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SUMMARY 
Inhomogeneity in the distribution of mass in the Universe on scales ^100 Mpc can 
generate a coherent shear distortion or polarization of the images of background 
galaxies. This distortion may be measurable over patches of the sky up to a few square 
degrees in size. If this distortion is measured, or conversely, if its magnitude is limited, 
it should help us understand the degree to which luminosity traces the underlying 
mass over cosmological scales. A prescription is given for quantifying the galaxy 
distortion and a propagation equation for its evolution in an inhomogeneous 
universe is derived. The creation of shear by inhomogeneity is illustrated using model 
kinematic universes comprising random distributions of point masses, spheres and 
circular discs designed to simulate the superclusters, voids and ‘walls’ reported in 
galaxy velocity surveys. Using these simulations, we estimate that an rms induced 
ellipticity of |/?|rms ~0.2 QLSS (where QLSS is the fraction of the mass of the universe 
clustered on the large scale) will be produced. The angular correlation length is 
-1.6°. 

In an alternative prescription, the universe is modelled using a power spectrum of 
density fluctuations and the mean correlation function is computed both analytically 
and numerically. In these simulations we find that |j9|rms ~ 0.02 for biased cold dark 
matter models of an Einstein-De Sitter universe, and the effective correlation length 
is 01/2 ~ 0.5°. For a hot dark matter dominated universe the correlation length is 
increased to 01/2 ~ 0.7°. 

The faint, blue galaxies discovered by Tyson and collaborators have a surface 
density of ~ 3 x 105 deg-2 and should provide an ideal set of sources for measuring 
this effect. 

1 INTRODUCTION 

Recent deep observations of galaxy clusters have revealed the presence of faint blue arcs around galaxy clusters, the best known 
example being the arcs around Abell 370 (Soucail et al. 1987; Pelló-Descayre et al. 1988; Fort et al. 1988). It is believed that the 
arcs are gravitationally distorted images of faint distant galaxies, where the cluster acts as a gravitational lens (see e.g. Soucail et 
al. 1988; Lynds & Petrosian 1989; Grossman & Narayan 1988). Furthermore, Tyson et al. (1984) have developed new 
observational techniques so that a large number of faint galaxies can be observed and their distortion measured. Their 
observations show systematic alignments of faint background galaxy images centred on rich foreground galaxy clusters (Tyson, 
Valdes & Wenk 1990). They argue that these galaxies are at high redshift (z^ l) and that by measuring their distortion, it is 
possible to probe the mass distribution of the intervening cluster. 

In a separate development, Geller & Huchra (1989) and others cited therein have demonstrated that the distribution of 
galaxies within the nearby universe has a cellular form with significant overdensities being found in large coherent walls 
bounding giant ( ~60 h~{ Mpc) voids (where h is the Hubble constant measured in units of 100 km s-1 Mpc-1). Additional 
evidence for inhomogeneity in the galaxy distribution on these large scales has recently been presented by Broadhurst et al. 
(1990) who report periodic structure in pencil beam surveys with wavelength ~ 128 h~{ Mpc. This is conservatively regarded as 
further evidence for large-scale structure in the galaxy distribution. More directly, the galaxy-galaxy correlation function 
measured by Maddox et al. (1990) displays significantly more power on large scales than anticipated (c/ also Efstathiou et al. 
1990). 
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Distortion of images by large-scale structure 601 

Bahcall & Soneira (1984) have presented evidence that Abell Clusters are more clustered than galaxies. Recently, the QDOT 
survey of IRAS galaxies, Saunders et al. (1991), “indicates there is more structure on large scales than indicated by the standard 
cold dark matter theory of galaxy formation". 

A central question for physical cosmology is the extent to which the light traces the underlying mass. The best evidence for 
large-scale mass inhomogeneity is dynamical (e.g. Lynden-Bell et al. 1988) and points to the presence of ‘great attractors’. 
However, this evidence remains somewhat controversial due to its sensitivity to small errors in the empirical distance indicators 
used. In this paper, we analyse an alternative method of probing large-scale structure in the Universe using the motions of 
photons instead of galaxies as tracers of the gravitational field. 

Our starting point is the hypothesis that the majority of the faint blue objects observed by Tyson (1988) (estimated to have a 
sky density of ng ~ 3 x 105 deg“2) are cosmologically distant. Although these objects appear to have a higher comoving density 
than local, bright galaxies, they might well be protogalaxies (e.g. Baron & White 1987). What is important for our purposes is 
that they can be resolved in CCD images and assigned a rough orientation. Now, it is an immediate corollary of the cosmo- 
logical principle that the intrinsic source orientations be randomly distributed on the sky, when averaged over a large enough 
area. In a homogeneous universe their images should also be randomly distributed on the sky. However, in an inhomogeneous 
universe, the tidal gravitational field of the intervening matter will shear the image shapes roughly tangentially with respect to the 
mass concentrations. Averaging over many neighbouring images, we should be able to detect a mean image ‘polarization’ 
analogous to the polarization of molecules in a dielectric medium in an electric field (Fig. 1). (Note, however, that a quadrupole is 
induced by the tensor tidal gravitational field as opposed to a net dipole that results from the vector electric field.) 

Let us estimate the magnitude of this image polarization. Assume that these density inhomogeneities have an angular size ~ 6 
at a redshift z ~ 0.5 - 1 and an associated rms density (measured in units of the critical density) of ÔQ ( 0). (We will henceforth use 
units in which G = c = //0 = 1 and restrict our attention in this paper to an Einstein-de Sitter cosmology.) The density fluctua- 
tions can have either sign. Now a single inhomogeneity of mass M(0)~ ôQ{ 0)63 will deflect a ray with impact parameter 6by an 
angle ~ M(6)/6. The tidal gravitational force therefore induces an ellipticity ~ M(6)/62 ~ 0Q(0)0. The ray will pass through 
~ 0 “1 independent inhomogeneities and their induced ellipticities will add stochastically to give a net image ellipticity 

£~ôQ(0)0ll2. (1) 

This induced ellipticity ought to be correlated over patches of sky of angular size ~ 0. 
Turning aside from the observations, it is conventional in cosmogonic theory to postulate the existence of a power spectrum of 

relative density fluctuations which can be approximated as a power law. 

(2) 

0ä0min) (3) 

P(k) = PmJ-f-\, 

~ P 
\ ^min 

Figure 1. Polarization of a field of elliptical galaxies. The polarization, p, is uniform over the field, (a) p = 0.0 ( ~ no effect), (b) /? = 0.1. 
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602 R. D. Blandford et al. 

where 0min ~ kmf The density fluctuation on scale ~ 6 then satisfies öQ.(ß)~ so that the ellipticity induced by 
fluctuations on this angular scale is 
e~ P1/2 n-(» + 2)l2 Ñn/2 £ ■'max C^min* (4) 

However, if 0 > 0min we must also consider the stochastic effect of the fluctuations on all smaller angular scales. If we average the 
ellipticity over an angular scale 0> 0min there will be ~(0/0min)

2 patches of size ~ 0min each contributing a mean ellipticity 
~ Pmí OmL The measured mean ellipticity on the scale 0 associated with angular scale 0min is then anticipated to have the smaller 
value ~ Pmix $ 1 • This exceeds the ellipticity directly associated with angular scale 0 if p > 0. 

It is not possible to measure this distortion in an individual galaxy image for which the intrinsic orientation is unknown. 
However, this can be done by averaging over a large number of galaxies. Let the sky density of galaxies be ng and suppose that 
their orientations can be measured over an area ~ 02. The random error in their mean ellipticity should be 

ôe ~ n~1/2 0~ (5) 

Now, if we model the fluctuations by a set of discrete structures with a single characteristic scale, then from equations (1) and (5) 
the random errors will limit the relative density fluctuations that we can hope to measure to 

ÓQ~n¡'l20-312. (6) 

For voids and walls with 0-0.05, ng~ 109 sr"1, the minimum measurable density contrast is ÓQ ~ 3 x 10-3 correlated over 
angles of a few degrees. 

If, alternatively, we adopt a cold dark matter (CDM) model, the power spectrum of density fluctuations will have a peak on 
length scales - 10-20 Mpc corresponding to angles ~ Io. On these angular scales, the fluctuation amplitude depends upon the 
degree of biasing, but is likely to correspond to ÔQ - 0.1. This should give a signal in the correlated image ellipticity of 0Q0l/2 

on the order of a few per cent, well in excess of the random error. However, the presence of large-scale power in the fluctuation 
spectrum will create a correlated ellipticity on larger angular scales that diminishes inversely with 0 {cf. equation 5). Similar 
remarks apply to hot dark matter (HDM) models with the difference that the correlation length is expected to be larger. On the 
basis of these estimates, we conclude that it should be possible to measure density fluctuations of magnitudes comparable with 
those popularly anticipated to be present on large scales in the universe by measuring the shapes of up to a million galaxies. 
Fortunately this requirement is well matched to the capabilities of newly developed large CCDs. 

There is a long history of attempts to extract cosmological data from the shapes of distant images. Kristian (1967) who called 
this the cosmological distortion effect sought evidence for it in six nearby clusters. Blandford & Jaroszyriski (1981), following 
Gunn (1967a), (cf. Tomita & Watanabe 1989) computed the effect of inhomogeneously distributed mass on the images of distant 
radio sources and showed that, although individual galaxies might produce occasional kinks in intrinsically straight jets and 
colinear triple sources, the observed evolution in the morphological distortion of radio sources was unlikely to be attributable to 
the effects of intervening large-scale structure. 

Valdes, Tyson & Jarvis (1983) carried out a photographic survey to ~ 23 mag of 40 000 galaxies and reported a limit on the 
cosmologically induced ellipticity of -0.03. This was interpreted as limiting the fraction of the critical density clustered on 
- Gpc scales to ~ 0.1. Some practical difficulties that would have to be overcome in a more ambitious survey were clearly set 
out in Tyson ( 1988 ). 

The specific use of rich clusters of galaxies in bringing about image distortion was discussed by Webster (1985) who argued 
that this measurement could limit the average mass to light ratio of rich clusters. A positive result has been reported for the 
individual clusters A1689 and CL1409 + 52 by Tyson et al (1990) who showed that background blue galaxies are preferentially 
aligned in the tangential direction with respect to the cluster centre. (More extreme examples of this phenomenon are called 
arclets or arcs.) Using these observations, Tyson et al (1984) argued that the dark matter in rich clusters was roughly traced by 
the luminous galaxies. A major, though not insuperable problem with this technique is that relatively few galaxies are found and 
the effects of their intrinsic ellipticities are a major source of error in locating the cluster centre and tracing the mass distribution 
(Kochanek 1990; Miralda-Escudé 1990). The measurement of cluster-induced shear has complementary complications to the 
present proposal as the distortion is larger but there are relatively few sources involved. Attempts were also made to probe 
smaller scale structure. Tyson et «/. (1984) attempted unsuccessfully to measure the distortion of distant galaxies around 
foreground galaxies thereby limiting their masses. 

More recently, Linder (1990) has analysed the influence of gravitational distortion on microwave background anisotropy 
showing that if and when fluctuations are detected, they may be enhanced on small scales and diluted on larger scales. (These 
results are restricted to a Gaussian deflection probability distribution.) 

In principle, the cumulative affects of shear can effect angular diameter and luminosity distances (e.g. Watanabe & Sasaki 
1990). Jaroszyñski et al (1990) propagated light rays through CDM universes and find the influence of the shear to be negligibly 
small in this type of cosmology so that the magnification of distant sources is dominated by Ricci focusing. In addition, they 
found no instances of multiple imaging induced by larger scale structure than rich galaxy clusters ( cf Babul & Lee 1990). 

The plan of this paper is as follows. In the following section we describe the distortion of a single galaxy image caused by an 
intervening mass and describe a procedure for measuring it quantitatively by observing a large number of randomly oriented 
sources. In Section 3 we derive a formalism for propagating image distortion in an inhomogeneous cosmology. In Section 4 we 
contrast the types of distortion produced by single intervening point masses, truncated isothermal spheres and discs, which we 
employ to model walls or sheets. We emphasize that discs produce the largest image shear per unit lens mass. This is followed in 
Section 5 by the numerical calculation of the expected variance and correlation function for the induced image ellipticity in 
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universes containing random spatial distributions of the three structures introduced in Section 4. The most popular and widely 
discussed type of large-scale structure associates the subluminous mass with cold dark matter assumed to be set down at early 
epochs with a power-law Gaussian power spectrum whose amplitude is adjusted including a phenomenological biasing factor to 
account for the present clustering of galaxies and to accommodate constraints on microwave background fluctuations. The 
nature of the mass distribution is well specified in this cosmogony and in Section 6 we compute the image distortion statistics 
both analytically and numerically using the results from N-body simulations. We then repeat this exercise for universes 
dominated by hot neutrinos. In the final section, we discuss some of the practical difficulties that may be encountered in attempts 
to use this technique to measure the distribution of large-scale structure. A preliminary version of these ideas was given in 
Blandford ( 1990). Miralda-Escudé (1991) has independently considered many of the questions addressed in this paper. 

2 MODELLING GALAXY DISTORTIONS 

A variety of prescriptions can be used to measure the shape of a galaxy. For our purposes the best procedure is to find a best- 
fitting ellipse, weighting the measured (pixellated) intensity in some manner. One prescription is to fit a limiting (Holmberg) 
isophote where the surface brightness equals a fixed fraction of the sky surface brightness. An alternative prescription involves 
the second moments of the brightness distribution within this isophote (Tyson et al. 1984; Kochanek 1990; Miralda-Escudé 
1990) which weights the less elliptical inner regions more heavily but is less susceptible to distortion caused by the shapes of 
neighbouring galaxies. A general formulation involves computing the matrix 

F J dr i dtjfjljrj, r2)]R - r;)(ry - r,) 
r2)] 

where /(r^ r2) is the intensity at the point with angular coordinates rly r2, r is the galaxy centre defined by 

jdr¡dr2 f[I(ri, r2)\ 
(8) 

and the function /(/), which will be a delta function in the case that a limiting isophote is fitted, has to be optimized by 
experiments with real data. This matrix can then be diagonalized so that the eigenvalues, a'2 and b'2, define the squares of the 
major and minor axes of the associated ellipse. We can also obtain the position angle of the major axis of the ellipse (north 
through east) </>'. We can characterize the ellipticity and orientation of the ellipse using the single complex number 

i 
X = 

2id>' e f. (9) 

We call %’ the (complex) orientation of the source. 
Suppose we have a source galaxy with an intrinsic equivalent ellipse defined in this manner and characterized by primed 

coordinates and an orientation The image that we observe after propagation through an inhomogeneous universe will have an 
equivalent ellipse (unprimed coordinates) that has been expanded, rotated and sheared by a small amount. If we orient our sky 
coordinate system so that rx and r\ advance in a westerly direction and r2 and r'2to the north, then the general linear transforma- 
tion from the image plane on to the source plane can be written 

r\={K, + Y,)r\+{Kt + yi)r2, 5 = ( “ ^ + yi)r,+(icr-yr)/-2, (10) 

where kx is the expansion which measures the image magnification and kx measures the rotation. The two quantities yr and y¡ 
together measure the complex shear. We assume that kx, yr and y¡ are small and linearize in these quantities [note that we do not 
assume that ( 7cr - 1 ) is small]. We find that the complex orientation of the image is given by 

x = x' 
2¿x'k¡ 2x , * i t \ 
 (irrr + Xi/i)- Kr 

(11) 

Now suppose there is some distribution of \x'\ and that (f)' is intrinsically randomly distributed. We then average over (j)’ to 
obtain an estimate of the shear from a measurement of the mean image orientation 

= 2y _ / X \ 
P Kr \l-XX*/2l 

(12) 

accurate to second order in the orientation. In this formula the brackets ( ) denote an average over an area of the sky that is large 
enough to contain many galaxy images, but smaller than the size of the large-scale structure being probed. We call p the image 
polarization, a characteristic of the intervening medium, and by mapping it over the sky we can learn about large-scale structure. 
The influence of shear on the shape of a circular source is illustrated in Fig. 2. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

1M
N

RA
S.

25
1.
 .

60
0B

 

604 R. D. Blandford et al. 

/1\ 7i 

Figure 2. Effect of shear, y, on the shape of a circular source, k is set to unity. The real part of k describes a uniform expansion, the imaginary 
part of k corresponds to a rotation about the origin. 

Rewriting equation ( 12) in terms of the ellipticity, £( = 1 — 6/0), we obtain 

P = 
I i-fg+g2-!^3 \ 

£\l-2£ + f£2—U3+^4) 
(13) 

When the images are mildly elliptical, as we shall henceforth assume, we need retain only the leading term in equation (13), i.e. 
P = (x) = (2Y/Kr)=-(re21*)- 

Now let us consider how accurately p can be measured and, for the moment, consider only random errors. If there are N 
randomly distributed galaxies in the sample with rms intrinsic ellipticity, e, the expectation of the mean polarization of the images 
when y = 0 will be 

(1^1)= (14) 

For a typical galaxy, e ~ 0.3 (e.g. an E3 elliptical galaxy or a spiral galaxy inclined at 45° to the line-of-sight). For an image 
polarization to be clearly detectable, it must exceed three times this value. In other words, in the absence of systematic errors 
(seeing, telescope optics etc., which are discussed below) the minimum detectable polarization will be given by 

p«10'2 (15) 

We can measure the two-point correlation of % by summing over pairs of galaxies. This measurement will be shot-noise limited 
by the variance of % divided by the effective number of pairs of galaxies. The variance of % will be the sum of the mean square 
ellipticity of the galaxies plus the mean square polarization. As long as the rms polarization is less than the rms galaxy 
eccentricity then a strong small-scale polarization will not degrade the measurement of a weaker polarization induced by large- 
scale structure. 

We now turn to the task of evaluating p. 

3 PROPAGATION OF DISTORTION IN AN INHOMOGENEOUS UNIVERSE 

The degree of image magnification and polarization depends upon the amplitude and location of departures from spatial 
inhomogeneity of the mass distribution. We already know from visual inspection of the images of cosmologically distant objects 
that these effects are not large and it is adequate to restrict our attention to distortions that are linear in the perturbing mass. This 
limitation circumvents the difficult and controversial question of defining rigorously amplification in a strongly inhomogeneous 
cosmology and we therefore explicitly exclude rare instances of strong lensing close to galaxies and rich clusters. The 
propagation of shear is best handled using the optical scalar equation (e.g. Sachs 1961; Penrose 1966; Kristian & Sachs 1967; 
Blandford & Narayan 1986; Dyer & Oattes 1988; and especially Gunn 1967b). We present a variation on this formalism that is 
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Distortion of images by large-scale structure 605 

well-suited to our application, developing it initially in some generality and then specializing to the case of an Einstein-de Sitter 
universe. 

Consider a small bundle of null geodesics propagating backward in time from the observer toward the source. We require the 
transverse separation £ of neighbouring geodesics, measured as a proper distance in the local cosmological rest frame. We 
designate a fiducial ray and parameterize neighbouring rays using the small angles they make with the fiducial ray at the observer. 
These angles form a two-dimensional image space which must be mapped on to £. We parameterize the distance along the ray 
using the affine parameter 2. In a weakly perturbed Friedmann-Robertson-Walker Universe, 

A = 
'to 

dt a(t’), (16) 

where t is the cosmic time, ¿0 is the present time and «(/) is the scale factor in the corresponding homogeneous universe [NB 
a(t0)=l]. When t0-t<t0, A measures proper distance along the ray. (We continue to set the Hubble constant to unity.) 
Therefore the angle at the observer that a ray makes with the fiducial ray is simply |(/0) = |(). 

It is convenient to introduce a Cartesian coordinate basis and write the components of the vector £(A) as a complex number 
£ = § ! + A general linear map from |0 on to § can then be written in the form 

i = Díé„+D2|;, (i?) 

where the two complex numbers D{ and D2 can be considered as the two complex components of a vector which we call the 
Distance Polar, D. (This quantity is similar to a spinar but has different and simpler transformation properties.) When the basis 
vectors ex and e2 on the sky are rotated through an angle a, D1->D1 and D2~>e2'aD2. D contains full information about the 
linearized image distortions. In a homogeneous universe, D1 is real and equal to the usual angular diameter distance and D2, 
which describes the shear, vanishes. In an inhomogeneous universe we can compare equation (17) with equation (10) to make 
the identifications 

Di —D2 —Dos/, (18) 

where Dos is the angular diameter distance in the smooth universe. For a single scatterer, k will be real. However, in the presence 
of multiple scattering, k will, in general, be complex, its imaginary part measuring the rotation of the image. Both components of 
D will likewise be complex numbers in general. 

We can now derive a propagation equation for D. First we define the rate of the expansion of the rays in the congruence ^ and 
the (complex) rate of shear, o, according to 

| = 0-£ + a£*. (19) 

These definitions are in agreement with the usual relativistic definitions (e.g. Sachs 1961) when evaluated in the local 
cosmological rest frame. Next we differentiate equations ( 18 ) and substitute equation ( 19 ) to obtain 

D = SD, (20) 

where the rate of strain matrix S is given by 

(21) 

We then invoke the optical scalar equations which describe the evolution of ft and a (e.g. Sachs 1961) 

é+f>2 + oô= œ = hRabk
akh (22) 

ô+2fto= C^k^fW)*, (23) 

where Rah is the Ricci tensor, Caihj is the Weyl tensor, and f is a complex null vector parallel propagated along the congruence. 
The Weyl term represents focusing and distortion by clumps of matter near to, but outside the congruence and the Ricci term 
represents focusing by matter in the beam. 

It is easiest to evaluate ^ and ^ locally using the local Newtonian gravitational potential, O. (We exclude the possible 
presence of domain walls, strings etc.) In terms of <ï>, & and can be written 

^ = -fl-2(041 + 0 22) (24) 

^=-fl-2(<l>jU-<I»>22 + 2/<l>jl2), (25) 

where the differentiations are carried out with respect to proper distance. By differentiating equation (20), and substituting 
equations (22) and (23), we obtain a second-order evolution equation for the distance polar 

D =TD, (26) 

where the tidal matrix T is given by 

T=/^ &~*\ 
-\gr ^ 

(27) 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

1M
N

RA
S.

25
1.
 .

60
0B

 

606 K D. Blandford et al. 

Equation (26), which is considerably simpler than the usual formulation, can be used to propagate a null geodesic congruence 
from the observer backwards in time through a weakly inhomogeneous cosmology to a resolved source. It explicitly shows how 
the tidal gravitational force resolved transverse to the fiducial ray focuses and deforms the congruence of rays around it. Under 
normal cosmological circumstances, the Ricci term in the tidal matrix and on the right-hand side of equation (24) can be 
augmented by a term - a _20 33, involving derivatives along the fiducial ray. This is because the effect of the gravitational force 
exerted by some element of mass resolved along the ray averages to zero to the order to which we are working. The Ricci term 
can therefore be rewritten as 

& = -47ipa~2, (28) 

where p is the local matter density (assumed to be non-relativistic). 
For illustration, let us compute the distance polar in a homogeneous Einstein-de Sitter universe with /0 =2/3, p = 3/8jrß3, 

a = {3t/2)213 and 2 = 2(1 - a5/2)/5. The rate of shear, a, vanishes identically. Solving equation (22), we obtain an expression for 
the rate of expansion: 

3a1'2-2 
2a5l2(l-a112)- 

(29) 

Substituting into equation (20), we obtain the familiar expression for the angular-diameter distance: 

D[ = 2a(l — a112). (30) 

More generally, solving equation (26), we can convert the distance polar D into the two observable quantities introduced in 
the previous section, the mean image magnification fluctuation (relative to a homogeneous universe), 

AM = 2|l- —I (31) 
\ Dos/ 

(where r denotes the real part) and the mean image polarization (in the small ellipticity limit), 

(32) 
uos 

It will prove useful to work with comoving coordinates * = (x^ x2, x3) = 2(1 - tf1/2)(|01, |02,1). The equati°n °f a nuU geodesic 
in these coordinates is simply = loi,2*3 (e/ Fig. 3). We emphasize that comoving coordinates can only be used in the small- 
angle (paraxial) approximation. 

4 IMAGE POLARIZATION FROM INDIVIDUAL DEFLECTORS 

If a density inhomogeneity is interposed between us and a source, it will magnify and distort the image of the source. When the 
overall size of the source is small compared with the scalelength in the gravitational field, it is conventional to describe this using 
a magnification tensor whose elements, involving the two complex numbers k and y, can be read off from equations (10). 

Suppose, for simplicity, that we have a single deflector. We can then define an effective potential \¡) by 

2£>ls<P(2) 

^OL^OS 
(33) 

Figure 3. Ray geometry in an Einstein-de Sitter universe. The distance measure is the comoving distance x3 =2[1 — a1/2], where a is the 
expansion factor. Comoving distances transverse to the line-of-sight are denoted by xl 2 = Unperturbed null geodesics are straight lines 
in this diagram. The small angle |0 is {dx{/dx3, dx2ldx3)y S is the source and O the observer. 
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Distortion of images by large-scale structure 607 

where <3>{2){r) is the two-dimensional gravitational potential associated with the deflector, r = (rl, r2) are angular coordinates on 
the sky and £>,y, where i and y denote Observer, Lens and Source, are the angular diameter distances (e.g. Blandford & Narayan 
1986). By inspection, we find that 

1. d2ip _ 1 d2^ = ^ _ 4jú:DolDls 

2 dr, dr, 2 dr2 dr2 Dos 

+ (35) 
2 dr, dr, 2 dr2 dr2 dr, dr2 

where 2 is the surface density of mass. Note that as the gravitational field is curl-free, the imaginary part of k vanishes for a single 
deflector and there is no rotation of the image. Multiple deflections can, however, create rotation. 

As the deflections we are considering are, by assumption, weak, we can linearize the lens equation and evaluate the second 
derivatives of the potential along the unperturbed trajectories. We are interested in the distribution of y for different lens models. 
In this section we contrast three possibilities: a point mass, a truncated singular isothermal sphere and a uniform disc. 

4.1 Point mass 

For a circularly symmetric mass distribution, the modulus of the shear can be written in the form 

M---- m 2 dr 
1 dip 

{r dr 
(36) 

where we have assumed that the surface density decreases with angular radius r measured from the symmetry axis. For a point 
mass M,\p = K\nr, where K = 4ML)ls/DolL)os and the modulus of the image polarization to first order is 

\p\ ~ 2 
Irl 
K 

2K 
T 5 r 

(37) 

the integral cross-section for creating polarization with modulus in excess of |p| is 

ct(> |p|) = 
8jtZ)olZ)lsM 

T^osIpI 

(cfi Fig. 4). 

(38) 

4.2 Truncated, singular, isothermal sphere 

The potentials of galaxies and clusters of galaxies have been modelled using truncated isothermal spheres in which the mass 
density diminishes inversely with the square of the radius so that the local internal velocity dispersion remains constant. These 

Figure 4. Integral cross-section for production of shear in excess of |p| by point masses, truncated isothermal spheres and uniform, randomly 
orientated thin discs of similar mass, M. The cross-section is measured in units of 4jiMDolDls/Dos. The radii of the spheres and the discs are 
set to 20[MZ)LS/DOLZ)OS]1/2. For small values of the shear, all models behave like point masses. For large values, the disc cross-sections are 
intermediate between those for points and spheres. 
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608 R. D. Blandford et al. 

must be truncated at some (proper) outer radius, Ry in order that the total mass be finite. For simplicity, suppose that the core is 
vanishingly small. In this case the modulus of the shear is given by equation (37) for r > 7?v and 

1^1 : 
K 

Rvr 
(39) 

for r < Rw. The integral cross-section is 

a{>\p\) = jiD2
c 

2K . \ 2K , , Kz 

i„fíívJeUrl'TRíií>i! 

K I I 
HT1'’1 (40) 

where 0(x) is the step function. cr( > |p|) is also shown in Fig. 4. Comparing the result for the point mass with the truncated 
singular isothermal sphere, we see that a point mass presents a larger cross-section for large shear than an isothermal sphere. 
This is generally the case: the softer the surface potential, the lower the induced shear. This potential can also be used to model 
voids if the mass of the sphere is negative. Introducing a core radius into the potential makes only minor changes. 

4.3 Inclined uniform disc 

Our third model inhomogeneity is a uniform circular disc with mass M and radius 7?D inclined at an angle i to the line-of-sight. 
This is a simple model of an individual ‘wall’ or sheet of matter. In the Appendix, we calculate the components of the surface 
potential together with its second derivatives. Combining equations (A122) and ( A123), we find that 

_ 8M/)ls sec / cosec" /(I - cos /) 

^D^OL^OS 

when the ray passes through the projected disc, and 

16MZ>LS cosec2 / Í[1 -(1 - £m)'/2][(l - ÇJ3/>Î 'VzÇmU - £m)'/2l 
RdDqlDq (1-ÇJ rx +r2 

where 

r] + R2
d sin2 /)-[(r2 +rl+Rv sin2 if-Ar^R^, sin2 if12 

2r 

(41) 

(42) 

(43) 

when the ray passes outside the disc. 
We have also computed the integral cross-section for creating image polarization in excess of \p\, averaging over the disc 

inclination i (Fig. 4). Note that cross-section for creating large shear is larger than that associated with an isothermal sphere of 
the same mass and radius, but smaller than that of a point mass. 

5 IMAGE DISTORTION CAUSED BY RANDOM DEFLECTORS 

The first type of model universe we consider is one containing a random distribution of simple, purely kinematic model 
deflectors. Specifically, we consider the three types of deflector we introduced in the preceding section. We suppose that a 
comoving number density n0 of deflectors of mass M with mean cosmological density QM = 8jz?z0M/3 is associated with these 
deflectors and that QM is sufficiently small that we can ignore the small change in the propagation through the background 
universe when computing the image polarization. We suppose that the deflectors maintain their comoving size and their masses 
throughout the expansion of the universe. In this sense, our density inhomogeneity model is strictly kinematic. Relative density 
fluctuations with QM^0.1 on scales ^100 Mpc cannot grow gravitationally without producing unobserved large deviations 
from the Hubble flow. Of course there will be evolution in both these quantities, however, it turns out that the polarization is 
dominated by deflectors with redshifts z ~ 0.3-0.8 and, on the large scales of interest to us, the mass contained within these 
individual deflectors cannot have changed appreciably over this redshift interval without there being extremely large, and 
unobserved, velocities with respect to the Hubble flow. 

A visual inspection of faint galaxy (and radio galaxy) fields is sufficient to demonstrate that the images of the majority of 
cosmologically distant objects are not strongly polarized. Therefore, we can assume that any measurable effect will be at best 
weak and analysable using a perturbative approach. We handle multiple deflections by evaluating the individual deflections 
along the unperturbed rays and then summing them. This corresponds to retaining only the linear terms in the multiple-lensing 
expansion given by Blandford & Narayan (1986). We are therefore ignoring the few instances when sources lie close to caustics 
and are strongly magnified or even multiple imaged. These caustics are believed to be formed by smaller mass concentrations 
than those under investigation here. For the reasons outlined in the introduction, this small-scale structure, associated with the 
cores of the richest clusters, favourably aligned groups and individual galaxies contributes insufficient power to the overall 
power spectrum of density fluctuations to give a significant stochastic contribution to the overall signal on large angular scales. 
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Distortion of images by large-scale structure 609 

Nevertheless, we have tested this approximation by integrating the full ray propagation equation (26) along the line-of-sight and 
producing similar results to those found using the linear approximation. 

5.1 Point masses 

An individual point mass, M, located at the origin will induce an image polarization given by equation (37) 

2y 8MZ)LSe
2ltt 

P K DosDOLr
2 ’ 

(44) 

where a = tan'1(r2/^i)- The mean polarization from an isotropic universe is zero. Next consider two rays, labelled i and j, 
separated in angle by a distance 0 and passing by the same mass. We form the product 

* 64M2D2
ls e~2'* 

n2 t^2 2 2 ’ 
£>os£Wi ri 

(45) 

where ^ and r- are the angular separations of the rays from the mass and </> = a¡ - a- is the angle on the sky that the two ray 
directions subtend at the mass. 

Now let n0 be the comoving number density of these masses. In an EDS cosmology the number of masses in a volume element 
referred to ray / is 

dN = nQa’~3'rxdrxdaxD^anl2da'. (46) 

If individual masses are uncorrelated and we assume that sources i and j are at the same redshift, then we can form the two- 
point image polarization correlation function by integrating over all masses and averaging over many pairs of directions. 

Cw(6) = (pip*)e = (X\x]), (4?) 

where are the individual image orientations and < )e denotes an average over all pairs of directions separated by an angle lying 
within a small interval around 6. We can compute an estimate of the correlation function from 

Cpp(0) = 
* 64M n{) dNpxp] = 2 

L'os. 

da 
„'5/2 

drx 'da, 
2 COS <2^, (48) 

where rj2 = r,2 + 02 - 2rj 0cos(a). 
Performing the integrals, we eventually obtain 

128^0M
2(l-a

1/2) 
3öI/202 (49) 

Now define Q M = 8jin0M/3 to be the mean cosmological mass density, then 

cjd) = 
16QMM(a~1/2 

d2 
1) (50) 

Numerically we obtain 

CJ6) = 3.1 x 10-3QMhM[2[(l+z)l/2-l}(eT2 (51) 

= 8.5xl0-iQMhM[6[(l + z)l/2-l](0o)-\ 

where Mn=M/lQ"MQ, 6' is measured in minutes and 0° is measured in degrees. This simple result, although correct, is not 
useful in practice. The autocorrelation function diverges as 0-^0, indicating that the large distortions caused by close encounters 
dominate the integral and for these the weak distortion approximation is invalid. This is brought out by numerical simulations. 
We have traced rays through model universes containing random point masses and attempted to form an estimate of the 
polarization correlation function Cpp. Our procedure, which we followed in all subsequent simulations, was to set down point 
masses randomly within a pyramid with the observer at the vertex and with a base of side 0.2 rad. We then defined a smaller 
pyramid within this deflector pyramid with base of side 0.1 rad within which we traced rays along random directions. Typically 
we were interested in masses ~ 10-6 in cosmological units (or ~ 1016 M0) and of the order of a hundred such masses were used 
within the deflector pyramid. The complex image polarization p was computed along each of Nr rays summing the contributions 
from each of the masses. We limited the measured polarization to \p\ < 1, thereby excluding strong distortion. The two point 
correlation function for the polarization for a ray separation 0 was then estimated by averaging over all the Nr{Nr - 1 )/2 pairs of 
rays, that lay within a bin centred on 0. 

For a given realization of the universe, we found that five to ten thousand rays were usually adequate to furnish an acceptable 
estimate of Cpp. Including deflectors outside the deflection pyramid, or changing its shape had an insignificant effect on Cpp. 
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610 R. D. Blandford et al. 

Figure 5. Histogram of the correlation function for sources separated by Io in a universe containing a density Qyw = 0.1 of point masses, 
M = 6xl0~7(4xl016 Mq). 

However, the derived correlation functions fluctuated wildly from realization to realization. A histogram exhibiting the results 
for Cpp( Io) for one hundred universes is shown in Fig. 5. 

Despite the large variance in Cpp, its mean value is representative of what we could hope to measure. In our illustrative model 
we choose /î0~2x104, Qm = 0.1 and M~6xl0-7 (or ~ x 1017 M0). The two-point correlation function for the image 
polarization pîox an angular separation 0and an assumed source redshift zs = 3 is Cpp(0)~ 10~3(6°)~2 deg-2. This will scale in 
proportion to the assumed value of Q for large angular scales. There should therefore be a correlated ellipticity ~ 0.3 QMin the 
image shapes on angular scales of order a degree. However, the distribution of correlations is very broad and of either sign 
because it is dominated by small impact parameters and so the procedure proposed in this paper is not really suitable for this 
case. If a significant fraction of the mass density of the universe is contained in individual masses, dense enough to multiple- 
image background galaxies (for example invisible galaxy clusters) then the best way to detect this will be through observing 
strong focusing by individual masses rather than by measuring the accumulated effects of many weak deflectors. 

5.2 Voids 

A more realistic model of large-scale structure is obtained if we assume that a fraction of the universe is contained in underdense 
regions called voids. We treat these as randomly located spheres whose radii, Rv expand with the universe. The density deficit 
profile is assumed to have the truncated isothermal form of Section 4.2. The fractional underdensity is measured by the density 
parameter Q v, this time as a negative number. If, as observations indicate, the filling factor of these voids is large, ^ 0.5, then the 
incidence of overlapping voids is quite high. Provided the fractional underdensity per void is small, the total density should 
nowhere become negative. 

The radial profile of the void underdensity that we adopt is the truncated, isothermal sphere introduced in Section 4.3. It is 
necessary to introduce a finite core radius into this potential to prevent the central density from becoming negative. In practice, 
our results are quite insensitive to the choice of this core radius including the value zero. We set their comoving radii to be 
Rwo = 0.02 = 60 h~l Mpc, to match the scale of the structures described in the introduction, retaining the same number density 

= 2 x 104 as we used in the case of the point masses so that the void filling factor is /= 47m0Rl0/3 = 0.67. The mean free path 
for encounters with the denser regions outside the voids is / ~ l/7iR^()n0 ~ 0.04 or ~ 120 h~1 Mpc. 

With this much softer potential we find that the variance in the measured correlation function is greatly reduced. The results 
are presented in Fig. 6 with the error bars denoting la standard errors between different simulations. The rms correlated 
ellipticity, (|p|2)i/2, for zs = 3 was found to be 0.25 Q v, somewhat smaller than the equivalent point-deflector value, as expected. 
The sensitivity of the correlation function to the assumed filling factor at fixed Rvo and Q M is not great. 

For reasons that we discuss below, we define the correlation length to be 6{/2 where 

0]/2 1 #0 
2nd'Cpfl(d') dd' = - Ind'Cpf(Q') dd'. (52) 

Jo ^ Jo 

0O is the angle at which the correlation function, Cpp(0), crosses zero. Adopting this definition, 01/2 = 1.6°. As expected, the 
correlation length scales with the assumed void size. Naturally, the correlation function is unchanged if we change the sign of the 
density fluctuations and model density excesses rather than voids. However, the pattern of image deformations observable 
around an individual void is distinguishable from that surrounding a positive density enhancement. With a void, the images are, 
on average, elongated in the radial as opposed to the tangential direction with a density excess. 
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Distortion of images by large-scale structure 611 

Figure 6. The correlation function, Cpp (cf. equation 47), as a function of source separation, 6, for a universe consisting of uniformly 
distributed voids (represented by negative mass spheres). The simulations were done with 3000 sources at a redshift of three in a square 
window of side 0.1 rad, the number density of the voids was 2 x 104 and the comoving void radii were 0.02 Hubble lengths. One hundred simul- 
ations were performed and the errorbars show the l-o error. 

5.3 Discs 

Our third kinematic model of large-scale structure focuses on the wall or sheet structures. These we model rather primitively (in 
the absence of a more detailed understanding of their shapes and connectivity) as a random distribution of thin uniform circular 
discs of radius RD. Again we make no provision for overlap, and assume that QD^1. To facilitate comparison with the 
preceding two cases, we choose rc0 = 2 x 104 as before. However, in order to match the mean free path for a line-of-sight to 
intersect a disc, / = 2/7m0Rl>0, to the void wall mean free path, we must increase the disc radius to Rm = 0.028. 

The two-point correlation function is shown in Fig. 7(a). It is quite similar to that obtained in the void model although the rms 
correlated ellipticity is slightly smaller ~ 0.2 Q D. The correlation length, ~ 1.5°, is essentially unchanged. Again for discs of 
given size and space density, the correlation function is found to be proportional to Q ^ and the correlation length increases 
roughly in proportion to RD. 

5.4 Source redshift distribution 

We have so far assumed that all the sources are at redshift zs = 3. The faint blue galaxies are believed to lie mostly between 
redshifts 1 and 3 (Tyson et al. 1990). We should therefore determine how the correlation function is degraded when the sources 
are assumed to be located closer to us. We exhibit the disc correlation function for sources at lower redshifts, zs = 1, 2 [Fig. 7(b) 
and (c)], as well as for a uniform distribution in comoving volume between zH = I and zs = 3 [Fig. 7(d)]. It is found that the 
correlation function is only seriously degraded when the majority of the sources have zs ^ 1. 

5.5 Position angle differences 

An alternative statistic to the correlation function that can be used to measure the image polarization is the mean (unsigned) 
position angle differences between images separated by a fixed angle on the sky. If the images were randomly oriented we expect 
that this quantity (|A^|) would have a value jt/4 independent of separation. A smaller value of (|A^|) corresponds to a net 
correlation. This statistic is equivalent to the above, however, it has the advantage that it is more reliable to observe the position 
angle of an image as opposed to observing the complex orientation of the image and it is more useful from an observational point 
of view. Notice that the correlation function in this case is not proportional to as it is above (it is the deviation from jt/4 that 
is proportional to Q^), and a value of Q D = 1 has been used in these simulations. An example of this statistic for our standard 
disc-filled universe is shown in Fig. 8. 

6 DISTORTION FROM A POWER SPECTRUM OF DENSITY FLUCTUATIONS 

6.1 Linear theory 

An alternative method for modelling large-scale structure is to assume that a power spectrum P(k) of density fluctuations is set 
down at early times and that these fluctuations grow by gravitational instability as the universe expands. It has been shown (e.g. 
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(a) (b) 

0.02 

0.01 

1 1.5 
6 (degrees) 

1 1.5 
8 (degrees) 

(c) (d) 
Figure 7. The correlation function for a universe containing walls (represented by discs). The simulations were performed with the same 
parameters as in Fig. 6 except that the disc radii were 0.028 Hubble lengths. Furthermore it is shown how the correlation function depends on 
source redshift. (a) zs = 3, same value as in Fig. 6, (b) zs = 1, (c) zs = 2 and (d) 1 < zs < 3. As can be seen from the figures, the effect is seriously 
degraded when zs ^ 2. 

Davis et al 1985; Park 1990; Villumsen & Brainerd 1990) that large-scale structure can be simulated under these assumptions, 
though the extent to which this conforms with observation is still a matter of controversy. In this section, we calculate the 
expected image magnification and polarization correlation function in model universes based on cold and hot dark matter 
fluctuation spectra, and we assume Q0 = 1. 

We assume that the relative density fluctuations, ó, on scales of interest remain small and grow linearly with the expansion 
factor tf. As ô <n, 7c will vary little from its value in a homogeneous universe with the same mean density. Our calculations are 
performed in comoving coordinates so O and are the potential and its second derivatives with respect to comoving 
coordinates. In terms of these coordinates the mean density is 3/8 jt. The subscript zero refers to the present, i.e. a = 1. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

1M
N

RA
S.

25
1.
 .

60
0B

 

Distortion of images by large-scale structure 613 

Figure 8. Position angle differences: if the Universe is homogeneous, the mean unsigned position angle difference between sources, {\d(j)\), 
would be jt/4 independent of 6. Using the same model as in Fig. 7(a) the mean unsigned position angle difference is calculated as a function 
of (9. 

Using the affine parameter A = 2(1 - a5/2)/5 as the independent variable, equations (26) and (27) for the propagation of D can 
be written as 

— ^ ÓD, = d^D,, 0,(0) = 0, ^7(0)=1 
dk dX 

^-^D2=á*-D„ D2(0) = ^(0) = 0, 

(53) 

where ÔD1, D2, Ô& and ^ are regarded as perturbations. D2 is calculated using the unperturbed value of The analysis is 
simplified if we transform the independent variable to ¿* = (1 - 5A/2)2/5. The unperturbed values for and ^ in an EDS 
universe are 

Dj = 2a(l — fl1/2) (54) 

& = -(3/2)a~5 (55) 

and so we have 

d2óp[ 

da2 
3_ dôD, 
2a da 2a 

0D1=20R0(l-fl (56) 

rf2D2 

da1 f ^ +AD2 = 2Fo(1-a1/2): (57) 

where we use the relation ô& =a~4ô^0, = a 4^), valid in linear theory. Note that ôDl is purely real. The imaginary part 
of ó Di, associated with rotation, only appears at the non-linear level. 

It is convenient to take the Fourier transform (denoted with a tilde) of this equation in comoving coordinates, x, where 

x = (xl,x2,x3), xU2 = 2(1 - a{/2) i0l2, X3 = 2(l-al/2) (58) 

and let x^ x2 and x3 be unit basis vectors, and £be a unit vector in the direction of k. Let us now take xto be very close to the z 
axis so that jc3 - x. We therefore write 

ÔFV 
d3k 

(2jz] 
3ÓR0e — T ^0,22 ^0 

-3ÓQ 
2 

(59) 
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614 R. D. Blandford et al. 

dfk 
(2jt)3 5) e (^0,11 <^>0,22 2/<I>(l |2), (60) 

where 4>0 is the comoving (i.e. present) gravitational potential which satisfies Poisson’s equation and we have substituted 
pn = 3/8jt. This gives 

é0=-3ÔJ2k\ k2 = k} + kl + kl (61) 

(where ó,, is the Fourier transform of <50), and 

&~o=- 
3SQ(k¡ + ik2 

2kl 

which implies that 

î/2ÔD, 3 dôü, 

(62) 

da2 
l/2\ d3k 

(2ji 
¿ne .3 

ikx 

d Do 3 d&2 3 / ip 
da 

d3k , (k¡ + ik2)
2 ¡k., 

/0 \3U0' j \l7l) K 

These inhomogeneous, second order linear differential equations can be solved subject to boundary conditions (53) to obtain 

2ÓD, _ 3^ f d3k j.ik-xm ik.x/2 

•os 2 J (2jt)3 k-x/2 ^ 

(63) 

(64) 

AM = 
D 

and 

2D2 

Dn* 
3x 
2 

dfff x [ki + ikff Mlcx/2)^ik.x/2 

(2jt)3 k2 k'x/2 

[where jl{^) = sin(2 - cos(is a spherical Bessel function], valid for x very close to the z axis. In general we have 

2Do 
Dr 

3x^ 
~~Y 

d3k I rv \ f,2Jl(^X/2) ik.xl2 
(íñfó*[{x'+iX2)^] • 

(66) 

(67) 

6.2 Point mass 

It is illuminating to recover the formula for the image polarization produced by a single point mass in an Einstein-de Sitter 
universe. The magnification fluctuation is zero as the density perturbation along the line-of-sight vanishes. Without loss of 
generality we set = 0 so that k x= k3x3.het the mass, M, be located at xM, so that the relative density fluctuation is 

, , SjiM , ôo(x) = —^-ô(x-xM) (68) 

(where the Dirac delta function, ó(x), must be distinguished from the relative density fluctuation, ô0). 
Its Fourier transform is then 

Substituting into equation (66), and transforming to cylindrical polar coordinates for A: and xMwe obtain 

(69) 

p = -AtzMx] 
dk 

— OO 2 Jt 
h{K) 

00 dkL kj 

o 2jz k2 
T ii^-kxXMx cos <t>) 

2n (70) 

where kL —[k1
; + ky':’. xMi —{x2

m +-v(;2);/'. k — k3x3/2 and ^ - 1 — 2xm/x3. Performing the 0and kL integrations we obtain 

dx 
\P\ = -co 2jt 

k/i(k) K2(2xm1k/x3) e" (71) 
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Distortion of images by large-scale structure 615 

Now, we know that only the gravitational component resolved perpendicular to the line-of-sight is effective in deflecting the rays. 
Correspondingly, in Fourier space the contributing components have ~ xM\. Hence the argument of the MacDonald 
function K2 is small and we can write /C2(£) ^ 2/£2. The final, k, integral is now elementary and we obtain 

|pI _ &MxM3(x3 ~xM3) (72) 
x2m±xs 

in agreement with equation (37). 
This calculation motivates us to make a similar approximation in computing the two point polarization correlation function. 

The phase of the image polarization p is just twice the position angle of the mass with respect to the line-of-sight. If we average 
over many lines-of-sight at fixed xML, the mean value of p will vanish. However, the mean square value will not vanish. 

6.3 Polarization correlation function 

In general the two-point image polarization correlation function for a pair of galaxies located at x and x' is given by 

{p(x)p*{x')) = (^xlx,l 
ct'k 
[Inf 

d3k' 
{2ji\ 

+ ¿í2)-£fp¡ -ix'.yk'} 
j\(k-x/2) 
k-x/2 

jAk'-x'/2) 
li-x ! 2 

exp 
i(k-x-k x ) 

(73) 

We interpret the average, (), as either an average over an ensemble of universes or, granted the apparent isotropy of our 
universe, an average over many different directions. It is this average that we propose to estimate using observations over a few 
fields. If the density fluctuations are randomly phased and therefore obey Gaussian statistics, then we can introduce a power 
spectrum of density fluctuations, P(k), defined using 

(5ô'*) = (2jc)('P(k)ô(k-kl). (74) 

For a discussion of the normalization of the power spectrum for models such as CDM and HDM see Section 6.7. Integrating 
over the delta function we obtain 

(p(x)p*(x')) = ^x2
3x'¡ d3k PikjKxi + ¿X2)-£]2pí - 1x2)-kY 

j\(k-x/2) 
k-x/2 

jx(k-x ¡2) 
k-x/2 

ik-(x~ x')/2 (75) 

Let us first consider two galaxies at the same redshift, we can then replace x and x' in equation (75) by x. Let us now choose 
for simplicity the direction of the unprimed ray to measure the polar direction for spherical polar coordinates for the /c-space 
integral. Making the small angle approximation and recalling that the contributing Fourier components are nearly perpendicular 
to the line-of-sight we have, 

x=x(0,0,1), x'-x(0,0,1), k-k(cos <f>, sin (f>,/u), (76) 

where cos-1 ^ and ^ are the usual spherical polar angles and |x| = |x'px3 = x - consistent with the approximation 
[(k2

l + kfi/k2]2 - 1. An immediate consequence of making this approximation is that the magnification correlation function is 
identical to the polarization correlation function: 

(M(x)M(x')) = (p(x)p*(x')). (77) 

After making these substitutions we obtain 

(p(x)p*(x'))=cpp(e,x)=cMM{e,x) 

9 4 = - X 
4 

dkk2P(k) dp j\[kxpjl\ 
kxp/2 

jx[(kx/2)(p + 0cos (j>)] 
(kx/2)(p+Ocos (/>) 

exp 
ikxO cos < 

(78) 

(79) 

where we have changed the limits of the p integration to ± °o consistent with our approximation. It is convenient to invoke the 
correlation theorem at this stage to transform the p integration: 

Cpp(0,x) = 
9jtx 
~Î6~ 

dkkP(k) dq{\-q2 ^ikxdcos <j>{q + l)/2 (80) 

where we have used the Fourier transform 

.-,<,y7lW = _2\ 
y 2 

and 0 (x) is the step function. We change variables to s = (<7 + 1 )/2, and obtain 

C (0,x)= CMM(0,x) = 36Jt2x3 dkkP\k) dss2(l -s)2Jn(skx6). 

(81) 

(82) 
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616 R. D. Blandford et al 

The rms image polarization for sources at redshift z is given by [Cpp(0, x)]1/2 or 

A-ms^jrll-U + z -1/213/2 dkkP(k) 
1/2 

(83) 

The integral in equation (83) will diverge for power spectra shallower than P(k)<xk~2. For purposes of calculation we use the 
power spectrum for cold dark matter given by Davis et al. {1985) and the power spectrum for hot dark matter given by Bardeen 
et al. ( 1986) (hereafter BBKS). The rms image polarization is plotted as a function of redshift for these two cosmologies in Figs 9 
and 10. In Fig. 11 we exhibit the correlation function for angular separations 0 also for these two cosmologies. 

Next we calculate the correlation function when the source galaxies are found over a range of redshifts. For simplicity, we 
assume that the number density of galaxies is constant (per unit comoving volume) up to a maximum redshift. We first compute 
an expression for the mean polarization p along a specific direction. The polarization is an additive quantity so we can do this by 
integrating equation (66) 

PM=“3 X 
p{x) x2 dx . 

This can be written as 

p{x)=- 
3jT d3k ~ (ki +ik2f , ¡k-xn 
 <50 72 f(k-x/2) e (2ji] 

where 

My)+h(y)_ JAy) 
.y y2 y _ 

f(y) = 
3e" 

dy' y3¡Ay) z'y =~ 
i ¿ 

The equation for the correlation function for p can then be written in the same way as equation (79), then 

cvv{e,x)={p{x)p*{x')) 

9 
4 

dk k2P(k) dp 
CO 

2n 

J 0 
/* + 6 cos (j)} exp 

f ikxdcos (j> 
2 , 

(84) 

(85) 

(86) 

(87) 

(88) 

Figure 9. Analytic and A-body results for the rms image polariza- 
tion versus redshift. Curves A (dashed), B (dot and dash) and 
C (dotted) are analytic results (corresponding to smoothing lengths 
of 0, 0.4 and 0.8 grid cells respectively) and curve D (solid, lying 
almost on top of curve C) is the A-body result for the case that the 
sources are at one redshift. Curves E (dashed) and F (dotted) are 
analytic results (corresponding to smoothing lengths of 0 and 0.8 
grid cells respectively) and curve G (solid) is the A-body result for 
the case that the sources are distributed in redshift. Values of 
/z = l/2,Q = l and b = 2 were adopted for this figure. 

Figure 10. RMS image polarization where the sources are at one 
redshift for a HDM universe (middle three curves) and one with a 
delta function power spectrum, P(k)=Aô{k-k())lkl, l//c0 = 32 
/E1 Mpc, 64 /z-1 Mpc, 128 h~[ Mpc (top three curves) and the rms 
image polarization where the sources are uniformly distributed in 
redshift for a HDM universe (bottom three curves). Values of 
/z = 1/2, Q = 1, b = 2 (for HDM) and b=l (for the delta function 
power spectrum) were adopted for this figure. 
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Distortion of images by large-scale structure 617 

Figure 11. Correlation function for a CDM (left side) and RDM 
(right side) universes for redshifts of 1, 2 and 3 where the sources 
are at one redshift. Points are A^-body results; error bars correspond 
to 1-a scatter between the patches. Lines are analytic results with 
rs = 0.8 grid cells. Values of /z = 1/2, Q = 1 and 6 = 2 were adopted 
for this figure. 

Figure 12. Correlation function for a CDM (left side) and RDM 
(right side) universes for redshifts of 1, 2 and 3 where the sources 
are uniformly distributed in redshift. Points are V-body results; 
error bars correspond to l-a scatter between the patches. Lines are 
analytic results with rs = 0.8 grid cells. Values of 6 = 1/2, Q = 1 and 
6 = 2 were adopted for this figure. 

Once again, we invoke the correlation theorem to transform the integration using the Fourier transform 

dye-‘”f(y)=-{\-q)(\-q2)(5 + q)Q(\+q)®(\-q) 
10 

(89) 

to obtain 

Cpp( X) — £mm( *) 

9jzx 
1024 

dk kP(k) dq(l-q)2(l-q2)2(5 + q)2 d(f> e ikxd cos ^(<y+l )/2 

36ji2x3 dk kP{k) dss2{\ - s)A(\ + s¡l)2J{)(skxQ). 

The rms image polarization is given by a similar expression to equation (83) 

Prms = 4jr[l (1 "bz) 
-1/213/2 17 

70 
dkkP(k) 

1/2 

(90) 

(91) 

which is approximately a factor of 0.64 times the polarization obtained if the sources were all at the maximum redshift. 
The angular correlation function Cpp( 0, x) is exhibited in Fig. 12 for CDM and HDM universes. 
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618 R. D. Blandfordetal. 

6.4 A^-body simulations 

N-body simulations, using Fourier methods, of the growth of fluctuations in Friedman universes have proved to be powerful 
tools for following the evolution of structure (e.g. White et al. 1987). The Fourier initial conditions are specified by the power 
spectrum P(k) of density fluctuations plus their statistics. The initial density field is usually taken to be Gaussian which in 
Fourier space means that the phases of the waves are uncorrelated and random and that the amplitudes of the real and imaginary 
parts for each mode have Gaussian distribution with zero mean and a variance that equals the power spectrum density P{k). 
Individual realizations of expanding universes with these density fluctuations are then evaluated dynamically. 

We have performed a set of 7V-body simulations in a box that expands with the universe. Density was assigned to the grid using 
a tri-linear interpolation (CIC) scheme which assigns the mass from a particle to the eight nearest grid points. The gravitational 
field was solved on the cubic grid with periodic boundary conditions using Fast Fourier Transform (FFT) methods. The force 
field was calculated at the particle positions using CIC interpolation and at the grid points by two-point differencing of the 
potential. The particles were advanced using a time-centred leapfrog method with the expansion factor a as time variable. 

The initial conditions were generated from a random realization of the Gaussian density field from which the force field was 
computed. The Zel’dovich approximation was then used to translate the force into displacements and velocities for the particles 
which started out on a uniform grid. For further detail, see Villumsen (1989) {cfi also Efstathiou et al. 1985). 

The calculations were performed in comoving coordinates x expanding with a box of side L. Periodic boundary conditions 
imply zero power on scales larger than L. If we have an TV3 grid and TV3 particles we can generate the wave numbers up to 

2jr min(A^p,A^) 
T 2 

in each dimension in the initial conditions, typically Np < N. As the system clusters we can specify structures down to about one 
grid cell depending on the details of the Green’s function and the differencing and interpolation schemes, this corresponds at 
best to a maximum wave number of (2jr/L)( A/2). In these simulations we have A = Ap = 128 so only 64 waves can be specified 
in each dimension. In the CDM and HDM simulations, the box size is taken to be L= 500 h~l Mpc, where h =//0/100 km s~1 

Mpc~ l. We used /z = 1 /2 which is the preferred value for CDM universes with a linear bias model (e.g. Davis et al. 1985; White et 
al. 1987). At the present epoch, the rms density fluctuation (with a top hat filter) is 

(8/z lMpc) = cr8 
1 
b7 (92) 

where b is the linear bias factor (BBKS). We have chosen b = 2 but the results can be rescaled to other bias factors. 
Evolution equations (56) and (57) for and D2 were integrated backwards from the present along unperturbed rays in 

comoving coordinates using the fourth-order Runge-Kutta scheme. We assume that the universe is periodic on the scale of the 
grid and wrap the ray around (avoiding symmetry directions). If we run a light ray along a symmetry direction (i.e. one of the axes 
of the grid), it will traverse correlated patches of density on the scale of the grid and thus add artificial power on the scale of the 
grid. If we use a power spectrum with significant power on the scale of the grid or larger, then the assumption of periodicity will 
induce significant errors, even with avoidance of symmetry directions. Commonly used model universes such as HDM or CDM 
models based on inflation have very little power on these scales so the assumption of periodicity should not induce significant 
errors. 

For each ray, we find x(a) at each time-step. At each corner of the grid cell in which the ray is located we evaluate the second 
derivatives of <I>, the potential in comoving coordinates. If the index of a corner of the gridcell is n = (11^ n2, n3) then 

Q,,u=N2[<&(n¡-l,n2,n3) + <P(ní+l,n2,n3)-2<í>(nl,n2,n3)] (93) 

0 
Nf 

4 i2 = -r[<ï)(«i ~t,n2- 1, n3) +0(zz1 +1, n2 
+1? n3)~(&{ni ^ ^2 +^3)“_ 1? n3 (94) 

and equivalently. Also <î> ÿ =<ï> y/. To calculate the derivatives at the position of the light ray we use CIC interpolation with the 
values at the eight corners. These derivatives use the coordinate system of the A-body code, however, we need the derivatives 

and <î> '12 in a coordinate system where £3 is along the ray. There is a rotational degree of freedom in the choice 
of coordinate system so we choose the following right-handed system: 

X3 = (sin 0 cos fa sin 6 sin cos 6) x'2 = {- sin <¡>, cos 0, 0) x\= (cos 6 cos 0, cos 6 sin - sin 0). (95) 

The derivatives are computed in the primed coordinate system using 

O 
k.l 

dxk dxi 
dx, dx, ’ 

(96) 

The computed magnification and image polarization for typical realizations of CDM and HDM universes are exhibited in Fig. 
13. The numerical simulations also verify that the image rotation given by Dw is completely negligible. The rms value of D^/D^is 
only ~ 6 x 10-5 at z = 1. 
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Distortion of images by large-scale structure 619 

Figure 13. Simulated map of the magnification contours and the polarization p for CDM and HDM universes and source galaxies at redshifts 
z = 1 and 3. 

6.5 Numerical evaluation of the polarization correlation function 

Sixteen observer positions, jr0, were chosen randomly and the correlation of the polarization on scales up to a few degrees 
determined. Each observer looked in a random direction at 50 x 50 light rays in a square patch 0.2 rad = 11.5° across so our 
resolution is 0.23°. 

We computed D2 for each of the /Vx N (N= 50) light rays (for given redshifts) in each of M= 16 patches. The correlation 
function was computed independently in each of the patches: 

Cp(0) = 
4<D2(*)D*(*')> 

m = l,2,...,M; cos(0) = (97) 

where 0 is the angular distance between the rays i and j and we average over all pairs of rays separated by an angle lying in a bin 
centred on 6. The correlation function for a particular redshift was determined by taking the average of Cpp(0) over the patches 
and subtracting a correction term, 

Cpp(0) = 
1 

M 
I 

m = \ 
CP

m
P(0) 

4<D2>2 

(98) 
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620 R. D. Blandford et dl. 

where the average, ( ) is taken over all the patches. The mean of Cpp(6) over the entire sky should be zero. However, in our 
individual finite-sized patches the mean of Cpp(6) is not exactly zero and, so, the ‘true’ correlation function is not merely the 
mean of the correlation functions from each of the individual patches. We make a first order correction to our calculation of 
Cpp{6) by subtracting off the second term in equation (98). However, this correction makes very little difference to the observed 
correlation function. 

The variance in the correlation function is 

^ M 
o(e)2 = ——l[c;;(e)-cpp(d)]2. (99) 

^ /??=i 

6.6 Smoothing the power spectrum 

In order to compare the analytical and 7V-body results directly, we must take into account the smoothing of the force field that is 
encountered in the 7V-body simulation. To this end, both the finite resolution of the code (1 grid cell) and the fact that the 
potential is differenced (as opposed to differentiated) in order to determine the forces must be considered. The combination of 
these two factors amounts to a smoothing length of approximately 2 grid cells (see Villumsen 1989, fig. 1). We modify the power 
spectrum, P ( k), by multiplying it by a Gaussian smoothing function 

P(k) = z-k2riP(k\ (100) 

where P(/c) is the unfiltered power spectrum and the smoothing length is rs. We choose rs so that the Gaussian smoothing volume 
and the 7V-body smoothing volume are the same, (2jz)3/2r¡ = 23, leaving us with rs = 0.8 grid cells (recall that one grid cell is 
3.8 h~l Mpc so the smoothing length is 3.1 h~1 Mpc). We expect that if non-linear effects are not important the analytic results 
with a smoothing length of 0.8 grid cells should agree well with the TV-body results. 

We have introduced the smoothing of the power spectrum primarily to relate the analytical results to the TV-body calculations. 
However, there is a more important reason for smoothing the density fluctuation spectrum and this concerns the manner in 
which the polarization will have to be measured observationally. In order to obtain a sufficiently accurate value for the 
polarization at a point, it will be necessary to average over a finite area of sky. This procedure will effectively erase any evidence 
for smaller scale structure. The manner in which this smoothing is carried out is dependent upon the details of the image 
polarization survey. However, once this is settled, precise predictions for the smoothed correlation function can be computed for 
a given power spectrum of density fluctuations and world model. Some specific examples will be presented in a future paper. 

6.7 Normalizing the power spectrum 

In order to compute the analytical image polarization and correlation functions one must know the normalization of the power 
spectrum. The power spectrum may be written as P(/c) =AkT2(k), where T(k) is the transfer function and A is a normalization 
constant. The mean-square mass fluctuation inside a sphere of radius Ris 

d3kP(k)W2(kR) = d3k AkT2(k) W2(kR), (101) 

where 

W(kR) = 
3 

(kRf 
[sin (kR) — kR cos (/:/?)] = 

VÁkR) 
kR 

(102) 

(e.g. Peebles 1980). For R=8 h 1 Mpc we introduce the definition of the linear bias factor, b, (BBKS) and therefore the 
normalization constant may be computed as 

A = d3kkT(k)W2(Sh~l Mpc k) 
-1 

(103) 

For /z = 0.5 we find v4CDM = 1.78x 104 b~2 Mpc-2 and 21hdm = 5.78x 104 b~2 Mpc-2. The normalization of the power 
spectra was computed without using the Gaussian filter in the calculation of the image polarization correlation function because 
the TV-body simulation attempts to reproduce the correct unsmoothed power spectrum at large scales. 

6.8 Non-linear evolution 

Full TV-body simulations in which the density fluctuations were allowed to grow to non-linear amplitude were performed for 
CDM and HDM models. The rms image polarization, /?rms(x), and the correlation function Cpp(0), (as a function of 0for various 
redshifts) were then evaluated. Initial conditions starting at a redshift z¡ = 16 (so that a8 = l/34) were generated and the 
simulation was evolved forward in time for 17 expansion factors with a steplength Aa =1/340. (Linearized TV-body calculations 
were also performed and the results differ from the full Af-body simulations by a few per cent.) 
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Distortion of images by large-scale structure 621 

The rms image polarization as a function of redshift for a CDM universe for the case where the sources are at one redshift 
(equation 83) is shown in Fig. 9. The Af-body result (curve D) and analytical results for Gaussian smoothing lengths of zero 
(curve A) and 0.8 grid cells (curve C, which lies almost directly on top of curve D) are shown. For comparison the analytical 
image polarization for a Gaussian smoothing length of 0.4 grid cells, corresponding to a smoothing length of one grid cell in the 
code, is also shown. All four curves have essentially the same functional form, their shapes agreeing well over the entire range of 
z, however, their amplitudes vary with the choice of smoothing length used in the analytical calculation or the use of a grid (in the 
case of the A-body simulations). The amplitude of the analytical curve for a smoothing length of zero is approximately three 
times that of the A-body curve, while the amplitude of the analytical curve for a smoothing length corresponding to 0.8 grid cells 
(which is what is expected to occur in the A-body code) is, to two significant digits, the same as that of the A-body curve. Thus, 
we observe that the functional form of the rms image polarization function is nearly independent of the smoothing length, but the 
amplitude depends sensitively on the smoothing length used. (See Table 1 for a summary of these results for redshifts of 1, 2 and 
3.) A question that should be addressed is the size of a simulation we would require to make the A-body curve approach the 
analytical, unsmoothed curve. If we increase the size of the simulation to 10243 grid cells (i.e. we decrease our smoothing length 
by a factor of 8) we increase the amplitude of D2 by a factor of 2. Since the amplitude of the analytical curve is approximately 
three times the amplitude of the A-body curve, we see there is little to be gained by increasing the number of grid cells. 

We find that our results differ significantly from those published by Jaroszyñski et a/. (1990). These authors calculated the 
probability distribution of the ellipticity induced in individual, circular galaxy images obtaining a mean value of ~ 0.043 at z = 1, 
significantly larger than our computation (and analytical calculation) of Cpp(0)1/2 = 0.011. There are two factors which, in 
combination, may explain the discrepancy between the two sets of results. First, the grid used by Jaroszyñski et al. is 128 h~{ 

Mpc on a side (compared to ours which is 500 h~1 Mpc) and both grids have 1283 grid cells. This means that if the smoothing 
length for Jaroszyñski et alls calculation is taken to be 2 grid cells (as we took ours to be), their smoothing length is equivalent to 
0.256 of our grid cells (corresponding to a Gaussian smoothing length, rs, of 0.8 h~{ Mpc). According to our analytic 
calculations of the rms image polarization, at a redshift of one the amplitude of the function for a smoothing length of 0.8 h~l 

Mpc should be approximately 1.7 times the amplitude of the function for a smoothing length of 3.1 h~l Mpc, which is the 
Gaussian smoothing length we have assumed. Also, our A-body calculations differ from those of Jaroszyñski et al. in that we 
specifically avoided running light rays along symmetry directions while they specifically ran all the rays along symmetry 
directions. We ran another simulation in which all the light rays ran along symmetry directions and found that for a redshift of 
one the rms image polarization was approximately a factor of 1.8 higher than the simulation in which symmetry directions were 
specifically avoided. The combination of these two factors leads us to expect the results of Jaroszyñski et al. to be a factor of 
1.7 x 1.8 — 3.1 higher than our numerical results. 

The rms image polarization as a function of redshift for a HDM universe for the case where the sources are at one redshift 
(equation 83) is shown in Fig. 10. Both analytical curves differ from the A-body results by approximately 5 per cent. In contrast 
to the case of CDM, we observe that both the shapes and amplitudes of the analytic and A-body image polarization functions 
agree well over the entire range of z, which is due to the sharp cut-off of the HDM power spectrum. That is, since the power 
spectrum is cut off sharply, filtering it on scales smaller than the cut-off frequency will have very little effect. 

Also shown in Figs 9 and 10 is the rms image polarization for the case where the sources are uniformly distributed in redshift 
(equation 91 ). Analytic results for Gaussian smoothing lengths of 0, 0.4 (CDM only) and 0.8 grid cells and the A-body results are 
shown. Again we note that the functional form of the averaged image polarization function is nearly independent of smoothing 
length but the amplitude is not. (See Table 2 for a summary of these results for redshifts of 1, 2 and 3.) 

The polarization correlation functions were also calculated for the A-body simulations up to an angular separation of 3°. 
These are superposed upon the analytical results in Figs 11 (single source redshift) and 12 (distributed sources). The error bars 
are the 1-a uncertainty in the mean derived from the scatter between the 16 patches. In both cases the agreement is good for 
small 6 and, in the case of single source redshift, the agreement is better at large redshift, whereas in the case of distributed 
sources the agreement is better at small redshift. The analytical correlation function crosses zero later than the A-body estimate 
in all six cases shown. Overall, the agreement is better in the case of CDM than HDM. 

The accuracy of the paraxial approximation increases the greater the number of wavelengths between the observer and the 
source. In the case of HDM essentially all the power comes from waves with l//c0 ~ 20 h~l Mpc, of which there are only 70 
wavelengths out to z = 1. In CDM there is a significant amount of power on smaller scales so there are more wavelengths out to 
the source. Thus we expect the agreement between the A-body and analytic results to be better for CDM than for HDM. 
Another source of discrepancy comes from the finite number of waves in the simulation, which introduces shot noise. Only the 
small fraction of waves that are nearly perpendicular to the line-of-sight contribute significantly to the shear. Shot-noise effects can 

Table 1. Analytic and numerical results for the rms image polarization 
measured in per cent for CDM and HDM universes in which the sources are 
at one redshift and the smoothing length rs is varied. 

CDM HDM 

“3=0.0 
3.3 
5.6 
7.2 

■3=0.8 
1.1 
1.9 
2.4 

N-body 
1.1 
1.9 
2.4 

r3=0.0 
1.4 
2.3 
3.0 

r3=0.8 
1.2 
2.1 
2.7 

N-body 
1.3 
2.2 
2.8 
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622 R. D. Blandford ci dX. 

thus be important in these simulations, especially for the HDM simulations. This shows up most strongly for HDM in Cpp(0) at 
large angles where there is a significant discrepancy, while for CDM the agreement is excellent. 

Fig. 14 shows how Cpp(0) is affected by smoothing the power spectrum. The plots on the left side of the figure show the 
analytical predictions for Cpp( 0) for z = 1, 2 and 3 for smoothing lengths of 0 and 0.8 grid cells for CDM. The plots on the right 
side of the figure show the corresponding results for HDM. The angles at which the curves fall to half their peak value are 
indicated by circles. We note that smoothing has little effect on the HDM curves and a significant effect on the CDM curves. 
Again, this is due to the shapes of the respective power spectra. 

The correlation length is often taken to be the point at which the correlation function crosses zero, 0O. In principle this is an 
attractive definition, but in practice it is a difficult number to measure accurately (since the functions become very flat near zero) 
and is sensitive to smoothing. One could take the point at which the correlation function reaches half its maximum to be the 
correlation length, however, this number is very sensitive to smoothing (see Fig. 14). (In the case of a hot dark matter dominated 
universe this would not be a problem, since we have seen that smoothing the HDM power spectrum has little effect on the 
correlation function, however, since we do not know that the universe is hot dark matter dominated this is not a particularly 
attractive choice.) An alternative definition of the correlation length is as defined by equation (52) which is easier to measure 
than the first definition and is less sensitive to smoothing than the second definition. 

The integrated correlation function assuming a smoothing length of 0.8 grid cells is shown in Fig. 15. The analytic values of 
01/2 for redshifts of 1, 2 and 3 are shown in Table 3 for CDM and HDM models for smoothing lengths of 0 and 0.8 grid cells. 
The correlation lengths and amplitudes of the correlation functions are similar for both the CDM and HDM models, however, 
the shape of the functions are quite different. For the HDM model the correlation function decreases slowly with angle while for 
the CDM model it falls off more quickly. Thus, the integral of the correlation function out to 0O is larger for the HDM than for 
CDM. We also note that the correlation length is inversely proportional to x. 

6.9 Delta function power spectrum 

Recent observations (e.g. Lynden-Bell et al. 1988; Broadhurst et al. 1990; Maddox et al. 1990) indicate that there may be signifi- 
cant power on scales larger than ~ 20 h~l Mpc and possibly even a spike at 128 h~l Mpc, which motivates us to investigate the 
effect on the correlation function of putting power on large scales. As an illustrative ‘toy’ model we choose a delta function 
power spectrum, 

P{k)=AÔ(k-k{))lkl (104) 

Figure 14. Analytical results for Cpp(0) for sources at one redshift for CDM (left side) and HDM (right side) universes for smoothing lengths, 
rs, of 0 (dotted line) and 0.8 (solid line) grid cells. The point at which Cpp( 6) = 0.5 Cpp(0) is indicated by circles (open circles for rs = 0 grid cells; 
filled circles for rs = 0.8 grid cells). Values of /z = 1/2, Q = 1 and b = 2 were adopted for this calculation. 
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Table 2. Analytic and numerical results for the rms image polarization 
measured in per cent for CDM and RDM universes in which the sources are 
uniformly distributed in redshift and the smoothing length rs is varied. 

623 

CDM HDM 

*3=0.0 
2.1 
3.6 
4.6 

rs=0.8 
0.69 
1.2 
1.5 

N-body 
0.66 
1.1 
1.5 

r5=0.0 
0.87 
1.5 
1.9 

rs=0.8 
0.78 
1.3 
1.7 

N-body 
0.80 
1.4 
1.8 

Table 3. Analytic results for the correlation length, 01/2, for CDM and HDM 
universes with different smoothing lengths. 

* CDM HDM 

’*=0.0 
0.7 
0.5 
0.4 

r*=0.8 
0.9 
0.6 
0.5 

r*=0.0 
1.1 
0.8 
0.6 

r,=0.8 
1.2 
0.8 
0.7 

Figure 15. Analytical results for the integrated cross correlation 
function where the sources are at one redshift for CDM (left panel) 
and HDM (right panel) universes. Smoothing lengths of 0 (solid line) 
and 0.8 (dashed line) grid cells were used. 0,/2 is indicated by filled 
circles for rs = 0 grid cells and by filled squares for rs = 0.8 grid cells. 
Values of /* = 1/2, Q = 1 and b = 2 were adopted for this calculation. 

Figure 16. The left panel shows the analytical correlation function 
for a universe with a delta function power spectrum, 
P(k) = Aô(k - k0)l kl, l/k0 = 128 h~l Mpc, for source redshifts of 
1, 2 and 3. The right panel shows the analytic result for the 
integrated cross correlation function for redshifts of 1, 2 and 3 
where all the sources are at one redshift. Filled circles denote the 
correlation length 01/2. Values of /*=l/2, Q = 1 and 6=1 were 
adopted for this figure. 

where k0 corresponds to a scale L, the scale on which there is extra power. This calculation is only meant to show that large- 
scale power gives a significant polarization signal. If we assume the small angle approximation holds then from equations (82) 
and ( 101) we see that the correlation function for the delta function power spectrum in terms of ôp/p on a given physical scale x() 

is 

Cpp(0) = 
9jtx3 

ko P 
dss2(l- s)2 J0{sk()xO), (105) 

which is valid provided k0x0 < 1. (Note that x0 above has physical units whereas x is a dimensionless number.) By setting 6 - 0 in 
the above equations we see that the image-polarization scales as the square root of L. The ‘s’ integral has k0xGasa. factor in the 
argument for 70 so the correlation length is proportional to L and inversely proportional to x. 

The left-hand panel of Fig. 16 shows Cpp( 6) for a delta function power spectrum with 1//:0 = 128 h~l Mpc and the right-hand 
panel shows the integrated correlation function out to 0O. The functions in this figure were calculated using the full 3D integral 
for Cpp( 6), rather than equation (105), since the full 3D integral is valid at the angular scales in the problem, which approach 25°. 
In practice, however, the results given by equation (105) vary little from those given by the full 3D integral, the agreement being 
best for smaller angles, or course. We find that the rms image polarization is ~ 0.1 ( ôp/p) and the correlation length, 01/2, is ~ 
1 Io for sources at a redshift z=l. 

6.10 Scaling relations 

Simple scaling relations for the shear can be derived from equations (82) and (90). We see that Cpp(0, x) =x3g(x6), where gis a 
function of the power spectrum and the number density of sources a function of x. Thus Cpp(0, x) =x3Cpp(x6, 1). With this 
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624 R. D. Blandford et al. 

scaling, 6y ¡2 and 0O are inversely proportional to x. Furthermore, the integrated correlation function is proportional to x. These 
scaling relations are valid for any source distribution in x. For the delta function power spectra we see that the integrated correla- 
tion function scales as L3. 

7 DISCUSSION 

In the present paper, we have shown how large-scale structure can induce a surprisingly large distortion of the images of distant 
galaxies that can be correlated over angular scales ~ 0.5-1°. We found that standard cold and hot dark matter cosmogonies or 
purely kinematical descriptions in which roughly 10 per cent of the closure density is distributed in voids and walls with 
characteristic scale size ~ 100 /*“1 Mpc produce a correlated ellipticity of magnitude a few per cent, comparable with the limit 
of Valdes et al. (1983). Larger ellipticities are predicted if the observed galaxies are less biased tracers of the mass in the 
universe. Observationally it will be difficult to distinguish between CDM and HDM universes. However, since the larger the 
scale the power is put on, the larger signal one expects to observe, it should be relatively easy to disprove observationally models 
with large scales in the mass distribution. 

We therefore propose that maps of image polarization might provide a powerful cosmological diagnostic of the distribution of 
mass on scales ~ 100 Mpc. We would, in effect, be using photons in place of galaxies as dynamical tracers of the gravitational 
field (at least adopting the Newtonian approximation to general relativity). 

This proposal is made more viable by the discovery of a surprisingly large population of apparently high-redshift galaxies 
(Tyson 1988; Tyson & Seitzer 1988). These galaxies are reported to have a sky density of ~ 3 x 105 deg"2 at 5 = 28 mag roughly 
four times greater than the density of comoving L* galaxies out to a redshift z = 3. Tyson and collaborators (e.g. Guhathakurta, 
Tyson & Majewski 1991) have argued that these galaxies have angular sizes ~ 2-3 arcsec, are very blue and mostly distributed 
between redshifts 1 <z<3. More recently, though, Lilly, Cowie & Gardner (1991), while measuring a comparable (2.5 x 105 

deg"2) sky density, find that the galaxies are ~ 0.8 mag redder and significantly smaller ( ~ 0.5-0.8 arcsec) than found by Tyson 
and collaborators. Roughly half the light from these galaxies comes from only 1 per cent of the sky. Lilly et al. argue that brighter, 
~ 24 mag galaxies are typically at z = 0.3 and already exhibit a density excess. 

Both of these differences are important for the observational investigation proposed here. If the high-redshift galaxies really 
are blue then their colour can be used to separate them from nearby galaxies (c/ Tyson, Valdes & Wenk 1990) and improve the 
signal-to-noise in the measured polarization. Furthermore, if the image shapes are as small as reported by Lilly et al, then it will 
be correspondingly harder to measure the individual image orientations. In particular a greater premium will be placed on 
observing under conditions of excellent seeing. 

Magnification fluctuations are also predicted using our formalism. However, we have de-emphasized these in the present 
paper because we believe that their small amplitude (typically ~ 0.03 mag) for CDM will be very difficult to disentangle from the 
effects of variable reddening. These fluctuations will be most apparent in galaxy counts down to a given limiting magnitude. If we 
use the counts per unit solid angle on the sky to define an angular density correlation function, w{ 0), by 

(VV'> = <V>2[l + w(0)] (106) 

and the source counts increase at a rate of q mag"l, then 

w[6) = (2.5 log q)2{AMlAM2) = (2.5 log q)2Cpp(6). (107) 

At the faintest magnitudes, q~ 2. 
We can use the positions of galaxies to infer the polarization. The shear field will not only shear the shapes of galaxies, it will 

also shear the distribution of galaxies on the sky. A spherical distribution of galaxies will thus become elongated and the two- 
point correlation function of galaxies will acquire a quadrupole term, w2(0)= w(0)* Cpp(6). This procedure has the advantage 
that it is not necessary to measure eccentricities and position angles for the galaxies. The measurements are thus affected much 
less by systematic effects. A drawback is that at the relevant distances, z ~ 1, w{6) is already weak so we are looking for a very 
small effect. This procedure will be discussed in a future paper. 

There is an important distinction that should be drawn between the observational investigation described here and several of 
the studies to which we have already referred. What we propose is to use the shear correlated over large angular scales to ‘weigh’ 
the large-scale structure. This involves measuring the shapes of tens of thousands of galaxies in ~ 10-20 arcmin fields. By 
determining the mean orientation, we will implicitly average over the intrinsic ellipticity distribution which may, for a variety of 
reasons, show some cosmological evolution. 

It is possible that gravitational anisotropy in the source region might exert a subtle influence upon the intrinsic source 
orientation and a positive image polarization measurement might result (West 1989; West, Villumsen & Dekel 1991). As the 
source galaxies are likely to be distributed over a large interval of comoving distance, uncorrelated regions will add stochasti- 
cally. Intrinsic polarization should be distinguishable if a redshift indicator such as magnitude or colour can be found for the 
source galaxies. It should be emphasized that the treatment we have presented in this paper is restricted to an Einstein-de 
Sitter cosmology. 

It is possible to use the modestly faint galaxies with magnitude 22^m^25 to predict the image polarization, if they are 
located at redshifts 0.3 ^ z ^ 0.8 where most of the distortion originates. Galaxy counts may provide a direct measure of the mass 
distribution at these intermediate redshifts. The density inhomogeneity associated with these galaxies can be computed for given 
models like CDM and different prescriptions for relating the galaxy magnitudes and colours to distance and used to predict the 
image polarization. This predicted image polarization can then be cross-correlated with the measured value. Unfortunately, this 
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procedure will be more sensitive to small reddening variation than the measurement of ellipticity because it will be difficult to 
distinguish an apparent excess in the density of distorting galaxies from a negative fluctuation in the extinction. 

We have argued that, if the faintest galaxies are really located at redshifts beyond z = 1, and they can be adequately imaged, 
then random errors associated with counting statistics should be smaller than the anticipated signal. However, systematic errors 
are likely to be far more serious. There are several possible sources. First, differential refraction in the atmosphere will create 
elongated images. This effect can be minimized by using narrow band filters and working at high altitude. Secondly, similar 
effects inside the telescope itself, notably astigmatism, might contribute at the few per cent level. Thirdly, errors associated with 
guiding the telescope might create spurious elongation in right ascession. Although difficult to avoid, it is straightforward to test 
this by checking for any such correlation in the data. Fourthly, there is an intrinsic anisotropy in a gridded detector like a CCD. 
This can obviously be avoided by rotating the detector through multiples of 45°. Undoubtedly, the best method for quantifying 
all of these systematic effects is to compare the galaxy images with the point spread function measured using stars of similar 
colour. 

An investigation like the one that we are proposing will require a large amount of telescope time. The galaxy counts to 29 mag 
of 3 x 105 deg"2, reported by Tyson (1988) were obtained with six-hour integrations under conditions of excellent seeing using a 
4-m telescope with a 3 x 5 arcmin2 field of view. (The photon counting rate is only ~ 0.1 s"1 galaxy" ^ This area of sky contains 
only ~103 galaxies and many nights would be necessary. Larger telescopes, like the Keck 10-m or the ESO VLT 16-m 
telescope, will increase the rate of data acquisition, and a larger field of view would undoubtedly be beneficial. Tyson (private 
communication) reports the imminent availability of 50 x 50 arcmin CCDs which might acquire several hundred thousand 
galaxy images per night. (Note that observing over a wide field may increase the image distortion associated with the telescope.) 

What might we learn from a positive detection of correlated ellipticity in galaxy images? In principle, this should be able to 
tell us the mass-to-light ratio on the largest scales of inhomogeneity yet probed. In practice, this will be quite sensitive to the 
assumed cosmology and somewhat sensitive to the assumed source redshift distribution. (We plan to address this in a future 
publication.) Although the large-scale structure so far observed is at too small a redshift to influence the image shapes seriously, 
it may be possible to probe areas of sky with unusually large induced ellipticity using pencil beam galaxy surveys (redshift 
surveys at intermediate distances and magnitude surveys at larger distance). It might then be possible to relate the distortion to 
specific inhomogeneities in the galaxy distribution. An alternative possibility is that high polarization will be associated with 
large excesses of quasar absorption Unes. 

A positive detection of correlated ellipticity would measure the mass distribution on the largest scale for which we have good 
local evidence of inhomogeneity. However, the most intriguing possibility of all, and the easiest result for which it can be believed 
that systematic observational errors are unimportant, is that no induced ellipticity will be found. This is what happened to 
measurements of microwave background fluctuations that were supposed to detect inhomogeneity on the last scattering surface. 
Such a contradiction between the direct observation of large-scale structure and the absence of associated image distortion 
would present a major challenge to cosmogony. 
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APPENDIX A: SURFACE POTENTIAL OF AN INCLINED UNIFORM DISC 

Consider a thin circular ring with surface density 2, radius rand thickness Jr inclined at an angle i to the line-of-sight so that the 
axis ratio of the projected ring is cos(/) and the projected surface density is 2 sec(/). We know from potential theory (e.g. Morse 
& Feshbach 1953) that the interior surface potential is constant everywhere and the exterior equipotential curves form a 
family of confocal ellipses w = constant, where the curvilinear coordinates u, v are related to Cartesian coordinates x2 

through 

x, =fuv 
x2=f{u2— l)l/2(l —V2)'12 

Ku, 
0<^< 1. 

(A108) 

The semi-major axis of these ellipses are w/and the eccentricities are e=l/u. Solving Laplace’s equation in terms of these 
coordinates, we obtain 

d<&{2) = 4 ji^Zr dr cosh~1 u, u>coseci (A109) 

= 4^:2r Jrln[cot(//2)] u<coseci. (A110) 

Now let us assemble the potential for a complete disc by decomposing it into annular rings and integrating over them. 

0(2)(x!, x2) = 4jr 

where u(r) solves 

(xj + x\ sec2 /)' 
^(Ar dr cosh (w) + 2(r)r Jrln[cot (//2)] 

{x] +xlsec2 i)'12 

X, X2 
2 ' 2 1 U U — 1 

2 • 2 . r sin i. 

(Alll) 

(A112) 

The two-dimensional gravity can be computed by differentiating equation (All! ). After some calculation, we obtain 

g(x)= |V<I><2,| = 2jtcosec2 idu22.(u2- 1) (A113) 

directed normal to the equipotential surfaces. 
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Now let us simplify by assuming that the surface density, 2, is constant within a radius R. Resolving g into its Cartesian 
components, we obtain 

and 

AjzHxx 

1 + cos i 

4jr2x2 

cos /( 1 + cos Ï) 

for impact parameters that intercept the disc, as may be verified by elementary means (e.g. Birkenshaw 1986). 
For rays that pass outside the disc, the integral over u must be carried out to a maximum value of um satisfying 

2 2 Xl . X2 d2 • 2 . — -\ 2  = ^ Sin L 

u'm um-l 

Changing variables to £ = w 2 (and £m = « m
2), we obtain 

g, = - 47t2 cosec2 /x, [1 - ( 1 - £m)1/2] 

g2 =4jt2 cosec2 i'x2[l-(1 - £m)“1/2], 

where 

^ (x] +xl+R2 sin2/)-[(x] +x2
2 + R2 sin2 i)2-4x2

xR
2 sin2 /]1/2 

Sm = 1, 2 • 2x j 

We need the gravity gradients to compute the shear. We obtain 

dg, . dg2 47r2 
= COS l —— = -    . 

dxx dx2 1+cosi 

dgi _ dg2 _ Q 

dx2 dxx 

for rays passing through the disc. For rays passing outside the disc, 

dgl dg2 „ ^ 2.[1-(1-UI/2][(1-ÇJ3/2X?-X2] 
— = = 4jr2 cosec i   , ,7 2 2  
dx, dx2 (l-£m)X|+x2 

(A114) 

(A115) 

(A116) 

(A117) 

(A118) 

(A119) 

(A120) 

(A121) 

(A122) 

and 

dg2 = dg1 = 4jtl cosec21 x,x2 £m( 1 - £m)'/2 

dx, dx2 (l-£m)2xí + x2 

(A123) 
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