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Symplectic Integrators for Hamiltonian Systems : Basic Theory

HARUO YOSHIDA
Natsonal Astronomical Observatory, Mitaka, Tokyo 181, Japan

Abstract. Symplectic integrators are numerical integration methods for Hamiltonian systems,
which conserves the symplectic 2-form exactly. With use of symplectic integrators there is no
secular increase in the error of the energy because of the existence of a conserved quantity closed
to the original Hamiltonian. Higher order symplectic integrators are obtained by a composition of
2nd order ones.
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1. Introduction

The exact solution of Hamiltonian equations of motion
¢=Hy, p=-H, (1)

has the following properties. The mapping from (g,p) at t = 0 to (¢',p") at t = 7
along the solution is

(i) exactly symplectic, i.e., Xdp A dg = Edp' A d¢’
and

(ii) conserves the energy, i.e., H(q,p)= H(q',p").
If we use a traditional integration method ( such as the Euler method or the Runge-
Kutta method ) which does not respect the Hamiltonian nature, the above two
properties are easily violated. For example, the one-dimensional harmonic oscillator
with the Hamiltonian

H = (1/2)(p" + ¢°) (2)

has the exact solution

(10 = (o s (1)), ®

which, of course, enjoy the above two properties.
The most primitive integration method ( i.e., Euler method ) approximates (3)

) (2)-(% 1)),

This mapping (¢,p) — (¢, p') is not exactly symplectic, and at each step, the value
of the energy is multiplied by (1 + 72), i.e.,

(0% +4%) = (1L+ )" + ¢%), (5)

which leads to the indefinite increase of the energy. The situation is, more or less, the
same when one uses a higher order integrator, such as the 4th order Runge-Kutta
method.
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2. First Order Symplectic Integrator
A small change in (4) makes the mapping exactly symplectic. Indeed, take

(#) =52 22) () ©

This mapping is obviously symplectic (det = 1), and has the same local accuracy
(1st order) as the Euler method. In general, for a Hamiltonian of the form

H=T(p)+V(a), (7)

a first order symplectic integrator ( a symplectic mapping which approximates the
exact solution up to the order of 7 ) is given by

, aT , 1%
d=q+7{— , pP=p-—1|— (8)
op p=p dq q

=ql
This mapping (g,p) — (¢',p') is symplectic because it is composed of two symplectic
mappings, (¢,2) — (¢',p) and (¢',p) — (¢, »’). One finds easily that although the
value of the energy is not conserved exactly with use of the symplectic integrator,
the error has no secular increase and it is bounded of the order of 7.
For the one-dimensional harmonic oscillator case, this phenomenon is explained

by the existence of a conserved quantity ( integral of motion ) of the mapping (6),
which has the expression

1 T
5(1)2 +¢5)+ 3P4 = const. (9)

If one starts with the initial condition (g,p) = (1,0) with a fixed small value of T,
the points obtained by iterating the mapping (6) must lie on an ellipse in the (g, p)
plane, ¢ + p? + 7pg = 1, which differ from the trajectory of the exact solution
g2 + p? = 1, only of the order of 7 permanently. Thus the error of the energy
caused by the local truncation error cannot grow. Indeed, we have a more general
statement;

Theorem

The symplectic mapping (8) describes the exact time-7 evolution of a Hamilto-
nian system H, which is close to the original Hamiltonian (7) and has the expression
of a formal power series in 7,

ﬂ:H+TH1+T2H2+T3H3+.... (10)
where,

1 1 1
Hy = §Hqu» Hy = E(prqu +quH1?)’ Hs = EHPPH‘I‘IHPHQ’ - (1)

In particular, (8) conserves H exactly.

Therefore with use of the symplectic integrator, there is no secular accumulation
in the error of the energy.
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3. Higher Order Symplectic Integrators

From a practical point of view, higher order symplectic schemes are important.
Introducing the notation, z = (q, p), the Hamilton equation is written in the form

5 = {z, H(2)}, (12)

where braces stand for the Poisson bracket, {F, G} = F;Gp — F, G,. If we introduce
a differential operator Dg by DgF := {F,G}, (12) is written as z = Dz, so the
formal solution, or the exact time evolution of z(t) from ¢ = 0 to ¢ = 7 is given by

2(1) = [exp(7Dg)]2(0). (13)
For a Hamiltonian of the form (7), Dg = D7 + Dy and we have the formal solution
2(7) = exp[r(A + B)}z(0). (14)

where A := Dy, and B := Dy .
Suppose (¢, d;), (¢ =1,2,..., k)is aset of real numbers which satisfy the equality

k
exp[r(A + B)] = H exp(c;TA)exp(d;TB) + o(r™*1). (15)
=1
for a given integer n, which is called the order of the symplectic integrator. Now
consider a mapping from z = 2(0) to 2’ = 2(7) given by

k
2= [H exp(c;TA) exp(d;7B)| z. (16)

=1

This mapping is symplectic because it is just a product of elementary symplectic
mappings, and approximates the exact solution (14) up to the order o(7*). Fur-
thermore, (16) is explicitly computable although (14) is only formal. In fact (16)
gives the succession of the mappings

oT 1%
q =9 + 76 (8_) y P =P —7d; (5‘) (17)
p P=p.-1 a 94=9:

fori =1 toi = k, with (q¢,pg) = #z and (qx, Px) = #'. An n-th order symplectic
integrator ( integration scheme ) is thus obtained. For example when n = 1, a trivial
solution is ¢; = dy =1, (k = 1), and we have

exp[r(A + B)] = exp(rA)exp(7B) + o(7?). (18)

which gives the first order integrator (8). When n = 2, we find that ¢; = ¢3 =
1/2,dy =1,d2 =0, (k = 2), thus

exp[r(A + B)] = exp(%A) exp(rB) exp(%A) + o(73). (19)
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Forest and Ruth(1990) obtained a 4th order integrator in a rather straightforward
way with the result,

1 1—21/3
=T - alpy 2T BT o gty

1 —21/3
d1=d3=m, d2=m, d4=0. (20)

Yoshida(1990) found that this 4th order integrator is composed of the 2nd order
ones. With use of the notation

So(7) := exp(%A) exp(7B) exp(%A), (21)
the 4th order integrator S4(7) can be written as
54(7') = Sg(:L‘lT)Sg(l'oT)Sg(l'lT) (22)
where
—21/3 1
g T g (23)
Furthermore, if a 2n-th order integrator So, (7) is known which enjoyes the property,
S2n(7-)52n(—7) = 1, (24)
a (2n+2)-th order integrator is obtained by a composition
Sgn+2(7’) = Sgn(21T)Sgn(20T)Sgn(21T), (25)
where
_21/(2n+1) 1
20 = 9 . 91/(2n+1)’ 21 = 92 — 91/(2n+41) " (26)

Thus there exists an explicit symplectic integrator of any even order. For more
details, see Yoshida(1990). Recently, Forest et al.(1991) remarked that this idea
can be used also to desine an implicit integrator for arbitrary Hamiltonian systems.

For the application of symplectic integrators, see Kinoshita et al.(1991), Channel
and Scovel(1990), Candy and Rozmus(1991), and Pullin and Saffman(1991).
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Discussion

J.Wisdom - Both your presentation and that of Kinoshita mention only Hamil-
tonians of the form H = T(p) + V(g). I would like to emphasize that the same
coefficient achieve high order for Hamiltonians of the more general form H =
Ho(p,q) + Hi(p,q) provided that Hy and H; are individually integrable, as I
presented in my talk.

H.Yoshida — Yes, of course. Indeed one section of our recent publication (Kinoshita,
Yoshida and Nakai, Celest. Mech. Dyn. Astron. 50,59-71, 1991) is devoted to such
case.

J.Wisdom — The doubling method of solving the coeflicient equations to high order
is very impressive, but it may be that there are other solutions with fewer function
evaluations that can achieve the same order.

H.Yoshida — 1 Agree with you completely. What I have shown is just the existence
of at least one integrator of any even order, by forgetting economy completely. But
I have no idea how to search such solution systematically.

J.Wisdom — It has not been mentioned, but of course the conservation of energy
is purely formal. In reality there is accumulation of numerical error that must lead
to, at least, square root of time error growth in energy and 3/2 power of time in
the mean longitudes.
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