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Abstract. A hierarchical algorithm, similar to Tully’s (1987) one,
has been devised and applied to an all-sky sample of 4143
galaxies comprising all the objects with an apparent diameter
D, s larger than 100 arcsec and having known recession velocities
smaller than 6000 kms~' (ie. closer than 80 Mpc, with H,
=75kms™! Mpc™?!). This sample is at least 84% complete to
these limits of diameter and redshift. The hierarchy is built on the
mass density of the aggregates progressively formed by the
method, corrected for the loss of faint galaxies with the distance;
this correction represents the main improvement upon Tully’s
treatment. In the method, a group is defined as an entity having
an average luminosity density higher than 8 10° Lyo Mpc~3,
chosen as to ensure that the group is gravitationally bound and
does not follow the Hubble expansion. 264 groups of at least
three members have been identified in this way, among which 82
have more than five members and are located at distances lower
than 40 Mpc. Our sample represents the deepest and richest
collection of groups homogeneous over both hemispheres and
whose global properties do not present significant biases with the
distance; it can thus be used confidently for a variety of statistical
studies. A first quick analysis of the sample leads to the following
main conclusions: (i) almost all the crossing times are lower than
Hg', which confirms the bound nature of our groups; (ii) the
median virial mass to blue luminosity ratio of the groups is
74 Mg Lgo !, a high value, but lower than those obtained in
previous studies; (iii) we confirm clearly the increasing of the
M /L ratio with the group size, a result which can be taken as an
indication of the presence of dark matter around galaxies to a
distance of 500 kpc.

Appendix A gives detailed definitions of the various group
characteristic parameters used in the study, whereas new correc-
tions for increasing incompleteness with the distance in Huchra
& Geller’s (1982) method are reported in Appendix B.
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1. Introduction

The study of the groups of galaxies presents at least two major
interests for extragalactic astronomy: first it displays the distribu-
tion of matter in the local Universe; second, since the majority of
galaxies are within groups, the dynamical study of these small
aggregates provides valuable figures for the local matter density
and hence the cosmological parameter Q.

In order to perform fruitful statistical studies of that kind, it is
necessary to have at disposal a good list of groups, comprising as
many objects as possible and determined according to well suited
and objective clustering criteria.

Until now, several lists of groups have been issued, defined by
a variety of methods. The first important list was given by de
Vaucouleurs (1975), circulating in preprint form as early as in
1965. This list contained the 54 nearest groups identified mainly
from their surface density contrast with their surrounding, in a
partly subjective manner; additional criteria of group member-
ship were similarity in redshifts, in magnitudes and in morpho-
logical types. Although the clustering criteria were mainly two-
dimensional, the groups obtained in this way were generally real
and are still currently in use. Later on, a grouping method which
was purely objective and completely bidimensional was applied
by Turner & Gott (1976). It defines groups as surface density
enhancements higher than 10?/® on the average galaxian surface
density of these sample used. Of course, these groups suffer
obvious foreground and background contaminations, but the
effect is not very important because of their relative proximity.
Although their definition is somewhat imperfect, Turner & Gott’s
and de Vaucouleurs’ groups have allowed valuable statistical
studies (Rood & Dickel 1978, and references therein).

However the definition of bona fide groups requires a com-
plete three-dimensional treatment, therefore the redshifts for
large samples of galaxies must be available. This has been pos-
sible since several years, after redshift surveys of large zones of the
sky (in particular of CfA survey (Huchra et al. 1983) and the 21-
cm line survey by Fisher & Tully (1981)). Nevertheless it must be
noticed that classical methods of cluster analysis cannot be
applied directly to the identification of groups of galaxies; indeed
these methods obviously require the knowledge of the distances
between all the objects of the sample analyzed. These distances
can only be determined from the redshifts; but within a given
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group, because of the dynamical motions of its members, the
distance between the galaxies derived in this way is meaningless,
being generally much too large; this uncertainty results in an
artificial elongation of the groups along the line-of-sight (the so-
called “finger of God” effect), therefore to an artificial break of
groups along these directions by the clustering techniques. That
problem is well known and has been overcome in various ways,
the most satisfactory one being the probabilist treatment (Press
& Davis 1982; Materne 1979).

Essentially two large lists of groups have been obtained using
three-dimensional clustering methods: Geller & Huchra’s (1983)
list of 176 groups, identified from the CfA survey data using a
companionship method, and the complementary Huchra &
Geller’s (1982) list of 57 nearby groups (92 are listed, but 35 are
common with the CfA list); Tully’s (1987) list of 179 groups,
determined from an H 1 line survey by a hierarchical method.

For reasons which will be developed in the following, we have
adopted Tully’s method in our determination of groups, after
having brought several improvements to it. In particular, we
have taken advantage of the quasi-completeness of our sample in
apparent magnitudes to make appropriate corrections for the
loss of galaxies with the distance, in order to avoid any bias in the
group properties.

The sample of galaxies is presented in Sect. 2, the method is
discussed in Sect. 3, and the statistical properties of the 264 groups
obtained are analyzed in Sect. 4, the Sect. 5 giving a few con-
cluding remarks. Definitions of various group characteristic
parameters useful for the algorithm and the dynamical analysis
are given in Appendix A and a discussion of the correction for
increasing incompleteness with the distance in Huchra & Geller’s
(1982) method is presented in Appendix B.

2. The sample of galaxies

Our initial sample is made of the 5554 galaxies extracted from the
PGC catalogue of galaxies (Paturel et al. 1989a, b) and having
blue isophotal diameters D,s at 25 magarsec™ 2 larger than
100 arcsec. The sample is thought to be complete to this limiting
diameter, since the catalogues used for the realization of the PGC
reach completeness limits in diameters clearly lower than this
value, i.e. D,s=1.0, 0.9, 13 and 14 for UGC (Nilson 1973), ESO
(Lauberts 1982), MCG (Vorontsov-Velyaminov & Arkhipova
1964) and ESGC (Corwin & Skiff 1990), respectively (Paturel et
al. 1991). Our diameter limit corresponds roughly to a limit in
apparent magnitude: m;=14.2, from the average relation
m=153-5log D,s.

The completeness of our sample to D,s=100" is indirectly
confirmed by a plot of log N(=D,s) versus D,s, where log
N(=D,s) is the number of galaxies of our sample having
a diameter larger than D,s. The plot is perfectly linear to
D,=100", whereas any incompleteness to the lowest diameters
would lead to a significant departure from linearity. Note that the
slope of the line is 2.70 +£0.01, which is clearly different from the
slope of 3 expected for a homogeneous distribution; this is due to
the local excess of galaxies within and around the Virgo cluster
and also probably to the flattening of the Local Supercluster.
Such a departure from a homogeneous distribution is also appar-
ent in a plot log N(>m) (Pellegrini et al. 1990).

972 galaxies of our sample (18%) have no redshift measure-
ment. Our redshift compilation is based on RC3 (de Vaucouleurs
et al. 1991) and several unpublished measures carried out by us
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Fig. 1. Radial velocity distribution of the 4143 galaxies of the sample.
The dashed curve corresponds to the distribution expected for a spatially
homogeneous sample of galaxies following the Schechter luminosity
function and complete to a limiting magnitude m,=14.2. The two curves
are drawn such as to give the same integrated number of galaxies for
v,>3000kms~' (in order to avoid the inhomogeneities at small dis-
tances, especially the Virgo cluster)

and colleagues. The recession velocities have been referred to the
galactocentric reference frame (see RC3 for details); the histo-
gram of the corrected velocities is shown in Fig. 1. In this figure,
we have also drawn the distribution of the recession velocities
expected for a homogeneous distribution of a sample of galaxies
complete to m;=14.2 and accomodating Schechter (1976) lumi-
nosity function. The difference between the two curves is due to
the inhomogeneity of the actual distribution of galaxies, resulting
in a large excess of redshifts around 1500 kms ™! (Virgo cluster
and surroundings) and another one around 4500 kms~!. At
velocities higher than 5000 kms ™!, one can note a deficiency in
galaxies in the histogram, which can be partly due to our red-
shifts incompleteness.

In our sample limited in apparent diameter, the proportion
of catalogued galaxies decreases with distance; so we have to
limit our group study to a distance at which the loss of objects is
still acceptable. Since the Schechter luminosity function of
galaxies drops suddenly at M *= —20.4, a natural choice is to
take for the maximum distance that one at which a galaxy having
M=M?* just reaches the inclusion condition in our sample,
which corresponds to 6000 kms ™! for the limiting magnitude m,
=14.2.

Consequently our working sample comprises all the 4143
galaxies of our initial sample having a recession velocity
v, <6000 kms ™!,

3. The grouping method
3.1. The hierarchical algorithm

As noted in the introduction, two three-dimensional clustering
techniques have been mainly used to produce large catalogues of
groups of galaxies: these are the companionship method and the
hierarchical method.

In the companionship method, developed by Huchra & Gel-
ler (1982) (hereafter HG), each sample galaxy is searched for
companions close both in projected distance and in velocity; then
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companions are searched for second order companions, and so
on until no more companions can be found; the set of com-
panions obtained in this way forms a group with the sample
galaxy initially chosen. Then one examines the next sample
galaxy not belonging to this group, and so on until all the sample
galaxies have been considered. As an inconvenience of this
method, note that the companions are picked up only in refe-
rence to their closest neighbour in the group, and not to the
whole set of the group galaxies gathered at the previous steps, a
fact which can lead to sort out non-physical groups; for instance,
a filament of galaxies 20 Mpc long aligned close to the line-of-
sight with an average separation of 1 Mpc between neighbouring
galaxies will be identified as a definite group according to the
companionship method, although the filament members are not
physically related and just follow naturally the Hubble
expansion.

This inconvenience does not exist in the hierarchical method,
first introduced by Materne (1978), and that is the reason of our
choice of this technique, in Tully’s (1987) version, with slight
modifications.

In the hierarchical clustering methods, the galaxies are
merged successively, forming various units which constitute the
seeds of the final groups. More precisely, suppose one starts with
a sample of N objects. At the beginning of the procedure, each
galaxy constitutes a unit by itself, i.e. one starts with N indepen-
dent units. Then one has to define an affinity parameter u
between the galaxies, which will condition the merging operation
(for instance their distance). In the first step, the two objects
presenting the highest affinity are merged, and are replaced by a
single unit: so one is left with N — 1 units. The merging procedure
is then repeated, in such a way that after N —1 mergings, one
obtains a single unit comprising all the N objects of the sample.
One can see that a hierarchical sequence of units organized by
decreasing affinity appears in the method, justifying its name. On
the other hand, the merging of a galaxy in a given unit involves
the whole unit, and not only the last object merged in this unit,
which removes the inconvenience underlined about HG’s
method.

It remains now to define the groups, which are obtained by
cutting the hierarchy at some chosen value u, of the affinity
parameter; so the groups are those units present at the step
corresponding to u=u,.

Another advantage of the hierarchical methods is the easy
visualisation of the whole merging procedure under the form of a
hierarchical arborescence, the dendrogram. On such a graph, not
only the groups appear, but also the local concentrations within
the groups and the superstructures including several groups. No
such features can be immediately discerned in the companionship
method.

There are several possible choices for the merging parameter
(see Materne 1978, Tully 1980). The most physical one is certainly
the gravitational force between entities i and j used by Tully
(1980). However Tully cuts the hierarchy according to the density
of the entity. Here we prefer to use the same parameter for the
two operations, namely the density. So at each step of the
hierarchical procedure, one merges the two units i and j forming
the pair having the highest density p;;, with p;=3(m¢
+m$)/(4n R},), where m§ and m§ are the corrected masses of i and
j (as defined below), and R;; their mutual distance. After the
merging, units i and j are replaced by a single unit whose position,
velocity and mass are those of their barycenter.

!

3.2. Practical computation of p;;
3.2.1. Corrected masses

The masses m; of the galaxies are directly computed from their
luminosities using different values of the mass-to-luminosity
ratios for spirals and elliptical/SO galaxies. As a matter of fact, in
a purpose of simplification, we use pseudo-luminosities m¥ pro-
portional to the m/’s instead of the masses (cf. Appendix A). That
does not change anything in the hierarchical procedure.

The m}’s have then to be corrected for increasing incom-
pleteness with the distance. Indeed, the samples used for group
determinations have generally a galaxy completeness which de-
creases with the distance. That is notably the case for the samples
complete in apparent magnitude (CfA sample) or nearly complete
as ours. That variable incompleteness has to be corrected already
at the level of the grouping criterion, otherwise the definition of
the groups could be distance-dependent. More precisely, the
grouping method has to fulfil a necessary condition which can be
expressed in the following way: let us consider a group identified
by the method and located at a distance D; if we carry away this
group at a distance D'> D, only a part of its members found at
the distance D will be present in the sample (namely the most
luminous); the necessary condition we require is that these re-
maining galaxies are recognized by the method as an indepen-
dent group — and of course the same must occur if the group is
put closer at a distance D" < D. If this condition is fulfilled, then it
can be hoped that the usual global properties of the group will
not be found distance-dependent. Indeed those properties in-
volve mainly the luminosity, the velocity dispersion, the dimen-
sion and the galaxy distribution of the group. And none of those
quantities is expected to change at different distances for the test-
group defined under the above condition (after appropriate
corrections of the total luminosity for incompleteness). This is so
because positions and peculiar velocities of galaxies in a group
are uncorrelated with their luminosities; thus samples of group
galaxies limited to some luminosity, as for the test-group at a
given distance, are just random samples of group members for
those global properties®.

Conversely, a dependence of the group properties with the
distance indicates a lack of correction or an inappropriate correc-
tion for the distance effect. As a matter of fact, this is the case for
HG’s corrections; despite the incompleteness correction they
have made, there is a clear increase of their group velocity
dispersions as a function of the distance (Magtesyan 1988), which
points out towards something wrong in their correction. Due to
the interest and the frequent use of this method, we establish the
right corrections in Appendix B.

In the hierarchical method we use, the seeds of the various
groups are determined at each step by the maximum value of p;;,
which represents the mean density of the group seed formed by
the units i and j. If the group seed is at the distance D, p;; is
computed only from the galaxies of the group seed which are
present in the sample at that distance; so if the unit (i, j) is put at a
distance D'>D, p;; will be diminished, resulting in a group
dimension which will decrease with distance when one cuts the
hierarchy at a constant density value. Therefore, in order to make

! In fact, a slight distance dependence cannot be avoided at the largest
distances, due to the minimal number of galaxies required to form a
group (N =3) (see Figs. 11 and 12)
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the correction, we have just to account for the group galaxies
which are too weak to appear in the sample. Since the densities
are computed from the luminosities, this can be simply done by
correcting the luminosities themselves. For that purpose, one
uses the fact that our sample is nearly complete in apparent
magnitudes to m;=14.2 (see Sect.2). In a group of galaxies
identified at a distance D, the only members appearing in a
sample complete to m=m, are those having luminosities
L>L|(D), where L|(D) is the luminosity of a galaxy with an
apparent magnitude m, located at the distance D. Thus the total
luminosity of the group is derived from the luminosity of its
members present in the sample by multiplication by the factor:

Jﬂo LO(L)dL

e (1)
J LO(L)dL

Li(D)

p(D)=

where ®(L) is the luminosity function of the galaxies. For ®(L),
we take the Schechter’s (1976) luminosity function. Except for a
constant multiplicative term, this function is the same for spirals
and ellipticals. If we assume now that the relative proportion of
spirals and ellipticals is the same whatever the luminosity may be,
the correction for the progressive loss of galaxies with the dis-
tance is simply obtained by replacing the mass m¥ of any galaxy
located at a distance D by the corrected mass

mi=B(D)m}. @
Explicitly, one has:
1.23
B(D)=—— A3)
J x4 xdx
Li(D)/L*

where L* is the reference luminosity in the Schechter function,
taken as 2.05 10'° L, in the B band. For m;=14.2, (D) amounts
to 1.2, 1.5, 2.3 and 3.9 at 20, 40, 60 and 80 Mpc, respectively.

At this stage it is interesting to estimate the influence of the
slight incompleteness of our sample in redshifts. Obviously the
proportion of galaxies without measured redshits increases with
m. Now a given group is defined by a corrected observed mean
density higher than p,, which corresponds to a true mean density
higher than p,=p,/f, where f'is the proportion of the total mass
present in the group galaxies having a known redshift. Let us
consider a nearby group; the main part of its mass stands in
galaxies with low apparent magnitudes, having generally redshift
measurements, so f~ 1; if this group is put at a large distance, f will
be lowered, since its members will have higher m-values. Thus, for
the fixed p, of the hierarchical method, the group will be defined by
true densities higher at large distances than at lower ones, resulting
generally in a decrease of its radius with the distance. Figure 12
shows on the contrary a slight increase of our group radii with
their distances, notably beyond 40 Mpc; so the effect of the redshift
incompleteness is certainly weak, if not negligible, and one can
believe it does not affect significantly our group statistics.

To end this part, note that Tully (1987) has made the correction
for increasing incompleteness with the distance only for the total
luminosities of the groups, but not for the limit densities involved
in the hierarchical method. As a matter of fact, the correction
developed hereabove represents the major improvement upon his
treatment.

3.2.2. Separation between the galaxies

Another sensitive point concerns the derivation of the separation
R;; between galaxies i and j from their angular distance 6;; and
their radial velocities v,; and v,;. Indeed we look for groups of
galaxies, and in the groups, the derivation of the radial component
of the separation between two members i and j from their radial
velocity difference V;;=|v,;—v,;| by application of the Hubble law
is meaningless; in fact, the V;; value is essentially given by the
dynamical motions of i and j within the group, which are un-
correlated with R;;. In order to overcome this problem, we adopt
Tully’s approach, distinguishing two cases according to the value
of V;; compared to a transition velocity V.

1) For the small values of V;;, with ¥;;< ¥, no information _1§
available about the line-of-sight component of the vector ij
joining i and j, and R;; is simply obtained from the projection of
7]? on the sky plane by use of the average projection factor for a
random position of ij given by Eq. (A3a), i.e.:

Ry=> D, sin 2 @
;i=—D;; sin—
(¥ n 15 2
where D;;=(D;D;)/?, with D;=V,;/H,,.

2) For V;;> V), we use a transition formula which connects
smoothly to the previous one at V;;=V), and which reaches
asymptotically the triangle formula for V,;> V;, namely:

8 0.. 2 2 N
Rij=<<—Dijsinl> (1—(1—R—>M>
n 2 16/ 1+x;;

v, 2\ 1/2
+<H—f(xij)> ) (5)
0

where

Wl v =
— an X)=
Vi

o= _ .
, 1—x+x?

5= ©)
For V;;=V,, the relations (4) and (5) are indeed identical, and
for V;;» V), Eq. (5) is equivalent to:

05 VENY?
Rij=<4Di2j51n271+H_g> . W)

Equation (7) expresses the distance between i and j when the
individual motions are negligible compared to the difference in
recession velocities (simple triangle formula).

The formula (5) is more complicated than the transition
formula used by Tully (1987), but it insures a smoother transition
with the case V;;<V; indeed, for fixed values of D;; and 6;;, the
derivative of R;; at V;;=V¥, computed from Eq. (5) is:
dR;;
dvy

(Vl)=0,

which insures the continuity with the derivative of the formula
(4). This is not the case in Tully’s formula, for which the derivative
of the transition formula at V;;=V, is generally very large. As a
consequence, for a given ¥, value, R;; computed from Eq. (5)
increases more slowly with ¥;; near ¥, than when derived from
Tully’s formula. In other terms, in order to obtain R;; values
similar to Tully’s ones, we can choose a V;-value lower than his.
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3.2.3. Choice of the transition velocity V;

As discussed by Tully (1987), the choice of V; is a compromise
between too low values which would lead to rejection of group
members with large peculiar velocities and too high values which
would allow inclusion into the groups of unrelated galaxies
appearing along the same line-of-sight. Tully’s choice was V;=
300 kms™?!, and Tully indicates that groups are generally un-
altered by a 100 kms™! change around this value. After the
previous remark, we can choose a lower V; value than his, which
has the advantage that there are less cases where V;;<V), ie,
where little information is known about R;;; a second advantage
is that we can pick groups with low velocity dispersions without
adding to them spurious members. It can be seen that any V-
value around 200 km s~ ! is convenient in our case; since we look
for a unique value for our whole sample, we constrain the final
value using two well known group cases: (i) despite a 250 kms ™!
velocity difference between the galaxies M 81 and M 82, it is
evident that they belong to the same group. If ¥ is smaller than
150 kms ™!, they are separated. (ii) IC 239, whose velocity differs
by 270 kms~! from that of NGC 1023, is projected onto the
center of the NGC 1023 group, but does not belong to it (Tully
1980). If V; is larger than 190 kms™?!, it is included into the
group. So our final choice is ¥,=170 kms™ 1.

Note that with such a low V}-value, the clusters of galaxies are
split into various subunits, due to their large velocity dispersions
leading to a general overestimate of the separation between their
members by our formula (triangle formula). For instance, for
V<450 kms ™!, the Virgo cluster is split into groups located at
about the same position, but with different average velocities. We
have called clusters such cases as Virgo, where the aggregate is
split into several parts at about the same position on the sky. 18
such clusters have been found in this way, by collecting the
various pieces into one aggregate. We have preferred to proceed
this way rather than to remove the clusters before running the
algorithm, as done by Tully (1987), because in this latter case the
list of members has to be determined a priori. Whatever it may
be, this subjective intervention is certainly a clear inconvenience
of our method when adopting a universal V,-value which is
relatively low for the whole sample.

3.3. Choice of the limiting density

As already noticed by Tully (1987), the use of the mean density to
cut the hierarchy is particularly relevant because one can think
that there is a density threshold under which aggregates are not
gravitationally bound and will never contract.

A necessary condition to be fulfilled by a galaxy collection to
be called a group is not to be an unbound aggregate expanding
with the Universe. Let us examine this latter double condition.
First, if the galaxy collection is unbound, its total energy must be
positive. Using notations of Appendix A, we may write:

2

1 GM
E=T+U=- MVi—
2 Rg

>0. (®)

Second, if the galaxy collection is expanding with the universe, it
can easily be shown (Jackson 1975) that the virial velocity
satisfies:

Vy=H,R, )

73

where R, is the inertial radius of the considered galaxy collection
defined by Eq. (A7).

Equations (8) and (9) are equivalent to the following relation:
2
>0.

1 GM
~MHZR}—
2 R

G

(10)

Let us express Eq. (10) as a condition on the mean mass density
py of the collection, which is defined by:

M
4nR3

max

M=

The use of the group radius R,,,, in this expression corresponds
to the definition of the density p;; used in the hierarchical
algorithm, because for the last galaxy j joined to the group i, we

have R;;~R,,,,.
So, if we put:
R R
i=—2 and u= ! s
Equation (10) is equivalent to
Pu <A pe (1)

where p, is the closure density of the Universe, defined as:

3H?
pc=§G9= 1.6 10** My Mpc™3.
For a homogeneous spherical group, the factor iu? equals unity
[cf. Eq. (A9a) and Eq. (A9b)].

As we want to define a group as a galaxy collection which is
not an unbound one expanding with the Universe, we impose a
group to satisfy the opposite of Eq. (11), with the geometrical
factor Au? taken as one (homogeneity and spherical symmetry
assumption), i.e.:

(12)

But the densities used in the hierarchical algorithm are
pseudo-luminosity densities, as seen hereabove. The accurate
M /L values for groups are unknown; reasonable values would be
about 100 M /L ; so our limiting density would be of the order
of 10° Ly Mpc~3. This uncertainity enables us to choose a
value within this range so as to reproduce the well known nearby
groups. We took finally:

pL=810° Ly Mpc ™3

pMZPC‘

(13)

Note that this value is not very critical and is not constrained
within a factor of 2. Tully’s value is p;=2.510° Ly Mpc™?,
significantly lower than ours due to an absence of incompleteness
corrections, the use of only the luminosity of the brighter com-
ponent in the computation of p;;, and the same mass-to-lumi-
nosity ratio for ellipticals and spirals.

3.4. Definition of the associations

Noticing that many groups present a core-halo structure, Tully
(1987) calls “associations” the collections of galaxies correspond-
ing to overdensities 10 times lower than those defining the
groups. As noted hereabove, those superstructures sort out natu-
rally in the hierarchical method, simply by looking at the whole
dendrogram. Here we define the associations by a density thres-
hold 5 times lower than p,, i.e.

P =1.6 10° Ly, Mpc™>. (14)
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4. Results
4.1. The list of groups

Running the hierarchical algorithm described in Sect. 3 on the
sample of galaxies defined above and adding the 18 clusters
indicated in Sect. 3.2.3 results in a list of 264 groups (by group we
mean a unit with at least 3 galaxies) involving 1729 galaxies (41%
of the total sample). Allowing for galaxy pairs, we would obtain
580 groups involving 2361 galaxies (57% of the total sample). 466
galaxies belong to associations surrounding the groups. The total
fraction of galaxies involved in a group or associated to a group
is then 53%.

The list of groups, associations and of their members is
detailed in the Supplement Series of this journal (Fouqué et al.
1991), as well as their distribution into regions defined in Tully’s
NBG Atlas.

The characteristic parameters of each group are given in
Table 1.

In order to perform some statistical analysis of the groups
properties, we have defined two samples of groups:

— sample (a): The whole sample, i.e. groups with more than 3
galaxies and located at a distance lower than 80 Mpc (264
groups, involving 1729 galaxies).

— sample (b): A selected sample made of groups with more
than 5 galaxies and located at a distance lower than 40 Mpc (82
groups, involving 973 galaxies).

Sample (b) is expected to give more reliable statistics. The
median values as well as the dispersions of the different dynam-
ical quantities for these two samples are given in Table 2.

4.2. Group sizes

The distribution of the number of galaxies in each group is
presented on the histogram of Fig. 2. 158 groups (60% ) have less

than 5 members 30 (11%) have more than 10 members, the
largest one being the Virgo Cluster with 177 members.

The histogram of the groups virial radii is presented on Fig. 4.
For the selected sample, there is no virial radius greater than
2.8 Mpc and the median value is 0.7 Mpc, which also corres-
ponds to the peak value.

The comparison with Tully’s (1987) median value (0.34 Mpc)
has to take account that the two definitions of the virial radius
(Tully (1987), footnote 2, and our Eq. (A5)) are quite different,
resulting in the formula: RI"Y ~0.85 x 8/n2 R¥~0.69 RY. The
factor 0.85, stated in footnote 2 of Tully (1987), stands for the
passage from the theoretical definition of our virial radius as
given by Eq. (AS) (and which is what Tully called “the harmonic
radius”) and Tully’s one. The second factor, 8/n2, comes from a
different statistical “deprojection” factor used by Tully and us. As
it may be seen by comparison of formula (6) of Tully (1980)
(which involves a projected radius) and formula (4) of Tully
(1987) (which involves a deprojected radius), Tully seems to use
the factor 4/n given by Eq. (A3a), while we take the factor /2
given by Eq. (A3b). This latter seems preferable since the virial
radius is defined by a weighted mean of the inverse of the
intergalatic distances. Thus, with Tully’s definition, we would
have found a median value of the virial radius of 0.48 Mpc, which
is not too far from Tully’s value (0.34 Mpc).

4.3. Velocity dispersions

The histogram of the 1D weighted velocity dispersions, Vi,
(which is the virial velocity defined by Eq. (A10) divided by \/ J)is
shown in Fig. 3. This histogram displays a sudden fall at
V=140 kms~'. More precisely, all the groups formed from the
hierarchical method have ¥y <150 kms~!. The only aggregates
with ¥} >150 kms ™! are 17 of the 18 clusters which have been
split by the method and have been constituted by hand (see

Table 1. Group properties. The columns are as follows: Col. 1: Common name of the group, with the
convention of naming the group from its brightest member unless there exists an unambiguous literal name or a
name from Abell’s (1958) catalogue. The suffix ‘cl’ means cluster and refers to those cluster split by the algorithm
and reconstructed by hand (see Sect. 3.2.3). Col. 2: Number of galaxies within the group. Col. 3: Distance D in
Mpc (assuming Hy = 75 kms™! Mpc™!). Col. 4: Total luminosity Ly in the B band in units of 10° L. Col. 5:
1D weighted velocity dispersion ¥y in kms™!. Col. 6: Virial radius Ry in Mpc. Col. 7: Virial mass to blue
luminosity ratio My/Lg in Mo Lgj. Col. 8: Crossing time ¢, in units of 10° yr

Name N D Ly vy Ry M/L ter
(Mpc) (10°Ly)  (kms™')  (Mpc) (Mo/Lo) (10 yr)
(1 () 3) ©) % (6) 0 ®)
Abell 262 cl 15 66 1465 418 2.1 344 2.5
Abell 347 cl 5 72 654 294 0.5 91 0.6
Abell 1060 cl 23 44 748 421 1.0 339 2.0
Antlia cl 22 38 833 392 1.0 253 2.8
Cancer II ¢l 17 56 871 552 3.1 1515 24
Centaurus cl 28 43 1364 652 1.1 500 1.0
CVnl 10 4 7 33 0.3 72 38
CVn Il 22 7 53 73 0.6 84 3.7
Dorado cl 19 13 145 195 0.3 125 1.1
Eridanus 34 20 436 132 1.8 98 6.4
Fornax I ¢l 49 19 624 287 0.8 152 2.0
Leo I 14 9 125 75 04 22 5.8
Pavo I 4 51 330 114 0.1 5 1.0
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Table 1 (continued)

Name N D Ly Vi Ry M/L ter
(Mpc) (10°Ly) (kms™')  (Mpc) (Mg/Lo) (10°yr)

1) 2 3) 4 (5 (6) () ®)

Pegasus cl 14 53 746 478 0.9 365 28
Sculptor 8 2 22 73 0.9 285 3.1
Telescopium cl 6 38 265 158 0.6 74 2.3
UMalIN 28 15 172 105 0.9 81 4.3
UMalS 33 12 151 99 1.0 89 5.1
Virgo I cl 177 12 888 575 1.0 528 1.1
Virgo M 14 30 621 102 2.0 47 7.0
Virgo W cl 15 30 280 209 0.7 144 1.9
NGC 45 3 7 5 57 0.4 396 1.9
NGC 128 4 58 173 67 2.1 77 3.2
NGC 134 5 21 55 65 0.6 61 3.1
NGC 173 3 59 195 74 0.5 19 57
NGC 266 6 65 459 100 2.1 64 6.4
NGC 383 5 71 910 136 1.7 48 34
NGC 439 3 77 740 86 3.0 42 7.8
NGC 467 3 74 436 78 2.8 54 9.2
NGC 484 3 67 540 125 1.6 65 2.8
NGC 488 4 32 179 60 0.5 15 6.0
NGC 507 cl 12 65 1218 343 0.8 101 1.6
NGC 524 3 34 117 32 1.2 15 29
NGC 541 6 73 712 107 0.6 13 5.6
NGC 584 8 25 123 44 0.5 11 5.8
NGC 628 5 11 35 74 1.1 245 19
NGC 672 3 6 6 94 0.1 155 1.2
NGC 676 3 21 105 59 1.3 60 24
NGC 681 3 25 35 98 0.4 141 1.1
NGC 691 5 38 167 85 0.3 17 2.2
NGC 720 4 23 40 34 43 176 4.7
NGC 825 3 46 48 25 03 5 8.8
NGC 841 3 63 134 40 1.7 28 5.5
NGC 864 3 22 27 19 2.5 50 6.8
NGC 877 3 53 173 65 0.1 5 34
NGC 908 6 20 57 71 0.7 83 22
NGC 925 4 9 14 15 1.8 42 5.4
NGC 936 4 19 34 52 1.1 128 1.7
NGC 945 4 61 288 126 1.5 119 42
NGC 973 5 63 503 133 0.4 19 22
NGC 1023 8 10 39 44 1.1 77 6.0
NGC 1052 9 19 113 73 0.6 38 3.7
NGC 1060 3 71 357 16 2.0 2 16.3
NGC 1068 6 15 86 64 0.5 35 2.5
NGC 1097 3 16 48 64 1.4 173 3.5
NGC 1167 3 67 287 41 1.7 14 6.4
NGC 1186 3 38 196 37 0.6 6 5.1
NGC 1209 3 35 70 33 0.4 8 3.7
NGC 1255 7 22 76 26 1.2 15 15.0
NGC 1359 4 26 37 105 0.5 199 2.3
NGC 1376 3 54 170 67 1.5 56 49
NGC 1417 6 53 282 115 1.1 72 33
NGC 1433 10 12 48 79 1.0 186 4.8
NGC 1519 4 24 12 20 0.3 15 59
NGC 1532 3 15 44 85 0.7 154 1.4
NGC 1589 5 48 270 111 0.7 44 3.8
NGC 1667 3 61 308 129 2.8 214 45
NGC 1672 4 16 44 84 0.6 128 1.8
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Table 1 (continued)

Name N D Ly vy Ry M/L ter
(Mpc) (10°Lg)  (kms™')  (Mpc) (Mg/Lg) (10 yr)

(1) @ ©)] 4) ®) (6) (7 @)

NGC 1721 3 59 304 25 0.2 1 14.5
NGC 1725 3 53 181 57 1.7 44 6.3
NGC 1779 4 45 150 119 09 113 3.2
NGC 1792 4 13 36 105 0.3 136 0.6
NGC 1800 3 10 3 78 0.3 985 1.1
NGC 1832 3 24 42 36 0.9 37 49
NGC 1947 3 14 14 81 0.8 524 1.9
NGC 1961 5 55 466 107 1.5 52 3.6
NGC 2207 3 34 175 33 0.1 0 7.8
NGC 2217 4 19 27 47 1.0 114 2.1
NGC 2273 4 28 50 127 0.8 340 1.7
NGC 2276 3 34 99 98 1.7 232 2.7
NGC 2280 4 23 155 64 0.8 30 35
NGC 2300 4 28 54 53 1.3 92 34
NGC 2403 3 3 7 17 0.7 41 53
NGC 2417 4 40 150 41 1.3 19 9.6
NGC 2427 5 11 22 53 1.1 191 5.9
NGC 2442 3 16 51 49 0.2 13 2.0
NGC 2541 3 8 4 16 0.4 33 7.6
NGC 2559 3 19 39 119 0.2 107 2.0
NGC 2633 4 31 44 66 0.1 14 1.5
NGC 2655 5 20 75 50 0.6 30 42
NGC 2663 3 26 31 93 24 928 1.8
NGC 2768 3 19 56 17 0.9 6 12.3
NGC 2775 3 16 20 23 2.0 72 31
NGC 2781 3 24 28 62 0.7 142 2.7
NGC 2782 3 34 42 20 2.1 27 6.3
NGC 2805 3 23 58 89 04 78 29
NGC 2815 3 32 77 52 1.9 92 6.8
NGC 2835 4 7 12 94 0.7 717 1.1
NGC 2836 3 18 24 107 0.7 487 1.8
NGC 2855 3 23 15 11 0.7 8 6.3
NGC 2859 3 22 19 13 1.3 15 1.9
NGC 2962 3 25 17 29 0.8 56 4.7
NGC 2964 3 18 28 77 0.2 59 2.7
NGC 2967 6 23 37 29 1.2 36 114
NGC 2985 3 18 34 117 0.3 185 0.8
NGC 2986 3 27 70 123 1.0 289 2.0
NGC 2997 8 11 53 78 0.7 118 29
NGC 3031 11 2 8 92 0.1 137 0.8
NGC 3054 6 30 119 58 1.0 38 5.8
NGC 3087 9 33 313 110 1.9 102 5.5
NGC 3091 3 49 192 59 33 85 8.5
NGC 3115 3 7 8 12 0.3 8 1.0
NGC 3166 3 15 31 80 0.1 24 04
NGC 3175 4 12 15 44 0.6 101 35
NGC 3190 5 17 37 71 0.1 19 1.5
NGC 3203 3 30 38 81 1.3 329 3.6
NGC 3227 3 15 18 82 0.0 24 04
NGC 3245 4 17 28 25 0.5 16 5.0
NGC 3250 4 34 113 96 0.8 90 1.4
NGC 3256 4 32 176 116 0.7 73 2.6
NGC 3263 4 37 334 58 2.1 29 9.5
NGC 3338 3 16 23 15 0.8 11 13.2
NGC 3347 6 37 186 71 0.5 19 49
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Table 1 (continued)

Name N D Ly Vi Ry M/L t.,
(Mpc) (10°Ly)  (kms™')  (Mpc) (My/Lo) (10°yr)

(1) (2 3) 4 (5 (6) (M ®)

NGC 3370 6 15 12 87 0.2 216 1.7
NGC 3396 5 21 46 44 0.1 8 39
NGC 3557 5 37 214 83 0.3 14 2.0
NGC 3585 3 16 28 34 45 255 2.0
NGC 3607 11 13 45 111 0.2 67 2.6
NGC 3613 3 28 51 47 0.8 47 2.6
NGC 3626 3 18 19 86 1.1 586 1.4
NGC 3640 5 17 30 106 0.4 206 1.1
NGC 3642 5 24 75 122 0.7 190 2.0
NGC 3665 3 28 60 15 04 2 8.9
NGC 3672 3 22 28 65 0.2 37 25
NGC 3675 3 10 14 23 14 75 6.9
NGC 3780 3 33 61 6 1.3 1 423
NGC 3798 3 47 68 77 0.3 35 1.0
NGC 3813 3 20 16 57 0.9 240 2.3
NGC 3892 4 21 2 16 1.1 17 144
NGC 3923 7 20 113 89 0.6 62 1.6
NGC 3941 4 13 12 12 1.3 21 8.5
NGC 4008 3 47 96 74 0.7 58 2.3
NGC 4038 14 20 152 45 0.2 5 5.8
NGC 4062 4 10 5 38 0.9 356 2.6
NGC 4105 6 23 63 66 0.7 64 3.2
NGC 4125 8 19 106 79 14 112 6.3
NGC 4128 3 33 31 33 12 57 42
NGC 4151 6 14 28 28 0.4 15 6.8
NGC 4169 4 51 160 51 0.3 7 50
NGC 4179 3 16 25 34 0.4 29 5.4
NGC 4256 4 38 92 149 0.5 152 0.9
NGC 4274 7 13 38 51 0.4 41 2.8
NGC 4291 5 24 44 105 0.3 92 1.9
NGC 4303 15 21 212 104 1.1 77 49
NGC 4304 3 33 76 58 1.3 78 48
NGC 4521 3 40 71 120 0.2 62 0.9
NGC 4546 3 13 13 22 2.1 110 55
NGC 4565 6 17 159 50 1.0 2 7.6
NGC 4594 8 13 104 40 2.7 58 72
NGC 4631 12 9 81 72 0.5 41 43
NGC 4643 3 17 14 71 1.6 787 14
NGC 4658 4 30 47 35 0.9 33 73
NGC 4666 4 20 47 70 1.0 144 42
NGC 4697 25 16 200 119 1.3 131 4.1
NGC 4750 5 24 30 47 0.8 80 48
NGC 4751 3 25 33 77 23 591 1.9
NGC 4753 9 14 56 104 0.9 254 29
NGC 4756 3 52 77 99 1.7 296 3.1
NGC 4856 4 16 24 74 1.3 413 3.1
NGC 4902 4 33 95 31 0.7 10 54
NGC 4936 3 42 181 103 1.9 155 2.6
NGC 4965 3 28 34 42 0.4 27 22
NGC 4976 4 17 65 34 0.7 17 2.3
NGC 4995 4 22 33 65 0.8 148 24
NGC 5018 5 36 148 72 0.4 2 32
NGC 5033 9 13 49 47 0.4 28 3.7
NGC 5044 10 34 186 80 0.8 38 47
NGC 5064 4 38 195 85 1.3 65 53
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Table 1 (continued)

Name N D Ly Vi Ry M/L ter
(Mpc) (10°Ly)  (kms™')  (Mpc) (Mg/Lg)  (10° yr)

1 (2 3) 4 (5) (6) @] (8)

NGC 5084 5 22 82 71 1.2 99 3.1
NGC 5090 4 44 242 88 0.2 10 39
NGC 5101 5 25 160 110 0.7 76 2.5
NGC 5121 4 18 27 27 0.6 23 5.1
NGC 5128 15 5 147 44 19 35 8.6
NGC 5135 6 55 431 110 0.3 10 4.5
NGC 5194 17 6 67 117 0.5 138 3.0
NGC 5248 3 15 21 34 0.9 70 2.2
NGC 5322 6 28 113 88 0.8 74 2.2
NGC 5333 8 37 374 147 19 151 4.5
NGC 5364 5 16 40 80 0.2 45 1.8
NGC 5365 3 32 59 110 0.4 119 0.6
NGC 5371 cl 17 33 392 178 0.4 41 3.1
NGC 5395 4 48 156 61 0.2 7 4.8
NGC 5419 4 54 456 107 3.0 103 52
NGC 5427 4 35 142 71 0.2 10 6.2
NGC 5457 7 5 23 27 0.7 30 33
NGC 5485 7 27 76 113 0.5 128 1.6
NGC 5557 4 43 180 143 1.3 209 2.2
NGC 5566 5 20 55 78 0.2 31 1.1
NGC 5668 4 23 32 103 0.5 252 2.0
NGC 5676 7 31 137 98 0.7 65 33
NGC 5678 3 28 46 30 1.1 30 8.6
NGC 5746 11 23 155 92 0.9 67 4.5
NGC 5775 4 21 30 89 0.1 48 0.7
NGC 5791 4 44 96 91 1.2 146 2.2
NGC 5796 4 39 89 37 3.1 66 8.1
NGC 5846 9 25 170 106 1.1 104 39
NGC 5866 5 12 35 50 0.6 59 2.6
NGC 5898 3 31 115 148 0.2 40 24
NGC 5908 5 46 172 97 0.7 54 3.7
NGC 5930 3 37 45 51 1.1 84 43
NGC 5962 3 27 47 73 0.8 119 3.5
NGC 6070 3 28 39 19 1.3 16 11.9
NGC 6340 3 18 23 30 0.6 32 6.3
NGC 6500 3 41 83 69 0.1 7 3.6
NGC 6585 3 40 39 5 0.9 1 384
NGC 6744 6 10 60 33 14 35 50
NGC 6753 ¢l 12 42 652 451 1.7 723 19
NGC 6769 cl 12 54 1365 213 0.8 39 52
NGC 6907 3 43 164 35 1.6 17 7.7
NGC 7014 5 66 607 124 1.1 38 52
NGC 7079 6 34 104 101 1.3 174 4.0
NGC 7144 5 25 57 49 0.6 34 5.5
NGC 7154 3 35 45 35 0.6 22 4.5
NGC 7166 4 32 55 77 0.3 41 1.1
NGC 7172 5 36 111 113 0.5 76 33
NGC 7179 4 38 97 49 0.8 28 4.2
NGC 7331 3 14 50 11 1.1 4 34
NGC 7368 3 31 32 102 0.7 305 1.5
NGC 7377 3 45 150 80 2.2 132 4.2
NGC 7421 4 26 34 98 0.5 191 1.8
NGC 7424 4 13 27 106 0.6 339 1.3
NGC 7448 5 30 70 97 0.7 138 2.8
NGC 7507 3 21 53 9 0.3 1 11.7
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Table 1 (continued)

Name N D Ly |12 Ry M/L ter
(Mpc) (10°Ly)  (kms™')  (Mpc) (My/Lg)  (10°yr)

(0] ) (€)] 4 ®) (6) M ®)

NGC 7582 13 21 203 72 0.6 21 7.6
NGC 7640 3 8 6 22 0.4 42 2.5
NGC 7711 4 56 185 11 2.0 2 36.3
NGC 7713 3 9 10 14 0.6 17 8.1
NGC 7714 3 39 44 47 0.1 4 2.3
NGC 7721 3 29 38 44 1.7 123 4.6
NGC 7814 5 15 18 91 1.0 603 1.7
IC 342 5 2 53 30 2.5 61 1.2
IC 438 3 39 91 92 0.9 120 3.1
1C 520 3 49 137 72 0.9 46 3.2
IC 764 6 27 65 97 1.1 225 4.0
1C 1459 8 22 115 95 0.7 79 3.7
IC 3370 4 38 151 76 0.8 45 44
1C 4296 7 48 455 89 1.4 34 7.5
IC 4329 ¢l 4 60 626 117 3.1 96 8.4
IC 4351 3 33 71 56 1.3 82 5.6
1C 4682 3 47 142 43 0.7 12 6.2
IC 4765 10 61 1044 131 24 56 7.5
IC 4956 3 70 289 72 2.4 60 7.6
IC 5181 3 27 38 80 0.2 41 0.9
1C 5250 4 45 167 104 0.7 61 2.6
UGC 2800 4 18 31 39 0.7 50 5.1
UGC 3426 3 55 105 25 0.4 3 12.6
UGC 3697 5 42 161 109 0.4 40 2.1
UGC 7170 3 32 10 87 0.5 500 1.9
ESO 185-54 ¢l 8 59 836 227 0.9 78 2.2
ESO 221-26 5 18 44 112 1.6 630 3.0
ESO 501-23 3 12 4 56 0.4 483 2.4
ESO 505-3 3 21 9 48 0.2 62 0.8
ESO 507-25 6 41 176 66 0.9 31 6.5
ESO 563-16 3 21 5 76 0.3 544 1.0

Table 2. The median values and the first-to-third quartiles® of different group parameters for two groups
samples: Sample (a): Groups with more than 3 galaxies and located at a distance lower than 80 Mpc (264
groups) (the whole sample). Sample (b): Groups with more than 5 galaxies and located at a distance lower
than 40 Mpc (82 groups)

Group parameters Median (a) 1-3 quartile (a) Median (b) 1-3 quartile (b)
1D virial velocity (kms™1!) 73 59 80 55

Virial radius (Mpc) 0.77 0.83 0.69 0.57

Inertial radius (Mpc) 0.40 0.39 0.48 0.36
Gravitational radius (Mpc) 2.03 2.16 1.65 1.38

Maximal radius (Mpc) 0.87 0.74 1.14 0.79

My/Ly Mg Lgh) 62 108 74 93

Crossing time (Gyr) 34 34 33 2.7

Collapse time (Gyr) 48 87 35 33

 The first-to-third quartile is the length of an interval around the median containing half of the sample
members.
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Fig. 2. Histogram of the number of members in each of the 264 groups.
60% of the groups have less than 5 members and 11% have more than 10
members
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Fig. 3. Histogram of the 1D weighted velocity dispersions, Vi: the
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Fig. 4. Histogram of the virial radii, Ry: for the selected sample
(b) (N=5 galaxies, D <40 Mpc), there is no virial radius greater than
2.8 Mpc; the median value is 0.77 Mpc

Sect. 3.2.3). Thus one can wonder whether this 150 km s~ ! imit is
generated by the method itself through the value adopted for V.

In order to examine that point, let us consider a group formed
by our method, which will be assumed to have a significant
number of members (N >5) of roughly equal masses and some
central concentration (just for simplification). In such a group,
the first steps of the hierarchical procedure will result in a
merging for central galaxies, so that the radius of the group Ry,
will be the distance R;; obtained for the last galaxy i merged, since
entity j will be nearly at the center of mass of the group. As a
consequence, only galaxies presenting a velocity difference with
the central velocity of the group lower than some limit will be
merged in the course of the procedure. Indeed the merging of a
galaxy i to the entity j implies: p;; > py ; since we look for mergings
occuring before the last one, this leads to R;;< R, from the
definition of p;; and the fact that the masses of the group seed
increase in each of the successive mergings. Now, when the
velocity difference V;; between two galaxies of a group increases
(with the same projected distance), R;; is first constant for V;; <V,
[Eq. (4)], then increases [Eq. (5)]. Equation (5) comprises two
terms: the first one is positive and decreases with V;, whereas the
second one, [V,/H,f(x;)]?, increases with V; or x;;. So a
necessary condition for merging is:

M) <R
—J (X5 max>
H, Y

1e.

Vi< Viim (V15 Rian)- (15)
The histogram of the virial radius Ry shows that Ry<1.2 Mpc
for most of the sample (b) groups, ie., from Eq. (A9c),
R <14 Mpc. For ¥;=170kms™', the necessary condition for
merging is then: V;;<300kms™!, ie, practically: [v;—70cGl
<300kms ™!, where v, is the radial velocity of the center of
mass of the group.

Taking a uniform distribution for the v,/’s in [0, 300 kms™ ']
leads to: V1 <170 kms™ 1.

Accounting for the first term of Eq. (5) lowers slightly that
limit to: V% <155kms ™!, which is exactly the figure found in
our sample. For ¥,=100kms ! and 300 kms™!, we should
obtain respective limits of 140 and 280 kms~' (with the same
Rmax)'

Note that in Tully’s treatment, the limit for V3, computed
from his Eq. (1b) is about 180 kms ™! (with ;=300 kms ™' used
in that study), corresponding exactly to his histogram Fig. 6
when the clusters (picked out by hand) are removed.

So the hierarchical method cannot form aggregates of
galaxies with large velocity dispersions: such entities are auto-
matically split into various subunits; we hope to have correctly
recognized them and gathered them into the corresponding
clusters. But conversely, as a positive point of our method,
interloper contamination is practically absent in our treatment.
The situation is opposite in HG’s method, which can accomodate
such clusters with high velocity dispersions as the Virgo one, but
where the interloper contamination is far from negligible. Those
effects account for the large difference between the median velo-
city dispersions found: 80 kms™* for our selected sample (and
100 kms ™! in Tully’s one) and 180 kms™* for HG’s groups.
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4.4. Characteristic time scales

Most of the crossing times obtained here are lower than Hy!
=1.310!° yr (see Fig. 5); this result is consistent with the choice
of the limiting density p; (cf. discussion in Sect. 3.5) and indicates
that our groups are not spurious concentrations following the
general Hubble expansion, but probably gravitationally bound
entities.

In turn, most of the groups have a collapse time greater than
Hy ! (see Fig. 6), the median value for the selected sample (b)
being 3.5 10'° yr. The condition for a group to be collapsed or
being in a process of collapse is: t.,,<2H, !. Less than 30% of
our groups satisfy this condition. Tully (1987) found the opposite
result on his groups but he used a collapse time formula (his
Eq. (4)) different from ours [Eq. (A15)] and which we think to be
somewhat incorrect. Indeed (A15) and Tully-(4) converted in
years have the same numerical factor but the “virial radii” used in
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Fig. 5. Histogram of the crossing times, t.,: the fact that, in most cases
te<Hy! is consistent with our choice of the limiting density p, (see
Sect. 3.3)
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Fig. 6. Histogram of the collapse times, f.,. Only 24% of the groups
have a collapse time lower than the age of the Universe. For the others,
the expression ¢, is meaningless and does not coincide with the actual
collapse time
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the two formulae are different, as explained in Sect. 4.2: our virial
radius defined by Eq. (A5) is exactly the quantity which arises in
the theoretical collapse time formula Eq. (A15); it is not the virial
radius RT""Y defined by Tully (1987) in his footnote 2. As a
consequence, in his collapse time formula, Tully should have
used what he called the “harmonic radius”, R}*", and which is
our virial radius. The relation between R7*" and R} depends
on the distribution of matter in the group, a mean relation stated
by Tully being: RT*"Yx0.85 R,

Another difference arises with Tully’s collapse time calcu-
lation because of the difference in the virial masses used. Tully
makes use of an unweighted virial mass which gives higher values
because, in a given group, the velocities of the smallest objects are
more scattered than those of the largest ones. He argues in favor
of unweighted virial mass estimates for they are less noisier than
weighted estimates (see discussion in Tully (1987)). As for us, we
prefer the weighted virial velocity ¥V, defined by Eq. (A10) for it is
directly related to the kinetic energy of the group [Eq. (Al1)]
and, consequently, the virial mass defined from V5 by Eq. (A12)
coincides with the actual mass in equilibrium. On the other hand,
there is no physical argument to identify the unweighted virial
mass and the actual mass. This difference may be quantified by
the comparison of the two My/L, median values: 74 Mg Ly ~!
in our case compared to 94 M Ly~ ! for Tully.

The net result of these two differences on the collapse times
leads to: tI4Y~0.51 ¢t%,. Thus, with our formulae, the median
value of the collapse time of Tully’s groups becomes 1.5 10'° yr
instead of 7.8 10° yr. Since we have found 3.510'° yr, a dis-
crepancy remains between Tully’s groups and ours. At this point,
let us emphasize that t,,, is not a fully reliable quantity since it has
a meaning (i.e. it coincides with the actual collapse time) only
under the assumption that the group is virialized, contrary to the
previous quantities, Ry, Vy and t.,. But the criterion for a group
to be virialized is to have 1.5t ,<Hy' (Peebles 1970); so it
depends on t,,. This means that we do not have a fully consistent
criterion to decide whether a group is collapsed and virialized or
not. All we can say is that in the cases where we find
1.5t.,,<Hgy !, the groups are probably virialized. In our sample,
only 8.3% of the groups satisfy that condition.

4.5. Mass-to-light ratios

The M</ Ly values for the different groups are presented in Fig. 7.
The median value for the selected sample (b) is 74 M o L5 which
is somewhat lower than Tully’s value (94 Mg Lg3). This differ-
ence is undoubtly related to the difference in the velocity disper-
sions (cf. formula (A12)) as mentioned above.

A necessary condition for the absence of distance-bias in the
results is that My /Ly should be independent of the group dis-
tance. This is clearly the case, as shown in Fig. 8.

The dispersion of the log (My/Lg) values measured as the
first-to-third quartile scatter is about 0.6 for the selected sample
(b). From N-body simulations, Heisler et al. (1985) have found an
observational scatter of the same quantity of 0.5 for groups of five
members. So a part of the scatter of M/L obtained in groups of
our sample (b) would be intrinsic; this scatter could be about a
factor of two, as found by Tully (1987).

To end this section, note the correlations between My /Lg and
the virial radius Ry (Fig. 9) and between My/Lg and Vy, (Fig. 10).
These correlations have been already found previously, and
Rood & Dickel (1978) have shown convincingly that they are not
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Fig. 7. Histogram of the virial mass to blue luminosity ratios: for the
selected sample (b) there is no value greater than 620 M Lgd and only
three values greater than 300 Mo Lgd. The median value is 74 Mo Ly '

- T T T T T T T
+
o+ + + B
+
+ +
+ h +
++ + * + +
+
AR + 4 + + *
+ + 4+ P + M
Y oot + + . .
+4+ £+ #+ F
N R T o+
N + R ey + 4 +
RGN + AT D * + + + 7
N T T - SRANVC A Toe o
® + oy 4 +% + o 4 PO
2 . + v ¥ + 4+ + ++ 4 + +
PNt e et * + * *
+ + o+ T4 1 b o4+t +
*at
+ + ++
+ 4 o+ + et ot
’ + * + rs + . + .
-k + + P . + |
+ o+ + N +
+ + N
+ + ++
+ +
+
+ . +
o L L Lt L L L L
[ 10 20 30 40 50 60 70 80

Fig. 8. Virial mass to blue luminosity ratio as a function of the distance.
This diagram shows that our computed M/L ratios are not distance-

Distance (Mpc)

dependent
A T T T T
+
o+ + N + g
+ +
+, 4+ + +
AP
+
toa et + +
s +
+ g + +
2 + L+ + +
5 +t+ 4 T +
\ % *&*‘*«*"4,* oty . + +
+ T+ +t+ + + + +
Tl o T Ry $ + b
N i gty Iy + .
» oy + % o ey
- ?4—% P Ht M +
AT SR S +
REFE St Al + +
+4, * +
YRR AN *
+ + + +
+ 4 #+, et +
Rl S S 4
P +
+ + 4
+
L+ # .
+
+ +
o L + i ' L
0 1 2 3 4 5

Fig. 9. Virial mass to blue luminosity ratio a a function of the virial

Virial radius (Mpc)

radius. Clearly, M/L grows with Ry
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rent on this figure beyond 40 Mpc

artefacts due to measurement uncertainties. For our sample,
these correlations are particularly clear: My /Ly increases from 30
to 100 when Ry increases from 50 to 400 kpc, and increases more
slowly beyond 500 kpc. The most straightforward interpretation
of that result is the presence of dark matter around galaxies to a
distance of about 500 kpc.

5. Concluding remarks and perspectives

To conclude, we would like to propose some general comments
about the grouping methods. Clearly there is no such thing as a
definitely best method to make groups of galaxies. This is so
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because any method needs the knowledge of sufficiently accurate
distances between the galaxies, and such a requirement cannot be
fulfilled for objects located within a given group. This lack of
information introduces necessarily some uncertainty in the group
membership, and the main problem for the different methods is
then to keep such an uncertainty to a minimum. For the hier-
archical method, a partial solution of this problem has been
provided by Tully’s (1987) ingenious way of estimating the dis-
tances between galaxies within or outside groups, we have used in
this study in a slightly modified form. But, in turn, this procedure
introduces an artificial upper limit for the velocity dispersions of
the groups, as it has been pointed out in the previous section.
Aggregates having velocity dispersions higher than that limit are
split by the method in several parts and have then to be restored
in some way. In Tully’s work and in the present study, this
restoration has been done by hand. However, in order to improve
the hierarchical method in the future, it would be interesting to
treat apart the groups found with a velocity dispersion close to
the theoretical upper limit, by using less restrictive grouping
parameters for them; we could then sort out automatically the
possible clusters they are part of, which would evitate any sub-
jective intervention and any possible bias towards low velocity
dispersions. Doing that, one would still keep the main advantage
of the method upon HG’s one i.e. the absence of any interloper
contamination. This characteristic, joined to the physical signifi-
cance of the grouping procedure and to the easy visualisation of
the groups would make of the hierarchical method a clustering
technique especially attractive and efficient.

There would be three other improvements to bring to our
study:

(i) A systematic study of the effect of varying the ¥, and p,
parameters on the whole galaxy sample. Since the hierarchical
method is quite computer-time consuming, such a study has not
been conducted yet.

(i) The obtention of a complete sample of galaxies with
measured redshifts, although such an improvement is not
thought to change significantly the properties of the groups.

83

(iii) A substantial increase of the number of group members,
which is still relatively limited. For this purpose, a comple-
mentary study, presently in progress thanks to allocated ob-
serving time at the European Southern Observatory and at the
Nangay radiotelescope, is centered on a few selected groups,
where the limiting magnitude will be pushed up. This will lead to
a significant increase of the known group members, allowing a
more detailed analysis.
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Appendix A: group characteristic parameters

Various quantities have been introduced in the literature to
characterize groups of galaxies and are used in the present study.
To make reading easier, their accurate operational definitions are
reminded here. They concern the three quantities linked by the
virial theorem, namely mass, radius and velocity dispersion, and
the time scale of evolution of the group, as well.

Let N be the number of group members. Each galaxy i is
given a weight m¥ proportional to its luminosity /; in B band
corrected for absorptions, and to its assumed mass-to-luminosity
ratio:

mf=1.f(T) (A1)

where f(T;)= 1 for spirals and f( 7;) =2 for ellipticals and lenticu-
lars, in order to take into account that the ellipticals and lenticu-
lars have generally a mass-to-luminosity ratio in B band about
twice that of spirals (since they are underluminous in B band).

Let M*=% Y m¥ and D the distance to the group, defined
as:

1 N

D= HoM* Zﬁ m¥u, (A2)
where H, is the Hubble constant (Hy=75kms ! Mpc~! is
adopted here), and v,; is the radial velocity of the galaxy i,
corrected to the center of our Galaxy.

In order to compute the group characteristic parameters one
needs quantities like the 3D separation R;; between two members
i and j or the 3D velocity v; of each galaxy. Since the observable
quantities are not these but the angular separation 0,; and the
radial velocity v,;, we use the following statistical transformation
relations between the two respective sets:

4
<Rij>=; d;; (A3a)
1 21
ij ij
3
(Ryy=3d3 (A39)
(v?y=30v% (A3d)

where d;;=2Dsin6;; /2 is the projected distance on the plane of
the sky between the galaxies i and j.
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A.l. Radius of the group
a) Virial radius Ry,

Ry is defined so that the gravitational potential energy U of the

group can be written:
M 2
N(N-1) <F>

m;m;
=-G) —=-G (A4)
i<i Ri 2 Ry
where M is the total mass of the group.
In term of observed quantities, one has:
N—-1mn M*?
Ry= - . (AS)
N 2 v mEm¥*
"“Ising,,/2
b) Gravitational radius Rg
R is defined from the gravitational potential energy by:
GM?
U=-—
RG
s0:
N

Thus Rg is nearly twice the virial radius.

c) Inertial radius R,
Ryis defined from the total moment of inertia I with respect to the
group barycenter G by:
N
I=Y mRiz=MR}.
i=1

In terms of observed quantities, this parameter can be written:

6 N 1/2

Ri=D| — Y m¥sin?0, 2) : A7

1 < e X of (A7)
d) Maximal radius R,,,

R,.., is defined by:

Rmax= max {RiG}'
1<i<N

The resulting operational expression is:

max {e,c}>.

1<i<N

8§ (1
R,.,=—Dsin (— (A8)
n

In the case of a homogeneous distribution within a sphere of
radius R,,,,, these various radii are related by

R=0.77R,,, (A9a)

Rg=167R,,, (A9b)
N-1

Ry=083— Ry (A9¢)

A.2. Velocity dispersion of the group

In order to measure the velocity dispersion of the group, we
choose the virial velocity Vy which is the weighted velocity
dispersion:

(A10)

We prefer this expression to the unweighted velocity dispersion
because Vy is directly related to the total kinetic energy of the
group, T, by:

1
T= MV} (Al1)

A.3. Mass of the group

This important quantity is unknown. The most usual estimate is
the virial mass, defined as:

RgV3
My=—2Y.
G

(A12)
When the group is virialized, its mass equals the virial mass.
Some authors define an unweighted virial mass (Tully 1987),
arguing that it is a less noisier mass estimate.

A.4. Time scale of evolution of the group
a) Crossing time ¢,

The crossing time of the group has been defined by Jackson
(1975) as:

R,

=7, (A13)

tCl’
If an unbound collection of galaxies expands with the Universe,
its crossing time is Hy !,

b) Collapse time ¢,

The collapse time can be obtained from the simple model of a
spherical homogeneous ball initially in expansion with the Uni-
verse and which evolves subsequently according to its own
gravity only (in accordance with the Gauss Theorem). The details
can be found in Gun & Gott (1972); their Eq. (26) explicitly gives:

6\32/ R \12
we(5) ()
5 2GMy,

To derive this expression, one assumes that the group is viria-
lized; so contrary to the previous quantities, t.,; may not always
have a direct meaning (in case the group is not virialized).
Numericaly, using (A6) leads to:

oo =124 10”<_N )3/2 <R_3>“2
col N—1 MV >

where ¢, is in years, Ry in Mpc and My, in solar masses.

Peebles (1970) has shown numerically that the group may be
considered as virialized after 1.5¢.;. But let us emphasize that in
case the group is not virialized - that is M # My, — the expression
(A15) is meaningless.

(A14)

(A15)
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Appendix B: correction for increasing incompleteness
with the distance in Huchra & Geller’s (1982) method

As indicated in the main text, in the galaxy samples which are
complete in apparent magnitudes, there is a loss of objects
increasing with the distance. Any grouping criterion has to
take this effect into account, otherwise biases would appear
in the group properties as a function of the distance. HG’s
criterion corrects for such an effect, but, despite the correction,
distance dependent bias remains in the properties of their groups
(Magtesyan 1988), which points towards an inappropriate
correction. So we reexamine this question here.

The condition for an appropriate correction to a grouping
criterion is the following: suppose a group picked by the criterion
is at a distance A, . Let us move this group to a distance A, >A,.
If the galaxy sample is complete in apparent magnitude, less
galaxies of the group will then appear in the sample. Quite
naturally, the searched condition is that those remaining galaxies
are recognized by the criterion as an independent group (and of
course the same is true if the group is put at a distance Ay <A,).

So let us consider a group ¥ at the distance A;; be i a given
galaxy of 4, assumed to be still included in the sample when % is
carried away at A,. In HG’s method, the membership of i to ¢
means that i has at least one companion p in %, i.e. such that:

dip<D(A)
|vri_vrp| < VL(AI)

where d;, is the distance between i and p projected on the sky
plane, the v,; are the radial velocities and D (A;) and V, (A,) are
limiting fixed distances and velocities which may depend on A in
order to get the appropriate distance corrections.

Now we put the group ¢ at a distance A, > A;. In order that i
pertains to % at A,, it is necessary that i has still at least one
companion in 4. More generally, if i has n companions in 4 when
% is at a distance A, it is sufficient that it has still » companions
when ¥ is at a distance A,, and one will use that condition from
now on. Let us consider now % at a distance A, and let us call
neighbours of i the galaxies in ¢ located at a projected distance
from i lower than D, (A). The number of these neighbours is:

pi(A)=pi(A)nDE(A)L (B1)

where L is the group dimension along the line-of-sight &, passing
through i and p;(A) is the average density in sample galaxies
within the part £, of the group intercepted by the cone having 2,
for axes and for solid angle Q=nDZ2(A)/A2.

Among those p;(A) neighbours, there are n;(A) companions,
i.e. having velocities v,, satisfying: |v,, —uv,|<V_(A).

Our purpose is to find D, (A) and ¥ (A) such that n;(A) does
not depend on A. We show now that a sufficient condition for
that property is that the number, p,(A) of neighbours of i is
independent of A.

Indeed, let us consider the velocity distribution of the p;(A)
neighbours; if we change A, the neighbours of i within ¢ will be
the same if ¢ is a true group (i.e. not a filament gravitationally
unbound). This is so since the positions and velocities of the
galaxies in a group are uncorrelated. In the same way, since the
velocity v,; of i is fixed, the distribution of |v,—v,| for the
neighbours of i will not change with A, therefore the proportion
of neighbours having |v,—v,; | <V, will not depend on A. Thus,
there will be the same number of companions of i for ¥ at
different distances if there is the same number of neighbours.

85

Finally, in order that HG’s criterion fulfils the condition
imposed at the beginning, it is sufficient that D, (A) is such that
the number of neighbours of any galaxy i in ¢ does not depend
on A, the limiting velocity ¥} being independent of A.

From Eq. (B1), the condition can be written:

Dy (A)oc(p(A)) 2.

Now, at a distance A, the galaxies of the sample (which is
complete to m=m,) are those brighter than M,=m;—5 logA
—25. The density p;(A) of those galaxies in the region %; of ¢
defined hereabove is:

M,
pi(A)=ua ‘[

—

o(M)dM

where ¢ is the galaxy luminosity function, and o is the over-
density in #; compared to the average general galactic density.
Thus, finally:

m;—25-51logA —1/2
DL(A)OC<J d)(M)dM)

-

(B2)

V. independent of A. (B3)

In HG, D, (A) is taken proportional to p;(A)~'/3, but, above
all, ¥ is taken dependent on A in the same way. This erroneous
dependence is likely to fully account for the increase of the
velocity dispersion o, of HG’s groups with their distance found
by Magtesyan (1988). Indeed V; expresses more or less the
highest difference one can admit between two members of a same
group; so one expects that ¢, and V| are proportional on an
average, the proportion coefficient depending on the number of
group members among others. And as a matter of fact, g,
increases by the same factor 3 as V| (A) (scaled as in HG) in HG’s
groups when A increases from 1000 to 4000 kms™'.

Now, when use is made of Egs. (B2) and (B3) in HG’s method,
there is no significant dependence of o, with A, which confirms
the correctness of our treatment.
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