaxy separation at the edge of the 
survey, at distance rmax: 

A = [5(/-mJ]-‘/3, (10) 

where S(r) is the selection function defined in Section 2. This 
choice of A ensures that the density field is not under- 
sampled. 

Smoothing in Fourier space requires a periodic box; to 
accommodate this we embedded the survey region within a 
larger box. The space outside rmax must be treated in such a 
way as to minimize the effects of the boundary on the genus 
curve gs( v). If this space is left empty, then smoothing tends 
to lower the density at the edge of the survey, skewing the 
genus curve to the right. We tried several ways of dealing 
with this problem, (i) Include the galaxy distribution outside 
rmax. (This is possible because the n(v) distribution extends 
well into high redshifts.) (ii) Set the density in all the cells with 
r> rmax equal to S(rmax) and then smooth the data, (iii) 
Smooth the data assuming zero density outside rmax and 
divide this array by the smoothed selection function S(r), 
also with zero outside rmax. This division corrects for the 
fraction of the smoothing volume outside the boundary. We 
tested each of these methods on artificial ‘QDOT surveys’ 
constructed from CDM simulations by comparing their 
genus curves with the theoretical curves obtained using equa- 
tion (6) and the SCDM power spectrum. The least satisfac- 
tory method was (ii) which tended to overestimate the mean 
density at the edge of the array. Method (i) worked well for 
distances up to 100 h~l Mpc, but beyond that Poisson noise 
in the survey outside rmax rendered the results unreliable. We 
adopted method (iii) which worked well at all distances. The 
galaxy selection function tabulated in a 643 lattice was multi- 
plied by the volume of each cell visible to the observer, taking 
into account the IRAS mask (which excludes about 8 per 
cent of the sky above and below the galactic plane). 

The topology of the QDOT survey 489 

To obtain the maximum signal-to-noise ratio in the genus 
curve, rmax should be chosen to give the largest number of 
smoothing volumes, Fsm = 7r3/2A3, per survey volume. The 
dashed line in Fig. 2 shows the number of resolution ele- 
ments, A^res, as a function of distance, 

where cds is the solid angle of the survey. The number of 
resolution elements reaches a maximum of 80 at 100 h~l 

Mpc where the mean galaxy separation is 20 h~l Mpc. This 
value of /Vres is larger than that of any previous redshift 
survey. (The CfAl survey, for example, has a maximum of 
54; see the table in Gott et al 1989.) We examined the top- 
ology on a range of smoothing scales between 10 and 50 h~l 

Mpc. Table 1 lists the smoothing lengths we considered, the 
distance, rmax, at which we cut off the data, the values of 
S ( ^max ) and the number of resolution elements within the 
survey volume. 

Figs 7(a)-(d) show our estimates of the genus for the 
QDOT data, for four different smoothing scales. The filled 
squares give the values of the genus at 15 threshold over- 
densities between ±2ofrom the mean density contour. The 
error bars on the QDOT data are 1 o and will be discussed in 
Section 4.2. The smooth curves show the best-fitting theo- 
retical curves to the data using equation (6a) with the normal- 
ization factor N as a free parameter. The corresponding 
values of the effective spectral index are discussed in Section 
5. The one-in-six sampling strategy has resulted in a loss of 
information on small scales which is apparent from the large 
scatter in Fig. 7(a). However, we gain on larger scales and 
Figs 7(b)-(d) show that the topology of the QDOT survey is 
similar to that of a Gaussian random field. As expected from 
the number of resolution elements, we obtain the best results 
using a smoothing length of 20 /z~1 Mpc. On this scale, there 
is a slight shift in the genus curve to the left in the direction of 
an ‘isolated cluster’ topology, but not at a very significant 
level. The consistency of the data with the Gaussian 
hypothesis is discussed further in Section 4.3. 

4.2 Error estimates from N-body simulations 

There are two kinds of sampling errors which contribute to 
the uncertainties in our measurement of the genus: errors 
due to sparsely sampling the galaxy distribution and errors 
due to having surveyed only one region of space. We estimate 
these uncertainties using the artificial catalogues constructed 
from our SCDM simulations. From five different simulations 
we generated five fully sampled ‘galaxy’ catalogues, each 

Table 1. Characteristics of the QDOT and CDM predictions. 

A /h-1Mpc rmax /h~1Mpc 5(r)/h3Mpc-3 Nres n (QDOT) nc// (SCDM) 

10 
14 
20 
28 
40 
50 

40 
70 
100 
135 
175 
210 

1.0 x lO”3 

3.0 x lO"4 

1.2 x lO"4 

4.2 x lO"5 

1.6 x lO"5 

8.1 x lO"6 

48 
70 
80 
66 
52 
46 

-1.61 ±0.80 
-1.04 ±0.45 
-0.79 ±0.35 
-0.88 ±0.40 
-0.62 ±0.50 
-0.71 ±0.65 

-0.93(0.8(7) 
-0.59(1.0(7) 
-0.25(1.6(7) 
0.07(2.4(7) 
0.34(1.9(7) 
0.48(1.8(7) 
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v 

V U 

Figure 7. The genus of the QDOT survey for four different smoothing scales. On the horizontal axis, v is the number of standard deviations 
from the mean density contour. The solid curves are the best-fitting theoretical curves of the form given by equation (6a). 

containing over 12 000 galaxies with the selection function of 
the QDOT survey. From each of these we extracted six one- 
in-six randomly sampled subcatalogues similar to the QDOT 
survey. 

The effect of shot noise in our sparsely sampled cata- 
logues can be visualized by comparing contour plots of them 
with those of the fully sampled parent catalogue. Fig. 8(a) 
shows one of the parent catalogues contoured using 
Fmax= 100 h~l Mpc and A = 20 /*"1 Mpc; Figs 8(b)-(d) show 
three one-in-six daughter catalogues. The global structure 
and dominant features of the contours do not change appreci- 
ably although shot noise introduces differences in detail. For 
a more quantitative measure of shot noise, we compare the 
density per pixel in the parent and daughter catalogues using 
smoothing lengths equal to A/2, 3A/4, A and 4A/3, where 
A = 20 h~1 Mpc and rmax =100 h~l Mpc. Fig. 9 shows that if 
the data are smoothed on a scale smaller than A, the mean 
intergalaxy separation at rmax, the agreement between the 
fully sampled and sparsely sampled density fields is poor, but 
the agreement improves steadily as the smoothing length is 
increased and is quite acceptable when it is set equal to A. 
Choosing a smoothing length of 4A/3 would further decrease 
the shot noise, but this would lower the number of independ- 
ent smoothing volumes. We also compared contour plots for 

the fully sampled and sparsely sampled distributions at these 
smoothing lengths and confirmed that A should be at least as 
large as the mean intergalaxy separation at the edge of the 
survey. As A was reduced, the number of spurious structures 
started to increase rapidly. 

In Fig. 10 we show as filled circles the mean genus curves 
for our five fully sampled catalogues and as open circles the 
average genus curve of the 30 randomly sampled catalogues, 
with parameters A = 20 h~l Mpc and rmax=100 h~l Mpc. 
Comparing these, we can see that random sampling has not 
introduced any strong systematic bias and that we have 
successfuly recovered the topology of the fully sampled 
simulations. The smooth curve in Fig. 10(a) is the theoretical 
genus curve for the SCDM model in the linear regime, calcu- 
lated from equations (6) and the expression for the power 
spectrum given in equation (2) of Davis et al (1985). The 
evolved simulations are a good fit to this curve, demonstrat- 
ing that the non-Unear effects and effects due to biasing have 
not significantly perturbed the topology of the initial fluctua- 
tions. The error bars in Fig. 10(a) show the scatter between 
the five fully sampled catalogues and represent realization- 
to-realization differences. The error bars in Fig. 10(b) show 
the mean of the 1 o scatter obtained from sparsely sampling 
each simulation six times. Fig. 10(c) shows both of these 
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The topology of the QDOT survey 491 

Figure 8. (a) High-density regions of a fully sampled artificial catalogue constructed from a cold dark matter N-body simulation. The 
smoothing scale is A = 20 /z-1 Mpc and the catalogue extends out to rmax = 100 h~l Mpc. (b-d) High-density regions of subcatalogues extracted 
from that depicted in (a) by randomly sampling the galaxy distribution at a rate of one-in-six. 
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Figure 9. Pixel-by-pixel comparison of the density fields in a fully sampled catalogue and a sparsely sampled subcatalogue. The different 
panels correspond to different smoothing lengths; A = 20 h~1 Mpc and rmax = 1007z-1 Mpc. 

errors added in quadrature and should be compared with 
Fig. 10(d) which shows lo errors obtained from randomly 
sampling each of the five simulations once only. These two 
methods give very similar error bars for the model, roughly a 
mean error per genus measurement of ± 1.2. It is also clear 
that the scatter introduced by the one-in-six sampling is com- 
parable to the scatter between realizations. The errors 
plotted in Fig. 7 were derived from the model and are the 
sum in quadrature of the random sampling errors and the 
realization-to-realization errors, calculated on each smooth- 
ing scale. 

Gott et al (1989) used a bootstrap resampling procedure 
for estimating errors in the genus curve. [Note that our 
QDOT results in Fig. 7 should be compared to the ‘raw’ data 
of Gott et al (1989) rather than to their ‘bootstrap average’ 
points which are less noisy because of the averaging.] It is 
interesting to compare these with the errors obtained above. 
To perform the bootstrap resampling, we assigned to each 
galaxy a position randomly chosen from the original list of 
positions. Some positions may have more than one galaxy 
and some may be left empty with probability given by the 
Poisson formula P{N) = (N\)~1q~n. Bootstrap resampling in 
the artificial catalogues gave a mean error per genus of 
±1.35, similar to the error found by resampling the original 
QDOT survey. This is about 10 per cent larger than the 
errors estimated from the simulations. It is interesting to note 

that according to the simulations, had we measured redshifts 
for all 13 000 galaxies in the fully sampled QDOT catalogue, 
the mean genus values could have been determined only to 
±0.8. However, a better dynamic range would be attainable 
by using smaller smoothing lengths. 

4.3 Are the observed genus curves consistent with Gaus- 
sian initial conditions? 

In this section we compare the genus curve of the QDOT 
data with the genus curves predicted for certain Gaussian 
and non-Gaussian random fields. A simple x2 test is not suit- 
able for this comparison because points on the genus curve 
are not independent. As an alternative, we construct Monte- 
Carlo realizations of a particular model and calculate the 
likelihood of the data. Given the mean genus curve for a 
model, Gm, we form the sum of absolute differences between 
the genus values of the data and the genus values of the 
model: 

15 
Dd,m= I abs(Ga>v-Gm,v,). (12) 

v,= l 

By constructing many realizations of the model, we calculate 
the sampling distribution of this quantity and hence the sig- 
nificance level at which the model is rejected by the data. We 
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v 

V 

V 

V 
Figure 10. Mean genus curves for artificial ‘QDOT surveys constructed from five cold dark matter N-body simulations. The filled circles are 
mean values from five fully sampled catalogues. The open circles are mean values from 30 randomly sampled (at a one-in-six rate) sub- 
catalogues, six from each parent catalogue. The parameters are A = 20 /r1 Mpc and rmax = 100 /r1 Mpc. The smooth curve in (a) is the 
theoretical genus curve for the cold dark matter model. The error bars are \ o and arise from: (a) the scatter between the five fully sampled cata- 
logues; (b) the scatter between the 30 sparsely sampled subcatalogues; (c) the errors from (a) and (b) added in quadrature; (d) the errors from 
five sparsely sampled subcatalogues, each from a different simulation. 

consider simple examples of Gaussian and non-Gaussian 
fields. 

We constructed a Gaussian model by generating a 
random-phase density field in a 643 grid with a power-law 
spectrum, P(k)ockn, with n=-l. To calculate the genus 
curve of this model we divided the smoothed density field by 
the smoothed mask and used the same value of A/rmax as for 
the QDOT data. We repeated this procedure 200 times using 
A = 20 h~{ Mpc and rmax =100 h~l Mpc. From the sum-of- 
differences method we find that the model can only be 
rejected at the 0.4a level, indicating that the QDOT data are 
consistent with this particular realization of the Gaussian 
hypothesis. The shape of the QDOT genus curve is also 
similar to that for the SCDM model since the starting point 
of this model is, of course, a Gaussian random field. How- 
ever, since the amplitude of the genus curve also depends on 
the shape of the power spectrum, we defer a detailed com- 
parison with the SCDM model until Section 5. 

As an example of a non-Gaussian field we consider 
galaxies distributed on the surfaces of large bubbles, as pre- 
scribed by the Voronoi foam model (van de Weygaert 1991 
and references therein). The Voronoi foam model is a simple 

scheme for dividing space into a tessellation of cells. Points 
or ‘seeds’ are placed at random within the space and cell 
boundaries or walls are defined as the loci of points which 
are equidistant from two seeds and which are not closer to 
any other seed. The only free parameter is the mean separa- 
tion of the seeds and choosing a value of 100 h~l Mpc 
gives rise to two interesting results, (i) If rich clusters form at 
the vertices of the cells, the observed abundance and correla- 
tion function of Abell clusters can be reproduced (van de 
Weygaert & Icke 1989). (ii) A random line of sight through 
the tessellation will intersect cell walls with an expected 
separation of 137 h~l Mpc, with quasi-periodic separations 
fairly likely (Coles 1990). This is close to the 128 /r1 Mpc, 
quasi-periodic spacing found by Broadhurst et al (1990) in 
deep pencil-beam surveys of the galaxy distribution. In a 
Voronoi foam model we expect the genus curve to be skewed 
to the right. 

Within a cube of side 200 h~l Mpc we placed eight seeds 
at random. 1000 ‘galaxies’ were distributed randomly on the 
surface of the tessellation. Using this number of galaxies 
mimics the sampling effects in the QDOT data. In the 
observed galaxy distribution, voids of this size are not com- 
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pletely empty; we therefore tested three Voronoi foam 
models, each with a fraction of the galaxies repositioned at 
random throughout the volume. We calculate the genus curve 
of the models in a similar way to the data after smoothing the 
density field and dividing by the smoothed mask; again we 
compare the topology on our most accurate smoothing 
length of 20 1 Mpc. 

The closed circles, open circles and open squares in Fig. 
11 show the mean genus curves from 100 realizations of the 
Voronoi foam model, with a fraction 0, 15 and 50 per cent 
respectively, of galaxies distributed at random throughout the 
volume. The error bars on the open squares represent the 1 o 
scatter for the 100 realizations of this particular model. We 
also tested a model with 323 galaxies to assess sampling 
effects and found a mean genus curve very similar to the 
model containing only 1000 galaxies. The genus curves are 

v 

Figure 11. The mean genus curves from 100 realizations of 
Voronoi foam models, with 0 per cent (filled circles), 15 per cent 
(open circles) and 50 per cent (open squares) of the galaxies placed 
at random within the volume. The error bars show the run-to-run 
1 o dispersion for the model with 50 per cent random galaxies. 

The topology ofthe QDOTsurvey 495 

all skewed to the right, away from the symmetric shape 
expected for a Gaussian distribution. As more random 
galaxies are added, the genus curves become more sym- 
metric. We applied the same test to the Voronoi foam model 
as we previously applied to the Gaussian random-phase 
model. The Voronoi foam model for large-scale structure 
with « 100 h~l Mpc cells can be ruled out at -Ta if the 
voids are truly empty, at ~5a if 15 per cent of galaxies 
populate the voids, and ~ 3 a if 50 per cent of galaxies popu- 
late the voids. 

Fig. 12(a) shows the 10 genus curves from the Gaussian 
model which agree best with the QDOT data, i.e. the curves 
with the 10 lowest values of Dá m from equation (12). 
Similarly, Fig. 12(b) shows the 10 best genus curves from the 
foam model with 15 per cent random galaxies. These plots 
provide a simple visual comparison between the data and the 
models; while it is clear that each of the Gaussian genus 
curves provides a respectable match to the data, none of the 
Voronoi foam genus curves (and these are the best fits) 
comes close to providing a good fit. 

As a final test, we compared the Gaussian model directly 
with the Voronoi foam model using a similarity scoring 
method. This method is akin to our first test except that we 
assign a score to the data based on the mean sum of the dif- 
ferences between the data and the foam model minus the 
mean sum of the differences between the data and the Gaus- 
sian model. (See Gott et al 1989 for further details.) By com- 
paring the Gaussian model directly with the three Voronoi 
foam models we can calculate the relative likelihood that the 
observed genus curve is representative of a Gaussian top- 
ology. We find Poauss^ 99.99, > 99.99, = 99.96 per cent for 
Voronoi foam models with 0,15 and 50 per cent respectively 
of the galaxies distributed at random. 

From these tests we conclude that the topology of the 
QDOT survey is inconsistent with the non-Gaussian Voronoi 
foam model. By contrast, a Gaussian random field provides a 
good match to the topology of the survey. An important 
corollary is that we can use the analytic relations given in 
Section 3 to constrain the shape of the power spectrum of 
density fluctuations. 

Figure 12. Comparison of the QDOT survey with a Voronoi foam model and a Gaussian random field with P{k) The filled circles give 
our estimates of the genus for the QDOT survey, with A = 20 h~x Mpc and rmax =100 h~x Mpc. The lines show the 10 genus curves which are 
most like the data in (a) the Gaussian model and (b) the Voronoi foam model. 
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5 THE SHAPE OF THE POWER SPECTRUM 
OF DENSITY FLUCTUATIONS 

We showed in Section 4 that the shapes of the genes curves 
for the QDOT survey are consistent with the characteristic 
shape for a Gaussian random field. In this section we use the 
amplitude of the genus curves as a function of smoothing 
length to constrain the shape of the power spectrum of the 
density field. We estimate the amplitude, gs(0), by least- 
squares fitting the random-phase form (equation 6) to the 
measured genus and substituting this estimate of N into 
equation (7) to obtain an ‘effective spectral index’, nQÜ. This 
index quantifies the coherence of features in the smooth 
density contours. For a Gaussian field, «eff gives the local 
slope of the power spectrum at the smoothing length A, but 
for a non-Gaussian field it can, in principle, be different to 
the value obtained from a direct estimate of P(k). Because 
we use fractional volume to define density contours, our 
measure of the spectrum is less sensitive than direct esti- 
mates to non-linearities and to the assumed way in which 
IRAS galaxies trace the mass distribution. 

Estimating the uncertainty in ncii is not straightforward 
because points on the genus curve are not independent. A 
rough estimate of the uncertainty follows from simply taking 
the error in the amplitude of the genus curve to be the mean 
error per genus measurement (computed using the simula- 
tions as described in Section 4.2). The errors vary with the 
volume and smoothing length under consideration so the 
mean error per genus measurement must be recalculated for 
each scale (i.e. ± 1.2 for A =20 h~l Mpc). The estimate of 
fteff and the associated 1 o errors are listed in the fifth column 
of Table 1. Our most accurate estimate of the slope of the 
power spectrum corresponds to the scale with the maximum 
number of resolution elements, 2=20 h~l Mpc. On this 
scale we find -0.79 ±0.35, with values in the range 
rceff > 0.2 or < - 1.8 ruled out at more than 3 o. 

The above results are summarized in Fig. 13. The filled 
circles show our estimates of the effective power spectrum 

Figure 13. The effective spectral index, «eff, as a function of 
smoothing scale. The filled eircles give results for the QDOT sur- 
vey. The star and the filled triangle, taken from Gott et al. (1989), 
are for the Giovanelli-Hanes survey and the Abell cluster sample 
respectively. The solid line gives the effective index for the standard 
cold dark matter model. 

slope at a range of scales between 10 and 50 /z-1 Mpc. Our 
data are consistent with a constant value, neff « - 1, over this 
range. The solid line gives ncñ for the SCDM spectrum calcu- 
lated from equations (6) and (7). For comparison we also 
show neff for the Abell cluster sample (filled triangle) and the 
Giovanelli-Haynes galaxy sample (star) taken from Gott et 
al (1989). The topology of the QDOT survey agrees well 
with that of the GH survey but is marginally inconsistent with 
that of the Abell cluster sample. This discrepancy could be 
due to systematic effects in the Abell cluster catalogue or to a 
difference between the way galaxies and clusters trace the 
large-scale mass distribution. 

In the last column of Table 1 we list the slope of the 
SCDM spectrum on each scale we have studied. In brackets 
we give the significance level at which this slope is rejected by 
the QDOT data, assuming the error estimate described 
above. On our most accurate scale of 20 h~l Mpc, the slope 
of the SCDM spectrum is nen= —0.25, 1.6a away from the 
QDOT result. The largest discrepancy occurs on 28 h~l 

Mpc, scales where the SCDM spectrum has neff * 0 and the 
QDOT data have a spectrum of slope «eff = - 0.88 ± 0.4. 

To obtain an alternative estimate of the uncertainties in 
our determination of «eff, we carried out a series of Monte- 
Carlo simulations similar to those described in Section 4.3, 
but with various values of the power-law exponent n\ we also 
calculated Monte-Carlo realizations of density fields with the 
power spectrum of the SCDM model in the linear regime. 
Fig. 14 shows mean genus curves from 200 simulations with 
n=l, 0, -1, -2 and with the SCDM power spectrum, all 
assuming X = 20 h~l Mpc and rmax =100 h~l Mpc. Fig. 15(a) 
shows the distributions of fitted amplitudes of the individual 
genus curves, gs(0), for the various models. These distribu- 
tions appear symmetric about the mean and they become 
broader for simulations with less power on large scales. Fig. 
15(b) shows the best-fitting Gaussian to each distribution; 
the reduced x2 is less than unity in all cases. Comparison of 
the amplitude of the genus curve for the QDOT survey with 
these distributions gives rejection levels for each model. 

v 

Figure 14. Mean genus curves from Monte-Carlo simulations of 
power-law fluctuation spectra of index rc=+l,0, -1, -2 and of 
the standard dark cold matter power spectrum. The averages are 
over 200 simulations of each model. The smooth curves are the 
theoretical curves calculated using equations (6) and (7). 
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Figure 15. (a) The distribution function of the amplitude (from 
least-squares fitting) of the genus curve in the 200 Monte-Carlo 
simulations of Fig. 14. The distribution of sampling errors in cold 
dark matter N-body simulations is shown as the hatched region 
underneath the distribution of amplitudes for this model, (b) Best- 
fitting Gaussians to the distributions plotted in (a). 

Table 2. Rejection levels for CDM and power-law models. 

Model A = 10h 1Mpc 
’max = 40/l_1MpC 

A = 20h 1Mpc 
max = 100/l-1MpC 

= 40h ^Mpc 
= 175/i~1Mpc 

CDM 
n = +1 
n = 0 
n = -1 
n = -2 

+0.7<7 
+3.0(7 
+ 1.5(7 
+0.3(7 
-0.1(7 

+ 1.5(7 
+4.8cr 
+2.0(7 
—0.2(7 
-3.1(7 

+ 1.7(7 
+2.9(7 
+ 1.1(7 
-0.3(7 
-2.1(7 
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amplitudes for the full SCDM realizations has a width of 1.1. 
A convolution of these two distributions would yield a 
broadened Gaussian of width 1.4; thus, the confidence levels 
listed in Table 2 are ~ 25 per cent too high. 

Fig. 13 shows that the power spectrum of the QDOT data 
is steeper (more power in small wavenumbers) than that of 
the SCDM model on all the smoothing scales we have con- 
sidered. We have calculated the significance of this difference 
at each scale, but if different smoothing scales were inde- 
pendent, then the overall significance would be higher. To 
test the interdependence of the genus curves at different 
smoothing scales, we generated a series of Monte-Carlo 
realizations of the SCDM power spectrum. We calculated the 
genus curves of the density fields as before, but we then 
extracted the 163 core of the lattice of each reahzation and 
recalculated the genus curve using a smaller smoothing 
length. The amplitude of each genus curve was compared 
with the theoretical expectation in order to ascertain whether 
genus curves on two different scales are independent. For 
example, from 100 realizations we measured the amplitudes 
of the genus curves for density fields smoothed on 20 and 28 
h~l Mpc. If these scales were independent then the ampli- 
tudes would be distributed evenly above and below the 
expected value given by equation (6). We found that 65 pairs 
lay either both higher or both lower than the expected value 
and 35 pairs had amplitudes one higher and one lower, indi- 
cating that the genus curves from the same underlying den- 
sity field with these two smoothing lengths are not 
independent. However, repeating this test on smoothing 
scales of 20 and 40 h~l Mpc, we found that 45 pairs had 
amplitudes both under or over the expected amplitude while 
55 pairs had amplitudes one higher and one lower. This 
shows that, at least for SCDM, our measurements of the 
slope of the power spectrum are independent on smoothing 
scales of 20 and 40 h~l Mpc. Thus, the combined signifi- 
cance of these 1.5 a and 1.7 a discrepancies (Table 2) is 
(1.52+ 1.72)1/2 = 2.3a. These numbers, however, are also 
subject to the ~ 25 per cent correction due to the sampling 
uncertainties discussed above so the overall significance is 
reduced to ~2a. 

6 DISCUSSION AND CONCLUSIONS 

These are listed in Table 2 for three different smoothing 
scales, A = 10, 20 and 40 /z_1 Mpc. The results from these 
Monte-Carlo simulations agree well with our previous 
simpler estimates. 

Our analysis of the artificial ‘QDOT’ surveys in Section 
4.2 showed that the scatter in the genus measurements due to 
the one-in-six sampling is comparable to the scatter between 
different realizations of the survey volume. At least for the 
case of SCDM we can quantify the effect of the sparse sampl- 
ing on the estimate of ncii from the scatter in the amplitudes 
of the genus curves in our artificial catalogues. For each cata- 
logue, we calculate the difference between the amplitude of 
the genus curve of the fully sampled simulation and those of 
its six one-in-six subsets. The small shaded histogram under- 
neath the SCDM curve in Fig. 15(a) shows this distribution 
computed from five different SCDM simulations. A Gaus- 
sian fit gives a width of 0.9, whereas the distribution of 

The topological analysis discussed here complements pre- 
vious studies of the distribution of IRAS galaxies using the 
QDOT survey. In particular, counts-in-cells analyses by 
Efstathiou et al (1990) and Saunders et al (1991) give the 
variance, A2(r), of the density field smoothed on scale A (see 
equation 9). While the topology is sensitive to the shape of 
the power spectrum, the variance of counts-in-cells depends 
both on the shape and the amplitude of the power spectrum. 
Fig. 16 gives this variance as a function of smoothing scale 
as estimated by Efstathiou et al (squares) and Saunders et al 
(circles). We have taken into account the different smoothing 
functions used in these studies, cubical cells in the first and 
Gaussian spheres in the second. The relation between these 
depends slightly on the spectral index; we have used the con- 
version appropriate to a power-law spectrum with 7z = -1. 
In this case, the variance in Gaussian spheres of radius r h~l 

Mpc is the same as that in top-hat spheres of radius 2.2 r h~l 

Mpc. [Recall that our definition of a Gaussian window in 
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Figure 16. The variance of coimts-in-cells in the QDOT survey as 
measured by Efstathiou et al. (1990; solid squares) and Saunders et 
al (1991; solid circles). The open squares and circles are their 
respective measurements of the variance from the same N-body 
simulations of a cold dark matter universe used in this paper. The 
vertical error bars are la. The horizontal error bars on the squares 
reflect the uncertainty in converting between different smoothing 
functions. The solid curve gives the variance calculated for the 
linear cold dark matter spectrum in real space using equation (9) 
normalized by assuming a variance in top-hat spheres of radius 8 
h~x Mpc equal to 1/1.4. The dashed Une shows the variance for the 
power-law spectrum of index n= - 0.9 found in this paper. This line 
was placed at the height that gives the best fit (by eye) to the results 
of the counts-in-cells analyses. 

equation ( 1 ) differs from the definition of Saunders et al by a 
factor of l/Jl] The predictions of the SCDM model, calcu- 
lated from the same N-body simulations used in this paper, 
are shown as open symbols in Fig. 16. 

The variance of galaxy counts in top-hat spheres of radius 
8 h~l Mpc is close to unity for optical galaxies (Davis & 
Peebles 1983). This scale corresponds to a 5.1 h~l Mpc 
Gaussian window; on this scale Fig. 16 shows the variance of 
the IRAS galaxy counts to be well below unity. A least- 
squares fit to the first three data points in this figure gives 
A (5.1 h~l Mpc) = 0.67±0.11. This is consistent with a 
correlation analysis (in preparation) which shows that IRAS 
galaxies are somewhat less clustered than optically selected 
galaxies. The solid line gives the theoretical variance calcu- 
lated directly from the linear theory cold dark matter power 
spectrum in real space, normalized so that the rms fluctua- 
tions in the IRAS galaxy distribution are 1.0/1.4 times the 
observed rms fluctuations of optical galaxies in top-hat 
spheres of radius 8 /*-1 Mpc. The dashed line in Fig. 16 has 
the slope n = - 0.9 obtained in Section 5, over scales of 10 to 
50 h~ l Mpc. Since the topology analysis does not constrain 
the amplitude of the power spectrum, we have arbitrarily 
placed this line at the height at which it gives the best pos- 
sible agreement (as judged by eye) with the results of the 

counts-in-cell analyses. It is reassuring that the topology and 
counts-in-cells techniques yield consistent results, even 
though they are sensitive to different aspects of the data. 

On scales ^15 h~l Mpc the QDOT power spectrum 
agrees well with the standard cold dark matter model, as can 
be seen either from the solid line or the open symbols in Fig. 
16; on larger scales the data fall off less steeply than the 
model predictions. The largest discrepancy with the topology 
analysis occurs at ~ 30 h~1 Mpc and is significant at the 
- 2 a level. This result is somewhat less significant than that 
obtained from the counts-in-cells analyses which weight the 
data in a very different way. We expect the topology test to be 
rather less sensitive than the counts-in-cells method to the 
details of the way in which the IRAS galaxies are assumed to 
trace the mass. Nevertheless, we cannot rule out the possi- 
bility that the large-scale distributions of galaxies and mass 
may not trace each other in the simple way posited by the 
linear biasing model. Indeed, recent work by Babul & White 
(1991) and by Bower et al (in preparation) shows that alter- 
native biasing schemes in the cold dark matter model can 
give rise to large-scale power in the galaxy distribution at the 
level detected in the QDOT survey. In these biasing models, 
the transformation between the density and galaxy fields is 
not purely local and this may preclude a simple relation 
between their respective topological properties. Alternative 
diagnostics, such as the structure of the microwave back- 
ground radiation or the abundance of galaxy clusters, may 
help to decide whether the discrepancy we have uncovered 
reflects a shortcoming of the density field in the standard 
cold dark matter model or an inadequate prescription for the 
way in which the galaxies are assumed to trace this field. 

A central aim of this work was to answer the question of 
whether or not the observed distribution of IRAS galaxies 
could have resulted from the gravitational growth of an 
initially Gaussian field of density fluctuations, as assumed, 
for example, in the standard cold dark matter model. Smooth 
maps of the galaxy distribution exhibit the topology charac- 
teristic of Gaussian density fields. High- and low-density 
regions have a remarkably similar structure. Voids are not 
isolated empty spaces but rather regions of low density which 
interconnect in a sponge-like fashion. Clusters are also 
joined together by walls and bridges of galaxies that form 
extended overdense regions. We found that the genus- 
threshold density relation developed by Hamilton et al 
(1986) and Gott et al (1987) provides a useful quantitative 
measure of the topology. For our analysis, we relied on mock 
‘QDOT surveys’ constructed from cold dark matter N-body 
simulations and a variety of Monte-Carlo techniques to keep 
a tight grip on random and systematic uncertainties. Due to 
the great depth of the QDOT survey, we were able to probe a 
range of length-scales, 10-50 h~l Mpc, not probed by pre- 
vious galaxy surveys. Over this range, the topology of the 
QDOT survey agrees remarkably well with that expected for 
a distribution which has evolved from an initially Gaussian 
field of density fluctuations. As a counter example, we 
showed that our data rule out the non-Gaussian distribution 
in a Voronoi foam model of large-scale structure with 100 
h~l Mpc cells at about the 5a level. It should be noted that 
our results do not conflict with the marginal detection of 
skewness in the count distribution of QDOT galaxies 
reported by Saunders et al (1991). In fact, given the 
measured variance, this level of skewness is about what one 
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would expect from gravitational evolution from Gaussian 
initial conditions (Coles & Frenk 1991). 

To summarize, although IRAS galaxies are somewhat less 
strongly clustered than optical galaxies, the QDOT survey 
contains a wealth of information on large-scale structure. 
The survey is useful out to at least 200 h~x Mpc and many 
well-known clusters, superclusters and voids can be identi- 
fied within this distance. The most prominent feature 
within 75 h~l Mpc is the Hydra-Centaurus complex and the 
far field is dominated by the Hercules supercluster, extend- 
ing between 100 and 150 h~l Mpc. Our topological analysis 
has led to two main results: the detection of a ‘sponge’ top- 
ology characteristic of a Gaussian density field and a 
measurement of the slope of the power spectrum on large 
scales. 
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