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ABSTRACT

Planetary systems of Galactic disk stars can be detected as microlenses of stars in the Galactic bulge. Pla-
nets in a solar-like system positioned half-way to the Galactic center should leave a noticeable signature
(magnification larger that 5%) on the light curve of a gravitationally lensed bulge star in ~20% of the micro-
lensing events. This high probability results from a coincidence between Jupiter’s orbital radius and the solar
Einstein radius at this distance. Typical planetary signals last for about 1 day, a small fraction of the approx-
imately 1 month duration of the entire microlensing event. Dedicated monitoring of microlensing candidates is
suggested as a method to discover planetary systems in conjunction with forthcoming observations toward the

Galactic bulge.

Subject headings: gravitational lensing — planetary systems — stars: variables: other

1. INTRODUCTION

The first discovery of planets outside the solar system was
reported recently (Wolszczan & Frail 1992). These two ~3 M
planets orbit the pulsar 1257+ 12 and were detected through
their gravitational effects on the pulsar period. Attempts to
find planets in more common environments, €.g., near main-
sequence stars, have not so far been conclusive (Stevenson
1991). The traditional methods for planetary system searches
involve either indirect observations (e.g., astrometry or radial
velocity measurements) or direct infrared observations (see
Stevenson 1991, and references therein).

In this paper we explore in detail a novel method for dis-
covering planetary systems in the Galactic disk. The approach,
first suggested by Mao & Paczynski (1991), makes use of the
rare events in which the image of a bulge star is being gravita-
tionally lensed by an intervening disk star. During such an
event the brightness of the bulge star increases, peaks, and then
decreases over the course of several weeks or months. The
resulting light curve is smooth and completely described by
three parameters, the temporal width, the maximum magnifi-
cation and the time of maximum magnification. However, if
planets surround the lensing star, then this well-defined light
curve may be significantly altered during a time period of order
days. In approximately 20% of microlensing® events generated
by a solar-like system, the light-curve perturbations induced by
the planets would be detectable. This relatively high probabil-
ity obtains because of a special coincidence between the orbital
radius (5.2 AU) of a Jupiter-like planet and the Einstein ring
radius (4 AU) of a Solar-like star lying half-way to the Galactic
center. The Einstein radius of the star is given by
(4GMD/c®"?, where M is the mass of the star, D =
Doy Dys/Dos, and Dg;, Dis, and Dog are the distances between
the observer, lens, and source. A planet of mass m affects appre-
ciably the microlensed image only if the planet and the unper-
turbed image are separated by of order the planet’s own
Einstein radius, (4GmD/c?)!/2. The area covered by the planet-
ary Einstein ring is smaller than that of the lensing star by

!The term microlensing originates from the fact that the undetectable
separation between the two images is of order a micro-arcsec for a solar mass
positioned at cosmological distances. However, for Galactic stars the separa-
tion is of order milli-arcsec.

(m/M), and so the probability that the image will be affected by
the planet at any given moment during the event is
likewise ~ (m/M). However, as the image sweeps across the
Einstein ring of the lensing star, the planetary Einstein ring
sweeps through a total fractional area ~ (m/M)Y/2, This frac-
tion is approximately 3% for Jupiter and the Sun. Naively, one
may identify this fraction with the planetary detection prob-
ability if the microlensing event is monitored continuously.
Nevertheless, as we show in this paper, the actual probability
of detecting a Jupiter-like planet turns out to be ~17%, much
higher than this naive estimate. The difference is accounted for
by the above-mentioned coincidence between the Jupiter-like
orbital radius and the Sun-like Einstein radius. The probability
of detecting a Saturn-like planet is ~3%, much closer to what
one would naively guess (~2%).

By the same argument as given above, the planet will typi-
cally affect the image magnification only for a fraction of
(m/M)'/? of the duration of the entire microlensing event. With
the typical stellar velocities (~ 200 km s~ !), this corresponds to
a day or so for a Jupiter-mass planet.

Figure 1 presents the effect of a planet on the otherwise
smooth light curve of a lensed bulge star. The diagonal box in
Figure 1a illustrates the elongated region in which the planet
has a significant influence on the lensed image. As the source
moves linearly across the Einstein ring of the disk star, it inter-
sects this box for about a day. The sharp distortion that the
smooth light curve suffers during this period signals the exis--
tence of the planet.

The probability that a given bulge star will be lensed by a
star in the disk is <107 Only a few per million bulge stars
per year are expected to be microlensed (Paczynski 1991;
Griest et al. 1991). The above method must therefore be com-
bined with a massive search for lensing events toward the
Galactic bulge. Such searches are about to be undertaken by
the Macho Collaboration (Alcock et al 1992) and a Warsaw-
Carnegie collaboration (Paczynski et al. 1992), having been
motivated by other goals, including detection of the halo dark
matter, detection of the disk dark matter, and measurement of
the faint end of the present mass function of the disk
(Paczynski 1991; Griest et al. 1991).

In the context of these searches Mao & Paczynski (1991)
recently considered the effects of binaries and planetary
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FIG. 1.—Geometry of a star-plus-planet lensing event (a) and resulting light
curve (b). A bulge source star moves through the Einstein ring of a disk star
with an impact parameter 8, = 0.530,,, where 6, is an Einstein ring radius. The
masses of the star and planet are 1 Mg and 10~3 M, respectively. They lie
halfway to the Galactic center at 4 kpc, and their projected separation is 5.2
AU. Over most of the trajectory, the light curve is virtually unaffected by the
presence of the planet. The diagonal box represents schematically the region
where the light curve is affected by at least 5%. Significant deviation lasts for
about 1 day.

systems on the microlensing observations toward the Galactic
bulge. They analyzed briefly the effects of planets on a micro-
lensing light curve and concluded that the detection probabil-
ity is of order 3% to 10%, for a Jupiter-mass planet. In this
work we extend Mao & Paczynski’s analysis and explore in
detail the feasibility of a dedicated search for planets using
microlenses.

In § 2, we use Fermat’s principle to analyze the magnifi-
cation effects of a planet on a microlensed image. In § 3, we
calculate the probability for detecting a planet given that the
parent star passes within one Einstein radius of the source. We
then apply this result to a solar-like system lying at a random
position and orientation between the Earth and the Galactic
bulge. We use a standard solar system for the numerical exam-
ples since it is the only system for which accurate data about
the relative positions and masses of different planets exist.2 In
§ 4, we examine sample light curves and estimate the distribu-
tion of temporal widths for the planet-induced perturbations

2 The source size (typically ~10*! cm for a bulge giant star) can be ignored
for Jupiter-like planets but must be taken into consideration for planets lighter
than the Earth for which the Einstein radius is comparable to the source size.
Since the lighter planets contribute a negligible probability in our examples, we
treat the sources as pointlike.

105

to the light curve. In § 5, we outline the necessary observa-
tional effort for a dedicated microlensing search for planets.
Finally, § 6 summarizes our conclusions.

2. PLANETARY PERTURBATION TO A STELLAR LENS

The images of a lensed source are positioned at the station-
ary points of the time delay surface induced by the lens
(Fermat’s principle). For a single point lens of mass M, the time
delay in units of 4GM/c? is given by (e.g., Blandford & Kocha-
nek 1987)

T=130;—x) —In(x), 21

where 0, = 0, x, and 0; = 0, x; are the angular positions of the
source and the image relative to the lens, 0, is the Einstein ring
radius,

9 = 4GM _ DopDos

*= D¢’ T Dy
and Do, Dy, and Dyg are the relative distances between the
observer (O), lens (L), and source (S). The first term in equation
(2.1) is the geometrical time delay while the second term arises

from the gravitational redshift in the lens potential.
By the requirement that 7 be stationary,

22)

0T =x—x,—2=0, 23)
Xi
there are two images located at 0; , = x; 4 0,,
+ 2 4 1/2
- xS —_— (xS + ) (2‘4)

xi,i 2 >

one inside and one outside the Einstein ring. The outer image
is always brighter by a factor x{ .. The combined light from
the two images results in a magnification, A, of the source
brightness. Since surface brightness is conserved (Liouville’s
theorem), the total magnification is the Jacobian of the area
transformation between the image and the source coordinates,
ie.,

-1 -1

0%t

2
0x} 4

_ | 00,
7|00, +
Thus, if a star in the Galactic bulge is lensed by an isolated

foreground star in the Galactic disk, the former will be ampli-
fied by a factor

A

(2.5)

1 x242
Xte =1 x(e2 + 42
2.6)

Now suppose that the lensing star is not isolated, but has a
single planet of mass m,

1
AGe) = Ay + Ao =7+

e<l, @.7)

positioned at 0, = x, 0, relative to it. The magnification then
differs from the value given by equation (2.6) and becomes

A(xg, x,) = (1 + 9)A(x,) - (28)

Equation (2.8) serves to define &, the magnification excess. If
the planet lies far from the light path (ie., the unperturbed
image position) of either of the two images, it will hardly
perturb the isolated-star lensing, and | 8| will be small. On the
other hand, if the planet gets near one of the image positions, it
may perturb the light curve significantly, thereby allowing the
planet to be “observed.”

m=eM,
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To examine the effect of the planet quantitatively, we add the
planetary perturbation to the time-delay surface given by
equation (2.1):

29)

The second and third terms arise from the potentials of the
lensing star and planet, respectively. By Fermat’s principle, the
images are located at the solutions of

T=3(x;—x)? —In|x;| —eln|x;, — x,|.

0=6,,.1:=xi—xs=i;—e o Ik 5.
Xi (x; —x p)
If € were set to zero (i.e., no planet) we would recover the
equations for the isolated star, and in particular the images
would lie at their unperturbed positions. Since € < 1, we may
assume that at most one image is significantly affected and that
the perturbed images lie near the unperturbed image, x;o. It is
therefore appropriate to expand equation (2.9) in a Taylor
series about the unperturbed image. Since the first derivatives
of t vanish at the image position, we keep terms to second
order. Using the definitions

(2.10)

Con)=x;—Xi0, (p 'Ip) =X, X, (2.11)

and substituting into equation (2.9), we find

1
e A+ PEE+ (A — ] — gln [ — &)* + (m:—np)],

(2.12)
where

1

YEF
Xio

2.13)

is determined by the unperturbed image position. Equation
(2.12) assumes that the sheer due to the lensing star changes
little over the region of interest and takes the lens-source direc-
tion as the &-axis.

We find the image positions by first setting the gradient of
equation (2.12) to zero, which gives

§&i—¢
L+y); =€ > L 5
= T o=y
ni—1
11—y =€ 2 . 2.14
Ry R 19
The ratio of these equations yields 7; as a function of &;,
(A +ympé 2.15)

TS a1 -8,

Substituting equation (2.15) into the first of equations (2.14)
then results in a quartic equation for &;,

14

+[<1 S M) (-8 e }53

4y? Y L+y
_ [(1 — 022 +nd), el — ?)ég]é' el = y)*E2 _
4y? W+ 17 4+
(2.16)

Equation (2.16) can be solved algebraically (Abramowitz &
Stegun 1972). There are always either two or four roots. These
may be substituted into the magnification formula obtained by
applying equation (2.5) to equation (2.12),

(=& —mi—ny)’ }2
1— P p
{y Te [(51 - ép)z + (’1! - '7p)2]2

2 (él — ép)z(r,i — np)2
—4
& =& + i —n) T

The magnification contour structure in the lens plane can be
obtained directly from equations (2.16) and (2.17) for given
values of € and y. Figures 2a—d present the excess magnification
associated with the planet {i.e., & = [A(¢,, n,)/A(x) — 1]} as a
function of (£,, #,) for y = 0.6, 0.9, 1.2, and 1.6. The contours
reflect the way that the magnification would change if the
planet were moved around relative to a fixed source-lens orien-
tation. This contour structure will be useful in the following
section for evaluation of the planet detection probabilities. In
order to obtain the light curves of the lensed bulged star one
must transform the magnification contours from the planet
coordinates in the lens plane, x,, to the source coordinates, x,,
in the source plane. The magnification contours will then
reflect the way that the magnification changes as the source
moves around while the planet-star orientation remains fixed.
This transformation can be obtained from equation (2.11), and
the fact that the source, the lensing star, and the unperturbed
image are collinear, namely (see eq. [2.4])

A:

-1

2.17)

Xio
Xpo="_%X
S

s - (2.18)

Figures 3a-3d presents the excess magnification contours in
the source plane for x, = (0.5, 0), (0.7, 0), (1.3, 0), and (2.2, 0).
The value x, = (1.3, 0) is characteristic for a Jupiter-like planet.
The line of infinite magnification (the critical line) is diamond-
shaped. When the planet is near the stellar Einstein radius,
x, ~ 1, the weak-magnification contours are stretched along
the planet-star axis.> In this case, the region of source plane
which is affected by at least 5% forms roughly the shape of an
elongated box. The width of this box is typically ~e'/?%,
although it is slightly wider or narrower in some places (see,
e.g., Figs. 3b and 3c). We will make use of this boxlike structure
when we analyze the event durationsin § 4.

3. PLANETARY DETECTION PROBABILITIES

We now calculate the probability that a planetary system
can be detected, given that the source passes within the Ein-
stein ring of its central star. This can be done by first calcu-
lating the probability distribution of the planet’s position in
the lens plane, and then finding the region of the lens plane
where the planet can be detected.

3.1. Planet Distribution on the Einstein Ring

Suppose that a star of mass M with a single planet of mass,
m = €M, and circular orbital radius, a, lies at a distance Doy

3 We have compared the magnification contours shown in Figure 3c,
derived using the approximate time-delay surface, equation (2.12), with an
exact numerical calculation generously provided to us by J. Wambsganss. We
find very good agreement. The only noticeable difference is that the leftward
arching of the caustics in Figure 3c is not present in the exact calculation. This
difference has no significant effect on the results reported in this paper.
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FiG. 2—Planetary magnification in the lens plane as a function of the planet position x,, for fixed lens-source orientations of y = 0.6 (a), 0.9 (b), 1.2 (c), and 1.6 (d).
The contour set represents excess planetary magnifications of 6 = (A[x,, x,]/A[x,] — 1) = —20%, —10%, —5%, 0, 5%, 10%, 20%, 100%, and 300%. Positive
contours are bold. The + 5% contours are marked. In the limit y — 0 the diamond-shaped critical line shrinks to a point, while the surrounding contours become
circular as is appropriate for an isolated point mass. In the limit y — co the closed positive-contour structure shrinks into two separated points. The + 5% contours
are used to bracket the detection probabilities in the following section. Results are valid for arbitrary mass ratio, € = (m/M) < 1.
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FIG. 3—Magnification contours in the source plane x, for a planet located at x, = (0.5, 0) (a); (0.7, 0) (b); (1.3, 0) (c); and (2.2, 0) (d). The set of contours represent
the excess planetary magnifications of 8 = —20%, —10%, —5%, 0, 5%, 10%, 20%, 100%, and 300%. Positive contours are bold. The + 5% contours are marked.
Results are valid for arbitrary mass ratio, € = (m/M) < 1. ’
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from the Earth. Since the typical planetary speed is ~10 km
s~ !, while the typical speed of the source relative to the planet-
ary system is ~200 km s~ !, the planet’s orbital position may
be considered as fixed during the lensing event. We consider an
ensemble of such systems having random inclinations, random
orbital phases, and a density distribution, v(z), along the line of
sight between the Earth and the Galactic bulge, where

z==9%, 3.1)

We first determine the distribution of r, the physical project-
ed separation of the planet from its central star. Putting the
planetary orbit at a random inclination and phase is equivalent
to putting the planet at a random position on a sphere of
radius a. Therefore, the probability distribution, p(r), is given
by

r r2 —1/2
==|1—— 0<r<a), 3.2
p0) a2< az) O<r<a (32)
and the cumulative distribution, F(r), by

a 7'2 1/2

F(r) = f dr p(r) = (1 — ;) . (3.3
Next we find the cumulative distribution F(x, | z), where
r
X, =—-— (34)
P Do 0,(2)

is the projected position of the planet at fractional distance z in
units of the Einstein radius. Equations (2.2), (3.1), (3.3), and (3.4)
imply

X212
F(x,|z) = [1 —4z(1 —2) ;!2’-] , (3.5)

*

where

M -1/2 D —-1/2
xp= e 025 o) ().
(GM D) AU/\ M, 8 kpc

(3.6)

The full cumulative distribution (weighted by probability
that the source passes inside the Einstein ring) then equals

[6 dz0,(2)DoL(2W2)F (x| 2)
§o 420 (2)DoL(2)V(z)
Equation (3.7) can be simplified somewhat by noting that both
(64 Do) and F(x, |z) are invariant under z — (1 — z). Hence, we
can replace v(z) - [v(z) + v(1 — z)]. Using this substitution and

changing variables to g = (1 — 2z), we find

Flx,) = rdq(l - 42)1’2[1 -(1—q% %ﬁ—]”zv(q)
()

*

F(x,) = (3.7

/ qu(l - q»)'"?Wg), (3.8)
where

W(g) = v[(1 + ¢)/2] + v[(1 - g)/2] . (3.9

We now adopt the following simple model for v(z). We assume
that the disk has an exponential scale length, h ~ 4 kpc, and a
uniform exponential scale height d ~ 300 pc. If the line of sight

Vol. 396
is at small Galactic latitude, b radians, then
v(z) oc exp (zDor/h — z| b|Dgy/d).
Hence,
o Dos (1 _|b]
#q) = C cosh I:q ) (h 7| (3.10)

where C is a constant. For b ~ 4°, ¥#(q) is approximately inde-
pendent of g. In our illustrative examples, we will therefore
adopt ¥ = const, so that

2

4 1 x 1/2
F(xp)=;qu(1 —qZ)”’[l—(l - ) ;ﬂ] . 61D

*

The probability distribution, p(x,) = —F'(x,) is strongly
peaked near x, = x,, as is clear from Figure 4 below.

3.2. Detection Probabilities

Consider the magnification structure in the source plane
shown in Figures 3a-d and imagine a source moving at a
constant velocity, at an arbitrary angle, and with an arbitrary
impact parameter. On almost all such orbits, the planet signifi-
cantly affects the magnification for at most a fraction of the
time that the source spends within the star’s Finstein ring.
Except during this small fraction of the orbit, the observed
light curve will look almost exactly like the light curve of an
isolated star. Hence, the signature of a planet is a very short-
lived deviation from an otherwise standard microlensing light
curve (see Fig. 1.). We assume that if this deviation from a
standard light curve reaches some minimum level, §,;,, then
the planet can be detected. Using this assumption, we now
estimate the probability that the planet will be detected given
that the source passes within the Einstein ring of the lensing
star.

In principle, one could find the region of the lens plane
where the planet would have a significant effect as follows.
First, choose an impact parameter, 6,, for the source trajec-
tory. Second, for each source position, find the unperturbed
image position and then, using this position and the approx-
imate time-delay surface (e.q. [2.12]), find the domain of plan-
etary positions where the magnification deviation is at least
Omin > Sy 5%. Examples of such regions are shown in Figure 2.
Third, find the union of all such domains as the source moves
on its trajectory. Fourth, find the probability that the planet
actually lies in this domain from equation (3.11). Finally,
repeat the procedure for all impact parameters, 0 < 6, < 0,.

We carry out this procedure below, but with one modifi-
cation. Instead of finding the domain swept out by the entire
+ 8o contours in Figure 2, we find the domain swept by the
extreme radial (i.e., x-axis) extent of these contours. This
approximation causes us to underestimate the affected region
of the lens plane and hence the probability of detection.
However, we show below that the induced error is negligible.
Moreover, this approximation greatly simplifies the calcu-
lation because the radial extent of the contours can be calcu-
lated almost analytically, not only for the approximate
time-delay surface (e.q. [2.12]) but even for the exact time-
delay surface (e.q. [2.9]). When the source, star, and planet are
aligned, equation (2.10) becomes a simple cubic,

xP = (X + x X7 + (X x, — 1 —€)x; +x,=0, (3.12)
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Xp1

F1G. 4—Probability distribution of a Jupiter-like planet (€ = 103, x, = 1.3) on the lens plane (circles) and contours of constant perturbation d,,;, = +5% (bold
solid) and +20% (bold dashed). Angular distances are in units of the Einstein ring, 6,.. Impact parameter is 6, = 0.16,.. The area between successive conx{r;.teriicircles

contains 10% of the planet’s probability. The bold contours in the upper part of the figure are positive perturbations and arise when the planet is close to t
unperturbed image. Those in the lower part of the figure are negative and arise when the planet is close to the fainter unperturbed image.

which can be solved algebraically (Abramowitz & Stegun
1972). The magnification for each image is then [eq. (2.5)]

A=|1—[x7%+ex;—x,) 2. (3.13)

By taking the sum of the magnifications of the three images
and comparing it with the unperturbed magnification, (e.q.
[2.6]), we obtain the perturbation, d.

Figure 4 shows the region of the lens plane enclosed by the
Opmin = 5% (bold solid) and 20% (bold dashed) for the case of a
Jupiter-like planet in orbit about a Sun-like star. That is, we
take € =1073, a=52 AU, and x, =1.3. The source is
assumed to have an impact parameter 6, = 0.16, relative to
the lensing star. The circles represent cumulative probability
contours, 10%, 20%, . . ., 90%, for the position of the planet.

2

brighter

The contours in the upper part of the diagram are for an
increase, § = + J,,,, relative to the unperturbed signal. They
arise when the planet lies near the brighter unperturbed image.
The lower contours are for a decrease, 6 = —0,;,,. They arise
when the planet is near the fainter unperturbed image. If the
planet lies anywhere within the contours, it will perturb the
image by at least J,,;, sometime during the event. Figures 5 and
6 are similar to Figure 4, except that the impact parameters are
6, = 0.40, and 6, = 1.00, respectively, and only the d,,;, = 5%
contours are shown.

Figure 7 shows a Saturn-like planet (€ = 3 x 10™%,x, = 2.3)
with 6, = 0.16,. Comparing this with the analogous Figure 4,
for a Jupiter-like planet, two important differences are appar-
ent. First, the bold contours enclose a smaller area because

w 0
_1 | ‘Jupiter’
L x. = 13
- e=10"
" 6,/6. = 0.4
__2 1 | I
-2 -1

X

p.1

FIG. 5—Probability distribution of a Jupiter-like planet on the lens plane (circles) and contours of constant perturbation ., = +5%. Similar to Fig. 4, except

that the impact parameter is 6, = 0.48, and only one contour is shown.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1992ApJ...396..104G

GOULD & LOEB

Vol. 396

110
2
1
2
of 0
_1 [ Jupiter’
- x. =13
- e =10"
" 6,/6. = 1.0
P INEE S B AR R B
-2 -1

Xp1

F1G. 6.—Probability distribution of a Jupiter like planet on the lens plane (circles) and contours of constant perturbation Omin = +5%. Similar to Fig. 4, except

that impact parameter is 8, = 1.06, and only one contour is shown.

Saturn is less massive than Jupiter. The width of the contours
scales as ~€'/2. Second, and far more dramatically, the con-
tours are much less favorably placed relative to the probability

distribution of the planet. That is, the contours are concen-

trated near the Einstein ring, while the Saturn-like planet’s
probability is concentrated at more than two Einstein radii.

In Figure 8, we show the probability that a planet can be
detected as a function of its orbital-radius parameter, x,, and
for various values of §,;,. In plotting the figure, we have
assumed that € = 10~ 3. For other values of €, the probability
scales as ~¢€!/2. Note that for each J,,;,, there are two strong
peaks, one at x, ~ 0.8 where the highest planetary probability
crosses the inner contours, and one at x, ~ 1.3, where the
highest planetary probability crosses the outer contours (see
Figs. 4-7). The contributions from the inner and outer con-
tours are shown separately for the case 6,,;, = 20%.

From Figure 8, we find that if a solar-like planetary system
lay at a random position along the line of sight to the bulge,
and if a bulge source came within one Einstein radius of the
central star of this system, then the system could be detected
~20% of the time (assuming J,;, = 5%). By far the largest
contributor would be Jupiter, partly because it is the largest
planet, but primarily because its dimensionless radius, x, =
1.3, lies right at the peak of the curve in Figure 8. Jupiter would
contribute ~17%, Saturn ~3%, and all the other planets
<1%.

Is Jupiter’s extremely favorable dimensionless radius, x, =
1.3, likely to be repeated in other planetary systems? A plaus-
ible if speculative argument can be made that it will be. Jupiter
formed near a,,;,, the innermost radius of the proto-planetary
accretion disk at which water ice condensed. Stevenson &
Lunine (1988) have argued that the formation of the most
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Fig. 7.—Probability distribution of a Saturn-like planet on the lens plane (circles) and contours of constant perturbation 6., = +5%. Similar to Fig. 4, except

thate =3 x 1074, X, =23, and only one contour is shown.
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F1G. 8 —Probability for detecting a planet of orbital-radius parameter, x,,
(see eq. [3.6]) given that the source passes within one Einstein radius of the
central star. Total probabilities (solid curves) are shown for € = 103, assuming
that the minimum detectable perturbations are d,,;, = 5%, 10%, and 20%. For
the last case, the probabilities for perturbation of the inner (dashes) and the

outer (dot-dashes) images are shown separately.

massive planet is triggered by a “cold finger ” of ice at just this
point. The position of this cold finger is expected to scale as
Amin ¢ M?, where M is the mass of the star and o is a model-
dependent parameter. We are thus led to estimate (see eq.

[3.6])
M \*~ 1/2
Xy ™~ 13<M_O) ’

for the dimensionless orbital radius of the most massive planet.
Plausible values of o lie in the range 1 < « < 3 (D. Stevenson,
private communication). For this range of « and for 0.2 M5 <
M <2 Mg, the dimensionless radius is bounded by 0.8 <
X, < 1.7. As shown in Figure 8, the probability of detection is
substantial for these values.

We now pause to estimate the error induced by using the
region swept by radial extent of the contours, instead of the
region swept by the full contours (see Figs. 2a-d). First con-
sider Figure 4. The width of the upper enclosed region of the
5% (solid) region goes to zero very quickly at the sides of the
diagram. However, it is clear from Figure 3d, that for small y
(and hence large x; o) the planet can lie anywhere within a
fairly large circle of the unperturbed image and still affect the
image. In fact, in the limit where the planet is well outside the
star’s Einstein radius, the planet may be treated as an isolated
lens. Then the entire region within two planet Einstein radii
(i.e., 2€'/20,) will be affected by 2 6%. Thus, the bold lines in
Figure 4 should never get closer than about 0.12. It is clear at
least in this case, however, that the correction is extremely
small: first, because this width is small compared to the width
of the region which dominates the diagram and second,
because the planet has a very small probability of lying in this
ignored region. Nevertheless, for a planet with a larger radius
(see, e.g., Fig. 7), the planetary probability will be more concen-
trated in the ignored region and at sufficiently large planetary
radius, the ignored region will actually dominate the true prob-
ability of detection. However, it turns out that the total prob-

ability of detection in this limit is given exactly by
8¢'?/3nx, ~ €'?/x,. That is, for Saturn this extreme calcu-

(3.14)

DISCOVERING PLANETARY SYSTEMS

111

lation gives 0.7% compared to the actual value of 3%. Thus, it
is only for planets with still larger orbital radii (and hence
negligible probability of detection) for which the ignored
region becomes relatively important. One can make a similar
argument regarding the ignored region near the lower contour

of Figure 4.
4. LIGHT CURVES

The light curve of a moving source is obtained by slicing the
magnification contours in the x, plane (see, e.g., Fig. 3) along a
straight line. For fixed lens and observer positions and a source
transverse velocity, v,, the temporal units of the event are fixed
by the planetary Einstein ring crossing time, Do €'/%0, /vr. The
distribution of these time scales for a Jupiter-mass planet is
shown (dashes) in Figure 9. Also shown is the distribution of
planetary event time scales (solid). The latter is computed by
assuming that the region affected by the planet is a long box of
width ~€'/20, (see, e.g., Figs 3c and 1a). That is, for each time
scale At shown in the dashed curve, there is a relative probabil-
ity, cos ¢ d¢ that the source trajectory will intersect the box at
angle ¢, yielding an event of duration At/cos ¢.

In Figure 10, we have reproduced the source plane structure
of Figure 3¢ and drawn four source trajectories through it.
Figures 10A-D show the four light curves corresponding to
these linear slices. Figure 10D is the same case illustrated in
Figure 1. From Figure 10, it is clear that there are essentially
two broad classes of light curves: those which do not intersect
the caustic structure, and those which do. Figures 10A and
10D are examples of the former class and Figures 10B and 10C
are examples of the latter. For the geometry shown in Figure
10, noncaustic-crossing trajectories are about 6 times more
probable than their more striking counterparts. The elongated-
box geometry shown in Figure 10 is typical for planets near the
stellar Einstein ring. Recall from the discussion in § 3 that it is
only when the planet lies fairly near the Finstein ring that it has
a substantial probability of being detected. Therefore, light
curve deviations of the type shown in Figures 10A and 10D are
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Fic. 9—Distribution of lensing time scales for a Jupiter-mass planet
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FiG. 10.—Excess light curves associated with various source trajectories through the planetary magnification structure of Fig. 3c. The light curves in figures A, B,
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curve. At time ¢ = 0 the source passes through x,, = 0. Trajectory D is exactly the same case illustrated in Fig. 1. The angular velocity of the source relative to the
lens was taken as one planetary Einstein radius per day. The relative probability of other time scales is shown as the dashed curve in Fig. 9.

more or less typical of those likely to be seen in actual observa-
tions.

From the light curve alone, it is possible to measure the mass
ratio, €, but not the mass of the planet. The procedure is as
follows. From the smooth part of the overall light curve
(ignoring for the moment the short deviation caused by the
planet), it is possible to measure the temporal width of the
event and the dimensionless impact parameter, 0,/0,, (see, €.g.,
Fig. 1b). Then from the position of the deviation on the light
curve, one may determine the value of y as well as the orienta-
tion of the star planet vector relative to the direction of the
motion of the source. These two parameters specify the
contour structure (see Fig. 3) and the angle at which the source
cuts the boxlike contours (see Fig. 10). The maximum magnifi-

cation then gives the intercept of the source with the box axis
up to an overall ambiguity. It may be possible to resolve this
ambiguity from the detailed light curve since the structure
of the contours is substantially different on the two sides of
the planet. The duration of the deviation is given by
aDop €0, /vy, where a is a parameter of order unity which
can be calculated from the appropriate contour diagram. The
measured time scale of the full event specifies Do, 0,/v7. Hence,
one may infer the mass ratio, . Without additional informa-
tion, the individual masses of the star and planet can be esti-
mated only statistically.

However, if the lensing star is a G dwarf or earlier, one may
determine not only the planet’s mass but also its projected
separation. In this case, the lensing star would be <6.5 mag,
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while the typical lensed bulge star might be ~2.5 mag. Since
the lensing star is typically at half the bulge distance, it should
be =10% as bright as the bulge star. Since the two stars will
differ in radial velocity by ~100 km s~ %, it should be possible
to resolve them spectroscopically (after the lensing event is
over). From the spectral type one may determine the mass of
the star, M, and hence the mass of the planet m = eM. More-
over, from the spectral analysis as well as the light curve, it
should be possible to estimate the separate luminosities of the
two stars. The apparent luminosity and spectral type of the
lensing star would give Do, and hence the physical projected
separation of the planet and star.

We note that the light curve due to lensing by a planetary
system is easily distinguished from that due to a binary-star
system. For planetary systems, the light curve deviates from a
standard, single-star light curve only for a small fraction of the
entire event (see Figs. 10A-D). For a binary, the light curve
deviates from the standard one for a large fraction of the event
(Mao & Paczynski 1991).

5. OBSERVATIONAL REQUIREMENTS

Two distinct steps are required to observe a planetary
system by microlensing. First, one must single out a disk star
which happens to be microlensing a bulge star. Second, one
must observe this star often enough to catch the deviation in
the light curve due to the planet. The first step involves the
observation of millions of bulge stars on the order of once per
day. The second step involves the observation of a handful of
stars many times per day. In the following we give a rough
outline of what is required for each of these steps.

The probability that a given bulge star is lensed by a disk
star is ~4 x 10”7 (Paczynski 1991; Griest et al. 1991). A
typical event lasts ~1 month for a solar mass lens, and
scales oc M2 for other masses. The event rate is dominated by
low-mass stars which have time scales of a few weeks. Thus,
there are ~2-7 x 10~ % events per year per bulge star observed
(Griest et al. 1991). The uncertainty arises from the uncertainty
in the low end of the disk mass function (Scalo 1986). Figure 11
shows the expected number of events per bulge star observed

10 T T T T T T T T I T T T T
8 — ]
" B i
St
o = -
o
wn i -
N 6 |— —
o L 4
~N - .
S~
>‘ e —
w4 _
a
g — .
3 B ]
= — -
2 —
0 1 1 1 1 l 1 1 | 1 | 1 1 l ]
0 15

M/M,

FI1G. 11.—Number of expected stellar lensing events per 107 bulge stars
observed per year. Bins are 0.1 M,. Estimates are based on the mass function
of Scalo (1986) and a stellar density which is constant along the line of sight to
the bulge (i.e., b ~ 4°). Note that there are ~eight events per yr for “solar-
type ” stars (0.7 S M/My < 1.3). Rates for stars, M < 0.2 M, are uncertain.
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for 0.1 My bins. As in previous rate estimates, we have
assumed a line of sight, b ~ 4°, where the stellar density is
approximately constant. The dominant uncertainties in the
figurearefor M $ 02 M.

If 107 -bulge stars were observed, there would be ~four
events occurring at a given time, and ~20-70 events per year.
Here, an “event” means that the source and stellar lens are
separated by less than one Einstein radius. Two questions arise
in this context. First, are there this many stars in the Galactic
bulge which can be observed? Second, can they all be imaged
in a single night? Assume that about 10% of the Galactic bulge
can be observed through “windows” in the obscuring dust of
the Galactic disk. The crowding limit of a typical window
occurs in exposures reaching stars ~3 mag. The total lumi-
nosity of the bulge is ~2 x 10° L, (Binney & Tremaine 1987).
Hence, =107 stars should be observable. A more accurate esti-
mate will be available when the Macho Collaboration begins
their bulge observations in the 1992 southern winter (K. Griest,
private communication). A 50 inch (1.3 m) telescope (such as
the one which will actually be used by the Macho
Collaboration) can reach the crowding limit in about 1 minute.
Allowing another minute for readout, 2200 fields per night
could be observed. Thus, with a 0.5 square degree CCD Array,
the entire bulge could easily be covered in a night. Since the
windows are present in only parts of the bulge, it may even be
possible to cover the bulge twice per night. The data produced
by such a set of observations are comparable to the expected
data from the Macho Collaboration’s observations of the
Large Magellanic Cloud (LMC).

As mentioned above, the Macho Collaboration will be
observing the bulge as well as the LMC. However, because the
LMC is the project’s main priority, the bulge will be observed
only for the ~4 months per year when the LMC is down.
Because most of their computer facilities will be tied up in
LMC work, the Macho Collaboration may choose to observe
many fewer than 107 stars. Nevertheless, specifications of the
Macho Collaboration project indicate that monitoring of 107
stars on a nearly year round basis is possible, and the project
itself should reach a significant fraction of this observation
rate.

The signature of a planet is a deviation from the standard
light curve which lasts of order 1 day or less. Figure 9 shows
the approximate distribution of time periods that the deviation
will exceed | 6, | = 5% for a Jupiter-mass planet. For planets
of other masses m, the time periods scale as m*/2, A secure
detection of a planet probably requires at least half a dozen
points which deviate from the standard curve. This, to detect
Jupiter-mass planets, observations should be made every ~4
hr. Detection of Neptune-mass planets requires hourly obser-
vations. As discussed below, these observations can begin
when the source comes within about twice the Einstein radius,
0, of the lensing star. If 10 stars are observed, roughly 16 will
lie within 26, of a disk star at any given time. These 16 stars
could be imaged once per hour with a 36 inch (91 cm) tele-
scope.

While observations from one site would be useful, there are
advantages to be gained by observing from several sites. First,
since the planetary events last a day or less, those which peak
during the daytime are likely to be missed. Thus, two widely
separated telescopes would nearly double the number of detec-
tions. Second, the bulge lies near the ecliptic. Thus, in the
months near December, it is visible for only a few hours per
night from any one location. At least during these months, it
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would be much better to have a global network of telescopes
each fractionally committed to the project, rather than one or
two telescopes that were totally committed. Third, in view of
the fleeting nature of the events, it would seem prudent to build
in some redundancy in case of bad weather at a particular site.
Thus, the optimal scheme would employ, say, a dozen tele-
scopes. Each of these would be committed to carry out two
observations per night. During the near-December season,
these would be near dawn or dusk and in other seasons, at
more favorable times. In case of bad weather at one sight, the
two neighboring sights might be able to pick up the slack.

As discussed in § 3, most of the probability for detection of a
planet occurs when the source is within an Einstein radius of
the lensing star. Can the lensing event be recognized in time to
initiate observations during this crucial period? According to
equation (2.6), the magnification a ~ 1.06 at two Einstein radii,
and A ~ 1.34 at one Einstein radius. For a solar mass lens, the
source will spend about 1 month on this part of the rising light
curve. Assuming individual photometry errors of ~0.08 mag,
it should be possible to recognize a likely lensing event during
the first week of this month. For very small lensing stars, ~0.1
M, the approximately 10 day rising light curve should still be
long enough to allow recognition of the event before the source
enters the Einstein ring of the lensing star.

6. CONCLUSIONS

In this work we have analyzed the magnitude variation of a
bulge star which is being microlensed by a planetary system in
the Galactic disk. In about a fifth of the microlensing events,
solar-like system planets positioned halfway to the Galactic
center will provide a noticeable signature on the source light
curve. This large fraction results primarily from a coincidence

between the Finstein radius of the Sun and Jupiter’s orbital
radius. Such a coincidence may be duplicated in other planet-
ary systems because the Einstein radius and the expected posi-
tion of the largest planet may scale with stellar mass in roughly
the same way.

The ratio of planetary to stellar mass can be determined
directly from the observations. In addition, if the lensing star is
a G dwarf or earlier, its spectrum can be taken. From the
spectral type and luminosity, one may determine the mass and
distance of the star and thereby infer the mass of the planet and
its projected distance from the star.

The typical planetary signal lasts of order a day or less. A
dedicated monitoring program is therefore necessary to pick
up the signal. A candidate system should be observed at least
several times per day and the observations should be made
from two or more sites to ensure 24 hour coverage. This highly
intensive monitoring of individual lensing stars must be trig-
gered by a less intensive (i.e., ~1 observation per night from
one sight) but much more extensive ~ 107 bulge stars) program
designed to find lensing candidates. Such extensive micro-
lensing searches are planned for the near future (Alcock et al.
1992; Paczynski et al. 1992) and may identify of order 10 or
more microlenses per year. The fact that the relatively expen-
sive “triggering programs” are now being undertaken for
reasons unrelated to planets makes the present time appropri-
ate to begin a microlensing search for planetary systems.
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