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1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) was invented to simulate
nonaxisymmetric phenomena in astrophysics (Lucy 1977, Gingold
& Monaghan 1977). We wanted a method that was easy to work with and
could give reasonable accuracy. The SPH method satisfied these require-
ments. As a bonus we found the SPH was rugged, gave sensible answers
in difficult situations, and could be extended to complicated physics with-
out much trouble.

The SPH method is a particle method. Unlike the particle in cell method
(PIC) (Harlow 1957, 1974, 1988), SPH does not need a grid to calculate
spatial derivatives. Instead, they are found by analytical differentiation of
interpolation formulae. The equations of momentum and energy become
sets of ordinary differential equations which are easy to understand in
mechanical and thermodynamical terms. For example, the pressure gradi-
ent becomes a force between pairs of particles. The astrophysicist can then
use intuition in a way which is difficult with the original partial differential
equations. This intuition, coupled with detailed analysis, has allowed SPH
to be extended to a wide variety of astrophysical problems. Although very
accurate finite-difference methods exist—and these are better than SPH for
some problems—they cannot handle complex physics in three dimensions
with the same ease.

Various aspects of SPH have been reviewed by Monaghan (1985, 1988a)
and Benz (1988, 1989).
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2. FUNDAMENTALS

At the heart of SPH is an interpolation method which allows any function
to be expressed in terms of its values at a set of disordered points—the
particles. The ideas are given in Lucy (1977), Gingold & Monaghan (1977,
1982), and Monaghan (1985).

The integral interpolant of any function A(r) is defined by

Ay(r) = JA(r’)W(r—r’,h)dr’, 2.1

where the integration is over the entire space, and W is an interpolating
kernel which has the two properties

JW(r—r’, hdr =1 2.2
and
}Iirr(} Wk—r',h) =56(r—r), 2.3

where the limit is to be interpreted as the limit of the corresponding integral
interpolants. It is clear that kernel interpolation is related to the subject
of singular integrals (Natanson 1960).

For numerical work the integral interpolant is approximated by a sum-
mation interpolant

Ag(r) = Zmbé W(x—r,, h), 2.4
b Pe

where the summation index o denotes a particle label, and the summation

is over all the particles. Particle  has mass m;, position r,, density p,, and

velocity v,. The value of any quantity A4 at r, is denoted by A,,.

The essential point is that we can construct a differentiable interpolant
of a function from its values at the particles (interpolation points) by using
a kernel which is differentiable. Derivatives of this interpolant can be
obtained by ordinary differentiation; there is no need to use finite differ-
ences and no need for a grid. For example, if we want VA, we can use

A
VA(r) = Zmbp—bVW(r—rb,h), 2.5
b b

though to obtain higher accuracy we would obtain the interpolant by
writing
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pVA =V(pA)—AVp,

as shown in the examples below and, in the particular case of the pressure
gradient, we would use a symmetrized form (e.g. Equation 3.3).

The original calculations of Gingold & Monaghan (1977) used a Gaus-
sian kernel. In one dimension

W(x,h) = L e, 2.6
hm

which is the usual example of a sequence which mimics a delta function
in the limit # — 0. A kernel based on splines (Monaghan & Lattanzio 1986)
has proven computationally efficient (other kernels will be discussed later).
However, if you want to find a physical interpretation of an SPH equation,
it is always best to assume the kernel is a Gaussian. This is the first golden
rule of SPH.

The error in approximating Equation 2.1 by Equation 2.4 depends on
the disorder of the particles (Monaghan 1982) and is normally O(#?) or
better. It is important to realize that although the summations are formally
over all the particles, only a small number actually contribute because W
can be chosen so that it falls off rapidly for [r—r,| > A.

For the rest of this review we will not distinguish between a summation
interpolant and the actual function since this will be clear from the context.

The density is estimated everywhere by

p(x) = myW(r—r,, h). 2.7

Another example is

Vev=> myv, - VW(r—ry, h), 2.8
5

but in this case it is better to remember the second golden rule of SPH
which is to rewrite formulae with the density placed inside operators. For
the previous case we write

Vev=[V:(pv)—v-Vp]/p, 2.9
so that the divergence of the velocity at particle a can be found from

pa(V ' v)a = Z (Vb_ va) ' Va Waba 210

b
where the notation V,W,, denotes the gradient of W(r,—r,, h) taken with
respect to the coordinates of particle a. If the kernel is a Gaussian, the

contribution from particle b to the divergence of the velocity at particle a
is given by
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2my(V,—Vy) * (t,—¥p) W, /h2, 2.11

which shows that the contribution is positive if the particles are moving
away from each other, as expected. The vorticity of particle a is estimated
in the same way by

PV XV)y = myV X V, W 2.12
5

Taking the kernel to be a Gaussian we find that the contribution of
particle b to the vorticity of particle a is proportional to the relative angular
momentum per unit mass of the two particles.

3. SIMPLE EQUATIONS OF MOTION
3.1 The Momentum Equation

Using the ideas outlined in the previous section, the equations of motion
can be obtained easily. The pressure gradient could be estimated by using

pVP, = my(Py— PV, W, | 3.1
b

and this has the advantage that the force vanishes exactly when the pressure
is constant. However, it has the disadvantage that the linear and angular
momentum are not conserved exactly (an isolated pair of particles with
different pressures would bootstrap themselves to infinity), and it is difficult
to construct a consistent energy equation.

In this case it is better to symmetrize the pressure gradient term by
rewriting VP/p according to

VP P P
—=V|{— |+ 5Vp. 3.2
p p) P
The momentum equation for particle a then becomes
dva Pb Pa
= — — + — |V W, 3.3
L R

where here and elsewhere d/dt denotes a derivative following the motion.
The momentum equation in the form of Equation 3.3 was first derived
from using a discrete form of the action principle for an adiabatic fluid.

The contribution to the force on particle a from particle b when the
kernel is a Gaussian is

2mmy, (P, P,
12 ! <_b + _2> (T, —r) Wy, 34

p; P
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which shows that the pressure gradient, when translated into an SPH
equation, produces a symmetric central force between pairs of particles.
As a result linear and angular momenta are conserved.

Infinitely many symmetric forms of the SPH momentum equations can
be constructed. For example, noting

vp P 1 1 P
—=—0'V( l——a'>+ 2—0'V< 0'—1>’ 35
p P \p p P
the SPH momentum equation becomes
dva < Pb Pa )
=—Lm —0 0 + G .2—0 VaW > 3.6
d ; \pZpg " pipt “

which is symmetric for any value of 6. Another symmetric combination is
obtained by noting

VP=2./PV./P. 3.7

My preference is for the form of Equation 3.2 since it arises naturally from
an action principle.

The effect of a constant external pressure P, can be approximated by
replacing P everywhere by P— P, (Lattanzio et al 1985a).

3.2 The Continuity Equation

The continuity equation can be replaced either by the interpolant

Pa= ZmbWaba 3.8
b
or by
dp,
CZ =Y VoW 3.9
b

where the notationv,, = v,—v,, has been used. Almost all SPH calculations
use Equation 3.8, but there are definite advantages in using Equation 3.9.
In particular, if Equation 3.8 had been used in SPH calculations of the
motion of water (Monaghan 1991), the density would have dropped near
the edge of the fluid (this is SPH’s valiant attempt to model an edge)
and the resulting pressure would have caused the edge to oscillate. With
Equation 3.9 the initial density of each particle can be set, and it will only
vary when particles move relative to each other. Tests on shocks show
that Equation 3.8 has no advantages over Equation 3.9. There is also a
computational advantage in using Equation 3.9 since the rates of change
of all physical variables can be computed in one subroutine, or one pass
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over a tree. The disadvantage is that exact conservation of mass is not
retained.

In some accretion problems it can be useful to treat accretion onto a
body as loss of mass to a sink (Anzer et al 1987). The continuity equation
then becomes

dp

— = —pV -¥y—f(r), 3.10

7 p )
where f(r) is, for example, a continuous function which is zero outside a
sphere surrounding the origin. If we assume 4 is constant in space and
time (the general case is treated later) we can write the continuity equation

as
d,
6;,): = Zmbvab'VWab—Zmbj—pb— Wab9 3.11
b b Pb

where we have used an interpolant form of the sink to facilitate solving
the equation. If we substitute for p, (Equation 3.8), and allow the mass to
vary with time, we find

dmb _ﬁ
— m. =

—_—= 1
dt bpb, 312

which shows that, in SPH, a sink is interpreted as a region within which
the particles lose mass. This treatment of the sink is smoother than simply
eliminating particles that enter a sphere surrounding the sink hole.

3.3 The Thermal Energy Equation

The equation for the rate of change of thermal energy per unit mass

d P
== —(—)V-v 3.13
dt p
can be written for particle a in the form
du, P,
dt = (E) g OAPTS Va Wab 3.14
or, by noting
d P P
M -V(—v>+v-°V<—), 3.15
dt p p

the thermal energy equation for particle a can be written
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du, P
d”t - Zmb<;§)vab'VWab. 3.16

b b

By taking the average of the two previous equations, we find

du, 1 P, P,
PR C I R Y
b a

which has the same symmetric factors as Equation 3.3.

It is characteristic of SPH that gradient terms can be written in many
different ways. Similar transformations are possible for finite-difference
equations.

Any of the above forms of the energy equation, when interpreted using
a Gaussian kernel, show that the thermal energy of particle a increases
when particle » approaches it. This is the SPH equivalent of V*v < 0. Benz
(1989) finds that in some cases it is better to use Equation 3.14 instead of
Equation 3.17.

It has been found (Hernquist 1991, private communication) that if the
thermal energy equation is integrated using any of the SPH forms above,
and if the density is calculated using Equation 3.8, the total entropy is not
conserved as accurately as the energy. If an entropy equation is integrated
then the total energy is not conserved as accurately as the entropy.
However, if the gas is ideal, the total entropy will be conserved exactly if
the density is calculated using Equation 3.9 and the thermal energy is
calculated using any of the forms given above. In this case the mass is not
conserved exactly. It seems one cannot have everything!

3.4 Moving the Particles
Particles are moved using either

dr, _
dr

Vo 3.18

or the XSPH variant (where “X”’ is the unknown factor) (Monaghan 1989)

dr,
dt

=€’a=va+82mb(¥>Wab, 3.19
b Pab
with p,, = (p,+ps)/2 and &(0 < ¢ < 1) as a constant. The XSPH variant
moves a particle with a velocity that is closer to the average velocity in its
neighborhood. Strict consistency then requires that if p is found using
Equation 3.9, v should be used in place of v in v,,.

No dissipation is introduced by XSPH but it increases the dispersion
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(which can be reduced by using a different kernel in Equation 3.19). The
XSPH variant has proven useful in the simulation of nearly incompressible
fluids such as water, where it keeps the particles orderly in the absence of
viscosity.

Another interesting feature of the XSPH variant is that if pressure and
viscous forces are set to zero, it simulates the Burgers equation with very
large effective Reynolds number. Experiments (Monaghan, unpublished)
show that for this problem the XSPH results are as good as the best finite-
difference equations.

3.5 Equation of State

The equation of state can be as complicated as desired. For example Benz
et al (1986, 1987) use equations of state for metals and minerals, including
phase changes, in their simulation of the formation of the Moon.

4. VISCOSITY AND THERMAL CONDUCTION

4.1 Viscosity

Many forms of artificial viscosity have been proposed (Lucy 1977, Wood
1981, Monaghan & Gingold 1983, Evrard 1988, Loewenstein & Mathews
1984), but the most commonly used artificial viscosity is obtained by
writing the momentum equation as

dv, P, P,
dt = ——Zmb(p—; + ) +Hab)VaWaba 4.1
b b

a

where I1,, is given by

_ac_a a + 3
bll_b Buas Vo .y < O;

Hab ES Pab

0 Vap ' Lop > 0,
and
hvab * l'ab
=2 2 4,
Hab r+n’ :

The viscosity vanishes when v, *r,; > 0, which is the SPH equivalent of
the condition V-v > 0.

The expression for IT, contains a term that is linear in the velocity
differences, which produces a shear and bulk viscosity (Monaghan 1985).
The quadratic term is necessary to handle high Mach number shocks, and
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is roughly equivalent to the Von Neumann-Richtmyer viscosity used in
finite-difference methods. This viscosity has a number of desirable features:

1. it is Galilean invariant;
2. it vanishes for rigid body rotation;
3. it conserves total linear and angular momenta.

Many tests have confirmed that, with this viscosity, shock fronts are
spread over ~3h, which is sufficiently accurate for most purposes in
astrophysics. The values of a and f are not critical, but they should be
near « = 1 and B = 2 for best results. The parameter n? in the formula for
U prevents singularities. It should be small enough to prevent severe
smoothing of the viscous term in high density regions, and this is normally
achieved by taking % = 0.014% This choice of #* means that smoothing
of the velocity will only take place if the particle spacing is <0.1A.

In the case of accretion disks, the presence of viscosity is required in
order to fit the observations, and this can be achieved by taking 8 = 0,
and choosing appropriate values for « and 4. In many other situations the
physical viscosity is small, but shocks can still occur. To treat the shocks
correctly requires o ~ 1 but the shear viscosity may then be too large. In
order to escape this difficulty there are several possible routes:

1. Construct a more general viscosity similar to the linear term involving
. This can be done (Monaghan 1991), but the resulting tensor viscosity
does not guarantee angular momentum conservation.

2. Follow the finite-difference methods and use a switch. The idea is to
monitor some quantity, for example the density, and try to predict the
rapid change that comes with a shock. Experiments (Monaghan 1990)
with a switch based on the density variation worked for one-dimen-
sional shocks, but in astrophysical collapse problems the switch was
always on. A switch based on the rate of change of the force was also
examined. The force is a sensitive predictor of a shock, but a universal
rule to control the switch has not been found.

3. Use a predictor-corrector method for the time steps, and only use the
viscosity in the predictor step as in the two step Lax-Wendroff scheme
(Richtmyer & Morton 1967, Gadd 1978).

A more general viscosity would be of very great value.

4.2 Thermal Conduction

The thermal conduction term

1
;V *(kVu) 4.4
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can be approximated in a standard way, but because of the second deriva-
tives it is found to be very sensitive to particle disorder (Brookshaw 1986,
Monaghan 1988a). A better way is to base the SPH form on an integral
approximation which in SPH form becomes

(qa + qb) (ua - ub) (rab * Va] l ab)
—)m — , 4.5
; i Pas(¥2+17)

where ¢ = k/p has the dimensions of length x velocity. If the kernel is a
Gaussian, and the thermal conductivity and density are constant, the
contribution of particle b to the heat conduction of particle a is given by

—2myk(u,—up) Wy,
ph’ '

4.6

Thermal conduction therefore takes place by the exchange of heat between
pairs of particles. If the particles are in one dimension, and equispaced, it
is easy to show that the SPH conduction equation mimics finite-difference
equations.

The SPH conduction term (Equation 4.5) conserves total energy and,
when the thermal energy increases monotonically with temperature, it is
easy to show that the total entropy increases, as it should.

Equation 4.5 can be varied by replacing

qa+qb by Ka+Kb

- . 47
Pab PaPb

In application to infinite strength shocks (Monaghan 1988) the heat con-
duction term removes the unwanted wall heating. In this case it is con-
venient to replace

qa+qb by hg(c_ab+4|uabl)s 48

where g ~ 0.5 is a constant.

If diffusive radiation transport occurs it can be included in the thermal
energy equation using a term similar to the thermal conduction term above
(Brookshaw 1985). However, this cannot be the complete story because
the conduction conserves total energy, and there will be no heat loss. Heat
loss requires a surface term. This can be derived by physical arguments
(Brookshaw 1986) or by starting with the exact equation and transforming
it by multiplying by the kernel and integrating over all space (Campbell
1988). Surface terms then appear naturally. However, as with finite-differ-
ence methods, there are still substantial obstacles to overcome in simulating
radiative processes in complex astrophysical phenomena.

If there are sources of heating or cooling, these can be added to the
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thermal energy equation. Several authors (Monaghan & Varnas 1988,
Monaghan & Lattanzio 1991, Hernquist & Katz 1989) have included
cooling from atomic and molecular processes. The cooling time is normally
extremely short compared to the dynamical time scale and it is necessary
to integrate the thermal energy equation implicitly. There is no difficulty
in doing this.

6. SPATIALLY-VARYING RESOLUTION

The early experiments with SPH used an 4 that varied with time but was
constant in space. The most common rule was to take

1
hoc 1/<p>'",  (p) = ;;pb, 6.1

where v is the number of dimensions and # is the number of particles. It
is A which determines the resolution and the number of neighbors that
contribute to the properties at a point. The efficiency and the accuracy
would therefore be greater if # was chosen so that it depended on the local
particle number density. Several authors (Hernquist & Katz 1989, Evrard
1988, Benz et al 1990) have used local resolution lengths, which has
increased the resolution enormously. Typically, 4, is calculated from

dha _ —(h“>dp". 6.2
dt vp,) dt

When each particle has its own 4, momentum can be conserved if the
kernel is symmetric. A symmetric kernel can be obtained by using any of
the standard kernels with 4 replaced by a symmetric combination of the
hs for the two particles. A simple example is the arithmetric mean. An
alternative is to use the average of two kernels, one with 4, and one with
h, (Hernquist & Katz 1989). This form appears when the equations are

derived from an action principle.
A suitable density interpolant is

p(r) = zmbW(r_rbs hb)a 6.3
b

and integration over all space shows that mass is conserved. The set of
equations to be solved when the resolution length varies in space and time
is

dv, P, P, ~
dt = —Z my <p_l27 + ? + Hab)va Wab’ 6.4
b b a
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du, 1 P, P, ~
dt = 52’”1;(;% + ? +Hab)vab.VaWaba 6.5
b b a
dpa T “
dt = ;mbvab ) Va Wabs 66
dh, h, ~
dt - (V,Da> ; m,Yap Va Wab7 67
dr,
;%=%, 6.8
where
~ 1
Wab = 5 [W(rabs ha) + W(raba hb)]
or

~

Wab = W(rab’ hab)

and h, is an average of the A, and A,. The XSPH variant can be used
instead of Equation 6.8 and a summation can be used instead of Equation
6.6.

A discussion of some mathematical questions concerning the relation
between the SPH equations and the exact equations is deferred to a later
section of this review.

7. KERNELS

The use of different kernels is the SPH analogue of the use of different
difference schemes in finite difference methods. The advantage of SPH is
that the kernel can be calculated in a subroutine, or a table, and it is then
trivial to change a code with one kernel into a code with another. Many
kernels can be devised (Natanson 1960, page 58; Monaghan 1982), but the
kernel based on spline functions (Monaghan & Lattanzio 1985)

-

3,35 . r )
Wl',h =7 1
(r.4) hﬁza—@3 ﬁlg%sz
tO otherwise
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where v is the number of dimensions and ¢ is a normalization constant
with the values

2 10 1

3’ T’ n
in one, two, and three dimensions respectively, has advantages. This kernel
has compact support; the second derivative is continuous, and the domi-
nant error term in the integral interpolant is O(h?). The compact support
means that interactions are exactly zero for r > 2h; the continuity of the
second derivative means that the kernel is not sensitive to disorder and the
errors in approximating the integral interpolants by summation inter-
polants are small provided the particle disorder is not too large. The error
in the integral interpolant can be determined by Taylor expansion of A(r")
about r in Equation 2.1.

When the particles are equispaced, or nearly equispaced, the accuracy
of kernel interpolation can be discussed using the Poisson summation
formula (Monaghan 1985). This shows that the Fourier transform of good
kernels falls rapidly with wave number. As an example, if particles with
equal mass m are in one dimension, and equispaced with spacing A, the
density from the SPH sum is approximately

pa_ s }b )

where F is the Fourier transform of the kernel. It is then easy to show
that, for example, the Gaussian kernel produces negligible errors if 4 > A.

More accurate kernels in one dimension can be constructed by requiring
them to be normalized, to have zero first moments [i.e. W(r, /) an even
function of r], and vanishing second moments

JrZW(r, h) dr = 0, 1.1

so that by Taylor expansion of the function A(r) in the integral interpolant
equation (2.1) the dominant error is O(h*). An example is the Super
Gaussian kernel in three dimensions:

1 (5 r’
W(l', I’l) = m(i ——r2> exp(— P) 7.2

A kernel with similar properties can be constructed by starting with any
of the standard kernels and constructing a new kernel with the coefficients
A and B according to
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BW(r,h) (1 —Ar? 7.3

so that the new kernel is normalized and the second moments vanish. The
disadvantage of these high order kernels is that the kernel becomes negative
in part of the domain, and this can have serious consequences when there
is a sharp change in density. An undershoot occurs, and the density may
become negative. A similar effect occurs with high order finite-difference
schemes but this has been tamed by using total variation diminishing
(TVD) algorithms.

The kernels give enormous flexibility to an SPH calculation. In principle
different equations can have different kernels though there is no evidence
that any advantage is to be gained by that. An exception may be in the
XSPH variant where the kernel for the correction to the velocity could be
chosen to reduce the dispersion. In the case of finite differences, Gadd
(1978) shows that the two step Lax-Wendroff time integration can be
improved by using a moderate accuracy O(h?) gradient in the first step
with the damping term, and a high accuracy gradient in the final step. The
SPH equivalent would be to insert viscosity and a standard kernel (e.g. a
Gaussian) in the first step, and then use a more accurate kernel (e.g. a
Super Gaussian) in the final step.

8. MAGNETIC FIELDS

The SPH formulation of magnetic forces was considered initially by Gin-
gold & Monaghan (1977). An application was made to magnetic fields in
polytropes. Further aspects of the application of SPH to magnetic field
problems have been considered by Philips & Monaghan (1985), Philips
(1986), and Habe (1989). The equations of MHD in SPH form have been
applied by Stellingwerf (1990a) to blast waves in a magnetic medium.

8.1 Force and Current

The magnetic force per unit mass is

JxB
a ) 8.1
p
where the current J is given by
J = ec?V xB, 8.2

where SI units have been used. The current can be estimated using
pVxB =V x(pB)—(Vp)xB, 8.3
so that
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pa(V X B)a = Z mb(Ba_Bb) X Va Waba 8.4
b

which vanishes, as it should, when B is constant. In general, SPH should
estimate the current accurately because the current is where the matter is.
To interpret Equation 8.4, assume the kernel is a Gaussian. The con-
tribution of particle b to the current at particle a is then
2
—(M) (B,—B,) x (r,—). 8.5
h*py

This expression shows that particle » only gives information about the
current perpendicular to the direction (r,—r,). With this in mind, Equation
8.5 1s an inverse of the Biot-Savart law.

8.2 Time Variation of Magnetic Field

The time variation of B can be taken in the form

d{B BV B \'
zz?(;>=(7>”=(? V>””"P(B'V”)' >

If the j component of a vector field A at the particle b is denoted by A, ;
then the SPH form of Equation 8.6 is

d(B,; 1
2;( pj> = ?Zmb(vb,j—-va,j)Ba’VaWab. 87
a a b

The effect of particle b on the rate of change of B/p of particle a can be
interpreted in physical terms when the kernel is a Gaussian. The interpre-
tation is complicated by the fact that either B or p can vary as the particles
move relative to each other.

An alternative to Equation 8.6 is to use

dB
— = —BV-0)+®B-V, 8.8

with the SPH equivalent

dB,; 1
dt,] B ; Z My(Bo Vap—Vap,jBa) * VoW s, 8.9
a b

where v, ; is the jth component of v,. The first term increases B by
squeezing the field lines. The second term in the summation affects the j
component of B by shearing.

Equation 8.9 can also be written
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dB,
dt

1
= p_zmb(vab X Ba) X VWab° 8.10
ab

8.3  Magnetic Forces

The simplest way to calculate the magnetic force is to substitute for J,
(calculated from Equation 8.4) in J x B. This force does not conserve linear
and angular momenta exactly. A force per unit mass that does conserve
linear and angular momenta (Phillips & Monaghan 1985) is given by

1o,
p 0x;°

8.11

where the stress tensor is defined by

1 1
%ij = E(B,Bj— iBzéij>'

The SPH equivalent is then

b P a P b

However, when we examine a disturbance propagating along the x axis in
a uniform isothermal gas with a pure B, field, the motion is found to be
unstable if the wavelengths are sufficiently short (kA > 2) and
2¢2 < Bl/(puo), i.e. the Alfvén speed is greater than \/5 times the sound
speed. This result was confirmed by numerical simulation. The reason for
the instability is that the magnetic stress tensor in this case is positive, and
the pair force between the particles is negative. The particles therefore
attract each other and clump on the scale of 4. A simple way of removing
the problem is to sweep over the particles and find the maximum value of
the magnetic stress tensor, then subtract this from the stress tensor in
Equation 8.12. Experiments show that the algorithm is then stabilized
(Phillips & Monaghan 1985), but it would be preferable to have a more
elegant procedure.

8.4 Additional Remarks

Because the current is located where the particles are, it would be an
advantage to update J, then calculate B via the Biot-Savart law. An
algorithmic advantage is that the tree code used for the gravitational field
could be used to implement the Biot-Savart law.

The additional terms from finite conductivity can be included without
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difficulty. These terms are diffusion terms and they may be estimated using
expressions similar to those suggested for heat diffusion.

In star forming regions the ionization can be so low that the field can
slip through the material. To simulate this process requires the inclusion
of neutrals, ions, grains, and electrons. This is a simple generalization of
the SPH equations used for modeling gas and dark matter in cosmology.

9. SPECIAL RELATIVITY

9.1 Energy Momentum Tensor

SPH equations for special relativity were given by Monaghan (1985). These
equations are similar to those used by Amsden et al (1976) who used PIC
to simulate high speed collisions of atomic nuclei.

We assume the fluid consists of baryons for which the energy momentum
tensor is (Landau & Lifshitz 1975)

T = (nmyc*+né+ P)UU" + Pg*, 9.1

where Greek indices run from 0 to 3 and the metric coefficients are defined
by

goo = —1, gij’—‘l-

In these equations » is the number density of baryons in the rest frame of
the element of fluid, P is the pressure, and é is the thermal energy in the
rest frame of the fluid. The details of these thermodynamic quantities are
given by Chandrasekhar (1958) and the speed of sound c is given by Synge
(1957). U” is the 4-velocity with U,U* = —1, and m, is the baryon rest
mass.

9.2 The Momentum Equation
The momentum equations follow from
0T ™

ot =0 9.2

which, on writing X = nmyc?+né, becomes

égf—l-i-a—i;.(M"vj) =0, 9.3
where
M=C—2(P+X)v, y=——l——. 9.4
y N
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M is the momentum per unit volume of the fluid as seen by the computing
observer. For SPH we need quantities per particle. The momentum per
baryon is denoted by

q:— 9.5

where N = yn is the number density of the fluid seen by the computing
observer. Noting the conservation law for the baryon number

oN
_ _ N —
PR (Nv ) = 9.6

we can write Equation 9.3 in the form

d N’ '
where

dq 0q

E = E +v Vq 9.8

1s the usual derivative following the motion. The special relativistic momen-
tum equation is therefore almost identical to the nonrelativistic equation.

The SPH form is obtained by first noting that the interpolation formula
1S now

Ay(r) = Z v W(r —r,, h),

where v, is the number of baryons associated with particle b. This formula
is not relativistically invariant, nor is it meant to be. It is the particular
interpolation suited to our computational observer, and in this sense it is
equivalent to that observer dividing space into cells for a finite-difference
calculation. The SPH form for Equation 9.7 is

dqa Pb
= ~Z ( Nb>V W 9.9

The relativistic momentum equation has all the properties of the non-
relativistic equation. In particular it conserves relativistic knear and angu-
lar momenta:
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Y Vel Y VaE, X q,. 9.10

9.3 The Energy Equation
The energy equation is

0T Y

o =0 9.11

which becomes (Monaghan 1985)

6 2
—[(P+X)y2—P]+V'[y—(P+X)v] = 0. 9.12
cot c
The energy per unit volume is
E=(P+X)y*—P, 9.13

and the energy per baryon is

&= — 9.14
N’

with the nonrelativistic form
2 1 2 A
mc +§mv +é. 9.15

With the definition (9.14), and the continuity equation, we can write
Equation 9.12 as

@ __1 V- (Pv) 9.16
d~ N '
which has the same form as the nonrelativistic equation for the total energy
(kinetic plus thermal) per unit mass. An SPH form of this equation is

de, Py, Py,
= — — + — . 1
7 ;mb< e + N? >VWab 9.17
These equations have been used by Lahy (1988) to model relativistic shock
phenomena.

An alternative formulation of relativistic SPH has been described by
Khefets et al (1990). Their formulation retains the covariant form, and is
therefore more elegant than the preceding formulation. It remains to be
seen which is the more convenient for simulations.
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9.4 Dissipation

The usual recipes for dissipation in relativistic fluid dynamics, for example
those given by Landau & Lifshitz (1975) or Weinberg (1972), lead to
instabilities (Hiscock & Lindblom 1985) with typical time scales for water
in the bath of 10~ 3% seconds (this is not a misprint!). The nonrelativistic
limit, ¢ — o0, is singular. An alternative suggested by Carter is also known
to lead to instabilities (Olson & Hiscock 1990). Hawley et al (1984) refer
to Weinberg’s dissipative terms, but in their numerical calculations they
use an artificial pressure proportional to (V-v)? which is similar to the
Von Neumann—Richtmyer viscosity. They take the practical point of view
that the artificial viscosity does not have to be physical, but only has to
prevent post-shock oscillations. The PIC calculations do not use explicit
dissipation but, because physical quantities are averaged over a cell, dis-
sipation is implicit. Total energy and momentum are conserved, but the
contribution of dissipation to the inertia is never included. The formulation
of relativistic dissipation terms is clearly in a bad state and all numerical
methods face these difficulties. Experience suggests that the best form of
dissipation for relativistic SPH would use velocity or momentum differ-
ences. No suitable formula has been suggested.

10. IMPLEMENTATION

An SPH calculation is initiated by specifying the mass, position, velocity,
and thermal energy of each particle. In addition, if the density is calculated
from Equation 3.9 the initial density is specified. Other quantities, such as
the mixture of elements associated with each particle, may be needed.

10.1 The Particle Setup

It is often convenient to set the particles up on a regular grid. In that
case a Cartesian grid with equal spacing can be used, though there are
advantages in using a body centered cubic lattice in three dimensions
(Monaghan & Lattanzio 1991), namely (a) it gives a better representation
of integrals by sums than the simple Cartesian grid, () it gives a particle
more nearest neighbors, and (¢) if planar compression occurs, the particle
distribution is better because the particles are closer together perpendicular
to the direction of compression. Regardless of the grid, if the cell size
associated with the position of particle a is AV, then m, can be taken as
pAV,.

10.2 Data Structures

For problems where the same # can be used for each particle, the data
structure should be based on link lists. These are discussed by Monaghan
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(1985) and by Hockney & Eastwood (1981). If the spline-based kernel is
used, the link list cells should be 24 wide so that only neighboring cells
can contribute to particles in a given cell. For some computers (e.g. Vax)
the calculations are much faster if the labels of all the contributing particles
are first gathered into a single array. Relabelling the particles so that the
numerical differences of labels of particles in neighboring cells are small is
worthwhile.

When each particle has its own 4 the calculation of the SPH sums can
be made part of a tree code calculation (Appel 1985, Barnes & Hut 1986,
Hernquist & Katz 1989, Benz et al. 1989) which is the natural method for
calculating self-gravitational forces on a set of particles. The tree code can
be vectorized (Hernquist 1990, Makino 1990).

10.3 Time Stepping

The numerical integration of the ordinary differential equations for the
physical variables at each particle can be carried out by standard methods
(e.g. leapfrog or predictor-corrector) with a time-step control that involves
the Courant condition, the force terms, and the viscous diffusion term
(Monaghan 1989). The time step é¢ can then be chosen by first calculating
oty and dt,, according to

h
ot =min( ”)
UL

and

h
0t,, = mi ’
an C,+ O.6(cxca + ,B max, .uab)

then 6t = 0.25 min(dt,, 0t.,). Here dt; is based on the force per unit mass
f, and 4z, combines the Courant and the viscous time-step controls. There
is evidence from computer experiments that the coefficient 0.25 can be
replaced by 0.4 for the 1., term.

If the time step is chosen correctly, the total energy should be conserved
to within 0.5% over 400 time steps. If a predictor-corrector or leapfrog
method is used it is possible to ensure exact linear and angular momentum
conservation. Benz (1989) reports good results with a second-order Runge
Kutta integrator due to Fehlberg which can often work with a time step
larger than would be expected from the Courant condition.

When rapid molecular cooling occurs the energy equation must be
integrated implicitly. This requires the straightforward solution of a non-
linear equation for each particle (Monaghan & Varnas 1988, Hernquist &
Katz 1989, Monaghan & Lattanzio 1991).
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For many astrophysical problems there is a wide range of time scales.
To cope with this the particles can be grouped into sets, each with its own
time step (Hernquist & Katz 1989).

11. APPLICATIONS
11.1 Gas Dynamics

The simplest SPH test is to use it to study linear wave phenomena. A series
of tests (propagation of density and velocity perturbations and boundary
oscillations) show that good agreement with theory is obtained if the
wavelength is >2nh. The deviation from the correct dispersion relation
depends on the Fourier transform of the kernel [an example is given by
Monaghan (1990)]. It is interesting to note that in these calculations with
particle spacing s, the results are significantly more accurate (in particular
better propagation speeds) if A =5 or &= 2s and least accurate with
h=1.5s.

In various tests (Monaghan, unpublished) SPH was applied to the
problem of supersonic flow of an ideal gas over a step. The results, while
satisfactory, were not as sharp as those which can be obtained with high
quality TVD finite-difference schemes. A similar situation occurs in the
simulation of supersonic flow over a cylinder. In both cases the shock
profiles are blurred by the viscosity. In these cases there is the additional
problem of how best to model the boundaries. However, recent work on
nearly incompressible fluid flow with rigid boundaries (see below) suggests
a convenient treatment for any boundary. It would be worth applying this
treatment to supersonic flow.

The application of SPH to shocks and shock tube phenomena have been
described by many authors (Monaghan & Gingold 1983, Monaghan &
Pongracic 1985, Lattanzio et al 1985b, Hernquist & Katz 1989). The typical
problem is the Sod (1978) shock tube for which SPH gives excellent results.
In this problem it is useful to introduce a small amount of heat diffusion
(g = 0.125) to remove a blip in the pressure at the contact discontinuity
which is otherwise treated very accurately. SPH has also been applied to
the plane and cylindrical infinite strength shocks of Noh (Monaghan
1988b). The calculations include thermal conduction as well as viscosity.
These results are typical, and show that the SPH equations give satisfactory
shock profiles and good contact discontinuities.

The development of a compressible Rayleigh-Taylor instability in an
isothermal gas with the layers having a density ratio of 4:1 has been
studied using SPH (Monaghan 1989). The configuration has a fixed top
and bottom boundary, and periodic side conditions. A series of similar
calculations confirm that the SPH equations determine the onset of the
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stability in agreement with the analysis of Bernstein & Book (1983). This
instability is of considerable interest in the development of a supernova,
and SPH calculations (see below) agree with accurate finite-difference
calculations.

Blast waves calculated with SPH (Stellingwerf 1990a) agree well with
theory.

11.2  Binary Stars and Stellar Collisions

The interaction of two stars is ideally suited to SPH. Matter, energy, and
momentum are transported accurately by the SPH particles as the stars
move through space. A finite-difference calculation for the same problem
would introduce errors from the advection through the grid, and would
require a large number of cells to cover the space within which the stars
are moving.

The early SPH calculations for binary stars were concerned with the
Roche and Darwin problems for polytropes (Gingold & Monaghan 1978).
Only a small number of particles (less than 400) were used, but the results
were in good agreement with stability theory. In a later calculation (Gin-
gold & Monaghan 1979, 1980) the Roche problem for central orbits was
studied. In this work the SPH calculations were compared with results
from the integration of equations describing the coupling between the
linear oscillations of the polytrope and the nonlinear orbital motion. Good
agreement was obtained. For stronger interactions the SPH simulation
gave the first direct results for tidal disruption and capture. This work has
since been superseded by the more accurate work of Benz & Hills (1987)
and Goodman & Hernquist (1991) on binary polytropes. The inter-
action of three polytropes was studied by Cleary & Monaghan (1990) for
an ensemble of configurations using ~ 100 particles per polytrope. This
quite small number of particles is near the lower limit for a reasonable
calculation, but it appears to be adequate to indicate deviations from
the classical 3-body system. The collision of white dwarf stars has been
considered by Benz & Thielemann (1990) and Benz et al (1990). In the first
of these papers allowance was made for radiation pressure and energy
generation using a reduced nuclear network. In the second paper the
question of mass exchange between interacting white dwarfs and the for-
mation of a disk was considered in detail. This paper contains a very useful
and detailed description of their tree code.

Rasio & Shapiro (1991) have applied SPH to the collision of a giant star
and a compact object.

11.3  Formation of the Moon and Impact Problems

The collision theory of the origin of the Moon has been studied in detail
by Benz et al (1986, 1987, 1989a) using SPH. This work shows the power
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of SPH. The configuration consists of a planetesimal that collides with an
embryonic Earth. The equation of state (originally the Tillotson, but later
the Char D ANEOS) is appropriate for rocky materials and iron and
therefore complicated, but it can be included in an SPH code without
difficulty.

A problem of considerable interest is the cratering produced by the
impact of an asteroid or comet on a planetary surface. In particular the
impact on the Earth is of interest for the Cretaceous extinction event. This
problem has been examined by Pongracic (1989) who modeled the impact
in two dimensions using a variety of equations of state. A variety of
configurations were considered, including impact on water over a typical
rocky sea bottom, impact on model mountains, and impacts at oblique
angles. A related problem concerns the delivery of material to the Earth
by comets. This problem has been examined by Chyba et al (1990) using
an SPH code. None of these cometary or asteroid impact problems have
been taken beyond the initial stage of crater formation, though this is often
enough to estimate the amount of material flung to large distances and
the maximum temperatures reached.

Stellingwerf & Campbell (1990) have examined the hypervelocity impact
of metals. Laser ablation has been studied by Stellingwerf (1990b).

11.4  Fragmentation and Cloud Collisions

Lattanzio et al (1985a), Lattanzio & Henriksen (1988), and Keto & Lat-
tanzio (1989) applied SPH to the study of interacting isothermal clouds as
a model for the processes conjectured for molecular cloud complexes. The
SPH simulation allowed a systematic study of the way complex structures
formed in the interactions between initially spherical clouds. The authors
used a fourth-order multigrid Poisson solver with the source terms mapped
to the grid and the grid forces mapped back to the particles. The smoothing
length h was the same for all particles. A similar calculation (Nagasawa
et al 1988) used a spatially-varying 4. In a later calculation (Monaghan &
Varnas 1988) an attempt was made to simulate an entire cloud complex
with the isothermal assumption replaced by a cooling formula suitable for
the interstellar medium.

SPH has been used to study the fragmentation in isothermal rotating
clouds (Gingold & Monaghan 1981, 1983, Miyama et al 1984) and in
clouds and disks (Monaghan & Lattanzio 1991) using an accurate molec-
ular cooling formula. The results from a molecular cooling sequence have
been applied to an observed molecular fragmentation structure (Keto &
Lattanzio 1989, Keto et al 1991). Most of these calculations used ~ 30,000
particles, and the same 4 was used for each particle.

An interesting study of instabilities in a rotating cloud was made by
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Durisen et al (1986) who compared an SPH simulation with a finite-
difference simulation and found the SPH simulation to be much easier and
more efficient. It is useful to note that the SPH calculation was completed
in a few days whereas the finite-difference calculation took more than a
year to implement satisfactorily.

11.5 Cosmological and Galactic Problems

The typical cosmological problem requires the simulation of the growth
of fluctuations in two fluids (gas and dark matter) in an expanding universe.
SPH is ideal for this typc of problem. The two fluids can be easily dis-
tinguished by using a tag for each particle. A link list can then be con-
structed for the gas particles to compute thermodynamic quantities, and
the gravitational field can be obtained using all the particles. More fluids
could be easily incorporated.

Applications of SPH to problems arising in cosmology have been con-
sidered by Evrard (1988) and Hernquist & Katz (1989) who laid the
foundations for an effective combination of a tree code with SPH which
has subsequently been used to investigate a variety of problems in cos-
mology and galaxy interactions (Barnes & Hernquist 1991). Bond et al
(1989) have studied cosmological problems using a fourth-order multigrid
Poisson solver in place of the tree code.

11.6 Disks and Rings

Zurek & Benz (1986) used SPH to simulate the nonlinear development of
an unstable thick barytrope disk around a star. Their work showed that
the disk evolved to a structure with a rotation law predicted by linear
theory. In a related calculation Monaghan (1990) explored the stability of
theisothermal rings postulated by a theory of the solar system. Artymowicz
et al (1991) used SPH to study the effect of a disk on the elements of a
central binary.

11.7 Radio Jets

SPH simulations of jet models (Coleman & Bicknell 1985, 1988; see also
Bicknell et al 1990) making use of axial symmetry, and special kernels
which take into account boundaries by changing the normalization, have
been used to determine observational properties of jets. In related work
Balsara et al (1991) have used SPH to model supersonic shear layers and
have noted that SPH can automatically model subgrid turbulence.

11.8 Motion Near Black Holes

A comprehensive use of SPH for fluid dynamics near a black hole awaits
the development of a general relativistic version of SPH (see below).
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Bicknell & Gingold (1983) examined the effect of a polytrope moving in
the gravitational field of a massive body. Evans & Kochanek (1989) applied
SPH to the disruption of a polytrope in the neighborhood of a black hole,
but they confined the simulation to the first passage and only included the
zeroth-order gravitational field. This problem is of special interest in active
galactic nuclei where the formation of an accretion disk and its subsequent
development as a source of fuel for the black hole is the object of the study.
It is an intrinsically difficult problem because the material of the disrupted
star becomes spread out over very great distances, and to simultaneously
achieve good resolution and model the collision and viscous forces requires
a very large number of particles.

11.9 Supernovae

The mixing due to Rayleigh-Taylor instabilities during a supernova
explosion has been the subject of many computer simulations. The first
SPH simulations of supernova explosions were carried out for polytropes
(Nagasawa et al 1988). The results disagreed with finite-difference cal-
culations. Benz & Thielmann (1990) pointed out that Nagasawa et al had
used a ¢ function source of energy at the center. With a smoothed source
the SPH formulation gave results in agreement with finite-difference cal-
culations. Herant & Benz (1991) have performed further SPH calculations
with realistic initial states.

11.10  Special and General Relativity

Only a small number of SPH relativistic calculations have been carried
out. Lahy (1989) applied SPH to shock tube and nuclear collision
problems. The results were poor by comparison with the nonrelativistic
shock results because a good artificial viscosity for SPH hasn’t been found.

The SPH equations for post-Newtonian fluid dynamics were set up by
Thompson (1984) and applied to the collapse of rotating neutron stars.
The SPH equations for fluid dynamics in a known stationary metric were
described by Monaghan & Lahy (1989).

11.11  Magnetic Phenomena

SPH has been used to study the collapse of magnetic gas clouds (Phillips
1986, Habe 1989), the propagation of Alfvén waves (Monaghan & Phillips
1985), and the structure of static magnetic polytropes (Gingold & Mon-
aghan 1977). The development of a blast wave in a magnetic cloud has
been considered by Stellingwerf & Peterkin (1990). There is now abundant
evidence that magnetic fields must be taken into account for star formation
and the time would seem to be ripe for the development of a robust SPH
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algorithm for both ideal MHD and for MHD in the presence of plasma
drift.

11.12  Nearly Incompressible Flow

SPH was designed for compressible flow problems, but it can be extended
to nearly incompressible flow (Monaghan & Humble 1991). The essential
point is that an artificial equation of state can be constructed so that
compressibility effects are at or below the 1% level. All that is required is
that the Mach number M of the flow should be ~0.1, since compressibility
effects are O(M?). Because terrestrial flows can be characterized by
a typical velocity (for example a bursting dam of height H produces
typical velocities ~./2¢gH, where g is the acceleration due to gravity), it
is possible to design an equation of state so that M ~ 0.1. The SPH treat-
ment is then straightforward, and free-surface problems (bursting dams,
tidal bores, waterfalls, etc.) can be treated easily. The boundaries can be
replaced by chains of fixed particles which interact with the water particles
by forces which are modeled on molecular forces.

The disadvantage is that time steps are a factor ten shorter than normal,
but since all standard finite-difference techniques for free-surface problems
inctude an iteration cycle of several steps, this disadvantage is minimal.
Thermal convection and fluids with different densities can be treated with-
out difficulty.

12. THEORETICAL POINTS CONCERNING SPH
12.1 The Derivation of SPH when h = h(t)

One convenient way to derive the SPH equations is to start with the
original equations, multiply through by a kernel and, by integrations by
parts or Gauss’s theorem, determine an equation which the SPH integral
interpolants must satisfy. This idea has been used to examine the SPH
equations when the resolution length varies with space and time.

For the present we consider the case in which 4 varies only with time.
Start with the exact continuity equation in one dimension:

dp 0
— =0. 12.1
ot T P =0
If Equation 12.1 is multiplied by W(x—x’,h) and integrated over x’
assuming that in the integration by parts the integrand vanishes at the
limits, we get
o0 _ om0

5 —hr+ (o) =0. 12.2
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The term involving / exists because changes in p can occur when A changes
even when the particles are held fixed. This is equivalent to the change in
physical quantities in a finite-difference calculation which occurs if the grid
is altered and physical quantities are mapped from the old grid to the new
grid.

If we approximate p, by the summation interpolant

p(X) = Z m, W(x — Xy, h)

then
dp; oW _ .aw]
h A 7 (— hb 12.3
o1 ;m”K 6x)( TR
and
ow
_(PU)I = Zmbvb ax 12.4

These equations satisfy the interpolant form of the continuity equation
provided x, = v,, the usual assumption in SPH.

These results show that the summation interpolant is an exact solution
of the integral interpolant form of the exact equations. Of course the
integral and summation interpolants differ, and this difference is the error
in the calculation of the density.

If we use Equation 3.9 we are approximating the rate of change of the
true density, not the rate of change of the integral interpolant. There is
therefore no A term.

The momentum equation can be discussed in the same way by working
with the equation

0 0 5 oP

5P+ o (pv) = — 7. 12.5
Proceeding as before we find

0 0 5 oP

2, POt 52 () — (PU)I - ( ax> 12.6

If we substitute the following SPH summation interpolants for the integral
interpolants

(pv) = > muw, W(x—x,, h) 12.7
5

and
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oP 0P
(a) = ; o (0 )W(x Xp, 1), 12.8

Equation 12.6 is satisfied if

P
Up = — —(gx) 12.9

which is the usual SPH equation. The thermal energy equation can be
derived in the same way.

12.2  Deriving the SPH Equations when h = h(r, t)

The previous arguments have been extended by Bicknell (1991) to the case
of h varying with space and time. If, for example, we assume /4 depends
on the coordinate of the contributing particle, we multiply the continuity
equation by W[x—x’, h(x’, 1)], and integrate as before. We find

5/)1 (3 a
where 4 is the derivative of 4 following the motion. Equation 12.10 is
satisfied exactly by the summation interpolant for the density and for pv.
The summation interpolant conserves mass because

Jpsdx=2mb. 12.11
5

If we apply the same procedure to the momentum equation we recover
Equation 12.9.

A point worth noting is that if we use interpolants with 2 dependent
upon the contributing particle, then the spatial gradients do not involve
derivatives of 4. For example

0
a(pv)s Zmbv,, W(x Xp, ). 12.12

On the other hand if we use an 4 which depends on the position where we
want the estimate, then the spatial derivative of the summation interpolant
involves the spatial derivative of A. This is the case for the interpolation
which uses an average 4, or an average of the kernels, as in Section 6. The
errors are of O(h?) provided the scale of variation of 4 is comparable to
that of other physical quantities (Hernquist & Katz 1989). In this case
total mass is not conserved exactly since
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jW[x——xb, h(x)]dx # 0. 12.13

The conclusion that we draw from this is: It is possible to interpolate with
hs that vary in space as well as time but local errors [typically O(h?)]
are inescapable. These difficulties occur in adaptive grid finite-difference
methods, but SPH is incomparably easier to work with.

12.3  Remarks Concerning Errors

As we have seen, the errors in the integral interpolants can be estimated
analytically. It is more difficult to estimate the errors in the summation
interpolants unless the particle positions are orderly. The original dis-
cussion of SPH by Lucy (1977), and by Gingold & Monaghan (1977),
assumed that the particles were randomly distributed and the summations
were Monte Carlo estimates of the integral interpolants. The results were
therefore expected to show large fluctuations and correspondingly large
errors. These large fluctuations were not found, even in fission calculations,
because the particles were not distributed according to a random number
generator. They are distributed by the dynamics which is an altogether
different matter. In the cases where some moderate disorder occurs, as in
the collapse of a rotating cloud, the best estimate of the errors is probably
that of Niedereiter (1978) who estimated the errors as being ocn™'logn’~ !,
where n is the number of points. A related result due to Wozniakowski
(1991) gives the average error as ocn™ 'log n®~ 2, (This remarkable result
was produced by a challenge with a payoff of sixty-four dollars!)

In complicated dynamical problems, large variations in the physical
properties occur naturally, and this is clearly true for astronomical objects
like star forming regions and interacting galaxies. Similar large variations
are expected in the numerical simulations, and it is a mistake to assume
that these large variations are numerical artifacts produced by the simu-
lation. For this reason the shock calculations of Rasio & Shapiro (1991),
where the initial properties are given random variations, are not necessarily
a measure of the errors that occur in practice. The ultimate test of accuracy
is how well the numerical method reproduces known results. The appli-
cations described in this paper show that SPH provides a robust accurate
tool for the study of astrophysical fluid dynamics.
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