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ABSTRACT 
The linear and nonlinear pulsational behavior of nine sequences of BL Herculis models is studied, and their 

radial velocity curves are discussed in detail. The pulsations of these stars, in analogy to the classical Ceph- 
eids, are strongly affected by internal resonances, most importantly the 2:1 resonance with the second over- 
tone. This latter coupling causes a characteristic systematic progression of the Fourier phases and amplitude 
ratios as the period ratio P2/Po is varied. In contrast to Cepheids, the strength of the resonance depends very 
sensitively on the stellar mass and luminosity, and the morphology of the Fourier progression changes signifi- 
cantly when M or L are varied. 

In most of the model sequences we find narrow windows in which the pulsations exhibit periodic alterna- 
tions of deep and shallow minima in the radial velocity and light curves. This behavior occurs for periods 
somewhere in the range from 2<?0 to 2<?6, depending on the sequence. It is caused by the 3:2 resonance 
between the fundamental mode and the first overtone. In the two most nonadiabatic sequences the same res- 
onance causes windows of chaotic oscillations. 
Subject headings: Cepheids — stars: oscillations — stars: variables: other 

1. INTRODUCTION 

The BL Herculis-type variables form a small but interesting 
group of radially pulsating Population II stars with periods in 
the range ld-3d. They are observed both in the globular clus- 
ters and in the Galactic field and are believed to be on one of 
the crossings of the instability strip in their post-horizontal 
branch evolution (e.g., Becker 1985). The properties of these 
objects have recently been reviewed by Harris (1985), by Wall- 
erstein (1990) and by Wallerstein & Cox (1984), who also give 
ample references to the literature. In a nutshell, the BL Her 
variables are the older, smaller, and fainter siblings of the clas- 
sical (Population I) Cepheids and, as such, they share some of 
their pulsational properties. It is therefore of interest to survey 
the oscillatory behavior of the BL Her models in some detail 
and to make a thorough comparison with their Population I 
relatives. 

One of the most striking features observed in the classical 
Cepheids is the so-called Hertzsprung progression (Hertz- 
sprung 1926). It has been loosely defined as the occurrence and 
systematic change with period of a secondary bump or shoul- 
der on the light curves (e.g., Fig. 5 in Ledoux & Walraven 
1958). The change can be described in an accurately quantifi- 
able way with a Fourier decomposition technique (Simon & 
Lee 1981). When this technique is applied to large observa- 
tional samples of Cepheid light curves (e.g., Simon & Moffett, 
1985) or radial velocity curves (e.g., Kóvacs, Kisvarsányi, & 
Buchler 1990) it unveils a strong and very characteristic corre- 
lation of the Fourier parameters with the pulsation period, 
especially well defined for the low-order Fourier phases. 

An extended systematical survey of the nonlinear classical 
Cepheid models has recently been performed with special 
attention to the behavior of the Fourier parameters. This 
numerical hydrodynamical study (Buchler, Moskalik & 
Kovács 1990, hereafter BMK) has shown that within a wide 

1 Permanent address: Copernicus Astronomical Center, ul. Bartycka 18, 
00-716 Warsaw, Poland. 

range of luminosities and masses, the Fourier phases for the 
radial velocities and for the light curves display an almost uni- 
versal behavior along the sequences of models. The fact that 
this quasi-universal behavior is correlated with the period 
ratio, P2o = P2/P0’ but not with the period P0, provides 
strong evidence that the progression of the phases has its origin 
in the 2:1 resonance between the fundamental mode and the 
second overtone. The correlation of the bump location with 
this resonance was first suggested by Simon & Schmidt (1976). 
The recently developed amplitude equation formalism (Buchler 
& Goupil 1984; Buchler 1985) provides an analytical frame- 
work within which the progression of the Fourier coefficients 
can indeed be shown to be a manifestation of the 2:1 resonance 
(Klapp, Goupil, & Buchler 1985; Buchler & Kovács 1986). 
Furthermore, with the help of this formalism, the variations of 
the Fourier parameters with the distance to the resonance 
center are also captured very well quantitatively (Kovács & 
Buchler 1989; hereafter KB89). 

The question arose naturally whether a bump progression, 
similar to the one witnessed in classical Cepheids, is also 
present in the Cepheids of Population II (Stobie 1973). It 
seems, however, that the occurrence of such a progression in 
the BL Her variables is less clear. The observed light curves 
still show an eyeball correlation of the position of a “ bump ” 
with period (descending vs. ascending branch) with a change- 
over in the vicinity of lÍ5-ld7 (Petersen 1981; Carson, Sto- 
thers, & Vemury 1981; Carson & Stothers 1982). However, the 
variation of the Fourier parameters is not very characteristic, 
and it is therefore not astonishing that various analyses have 
arrived at differing conclusions (Petersen & Diethelm 1986; 
Simon 1986; Carson & Lawrence 1987). The situation is even 
less clear for the radial velocity curves which are too poorly 
sampled to even discuss the presence or absence of a progres- 
sion. 

There was a brief interval of interest in the nonlinear pulsa- 
tions of BL Her models in the past (King, Cox, & Hodson 
1981; Carson et al. 1981; Carson & Stothers 1982; Hodson, 
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Cox, & King 1982; Carson & Lawrence 1987). Unfortunately, 
in all these studies the combinations of stellar parameters, i.e., 
masses, luminosities, and effective temperatures, were chosen 
in a way which made any systematical behavior difficult to 
detect. We have therefore perceived the need to survey the 
nonlinear behavior of BL Her models from a different per- 
spective. Our approach (similar to BMK’s) again concentrates 
on sequences of models, i.e., families in which only one stellar 
parameter is varied (in our case Teff). The procedure of combin- 
ing such systematical numerical studies with an analytical for- 
malism has already met with some success in explaining 
features of the nonlinear pulsations in other stars (the Hertz- 
sprung progression in classical Cepheids, already mentioned; 
double mode behavior in RR Lyrae models; RV Tauri-like 
alternating pulsations in Cepheid models; the transition from 
regular to irregular [chaotic] oscillations in W Vir models; for 
a review of these topics, cf. Buchler 1990). 

This is the first of two papers in which we discuss the results 
of an extensive and systematic survey of BL Her models. In this 
manner the effects of the resonances on the oscillations of these 
stars will be clearly exhibited. Paper I presents the nonlinear 
pulsational behavior of nine sequences of models and inter- 
prets this behavior in terms of their linear properties (linear 
period ratios and growth rates). Because we are primarily 
interested here in the dynamics of the oscillations, we concen- 
trate on the radial velocity variations. In Paper II, we shall 
discuss the light curves of the models and shall compare them 
with the available observational data. We remark that the 
main purpose of our survey is a study of the systematics of the 
nonlinear pulsating models, rather than an attempt to model 
any specific BL Her-type star. 

2. MODEL SEQUENCES 

We have constructed the BL Her model sequences as one- 
parameter families in which the luminosity, mass and composi- 
tion are held constant, and in which the ^eff is the control 
parameter which is varied. We have analyzed in some detail 
nine such sequences whose parameters are summarized in 
Table 1. The luminosities of sequences A-G span the observed 
range from 100 L0 to 175 L0 (e.g., Demers & Harris 1974) and 
the masses the “canonical” range of 0.55 M0 to 0.65 M0. We 
have added sequence H with L = 200 L0 for completeness and 
to allow for observational uncertainty. The adopted compo- 
sition is typical of metal-poor Population II stars for all 
sequences except for F. For comparison, and because the BL 
Her stars display a wide range of metallicities, the latter 
sequence has been constructed with the same parameters as 
sequence B, but with a Population I metal content. Finally, 

sequence I has a very low mass of 0.4 M0, and its composition 
is that of the W Vir models studied by Kovács & Buchler 
(1988b). We note that {A, B, C, G, H} form a fixed-mass group 
of sequences; this allows one to see the change in pulsational 
behavior with increasing luminosity (or nonadiabaticity). 
Similarly, the fixed-luminosity group of sequences {B, D, E} 
permits a study of the effect of varying the mass. 

All our models are purely radiative. This is a good approx- 
imation at the higher but at the lower time-dependent 
convection is expected to play an important role, and our 
cooler models are perhaps not realistic. In fact, convection is 
believed to provide the damping which is responsible for the 
existence of a red edge, which the radiative models do not 
reproduce. Some of the sequences have nevertheless been com- 
puted to low (unreasonably low from an observational 
viewpoint), mostly in order to study the dynamical effects of 
the œ1 = 2œ0 and co2 = 3co0 resonances which have aroused 
some interest in the past (Carson et al. 1981 ; Cox 1984; Cox & 
Kidman 1985). [Here the cok = 2n/Pk represent the imaginary 
parts of the complex eigenvalues, ok = icok + Kk, of the (linear) 
normal modes of vibration, for an assumed exp (ot) time- 
dependence.] 

All sequences have been studied with an affordable, but rela- 
tively coarse resolution of 60 zones. The model envelopes all 
extend inward to 2 x 106 K. Our hydrodynamical code 
(Kovács & Buchler 1988a) is essentially that of Stellingwerf 
(1974, 1975) which treats shocks with an artificial viscosity 
(CQ = 4, a = 0.01). This scheme is most accurate for a constant 
time step and we have taken the latter to be a 1/600 of the 
period for sequences A and B and 1/200 of the period for 
sequences C-I. For the periodic pulsations (limit cycles) of the 
models, the dynamical behavior has generally been computed 
to a periodicity of better than 10 “4. This is achieved through 
an iterative relaxation to the exact limit cycle (Stellingwerf 
1974) which yields at the same time the Floquet stability coeffi- 
cients of the computed solution. The method is sufficiently 
powerful to converge even when the resultant limit cycle is 
mildly unstable. In all our calculations Stellingwerf’s (1975) 
analytical opacity formula, based on the Los Alamos tables, is 
used. As in the past (Buchler 1990), we stress that it is impera- 
tive that the linear and nonlinear studies use the same numeri- 
cal mesh and the same input physics if a meaningful correlation 
is to be made between the linear resonance properties and the 
nonlinear dynamical behavior. The price to pay, however, is 
that because of the coarse mesh and shallow envelopes, the 
linear properties, i.e., periods and growth rates, are then rela- 
tively poorly determined for given stellar parameters L, M, and 
^ff- We have therefore imposed an anchor by requiring that in 

TABLE 1 
Parameters of the Model Sequences 

Sequence Symbol M/MQ L/Lq 

A 
B 
C 
D 
E 
F 
G 
H 
I 

O 
□ 
A 
* 

X 

0.60 
0.60 
0.60 
0.55 
0.65 
0.60 
0.60 
0.60 
0.40 

100 
125 
150 
125 
125 
125 
175 
200 
100 

0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.745 

0.001 
0.001 
0.001 
0.001 
0.001 
0.020 
0.001 
0.001 
0.005 

226 
283 
340 
325 
249 
283 
396 
452 
433 
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Fig. 1.—Linear period of the fundamental mode vs. Tefi for sequences A, B, 
and C. 

all static models a specified zone (45) always be exactly at a 
specified temperature (here at 15,000 K, except for sequence I 
for which it is 11,000 K). The anchor has been calibrated to 
give a rough agreement with growth rates computed with a 
finer mesh. This procedure has been shown to give consistency 
between the linear growth rates and the growth rates extracted 
from a hydrodynamical integration of the model when initi- 
ated with a small amplitude (Kovács 1990). In any case, our 
fundamental mode blue edges (k0 = 0) are in a reasonable 
agreement with the observationally derived ones (Demers & 
Harris 1974); they also agree within 100 K with the theoretical 
blue edges of King et al. (1981). 

Figure 1 displays the fundamental mode linear periods, 
P0 = 2n/m0, as a function of Teff for model sequences A-C, and 
Figure 2 presents the fundamental mode growth rates, r¡0 = 
2k0 P0, for the same sequences (in our convention the mode is 
stable [unstable] when k is negative [positive]). We note that, 
just as for the classical Cepheids (e.g., Fig. 2 of BMK), the 
growth rates r¡0 increase with luminosity, although, in general, 
for the BL Her models they are already significantly higher 
than for the Cepheids. In Table 2 we show the temperatures of 
the fundamental blue edges, for all nine sequences. Since 
resonances will be seen to be important in the studied models, 

Fig. 2.—Linear growth rate of the fundamental mode vs. Tei{ for sequences 
A, B, and C. 

TABLE 2 
Low-order Resonances in BL Her Models 

Sequence 
^BE 
(K) 

co4 = 3eu0 
(K) 

CO 2 = 2(0 Q 
(K) 

2co1 = 3co0 
(K) 

CO3 = 3co0 
(K) 

A. 

B . 

C. 

D. 

E. 

F . 

G. 

H. 

!.. 

6990 

6910 

6850 

6890 

6940 

6830 

6800 

6760 

6780 

6160 
(1.40)a 

6240 
(1.61) 
6300 

(1.82) 
6310 

(1.64) 
6180 

(1.58) 
6240 

(1.63) 
6370 

(2.00) 
6450 

(2.13) 
6600 

(1.45) 

5960 
(1.58) 
6160 
(1.69) 
6300 
(1.82) 
6300 
(1.66) 
6020 
(1.75) 
6120 
(1.74) 
6400 
(1.96) 
6460 
(2.13) 
6520 
(1.52) 

5560 
(2.07) 
5760 
(2.20) 
5920 
(2.32) 
5920 
(2.11) 
5620 
(2.28) 
5640 
(2.35) 
6060 
(2.43) 
6170 
(2.54) 
6270 
(1.77) 

5190 
(2.71) 
5400 
(2.83) 
5560 
(2.98) 
5550 
(2.73) 
5250 
(2.97) 
5120 
(3.37) 
5680 
(3.15) 
5750 
(3.36) 
5780 
(2.45) 

a Periods, in days, are given in parentheses. 

we also present the locations (i.e.Teff and P0) of the four lowest 
order linear resonances. 

3. HYDRODYNAMIC RESULTS 

3.1. Radial Velocity Curves 
Figure 3 exhibits the radial velocity curves (in the theorists’ 

convention, Vr = +dR/dt, no limb darkening corrections) as a 
function of phase for selected models of the sequences A, B, and 
C. The various curves are shifted vertically for better display. 
The labels refer to the Teff [K] of the static models and to the 
nonlinear pulsation periods [day], respectively. A systematic 
progression of the shapes of the velocity curves with period is 
clearly visible. In all three sequences a prominent bump feature 
appears first on the descending part of the curve, then with 
increasing period it moves to earlier phases of the pulsation 
cycle, and finally switches to the ascending part of the curve 
after the center of the œ2 = 2œ0 resonance is crossed. Such a 
change in the morphology of the limit cycles suggests that the 
resonance is instrumental in their shaping. We should note, 
however, that in each of the sequences the resonance occurs at 
a different period (cf. Table 2) and, as a result, at any given 
period, differing shapes of the radial velocity curves are possible 
(compare e.g., models with P0 = 1<?74). 

The progression observed in sequence A is remarkably 
similar to that found both in the theoretical models of classical 
Cepheids (BMK, their Fig. 4), and, we may add, in the Cepheid 
observations (Kovács, Kisvarsányi, & Buchler 1990). In partic- 
ular, near the center of the 2:1 resonance the bump does not 
merge with the main maximum, but rather the two maxima 
trade their roles. In the higher luminosity sequences B and C, 
though, the behavior is different. In this case the bump seems 
to disappear on one side of the maximum and simultaneously 
reappear on another. This results in characteristic double- 
bump velocity curves in the very center of the resonance. We 
do not present here the radial velocities for the other six 
sequences. It suffices to mention that sequences D, E, and F are 
very similar to sequences C, A, and B, respectively. This resem- 
blance is also seen in the behavior of the Fourier parameters 
which will be discussed in the next subsection. 
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Phase 
Fig. 3.—Progression of radial velocity curves for sequences A, 

periods [day]. 

Phase Phase 
B, and C; labels on the right denote Te{{ [K] of the static models and the nonlinear pulsation 

In Figure 4 we present maximum and minimum velocities 
for the models of sequences A and C. The open circles corre- 
spond to those limit cycles, which are unstable toward a period 
doubling bifurcation. This instability, giving rise to new limit 
cycles with alternating maxima and minima (marked by 
crosses), will be discussed in detail in § 3.5. Figure 4 shows 
again that the 2:1 resonance strongly influences the pulsations 
of the models, although a striking difference between the two 
sequences is seen. In the low-luminosity sequence A the ampli- 
tude of the velocity variations, AVr, has a minimum at the center 
of the resonance, which is the same behavior as observed in the 
models of classical Cepheids. On the other hand, in the reson- 
ance center of sequence C a maximum of A1^ is reached. A 
qualitative change in the behavior of the BL Her models with 
the increase of luminosity is, thus, further emphasized. 

The highest velocity amplitudes found in sequences A and C 
are 86 km s-1 and 108 km s_1, respectively. When we correct 
these values for the limb darkening (multiplying by 17/24), we 
obtain 61 km s -1 and 76 km s- ^ respectively. Such amplitudes 
are significantly too large compared to the range of 30-45 
km s“1 observed in most of bona fide BL Her stars (Fig. 2 of 

Harris & Wallerstein 1984; cf. however, XX Vir; Wallerstein & 
Brugel 1979). While the discrepancy has to be examined in 
detail, we think that it is probably not as serious as might seem 
at first. We recall that our theoretical velocities are computed 
for the last, i.e., outermost zone of the numerical models. On 
the other hand, observed radial velocities are usually deter- 
mined from the metallic lines which are formed somewhat 
deeper in the stellar atmosphere. Since the range of velocity 
variations rapidly decreases inward in the models, the differ- 
ence in depth can account for (at least) part of the discrepancy. 
This conjecture is further supported by measurements of Abt 
& Hardie (1960) who have found that the velocity amplitude of 
BL Herculis, as determined from the hydrogen lines (small 
optical depth) is by 55%-60% larger than the one measured 
from the iron lines. This result, if applicable to all BL Her-type 
stars, would bring our theoretical amplitudes into a good 
agreement with observations. 

As far as the bump progression is concerned, unfortunately 
very little detailed observational information is available. In 
most cases the velocity curves are poorly sampled and a secure 
identification of the bump is not even possible. To the best of 
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7000 6000 5000 

Teff [K] 
Fig. 4.—Maximum and minimum pulsational velocities vs. Tei{; top: for 

sequence A and bottom: for sequence C. Open circles correspond to models 
which are unstable toward a period doubling, crosses mark the (alternating) 
minima of the stable period 2 models. 

our knowledge, SW Tau (P0 = 1^58) is the only BL Her-type 
variable with a definite velocity bump, occurring ~0.4 of a 
cycle after the primary maximum (Stobie & Balona 1979; 
Barnes, Moifett, & Slovak 1988). Radial velocity variations 
observed in this star are similar to those computed for the 1?46 
model of sequence A or the 1Í57 model of sequence B (Fig. 3). 

3.2. Fourier Decomposition 
In order to give a more quantitative description of the shape 

of the pulsation cycle and its change with period we resort to a 
standard technique of Fourier decomposition. To that effect 
we fit the temporal behavior of the photospheric radius (strictly 
speaking the outer radius) with a sum of the form 

¿0 + Z An sin (ncot + . (1) 

The composite Figure 5 displays the first two relative Fourier 
phases 021 and <p31 as well as the amplitude ratios R2i and 
R31, for sequences A-C (Rnl =

f AJAx and (j)nl 
d= <pn — ncßj. 

Similarly, the composite Figures 6 and 7 show the same 
Fourier parameters for sequences D-F and G-I, respectively. 
The corresponding Fourier parameters for the radial velocities 
(in the observers’ convention, i.e., Vr = —dR/dt) can be 
obtained as 

Æ = <t>rnl + (" - 1W2 , (2) 

Ki = nRJ , (3) 

In all three figures the solid dots correspond to the stable 
pulsations, and the open circles represent the limit cycles which 
are unstable toward a period doubling, as in Figure 4. It will be 
seen that internal resonances among the normal modes of 
oscillation play an important role in shaping the pulsations of 
the models. Therefore, in the bottom parts of Figures 5-7 we 

display the ratios of the linear growth rates for the low-order 
resonant overtones and indicate the positions of the integer 
resonances with dots. 

In all the sequences the Fourier amplitudes and phases show 
systematical variations with Tm. These variations are smooth, 
with exception of sequences H and I in which a discontinuity 
occurs around ^ff ^ 6400 K. Because we have attached a 
great deal of importance to stability in the numerical computa- 
tions (Buchler 1990) we believe that all the features seen in 
Figures 5-7 are real. In the following we will address the most 
important of our results : 

1. The Fourier coefficients gradually deform as the lumi- 
nosity is increased from 100 L0 to 200 L0 in sequences {A, B, 
C, G, H}, all of which have the same mass and standard Popu- 
lation II composition. A gradual change in the Fourier pro- 
gression is also seen when a stellar mass is varied at constant L 
(sequences {D, B, E}). An increase in M has qualitatively the 
same effect as a decrease in L. 

The change in the metal content has a rather small influence 
on the oscillatory behavior of the models. Comparison of 
sequence B and F shows that the increase of Z lowers the 
maxima of the R21 and R31 curves, and slightly increases the 
peak of (¡)2Í. The overall character of the Fourier progression, 
however, remains almost the same. 

2. The set of four sequences {A, B, E, F} displays a similar 
behavior. The pair of sequences C and D are also akin, but 
they are substantially different from the first set, especially for 
the higher order coefficients </>31 and R31. For all six sequences 
the Fourier phase </>31 has the same values at either end of the 
plot (mod 2tc), but it undergoes a variation of 2n for the first 
four sequences while it is essentially flat for the other two. The 
results of KB89 show that in the presence of the 2:1 resonance 
(see below) the variations of the Fourier phases and amplitude 
ratios can be very sensitive to the model parameters. More 
technically, they depend rather strongly on the values of the 
expansion coefficients which change from one sequence to 
another. It can be demonstrated that, depending on the relative 
sizes of these coefficients, both types of 031 progressions can be 
accommodated. Finally, we note that the third set of 
sequences, {G, H, I}, while similar in some respects to the pair 
{C, D}, displays different behavior of R2U and, in general, has 
much more structure near the blue edge. 

It is interesting to look again at the empirical dissipation 
parameter { = L/M1'6 that was introduced by BMK. The 
values of £ for our BL Her models are given in Table 1. The 
grouping of the sequences according to Ç leads to precisely 
the same result as the eyeball inspection of the variations of 
the Fourier coefficients: the first group {A, B, E, F} with small 
values of 225 < Ç < 285, the second one {C, D} with interme- 
diate values of 320 < ^ < 345 and the third one {G, H, 1} with 
large values of 395 < ^ < 455. 

3. The behavior of the low £ sequences {A, B, E, F} is domi- 
nated by the 2:1 resonance between the fundamental mode and 
the second overtone. These sequences are characterized by a 
pronounced “bell-shape” variability of (¡)21, with the 
maximum occurring nearly exactly at the resonance center. At 
the same place R2l and R3l experience a rapid drop, whereas 
(j)31 monotonically increases. Such progressions of the Fourier 
parameters are very similar to those seen in the Cepheid 
models of BMK which are also controlled by the same 2:1 
resonance. The height of the (¡)2Í peak in sequences {A, B, E, F} 
strongly anticorrelates with the relative damping of the second 
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M=0.6Mo L= 175L0 M=0.6Mo L=200Lo M=0.4MG L-100Lo 

overtone, | k2/k0 |. With an increase of this parameter, the res- 
onant mode becomes more difficult to excite and, consequent- 
ly, the signature of the resonance is weakened. The same 
correlation extends also to sequences C and D. 

4. In order to put the statement about the similarity 
between the BL Her and Cepheid models on a quantitative 
ground, we have made a comparison of our sequence A with 
the sequence D of BMK. The BL Her models are considerably 
more dissipative; at the resonance center of the sequence A we 
have rj0 = 2nK0/co0 = —0.152, whereas for the Cepheid models 
r¡0 = —0.097. We therefore expect (cf. Buchler & Kovács 1986) 
that the Fourier parameters display sharper features as a func- 
tion of the period ratio P2o in the Cepheid case. In Figure 8 we 
plot jointly the BL Her sequence (filled circles) and the 
Cepheid sequence (open circles). For the latter, a stretch of the 
abscissa P2o by a factor of 1.5 about P20 = 0.5 has been 
applied, as suggested by the above numerology. The similarity 

of the (¡>21, and R21 curves is quite impressive. For the 
amplitude ratios R31, a significant difference between the two 
sequences is observed at P20 > 0.49. We shall return to this 
point in § 3.4. We recall in passing that the great similarity 
between the sequences displayed in Figure 8 has already been 
noted in § 3.1, where the progression of the actual radial veloc- 
ity curves was discussed. 

The values of £ are very close for the two sequences, but this 
is probably a pure coincidence. For the classical Cepheid 
models the behavior of the Fourier coefficients is essentially the 
same in the broad range of 225 < £ < 305, and for larger 
values of Ç it changes rather slowly (BMK). In contrast, for the 
BL Her models the sensitivity to £ is very strong, as Figures 
5-7 indicate. Our sequence B and the Cepheid sequence A of 
BMK, for example, are characterized by nearly the same £, but 
already have quite a different progression of 021. We conclude 
that while the trends with are the same in the BL Her and in 
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. i i . ■  i j_ 
0.54 0.50 0.46 0.42 

PZ/Po 
Fig. 8.—Comparison of the BL Her sequence A (filled circles) with the 

classical Cepheid sequence D of BMK (open circles). Fourier parameters are 
plotted vs. period ratio P20; for Cepheid models abscissa is stretched by a 
factor of 1.5 about the center of the resonance. 

the Cepheid models, a comparison of the actual values of £ 
between the two types of stars is not meaningful. 

5. In the case of the classical Cepheids, in which the oo2 = 
2co0 resonance also plays a dominant role, the model sequences 
display a quasi-universal behavior when their Fourier param- 
eters are plotted versus P2o- In Figure 9 we have similarly 
replotted as a function P2o> the phases and the amplitude 
ratios (for the radius variations) of the models of Figures 5 and 
6. While there is still a clear similarity between the sequences, 
the lack of “ universality ” is most striking in the very resonance 
region. The reason for the different behavior is that, as pointed 
out above, the BL Her models are much more sensitive to 
changes in £ than the classical Cepheid models. 

For comparison with future observational data we also 
display in Figure 10 the Fourier coefficients of the radial veloc- 
ity curves, now plotted versus the (linear) period P0. 

6. Not only the shape of the Fourier progression, but also 
the location of the 2:1 resonance are very sensitive to M and to 
L in the BL Her models. As Table 2 shows, changing the 

luminosity from 100 L0 to 150 L© (at M = 0.6 M©), which is 
well within the observed range of values, we shift the resonance 
center from P0 = U58 to P0 = 1Í82. Similarly, changing the 
mass from 0.55 M© to 0.65 M© (at L = 125 L©) we shift the 
resonance from P0 = lí66toPo = 

We also note that in the BL Her case the period ratio P20 
varies very quickly with P0 or Teff. For example, a change of 
effective temperature by 1000 K (from 6900 K to 5900 K) in 
our sequence A results in a change in P0 from 0?92 to U64 (i.e. 
by a factor of 1.78) and in P20 from 0.559 to 0.496 (i.e., by 
0.063). A comparable change of Teff (from 6000 K to 5000 K) in 
the Cepheid sequence D of BMK causes a change of P0 from, 
7<?31 to 13^89 (a factor of 1.89), but P20 varies only by 0.042. 
Thus, for the BL Her models the lines of P20 versus log P0 are 
~60% steeper than in the Cepheid case, and the same is also 
true for other period ratios. As a consequence of this behavior 
there are more resonances in a comparable range of effective 
temperatures in the BL Her sequences, which gives rise to a 
faster change of the morphology of pulsations as the period is 
varied. In addition, because of the higher packing, the reson- 

Fig. 9.—Fourier parameters for the radius variations vs. period ratio P20 
for sequences A-F. Symbols are given in Table 1. 
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P0 [days] 

Fig. 10.—Fourier parameters for the observers' radial velocities vs. pulsa- 
tion period P0 for sequences A-F. Symbols are given in Table 1. 

anees have more overlap, so that more complicated pulsational 
behavior can be expected. This property explains a great 
amount of structure of the Fourier parameter curves shown in 
Figures 5-7, compared to the Cepheid case. Particularly 
important in that context are the 3:1 resonances, two of which 
occur in our models. The a>3 = 3co0 resonance is always corre- 
lated with a local minimum in </>31, and in sequences {G, H, 1} 
also with a minimum in R21 and R31. The 3:1 coupling 
between the fundamental and the fourth overtone, on the other 
hand, seems to be the cause of a secondary minimum of R31 
observed in sequences {A, B, D, E, F}. We shall discuss this 
latter case in detail in § 3.4. 

7. Referring back to Figure 7 we note that, in the high £ 
sequences {G, H, 1} the 2:1 resonance with a second overtone 
becomes ineffective and, as a result, the Fourier phases </>2i and 
(j)31 remain essentially flat throughout most of the reff range. 
In the low temperature end of these sequences, though, the 
integer resonances with consecutive overtones, namely, co2 = 
3(d0, co3 = 4co0, and co4 = 5co0, have an approximate accumu- 
lation point (±100 K), located at ^4600 K. Additionally, a 2:1 
resonance with the first overtone occurs nearly at the same 

place. Because this latter mode does not have any resonances 
in the astrophysically interesting range of effective tem- 
peratures, we have not displayed its relative growth rate in the 
Figures 5-7. Nevertheless, this mode is always either unstable 
or has the lowest damping of all the overtones. 

The coincidence of all integer resonances at essentially one 
^ff can be interpreted in terms of a polytropic model. It was 
shown empirically (Simon & Sastri 1972) that in such a model 
the period ratios satisfy a relation of the form PjJPi = (h + /)/ 
(b + k), where h is a constant. As a simple consequence of this 
expression, we find that for PJPq — i the other period ratios 
are equal to Pk/P0 = 1/(1 + k). It is this accumulation of the 
integer resonances which is the likely cause of the sharp, poss- 
ibly discontinuous variation of the Fourier parameters for the 
low Teff models of Figure 7. 

8. Finally, we compare our results with those of previous 
nonlinear pulsational studies. The only work for which such a 
comparison can be carried out in a quantitative way is that of 
Hodson et al. (1982). Their models have been computed with 
the Los Alamos opacity tables, and they all have the same mass 
of 0.55 Mq. Two subsets of models; {B, C, D, E, J, L, N} and 
{F, G, H, I, O, P} scan sufficiently small ranges of luminosities 
(95-108 L0 and 120-138 L0, respectively) to be considered 
approximate sequences in our sense. Both these “sequences” 
are characterized by high values of Ç and consequently, in the 
resonance region their Fourier phases </>2i are rather low. For 
the second “sequence” which has approximately the same 
stellar parameters as our sequence D, the values of </>21 almost 
exactly coincide with ours. The amplitude ratio R21 for the first 
of the models is close to ours, but the remaining points fall 
somewhat low. The first “ sequence ” is akin to our sequence B. 
The Fourier phases 021 for these models are slightly lower 
than in our calculations. The values of R21, on the other hand, 
change with the pulsation period with a different slope, so that 
the first three points are below and the last two points are 
above the progression defined by our results. In general, 
however, the discrepancies between the model of this paper 
and the models of Hodson et al. (1982) are not very large, and 
they could be caused by small differences in the hydrocodes; 
however, they could also originate in the difference between the 
velocities of the outer zone, which we Fourier analyzed, and 
the interpolated, “ photospheric ” velocities, which Hodson et 
al. used. 

3.3. Amplitude Equations 
The radial velocity and light curves of the classical Cepheid 

models can be described fairly accurately by the amplitude 
equation formalism (KB89). In spite of the complicated varia- 
tions of the Fourier parameters in the 2:1 resonance region, it 
is sufficient to include in the description only the first-order 
correction terms of the theory. The reason is to be found in the 
weakness of both the nonlinearity and of the dissipation in 
these models. In order to reinforce our statement that the 2:1 
resonance also plays a dominant role in the BL Her variables, 
we also attempt to reproduce their behavior with the ampli- 
tude equations. An a priori success is not guaranteed, though, 
since the assumption of weak dissipation underlies the formal- 
ism, and the models are much more dissipative now than for 
the classical Cepheids. As in KB89, to which we refer the inter- 
ested reader for the details and notation, the procedure con- 
sists of a fit rather than an ab initio calculation: First, it is 
assumed that all the nonlinear coefficients in the amplitude 
equations (Hj, Re Re 7¡) are constant along the sequence 
when scaled with the period P2. The linear coefficients, i.e., 
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frequencies and growth rates are taken from the LNA analysis, 
and are thus known. Also assumed to be constant (with no 
scaling) are the coefficients appearing in the construction of 
the solution. Values of the nonlinear parameters are first 
guessed, then the amplitude equations are solved and the low- 
order Fourier coefficients are constructed. The nonlinear 
parameters are finally determined by a least-squares fit of the 
calculated Fourier coefficients to those obtained from the 
hydrodynamic data. The procedure is performed in two stages, 
first fitting Ai, 02i> andR2i> and then031 andR31. 

In Figure 11 the resultant fit is shown for sequence A in 
which the 2:1 resonance is strong. The coefficients of this solu- 
tion are given in Table 3, in the notation of KB89. The fit is 
seen to be good, especially for the Fourier phases </>2i and </>31, 
although generally it is not as good as for the Cepheid 
sequences where the parameters Ax and R21 were reproduced 
much better. The reason for the discrepancies could be the 
presence of additional resonances not included in the equa- 

Fig. 11.—Amplitude equation fit for the Fourier parameters of the radius 
variations of the model sequence A. The fit is plotted as a solid line, the 
hydrodynamic data as dots. 

tions; we shall return to this point in the next section. We also 
remark that the BL Her sequence displayed in Figure 11 is 
considerably longer than any of the Cepheid sequences of 
KB89, and thus the assumption that the fitted parameters are 
constant along the sequence is “less justified.” Despite these 
obvious shortcomings the 2:1 resonant amplitude equations do 
capture the main features of the Fourier parameter progression 
quite well. Interestingly, the fitted coefficients are not too dif- 
ferent from those obtained for the Cepheid sequence B (shown 
in col. [3] of Table 3). Especially the low order, and thence best 
determined coefficients H0, H2, and /i22 are very similar in 
both cases, and the important self-saturation coefficient Q0 is 
within a factor of 2. Also the cubic expansion coefficients h23 
and h33 are very close for both kinds of models. The only 
sizable difference is seen in the parameter Q2 which, however, is 
always rather poorly determined from the fit. These results 
stress again a great similarity of our sequence A to the 
sequences of classical Cepheid models, a property already seen 
in Figures 3 and 5. 

The quality of the fit deteriorates rapidly for the BL Her 
sequences of higher luminosity; for sequence B it is still accept- 
able, but for C it is bad. This behavior is most likely a com- 
bination of the weakening of the resonance (increase of 
I KilKo I) and the simultaneous increase of the dissipation of the 
models. The latter effect makes the amplitude equation formal- 
ism (which assumes small dissipation) less accurate in general, 
it also increases the size of the higher order terms which are 
neglected in the fit. 

3.4. 3:1 Resonance 
Figures 5 and 6 indicate that sequences {A, B, D, E, F} show 

an additional, secondary minimum in the R31 progression 
which occurs slightly to the left of the primary minimum 
caused by the 2:1 resonance. The location of this additional dip 
correlates with the position of the 3:1 resonance between the 
fundamental mode and the fourth overtone, and it is therefore 
tempting to speculate that the feature is dynamically related to 
this resonance. In this subsection we shall argue that there is 
good evidence to support such an interpretation. 

First, we compare the amplitude equation fit for the BL Her 
sequence A (Fig. 11) with that for the Cepheid sequence B 
(Figs. 1 and 3 of KB89). In the BL Her case, the major discrep- 
ancy between the analytical solution and the models occurs for 

TABLE 3 
Parameters of the Amplitude Equations Fit 

Parameter 
(1) 

BL Her 
(2) 

Cepheids 
(3) 

in0|P2 . 
arg (H0) . 
in2|p2 . 
arg (n2) . 
Re Qo Pi 
Re T0P2 
Re Q2 P2 
Re T2P2 
\h2l\  
arg (h21). 
\h22\  
arg (h22). 
IM  
arg (h23). 
I^33 I  
arg (/133). 

1.49 
4.57 
0.37 
4.96 

-2.88 
-13.11 
-11.81 
-12.50 

28.60 
5.53 
2.10 
2.97 
6.10 
3.14 
5.62 
6.02 

1.03 
4.56 
0.54 
5.17 

-1.41 
-18.40 
-72.00 
-18.20 

12.20 
5.96 
2.77 
2.91 
4.80 
3.14 
7.00 
5.63 
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R21 and R31 and it is largest around P2o = Ö.51. This is very 
close to the center of the 3:1 resonance, co4 = 3co0 which is 
located at P2o = 0.513. For the Cepheid sequence, the same 3:1 
resonance lies at P20 = 0.520. Exactly at this place, the ampli- 
tude ratio R31 has again a pronounced minimum, and the ratio 
R21, although much better captured by the amplitude equa- 
tions, displays a small but noticeable wiggle. These features are 
not reproduced by the fit in which this 3:1 resonance is 
ignored. Secondary minima in the R31 progressions occur also 
in other Cepheid sequences (Fig. 9 of BMK). Their depth cor- 
relates with the relative damping of the resonant fourth over- 
tone, \kJk0\, viz. the more damped it is, the smaller the 
excursion in R31. (In the BL Her models a similar correlation is 
difficult to see because the 2:1 and 3:1 resonances are much 
closer to each other.) Both for the BL Her and for the Cepheid 
sequences the discrepancies between the fit and the hydro 
results have the same signature: an unfitted minimum in R31 
accompanied by a lowering of R2i with respect to the analyti- 
cal model. Since in both cases these discrepancies are located in 
the vicinity of the 3:1 resonance, it is plausible that this addi- 
tional coupling is responsible for the unfitted structures. 

Further support for such an interpretation comes from 
Figure 8 which compares the BL Her sequence A with the 
Cepheid sequence D. As we have already mentioned, the 
Fourier progressions of both families of models are very 
similar for all the parameters except R31. For this particular 
amplitude ratio the difference between the sequences can natu- 
rally be explained by the difference in the location of the 3:1 
resonance. Because in Figure 4 we stretch the abscissa for the 
Cepheid models this resonance now appears at P20 = 0.531, 
instead of P20 = 0.52 (for the BL Her models it is at P20 = 
0.513). We note that according to the amplitude equation for- 
malism (Moskalik & Buchler 1989), a 3:1 coupling contributes 
to the ratio R31 already in the lowest order of the theory. 
Therefore, R31 should be most affected by the presence of such 
coupling, and the other (lower order) Fourier parameters 
should be only changed to a lesser extent. This is what is 
actually seen, pointing again at a 3:1 resonance as the reason 
for the variance between the sequences of Figure 8. The natural 
assumption that the resonance influences the BL Her and the 
Cepheid models in the same way also seems to explain quali- 
tatively the small differences in the progressions of R21 which 
appears around P20 = 0.51 and P20 = 0.535. In both places, 
the lower values of R2i are displayed by the sequence in which 
the 3:1 resonance occurs. Analogous reasoning can be applied 
to the Fourier phases (j)31 as well. 

In principle, it should be possible to fully reproduce the 
variations of the Fourier parameters with the amplitude equa- 
tions taking into account both the 2:1 resonance and the 3:1 
resonance. We have attempted such a task for the Cepheid as 
well as for the BL Her models. The inclusion of the additional 
mode (the fourth overtone), though, increases the size of the 
nonlinear system to five equations, and totally, more than 20 
coefficients have to be simultaneously determined. Unfor- 
tunately, such number of parameters turns out to be too large, 
and a meaningful fit can no longer be performed. The inter- 
esting 3:1 coupling terms which are cubic in the amplitudes 
(Moskalik & Buchler 1989) and, thus, of higher order than the 
2:1 terms, are particularly difficult to converge. 

3.5. Period Doubling 

In Figures 4-7 we mark with open circles the models in 
which the usual limit cycle is unstable toward a period doub- 

TABLE 4 
Period-Two BL Her Models 

Uf Po 
Sequence (K) (days) 

A  5600-5450 2.01-2.23 
B  5850-5700 2.07-2.29 
C  6000-5900 2.20-2.35 
D  6000-5800 2.00-2.29 
E  5700-5600 2.15-2.31 
F  5600-5500 2.42-2.58 
G  
H  6350-6250 2.27-2.41 
1  6360-6250 1.68-1.79 

a Ellipse dots mean that there are no 
period-two solutions for these sequences. 

ling perturbation. Such instability has been found in all studied 
BL Her sequences, except G. (The absence of open circles in 
sequence I is due to our inability to converge any of the 
unstable models to periodicity.) The instability is always 
limited to a rather narrow range of Teff (typically 100-150 K) 
and, consequently, also to a narrow range of pulsation periods 
P0 as shown in Table 4. In sequences A-F the bifurcation leads 
to stable period-two oscillations, in which all variables display 
RV Tau-like, albeit strictly periodic, alternations. This resem- 
bles the behavior encountered in the classical Cepheid models, 
where analogous windows of period-two pulsations have also 
been found (BMK; Moskalik & Buchler 1991; Moskalik, 
Buchler, & Marom 1992). Although we cannot be absolutely 
sure because of the coarseness of our effective temperature grid, 
it appears that in the sequences A-F only one period doubling 
occurs, and it is followed by a return to period-one cycles at 
lower Teff. On the other hand, in the two most dissipative (high 
£) sequences, H and I, a series of period doublings takes place, 
ending up in apparently irregular oscillations. This variability 
is very similar to the low dimensional chaotic behavior found 
in W Vir models by Buchler & Kovács (1987) and Kovács & 
Buchler (1988b). Contrary to the W Vir case, where the chaotic 
domain seems to be unbounded from the low-temperature side, 
in the BL Her sequences we find only narrow windows of 
irregular pulsations. These chaotic windows, though, may 
remain of academic interest only. Indeed, the sequence H has 
L = 200 L0, and the observational work of Demers & Harris 
(1974) suggests that Population II pulsators avoid this range of 
luminosities. The sequence I, on the other hand, is constructed 
with a mass of M = 0.4 M0 which is too low to represent 
realistically BL Her stars. In contrast, the regular period-two 
behavior occurs in models with proper masses, and with lumi- 
nosities and periods placing them in a well populated part of 
the instability strip. Therefore, this behavior is interesting from 
an astrophysical point of view. 

In Figure 12 we present the radial velocity curves for the 
stable period-two limit cycles of sequences {A, B, C}. The 
curves are labeled with the TQff of the static models (in [K]) and 
with the nonlinear pulsation period (in [days]) which are 
approximately twice the linear periods P0. As in the case of 
period-two pulsations of Cepheid models (Moskalik & Buchler 
1991), the alternations are most visible in the velocity minima. 
However, in contrast to the Cepheid case, these alternations 
are now very pronounced and can reach up to 30 km s_ 1 (or 21 
km s~1 after the limb darkening correction). Thus they should 
be rather easily observable. According to our computations the 
phenomenon occurs in all BL Her sequences with 100 L0 < 
L < 150 L0 and 0.55 M0 < M < 0.65 M0, although the 
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Fig. 12.—Radial velocity curves of period-two limit cycles of sequences A, 
B, and C. Labels denote ^eff [K] of the static models and the nonlinear 
pulsation periods [day]. 

range of P0 where it happens differs from one sequence to 
another (cf. Table 4). We have also checked that the existence 
of the period-two pulsations is very robust with respect to the 
numerical parameters such as zoning, the integration time step 
or the pseudoviscosity. Therefore, we expect this behavior to 
be eventually found in the BL Her-type stars (Buchler & Mos- 
kalik 1990b). 

The origin of the period doubling windows have already 
been discussed elsewhere (Moskalik & Buchler 1990; Buchler 
& Moskalik 1990a). Analytical work based on the amplitude 
equation formalism has unambiguously established that this 
behavior is caused by a parametric instability of an overtone in 
a half-integer resonance. In order to obtain a clue as to the 
resonance (and the mode) responsible for the period doubling 
in the BL Her case, we have resorted to a stability analysis of 
the limit cycles. 

Figure 13 displays the Floquet coefficients of the lowest two 
overtones, computed for the models of sequence A. For conve- 
nience, we have introduced here the Floquet phases Q>k and 

def 
exponents 2fe, defined as Fk = exp (Àk + iQ>k), and have plotted 
them separately versus 7¡ff. A secure association of the Floquet 
coefficients Fk with the linear eigenmodes is really possible 
only for models in the immediate vicinity of the blue edge 
(Hopf bifurcation). For such models and Àk coincide rather 
closely with the linear phases and exponents, given as 2nœk/co0 
and IukJojq, respectively. Once the identification has been 
made at that point, it can then be continued toward lower TM 
for the rest of the sequence, provided that the grid in ^ff is 

sufficiently fine (typically 50-100 K or better; cf. Moskalik & 
Buchler 1990). We stress that this is the only proper procedure, 
and that the use of e.g., Floquet eigenvectors to discriminate 
between different modes is not reliable, particularly in the pres- 
ence of resonances (Buchler, Moskalik, & Kovács 1991). 

The identification of the Floquet coefficients is usually rela- 
tively easy for the first and the second overtones, but it 
becomes increasingly difficult and uncertain for the higher 
modes. In the BL Her models this problem is exacerbated 
because the coefficients for the third, fourth, and fifth overtones 
are almost indistinguishable. Therefore, we have decided to 
plot in Figure 13 the <Dfe and only for the two lowest order 
Floquet modes. For comparison, we also display by thin lines 
the linear phases (i.e., œk P0) of the corresponding modes. It is 
obvious from the definition that they go through zero at the 
integer resonances and through n at the half-integer ones. As 
we see, the Floquet phases closely track the linear phases, 
which is a testimony to the weakly nonlinear dynamical behav- 
ior of the limit cycles. (In contrast, the Floquet exponents are 
very different from the linear ones [not shown] because nonlin- 
earity plays a large role in the dissipation.) 

Figure 13 shows that for Tcff between ~5800 and ~5400 K 
a giant “bubble” forms in the Floquet exponent Àl9 accompa- 
nied by a plateau in the concomitant Floquet phase at = n. 
Between ~ 5600 K and ~ 5450 K the bubble pierces the stabil- 
ity boundary 2 = 0. This leads to the destabilization of the 
fundamental limit cycle and to the emergence of period-two 
oscillations. There is little doubt that the bubble (and thus the 
instability) is due to the 3:2 resonance between the fundamen- 

Teff [K] 
Fig. 13.—Floquet stability coefficients of the first and second overtone 

perturbations for models of sequence A. Top: Floquet phases; bottom: Floquet 
exponents. Thin lines denote linear phases (see text). 
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tal mode and the first overtone which occurs very near its 
center (cf. Table 2). The mechanism leading to such behavior is 
well captured by the amplitude equations and has been 
explained in detail elsewhere (Moskalik & Buchler 1990). 

In other sequences, the period doubling windows still coin- 
cide with the 3:2 resonance, as shown by Tables 2 and 4. They 
become, though, somewhat shifted with respect to the reson- 
ance center, because of an increase in the nonadiabaticity and 
nonlinearity of the pulsations. Also, in sequences H and I 
where chaotic windows have been found, the same 3:2 coup- 
ling is responsible for the instability. This is in contrast to the 
W Vir models of Kovács & Buchler (1988b), in which chaotic 
behavior is caused by the 5:2 resonance between the funda- 
mental and the second overtone (Moskalik & Buchler 1990). 

At the end of this section, we want to report briefly some 
newly discovered, unexpected hysteresis behavior. In sequences 
D and E we have found the coexistence of stable period-one 
and period-two limit cycles. This behavior has been found over 
a remarkably narrow range of 7¡ff, less than 10 K, to be 
precise. It is therefore quite possible that it may also happen in 
other sequences and that we have missed it. We note, for 
example, that in sequence A the size of the alternations in the 
radial velocity minima does not decrease to zero as the high- 
temperature edge of the period doubling window is 
approached (Fig. 4). This suggests that the bifurcation is sub- 
critical and that hysteresis occurs. A further study of this phe- 
nomenon is in progress. 

3.6. Overtone Pulsations 
Up to this point we have only considered pulsations in the 

fundamental mode. However, over most of the studied range of 
Tcf{ the first overtone is also unstable and can give rise to a 
limit cycle. We have therefore computed periodic, nonlinear, 
first overtone pulsations for a few models of sequence A. The 
radial velocity curves of these limit cycles are shown in Figure 
14. The curves are almost sinusoidal except for a small feature 
at the minimum. The lowest order Fourier parameters are 
approximately constant with R21 ^ 0.1, R31 ^ 0.02, 021 ~ 
|tü, and </>31 ^ |tc. Nevertheless, a shallow minimum in both 
amplitude ratios can be noticed around Teff ^ 6600 K which 
can possibly be related to the co4, = 2co1 resonance occurring 
near this place. The periods of the first overtone limit cycles are 
somewhat small for the BL Her stars and their velocity ampli- 
tudes are below what observations indicate. This seems to 
confirm the common belief that the BL Her variables are fun- 
damental mode pulsators. 

3.7. Sensitivity to Artificial Viscosity 
In order to assess the sensitivity of the nonlinear pulsations 

to the artificial viscosity, we have recomputed sequence B with 
CQ = 6 and a = 0.01. A comparison of the low-order Fourier 
coefficients of the new models with the previous results shows 
that they agree generally to better than 5%. Only for one value 
does the small quantity R3l differ by 10%. This seems to be at 
odds with Simon (1988) who has found a strong sensitivity of 
his Fourier coefficients to the assumed value of the viscosity. 
We also mention that with CQ = 6, the period doubling 
window still exists in sequence B in the same temperature 
range as before, but that the Floquet exponents are slightly 
lower. 

4. DISCUSSION AND CONCLUSIONS 

We have performed a fairly extended survey of sequences of 
hydrodynamical BL Herculis models. Our calculations show 

Fig. 14.—Radial velocity curves of the first overtone limit cycles of 
sequence A. Labels denote Ttíí [K] of the static models and the nonlinear 
pulsation periods [day]. 

that the Fourier parameters of the radial velocity curves 
display the same kind of systematical progression with period 
or effective temperature, as seen in the models of classical 
Cepheids (cf. Buchler, Moskalik, & Kovács 1990). In particu- 
lar, the Fourier phase </>21 has a well-defined maximum which 
is accompanied by a sharp decline of the concomitant ampli- 
tude ratio R21. The progression is indubitably associated with 
the 2:1 resonance between the fundamental mode and the 
second overtone, just as for the classical Cepheids. Not only is 
the </>21 peak located near the resonance center and its height 
strongly correlated with the damping of the overtone, but, in 
addition, the Fourier parameter curves for different sequences 
become similar, when plotted versus P2/Po (but not vs. P0!). 
Also the variations of the Fourier coefficients can be fitted with 
the amplitude equations, but again, only when the 2:1 reson- 
ance is included. 

For the low-luminosity sequences the effects of the 2:1 res- 
onance are very pronounced, and the similarity of Fourier 
progressions between the BL Her and the Cepheid models is 
very close, even in a quantitative sense. With an increase in the 
luminosity, though, the role of the resonance gradually dimin- 
ishes and the range of variation of </>21, as well as of the other 
Fourier parameters, becomes smaller. The same trend is also 
seen when the masses of the models are lowered. These changes 
in the morphology of the phase and amplitude ratio curves are 
significantly larger than in the Cepheid case. As a result, for 
models exploring the whole observationally acceptable range 
of M and L, no “universal” </>21 versus P2/Po relation can be 
established. 

For the classical Cepheids the Fourier parameters of the 
observed radial velocity curves display very regular behavior 
as a function of the pulsation period (Kovács, Kisvarsányi, & 
Buchler 1990). There are several reasons why we should not 
expect to see such a simple behavior in the BL Her stars. First, 
as just mentioned, the strength of the 2:1 coupling depends 
very sensitively on the stellar mass and luminosity. Both 
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parameters can vary independently because there is no con- 
straining evolutionary M-L relation. Second, changing M and 
L we also significantly change the position of the resonance. 
For the luminosities between 100 L0 and 150 L0, for example, 
it can be located anywhere between 1?58 and U82. Because of 
these two effects, at any given period, we can find stars with 
different shapes of the radial velocity curves. Third, resonances 
other than co2 = 2co0 also affect the BL Her pulsations. The 3:1 
coupling with the fourth overtone, for example, creates a sec- 
ondary minimum in the progression of R31 (this resonance has 
already been mentioned by Petersen 1989.) Compared to the 
Cepheids, the BL Her variables have period ratios that are 
much steeper functions of the period, so that the resonances 
are more crowded. Additionally, the width of the instability 
strip is thought to be ~1400 K or more (Demers & Harris 
1974), whereas for Cepheids it is significantly smaller (cf. e.g., 
discussion of Buchler, Moskalik, & Kovács 1990). Thus we can 
expect that for the BL Her stars many resonances are located 
inside the instability strip and, consequently, more complicated 
variations of the Fourier coefficients with period are possible. 

In all studied sequences except one, we have encountered 
narrow ranges of Tef{ in which the instability toward a period 
doubling bifurcation occurs. This instability is caused by the 
3:2 resonance between the fundamental mode and the first 
overtone. In the two most nonadiabatic sequences chaotic 
behavior emerges, but in other cases only a single period doub- 
ling takes place. The nascent period-two oscillations are char- 
acterized by pronounced, strictly periodic alternations of the 
light and the radial velocity curves. The phenomenon appears 
for periods between 2Í0 and 2?6. The exact range varies with 
the stellar parameters, though, and in no sequence is it broader 

than 0?3. For L > 125 L0, models with such periods are 
located well within the observational instability strip. The 
alternations are always very robust with respect to numerical 
as well as physical parameters. They are also found to be quite 
large, exceeding 20 km s_1 in the velocity minima. Thus the 
behavior should be easily observable. 

The model calculations discussed in the present paper unfor- 
tunately cannot be compared with observations at this time, 
since practically no data of good quality are available for the 
BL Her velocity curves. There exists enough theoretical 
material now to make a systematical observational program a 
worthwhile effort. The accurate measurement of velocity 
curves for a large sample of BL Her variables would be espe- 
cially desirable because the Fourier parameters for these stars 
are sensitive to mass and to luminosity. Such measurements 
therefore could allow a determination of M and L for many of 
these objects. 

The observational situation for the brightness variations of 
the BL Her stars is better, and several high-quality light curves 
have been published. There are also about three dozen stars for 
which the Fourier parameters have been determined (Petersen 
& Diethelm 1986). In a following paper we shall discuss the 
light curves of our BL Her models and compare them with the 
available data. 
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