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ABSTRACT 
We present an analytical solution to the problem of statistically correcting for distance bias in a galaxy data 

set. Given an unknown intrinsic radial distribution of galaxies and their estimated distances with lognormal 
errors, we compute the optimal correction to the galaxy’s estimated distances. These “ Malmquist ” corrections 
are calculated by utilizing the information contained in the distribution of estimated distances in the data set. 
This method precludes the need for assumptions concerning the real distribution of galactic distances, such as 
homogeneity, through the use of Bayesian statistical techniques involving nonuniform prior probability dis- 
tributions. With regard to real data sets and distance estimator relations, the applicability of such a procedure 
depends intimately on the interplay between selection functions and the variables which define the distance 
estimator relation. Therefore, applications to real data must rely on data sets which have been selected using 
criteria independent of the scatter in the distance estimator relation. As no current data set meets this criteria, 
we confirm our result using Monte Carlo simulations. We further investigate the systematic errors introduced 
into galactic distances and the galactic velocity field by this and other Malmquist correction methods around 
an overdensity modeled after that of the Great Attractor region. We find that the inclusion of a zero-point 
constant in the Hubble flow fit to the galactic velocity field acts as a good indicator of inadequate Malmquist 
correction. We then apply these results to an elliptical galaxy set in the direction of the Great Attractor and 
show that much of the signal may be an artifact due to Malmquist correction. 
Subject headings: galaxies: distances and redshifts — methods: numerical 

1. INTRODUCTION 

The accurate determination of galactic distances has been a 
long-standing and central problem in astrophysics. Presently, 
the best distance estimators involve empirical correlations 
between intrinsic properties of galaxies such as velocity disper- 
sions and luminosities, for example, the Tully-Fisher, Faber- 
Jackson, and Dn-a relations. Given the measurement errors 
and inherent dispersions in these relations, distances are gener- 
ally estimated with an uncertainty of around 20%. This 
problem is compounded by the fact that the errors in the dis- 
tance estimates are lognormal and therefore asymmetric. 

In practice what one wishes to do is to adjust a sample of 
estimated distances in such a way that they more accurately 
reflect the real distances, at least in a statistical sense. This can 
be very important, especially when modeling the large-scale 
velocity field since systematic errors in distance estimates 
introduce flows into the velocity field, that is, velocity equals 
redshift less distance. These difficulties have been generally 
recognized, and correcting for the systematic biases in 
distance estimates has been given the generic name Malmquist 
corrections. 

It is easy to see that given the real distribution of galactic 
distances in any data set, the lognormal distance errors will 
generate a distribution of estimated distances which is very 
much different from that of the original distribution and 
strongly dependent upon it. Therefore it is evident that Malm- 
quist corrections are highly dependent on the data set under 
consideration and further that the distribution of estimated 

1 Also Department of Physics, Eötvös University, Budapest, Hungary. 

distances itself contains information about the underlying real 
distribution. 

In the past, it was generally assumed when calculating a 
Malmquist correction that the data set was drawn uniformly 
from an underlying distribution of galaxies which is known a 
priori, for example, homogeneous and isotropic (see Lynden- 
Bell et al. 1988). In statistical analysis this is known as the 
assumption of a uniform prior with respect to the volume 
element. With a knowledge of the functional form of the dis- 
tance errors, an analytical correction to estimated distances as 
a function of estimated distance is then easily derived. Others 
have realized that the distribution of the estimated quantity 
itself contains the information for estimating the real distribu- 
tion and statistically correct for the errors. Eddington (1913, 
1940) calculated such an inversion involving Gaussian scatter 
in a statistical treatment of parallaxes. 

In the following section, we define the general mathematical 
problem of correcting for Malmquist bias in terms of the con- 
volution of the distribution of galaxies as an intrinsic function 
of real distance with the lognomal errors. We then develop a 
general analytic method for determining the Malmquist cor- 
rection using the information contained in the distribution of 
estimated distances. In § 3 the stochastic nature of the distance 
estimator is discussed along with the constraints this places on 
selection criteria with regard to real data. Section 4 presents a 
Monte Carlo verification of our result and a discussion of the 
errors introduced by improper Malmquist correction around 
an overdensity. This overdensity is modeled after that of the 
Great Attractor region. We then apply these results to an ellip- 
tical galaxy data set in § 5 and show its effect on the Great 
Attractor region. 
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2. LOGNORMAL BIAS AS A CONVOLUTION 

2.1. Distributions in Real and Estimated Distance 
We take only those data sets in which the distribution of 

galaxies can be expressed as a well-defined function of their 
real distances r and a selection function which can be 
considered to be a combination of the true galaxy over- and 
underdensities and a selection in real distance. The subtleties of 
this condition will be discussed fully in § 3. Here it suffices to 
say that such a selection must be independent of the probabil- 
ity distribution generating the lognormal scatter. With a suit- 
able normalization, this is closely related to the probability 
density of finding a galaxy at a distance r, 

P(r) = r20(r) . (1) 

From here on we will always use r for the real distances, not 
equal to s for the estimated “ raw ” distance. 

One is always estimating distances with functions of observ- 
ables that involve power laws. Thus, Gaussian scatter in the 
observable quantities leads to lognormal errors in the esti- 
mated distances. For example, using magnitudes, the estimated 
distance is related to the true distance by s/r = I002ß where fi 
is the magnitude error. If the error in n follows a Gaussian 
distribution, with variance a, 

P(ti)dn = exp (- -7== , (2) 

then the error in s follows the lognormal distribution 

/ , F (Ins —lnr)2~| dins / s 
P(s r)ds = exp —2 J = G(ln p Ajdlns, 

(3) 

where A2 = (O^ócr^)2 is the variance of the logarithmic distance 
error. Hereafter G(x; A) denotes a Gaussian distribution with 
zero mean and A2 variance. 

Given the distribution of the galaxies in r, we can easily 
determine the distribution in s as well : 

P(s) = J dr P(r)P(s | r) = - J dr r20(r)G^ln - ; A 

In a similar manner we can express the probability function 
in estimated distance space as P(s) = s2^(s). Let us introduce 
the new quantities x and y, by measuring distances on a 
logarithmic scale, using an appropriate length unit, and the 
logarithmic distribution functions d> and 'F : 

x = \nr, <D(x) = r3<j)(r) ^ 

y = In s , 'F(j>) — sV(s). 

We can now express 'F(y) as a trivial convolution with a 
Gaussian : 

'F(y) = s3i¡/(s) — sP(s) = j dx<X>(x)G(x — y; A) . (6) 
J— 00 

This is a not very exciting result so far, since we do not know 
the underlying O(x). However, we will use this formalism to 
derive our main result. 

2.2. Inversion of the Distribution and Moments 
The real task is the inversion of the conditional probability 

P(r I s), the distribution in r, after we have determined the esti- 
mated distances s. We can use Bayesian statistics to write down 
the inverse distribution 

P(r I s)dr = 
P(r)P(s I r)dr 

tfP{r)P(s\r)dr' 

Using our logarithmic variables x and y. 

(7) 

P(x I y)dx = 
0(x)G(y — x; A)dx 

ÿ(ÿ) 
(8) 

Using this inverse distribution for x, we can calculate the 
expectation value of the true distance as 

=r 
exP(x I y)dx = f-oo dxexQ>{x)G{y - x; A) 

W(y) (9) 

The following identity is satisfied by the Gaussian distribution 

exp (vx)G(y — x; A) = exp (vy + |v2A2)G(y + vA2 — x; A). 

(10) 

Substituting v = 1 we arrive immediately at one of our main 
results, 

,rv _ v+Hi-co dx®(x)G(y + A2 - x; A) 
^ >s 'FOO 

= scu/2,a2 ^ + A2) 
'FW ' 

(11) 

This can be generalized to an arbitrary moment of r, given s, by 
using v = n: 

<r">s = sV1/2)n2A2 ^(y + nA2) 

viy) 
(12) 

This expression has the nice property that the Malmquist cor- 
rection only depends on the logarithmic distribution function 
^(In s) — s3i¡/(s), which can be determined from the estimated 
distances directly. 

It is important to point out that we have made one funda- 
mental assumption in this inversion. We have equated 'F(y), 
the expected distribution from the unknown sample r2</>(r), 
with the observed. Due to small sampling and smoothing 
effects, the same observed function xF(y) can result from differ- 
ent underlying real distributions. This means that our correc- 
tion is actually only an approximation in that it reflects the 
most likely correction given the data points. The full mathe- 
matical formalism of this result will follow in a separate paper 
(see Loredo, Landy, & Szalay 1992). 

The simplest possible density distribution is a power law. 
The Malmquist corrections for this case have been already 
calculated by Lynden-Bell et al. (1988); here we would only like 
to show that our general result agrees with their calculation. If 
we consider a selection function described by 0(r) oc ra, then 
'F(y) oc exp [(a + 3)y], and thus 

<r>s = s exp [(1 + a)A2] . (13) 

For a homogeneous distribution (a = 0), the proper Malm- 
quist correction is 1 + 3.5A2. 

Eddington’s correction (1913, 1940) could also be adapted 
and applied to this problem. However, his result depends on a 
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Taylor expansion of the estimated distribution function and 
thus on its derivatives. Therefore, his result has a much greater 
sensitivity to sampling variance than ours. 

3. THE STOCHASTIC NATURE OF THE DISTANCE 
ESTIMATOR RELATION 

Most distance estimators exploit a relation between two 
variables, one which is distance dependent and one which is 
not. By normalizing this relation to a specific distance, it is 
possible to determine the distances to other galaxies by con- 
sidering changes in the distance-dependent variable. As a heu- 
ristic, we will consider the Dn-o relation. This analysis is easily 
generalized to any other relation of the same general form. 

3.1. Distributions in (dn, oySpace 
It is believed that there exists an intrinsic relation between a 

galaxy’s absolute diameter dn and its velocity dispersion a. This 
relation is expressed in terms of a joint probability distribution 
P(ln dn, In o). The distance estimator relation is modeled as a 
linear stochastic relation 

le = Alno-\ndn + C, (14) 

where le is natural log of the estimated distance, <r is the veloc- 
ity dispersion, dn is the absolute diameter, A is the slope, and C 
is a constant which depends on our choice of the normalization 
distance. Since the relation between dn and a is probabilistic, le 

is properly named as the log of the estimated distance. Dis- 
tances to other galaxies are calculated by comparing the 
galaxy’s apparent diameter Dn to that given by the relation for 
the same value of a. This gives an estimate of the galaxy’s 
absolute diameter and its relative distance. 

A stochastic equation is one in which one or more variables 
are considered to be random variables. In this case, we have an 
empirical relation between the natual log of the velocity disper- 
sions and absolute diameters which is considered to have 
scatter Gaussianly distributed about the relation parallel to the 
lnd„ axis. This results in a lognormal uncertainty in our dis- 
tance estimate s to a galaxy. 

It has not been determined at this time whether the scatter in 
the Dn-o relation is intrinsic or the consequence of measure- 
ment error. Intrinsic scatter could be generated if one or more 
parameters used in the relation were only correlated with the 
“ true ” parameters whose relation was infinitely tight. In fact, 
the Dn-o relation can be seen as an improvement on the Faber- 
Jackson relation with Dn being more tightly correlated with 
some presently unknown “true” parameter. Recently, Lucey, 
Bower, & Ellis (1991) report that it may be that all of the 
scatter is generated by measurement errors. In either case, our 
analysis of the problem is identical. 

It is well known that the distribution of the sum of two 
Gaussianly distributed variables is also Gaussian. As there is 
no reason to suppose that the scatter in the relation is only a 
consequence of a Gaussian scatter in one of the variables, it is 
prudent to assume that it lies in both In Dn and In o and we are 
dealing with a bivariate distribution. Both scatters would con- 
tribute to and are consistent with the generation of lognormal 
distance errors. 

This causes serious problems concerning the applicability of 
our correction to data sets which have been selected using 
criteria in In Dn or In cr. As our result depends on the supposi- 
tion that galaxies be inherently selected as a function of real 
distance, they cannot be chosen based upon real distance and 

some parameter which involves the scatter. To see this more 
clearly, it is instructive to consider cases in which we model the 
probability distribution as a Gaussian scatter in one variable 
about the other. This second variable is then considered the 
primary variable, with a smooth distribution. 

3.2. Intrinsic Radial Distributions and Selection Functions 
Let us consider that the scatter in the relation lies in either 

the distance-independent variable In <7 or the distance- 
dependent variable In Dn and calculate the fraction of galaxies 
as a function of real distance which make it into a sample as a 
function of the two-dimensional probability distribution 
P(\ndn9 In a). Taking first the scatter in In cr, the probability 
distribution of galaxies about the relation may be expressed as 

P(ln dn, In a) = G(ln <71 In dn)P(ln dn), (15) 

where G(ln 0 \ In dn) expresses the Gaussian random distribu- 
tion of In <7 for a given In dn. 

Taking the case of a Delimited sample, it is easy to see that 
there exists a well-defined distribution of galaxies as a function 
of real distance. The apparent diameter limit selection simply 
marches along the distribution P(\ndn) with increasing r, 
accepting a smaller percentage of galaxies with increasing dis- 
tance: d1™ = Dljmr. This makes the selection of galaxies entirely 
independent of the intrinsic scatter in the relation. Physically, 
this is equivalent to first making a selection of galaxies as a 
function of real distance and then scattering them with the dis- 
tance estimator relation. 

Taking the second case this is no longer the true. As above, 
the probability distribution of galaxies about the relation can 
be expressed as 

P(ln dn, In (7) = G(ln dn \ In a)P{\n <7). (16) 

Here, considering a Delimited sample, the probability of a 
galaxy being accepted into the sample depends on a convo- 
lution between the distribution P(ln 0) and a Gaussian 
G(ln dn I In 0). In other words, in taking the scatter in the quan- 
tity In Dn, it is possible for galaxies to scatter in and out of the 
sample as a function of the scatter in the relation. Thus in this 
case, we first scatter every galaxy and then select a subset of 
them. These can be defined as selections as a function of esti- 
mated as opposed to real distance. As there is no longer a 
one-to-one mapping between apparent diameter and whether a 
galaxy makes it into the sample or not as a function of real 
distance, the distribution of galaxies in the sample is not an 
intrinsic function of real distance. The distribution is probabil- 
istic as it depends on the scatter of each individual galaxy with 
regard to the relation and the selection criteria and our inver- 
sion procedure cannot be applied. 

Unfortunately it is not known in which variable or variables 
the scatter lies. Therefore, use of our correction with Delimited 
samples is suspect, although significant error will only be intro- 
duced at the edge of the survey. In the future, if the nature of 
the scatter along with the probability distribution P(ln dn, In a) 
becomes more precisely defined, it should be easy to modify 
our result for use with Delimited samples. 

It is possible, however, to use redshift-limited surveys with 
our correction as long as the redshift limit is not restricting the 
ability to measure a galaxy’s diameter, making it effectively a 
diameter-limited survey. 

It may also be possible to use apparent magnitude-limited 
surveys with our result. This depends on whether a galaxy’s 
apparent magnitude is correlated with the scatter in the 
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galaxy’s apparent diameter. In other words, if different galaxies 
of the same apparent magnitude show a Gaussian scatter in 
apparent diameter, apparent magnitude-limited surveys will be 
equivalent to selecting galaxies as a function of true distance 
independent of the scatter in the distance estimator relation. 
Then our procedure will work fine. In regard to relations 
which utilize apparent magnitudes, the opposite procedure 
could be used. 

4. MONTE CARLO VERIFICATION AND ANALYSIS 

Our motivation in developing a general Malmquist correc- 
tion grew out of investigating the systematic errors introduced 
into galactic velocity fields by lognormal distance errors and 
different Malmquist corrections around a nonuniform galactic 
distance distribution. In order to confirm our result and deter- 
mine effects on real data, we designed Monte Carlo realiza- 
tions utilizing a distribution of galaxies which approximated 
that in the Great Attractor region and generated data sets 
whose peculiar velocities were a result of lognormally scattered 
distance errors and thermal scatter. 

Galactic redshifts cz¿ are the sum of both a galaxy’s distance 
times the Hubble constant H and its peculiar velocity 

cZi = Hti + Vi. Since redshifts are well determined, errors in 
galactic distance estimates show up directly in the velocity 
estimate with opposite sign, that is too large a distance equals 
too small a velocity. Therefore, correcting galactic distance 
estimates is equivalent to correcting galactic velocity estimates. 

To generate our data sets we took a galactic distance dis- 
tribution which was identical to that presented by Dressier 
(1991) in his Figure 4, except for a smoothing over two points 
using the routine SMOOFT (see Press et al. 1986). This dis- 
tribution function is believed to represent a volume-limited 
sample of galaxies to a distance of 7000 km s1 in the direction 
of the Great Attractor. Although this is a distribution in red- 
shift space, its general form should reflect that of the true 
galaxy distribution. To bypass uncertainties in the Hubble 
constant, we take the distance to a galaxy initially to be its 
redshift and work entirely in velocities. To this distance which 
we call Hrh we add a thermal scatter term <7; drawn from a 
Gaussian distribution with zero mean as might be expected in 
a real field. This gives us the total redshift for a data point 
which is then fixed. Next we take the distance to the galaxy and 
scatter it lognormally, giving us the estimated distance s* to the 
galaxy. Total redshift minus the estimated distance then gives 

the peculiar velocity which is the sum of the thermal scatter 
and negative the error in distance: = Hrt + íj¿ = -f vt. 

Each data set was then fitted for a Hubble and zero-point 
constant using the scattered distances “raw,” general Malm- 
quist corrected distances, and homogeneous Malmquist cor- 
rected distances. The fitted equation is given by cz, = + C. 
A zero-point constant is not included for physical reasons, but 
rather as a natural way to increase the degrees of freedom of 
the equation as a test of the fit. With real data, one renormal- 
izes the distance scale to fit a Hubble constant of 1.00 and locks 
the zero-point constant to zero. The constant is a way to test 
the uniformity of the Hubble flow over the length of the survey 
(see § 4.2. below). 

The data sets were constructed as follows : 

1. A point rf was chosen at random between 0 and 7000 km 
s-1. 

2. A number was chosen at random between zero and one. If 
this number was less than the value of the distribution function 
at that distance, the point was retained. (The distribution func- 
tion was normalized such that its greatest point had a value of 
one). 

3. The point was then lognormally scattered with a variance 
of 0.21. This result was then considered the estimated or mea- 
sured distance, and a peculiar velocity was created. 

4. To this peculiar velocity a thermal scatter of variance 365 
km s_1 was added. 

This procedure was repeated until 500 points were gener- 
ated. The data were truncated at a raw or Malmquist corrected 
distance of 6000 km s-1 depending upon the analysis since 
beyond this point the distribution function is dominated by 
noise. The data were then fitted for a Hubble and zero-point 
constant using the least-square fitting routine SVD (see Press 
et al. 1986). One hundred runs were made. The errors are 
calculated from the 100 runs. 

Figure 1 shows the distributions in real and estimated dis- 
tance used for the Monte Carlos. The normalization is not the 
same for both figures, as the estimated distribution has been 
smoothed by binning (see below). One does not expect sharp 
features in the estimated distribution in any case because of the 
large scatter. 

4.1. Calculation of the Malmquist Corrections 
The general Malmquist correction must be calculated for 

each individual data set and was determined in the following 

km/sec km/sec 
Fig. 1.—Approximate distribution of real distances believed to represent the Great Attractor region. Distribution of estimated distances after scattering with a 

lognormal error of 0.21 and smoothing in log space. These distributions were used in the Monte Carlos. The distribution of estimated distances was also used to 
correct a subset of the real data. 
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manner. The scattered distances s were converted to their 
logarithms. The data were then binned as a function of In (s) 
with bins of width 0.28 In (s), the size of the probable error, and 
0.125 ln(s) between the centers of adjacent bins. The number of 
points which fell into each bin was calculated. This produced a 
fairly smooth distribution function of number of points versus 
ln(s). As above, the general Malmquist correction function is 
given by 

Rg = s exp 
y[ln(s) + A2] 

¥[111(4] 
(17) 

where 'F is the distribution function in In space, Á is the log- 
normal error, s is the scattered or measured distance, and RG is 
the Malmquist corrected distance. Interpolated values were 
calculated using the routine SPLINE (see Press et al. 1986). 

The homogeneous Malmquist correction assumes no selec- 
tion function other than that due to spherical geometry so that 
the probability of choosing a point increases as the square of 
radial distance. This correction is given by 

Rh = s exp [|A2] . (18) 

The weight of each point consisted of distance errors in 
quadrature with the thermal scatter of 365 km s-1. The 
variance of the distance errors was taken as 

Rl(exp (A2) - 1), (19) 

where R* is the appropriate distance (see Lynden-Bell et al. 
1988). 

TABLE 1 
Hubble Flow Fits—Monte Carlo Simulations 

Correction H 

Ideal  
General  
Raw   
Homogeneous . 
Raw renorm  
Homog renorm 

1.00 ±0.02 -2 + 49 
0.98 ± 0.03 76 ± 90 
0.87 ± 0.03 502 ± 90 
0.76 ± 0.2 455 ± 90 
1.00 ±... 546 + 96 
1.00 ±... 554 + 97 

4.2. Monte Carlo Results 
The results are shown in Table 1. The ideal results use even 

weighting and do not incorporate distance error. The 
superiority of the general Malmquist correction is easily seen. 
Both the Hubble and zero-point constant are consistent with 
the ideal results well within 1 <r. The raw and homogeneous 
Malmquist corrected distances result in a significant underesti- 
mation of the Hubble constant at 4 and 7 a, respectively, and 
produce zero-point constants of order 500 km s-1 at 5 a. The 
“raw renorm” and “homog renorm” are fits in which the 
distance scale has been adjusted to give a Hubble constant of 
1.00 for these fits, as would be done in practice. The multiplica- 
tion factors were 0.87 and 0.73, respectively. The large zero- 
point constants remain. 

Qualitatively, these results are easily explained. The homo- 
geneous correction is based on the assumption that it is equally 
likely to sample any galaxy in the universe. Lognormal errors 
tend to scatter galaxies out. However, since it is assumed that 

1000 

500 

0 

-500 

-1000 

0 2000 4000 6000 0 2000 4000 6000 

km/sec km/sec 

o <D W 

B 

km/sec 
Fig. 2.—Average radial peculiar velocities generated in 100 Monte Carlo simulations of 500 points for a distribution of galaxies modeled after that of the Great 

Attractor region with no raw, general, and homogeneous Malmquist corrections. All velocities should be consistent with zero. Note the superior behavior of the 
general correction and the “infall ” artifacts as produced by the other methods. 
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the distribution of galaxies increases as r2, at any estimated 
distance s more points will have scattered down from larger r 
than up from smaller r. The correction therefore moves gal- 
axies out. On the other hand, if because of true over- and 
underdensities or a selection in real distance the number of 
galaxies begins to decrease as a function of distance, the correc- 
tion should eventually change sign, and the outlying galaxies 
should be moved back in. Failure to correct for this causes 
many points to be moved in the wrong direction, resulting in 
overestimated distances and erroneous peculiar velocities. This 
is manifested in a smaller Hubble constant and a positive zero- 
point constant as the fit pivots to account for more distant 
points. This is also the case for the raw distances. Stretching or 
shrinking the distance scale does not remove this general trend. 

To get a more detailed view of how the data were being 
affected, we also calculated the average radial peculiar velocity 
as a function of distance for each case. For each data point, the 
peculiar velocity is simply the galaxy’s redshift cz¿ less its cor- 
rected distance estimate. The data were binned in bins of width 
500 km s “1 with 250 km s “1 between points. The error bars 
are calculated from the 100 Monte Carlo runs. The results are 
shown in Figure 2. 

As is clear, very significant systematic errors are being intro- 
duced into the velocity field by no or by a homogeneous 
Malmquist bias correction. Only the general Malmquist cor- 
rection results in velocities consistent with zero over the entire 
range. One important point which should be noted is apparent 
when viewing the raw distance graph. As is well known, over- 
densities or bumps in the distribution of galaxies create appar- 
ent infall in the velocity field, which is clearly evident in this 
figure. This is also the case when the data are corrected using 
the homogeneous Malmquist correction and is dependent 
upon how distant and severe the overdensity is. A positive bulk 
flow in the direction of the Great Attractor would shift the 
homogeneous graph upward by the value of the bulk flow and 
would give the same effect. 

Another important point concerns the normalization of the 
distance scale. In practice, one normalizes the distance scale to 
give a Hubble constant of 1.00. Therefore, significant artifacts 
can be introduced into the velocity field due to improper 
normalization. 

5. APPLICATION TO AN ELLIPTICAL GALAXY SAMPLE 

5.1. Data Set and Fitting Procedure 
The data set consisted of 544 elliptical galaxies which com- 

bined the data of Lynden-Bell et al. (1988) with that of Lucey & 
Carter (1988) and Dressier (1988), kindly supplied in electronic 
form by D. Burstein. The data includes a raw estimated dis- 
tance, homogeneous Malmquist corrected distance, peculiar 
velocity in the cosmic microwave background frame with 
respect to the Malmquist corrected distance, galactic latitude 
and longitude log Dn and log cr, and a group membership 

index. A lognormal distance error of 21% is assigned to each 
galaxy. The data for galaxies belonging to clusters was taken as 
one point placed at the average distance since each cluster is 
basically one sampling of the peculiar velocity field. 

5.2. Hubble and Bulk Flow 
To characterize our data set with respect to other authors we 

fit for a Hubble constant and bulk flow. For comparison we 
used the grouped data using the average raw and homoge- 
neous Malmquist corrected distances for clusters. To gener- 
alize the fit as a test of the uniformity of the Hubble flow as in 
the Monte Carlos, we included a zero-point constant. 
However, one fit was made without a zero-point constant and 
using the homogeneous Malmquist correction “ Homogeneous 
1.” We also used the general Malmquist correction with 
ungrouped data. For the raw and homogeneous fit the data set 
was truncated at a raw distance of 6000 km s_ 1, as beyond this 
point the data is dominated by noise. For the general case this 
was done after Malmquist correction. A standard weighted /2 

minimization was used. The results are shown in Table 2. 
The fit which does not contain a zero-point constant using 

the homogeneous correction “Homogeneous 1” returned a 
Hubble constant of 1.00. This is expected since the distance 
scale was constructed to produce such a result based on a 
similar fit (see Lynden-Bell et al. 1988). It is not surprising to 
see a diminution of the Hubble constant and a large zero-point 
constant, over 300 km s-1 at 3 <7, using the homogeneous 
correction with the inclusion of a zero-point degree of freedom, 
“ Homogeneous 2.” As discussed above this is most likely due 
to improper correction of more distant data points. Fitting to 
the raw data also returned similar results. 

Since the distance scale was based on the fit without a zero 
point constant, we renormalized the distance scale to give a 
Hubble constant of 1.00 for the five-parameter homogeneous 
fit. The five-parameter raw fit returned a Hubble constant of 
1.00, but this is fortuitous. This was accomplished by multi- 
plying the estimated distances by 0.92 which is equivalent to 
assigning a peculiar velocity to the Coma cluster as is done in 
Lynden-Bell et al. (1988). The results are given under “Homog 
renorm.” As expected, this adjustment did not remove the 3 o 
error in the zero-point constant. 

The fit using the ungrouped data with our general Malm- 
quist correction is shown under “General.” Although this fit 
does show an improvement with the zero-point constant 
coming in at 189 km s~1 with a 2 <r standard deviation, it must 
be remembered that the applicability of our correction to this 
data set has not been established. We show it only as a matter 
of completeness. 

These results indicate that there are problems with these 
data sets which may be due to Malmquist correction and an 
incorrect determination of normalization distance. Either 
problem could introduce apparent infall in the velocity field. 

TABLE 2 
Bulk Flow Fits—Elliptical Galaxies 

Correction H C Vx Vy Vz Vt l b 

Homogeneous 1   1.00 ± 0.02 ... 380 + 89 -290 ± 86 75 + 70 484 9 323 
Homogeneous 2  0.92 ± 0.03 302 + 111 385 + 89 -192 + 94 53 + 70 433 7 334 
Raw   1.00 ± 0.03 361 ± 104 355 + 84 -190 + 87 60 ± 66 407 8 332 
Homog renorm  1.00 + 0.04 309 + 107 384 ± 84 -187 ± 89 47 ± 68 430 6 334 
General   1.00 ± 0.03 189 ± 91 346 ± 74 -169 ± 80 64 ± 54 391 9 334 
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5.3. The Great Attractor Region 
In considering that an overdensity of galaxies, either real or 

due to selection effects in real space, may appear as an area of 
infall due to the systematic velocities introduced by Malmquist 
correction, we investigated the velocity field around the Great 
Attractor region at / = 309°, h = 18° and a distance of 4500 km 
s-1 (see Burstein, Faber, & Dressier 1990). 

We used the subset of the data consisting of 180 galaxies 
which fell within 45° of the Great Attractor region. This subset 
consisted of 54 single galaxies and 28 groups or clusters. Using 
these points, we calculated the weighted mean velocity as a 
function of the raw estimated distance, homogeneous Malm- 
quist corrected distance, and the general Malmquist corrected 
distance. In the case of the raw or general correction, groups 
were treated as one point left at their average estimated dis- 
tance as this gives the most accurate estimate of their true 
distance. However, distances of the single galaxies with regard 
to the general correction were adjusted assuming a distribution 
of estimated distances as given by the Monte Carlos. Only 
single galaxies with a redshift less than 7000 km s-1 were 
included for consistency. For the homogeneous Malmquist 
correction, both the single and group data points were taken at 
their Malmquist corrected distance as given in the data set. 

The distance errors used were identical to those in the 
Monte Carlos (eq. [19]), excepting that the distance variance 
for grouped data was divided by the number of galaxies in the 
group. The overall variance for each point includes a thermal 
field scatter of 365 km s_1 in quadrature with the distance 
errors. As above, the data were binned in bins of width 500 km 
s"1 with 250 km s-1 between points. The results are shown in 
Figure 3. 

Comparing the velocities for the raw, homogeneous, and 
general Malmquist corrected distances, it is evident that much 
of the infall previously reported may simply be an artifact of 
Malmquist correction. Further, the infall on the backside of 
the Great Attractor largely disappears, lending credence to the 
argument that the large streaming flow seen in this direction is 
due to a mass concentration beyond 6000 km s-1 such as the 
Shapley concentration. The consistency between these results 
and the Monte Carlos (Fig. 2) is remarkable. 

6. CONCLUSIONS 

We have shown, using fairly general analytic arguments, 
how to improve statistical distance determinations by folding 
in information on the radial distribution of the galaxies. Unfor- 
tunately, the applicability of our method relies on rather strict 
selection criteria at least until the nature of the scatter in the 
distance estimator relations is better understood. 

Depending upon the way the probability distribution about 
the distance estimator relation is modeled, one may treat the 
data in different ways, all of which are equally justified and 
mathematically sound, but none necessarily correct at this 
point. Our method of Malmquist correction is more general, as 
it allows for a correction based on the distribution of estimated 
distances, eliminating the need for assumptions concerning 
true underlying distribution of galaxies. 

Admittedly, Malmquist bias correction is a difficult and 
tricky endeavor. We have shown that the inclusion of a zero- 
point constant in the Hubble flow fit acts as a good indicator of 
inadequate Malmquist correction. Applying this to the real 
data, we find significant nonuniformity in the Hubble flow 
indicating possible problems with Malmquist corrections and 
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FiG. 3.—Average radial peculiar velocities for elliptical galaxies within 45° of the Great Attractor. Velocities are shown for no Malmquist correction raw, 
homogeneous, and general Malmquist correction. The horizontal line corresponds to a bulk flow in this direction with a magnitude of 420 km s"x. In the case of the 
general correction, clusters have been placed at their average raw distance, while single galaxies have been corrected using the estimated distance distribution shown 
in Fig. 1. Note the remarkable similarity with Fig. 2 and the loss of signal and backfall with the general correction. 
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distance normalization. We have further quantified the arti- 
facts introduced into a velocity field using no correction or a 
homogeneous Malmquist correction around an overdensity. 
Application of our method to a distribution modeled after that 
believed to represent the Great Attractor and applied to real 
data indicates that much of the signal may be due to Malm- 
quist correction. 
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