A CATALOG OF BRIGHT-RIMMED CLOUDS WITH IRAS POINT SOURCES: CANDIDATES FOR STAR FORMATION BY RADIATION-DRIVEN IMPLOSION. I. THE NORTHERN HEMISPHERE

Koil Sugitani ${ }^{1}$
I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 5000 Köln 41, Germany
Yasuo Fukui
Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
AND
Katsuo Ogura
Kokugakuin University, Higashi, Shibuya-ku, Tokyo 150, Japan
Received 1990 July 23; accepted 1991 January 22

Abstract

Forty-four bright-rimmed clouds associated with IRAS sources have been selected from the Palomar Sky Survey prints. They are good candidates for the sites of star formation induced by radiation-driven implosions; three well-established cases of radiation-driven implosions in bright-rimmed globules have been reported elsewhere (see work by Sugitani et al.). Nine of the bright-rimmed clouds are known to be associated with molecular outflows and two (including one with an outflow) with HH objects. Most of their sizes are $\lesssim 1 \mathrm{pc}$, similar to those of Bok globules. The luminosities of the associated $I R A S$ sources are relatively large, $\sim 10-10^{4} L_{\odot}$, compared to those of the IRAS sources associated with dark globules or dense cores in dark cloud complexes. IRAS luminosity to cloud mass ratios are significantly greater than those in dark globules or in dense cores of dark cloud complexes.

Subject headings: infrared: sources — nebulae: H iI regions - stars: formation

1. INTRODUCTION

Bright-rimmed clouds associated with old $\mathrm{H}_{\text {II }}$ regions have long been suspected to be potential sites for star formation due to the compression by ionization-shock fronts. Reipurth (1983) produced evidence for star formation in some of the bright-rimmed cometary globules in the Gum Nebula, and he suggested the possibility of low-mass star formation in these globules due to UV radiation.
The IRAS Point Source Catalog has revealed a number of stellar objects which probably are younger than pre-main sequence stars (e.g., Beichman et al. 1986) and which serve as candidates to study very early stages of star formation. Reipurth \& Gee (1986) and King (1987) have reported IRAS point sources embedded in bright-rimmed globules.

IRAS point sources associated with molecular outflows are considered to be the youngest solar-type stellar objects with ages of $\leqslant 10^{5} \mathrm{yr}$ as shown by the Nagoya CO survey (Fukui et al. 1986, 1989; Fukui 1989). Molecular outflows associated with luminous IRAS sources ($L \sim 10-10^{3} L_{\odot}$) have so far been found in three bright-rimmed globules, Ori I-2, IC 1396north, and L1206 (Sugitani et al. 1989). Velocity fields of ${ }^{13} \mathrm{CO}$ or $\mathrm{C}^{18} \mathrm{O}$ and time scales of star formation strongly suggest induced star formation by radiation-driven implosions in these three globules. Similar examples were also reported in two bright-rimmed cometary globules, ESO 210-6A (HH 46/ 47) and CG 30 (HH 120), in the Gum Nebula region (Olberg, Reipurth, \& Booth 1989), and in GN 21.38.9 in IC 1396 (Duvert et al. 1990).

Bright-rimmed globules are found in/around relatively old ($\tau \gtrsim 10^{6} \mathrm{yr}$) H II regions. Presumably, they were originally

[^0]dense clumps in the parental molecular clouds and have emerged after the dispersion of the parental molecular gas due to UV radiation from OB stars. The physical conditions of such globules match well the theoretical implosion models of single massive stars, and it is expected that they are compressed effectively by radiation-driven implosions. The model of radia-tion-driven implosion has been studied theoretically as an effective process of star formation (Klein, Sandford, \& Whitaker 1980; Sandford, Whitaker, \& Klein 1982, 1984; LaRosa 1983; Bedijin \& Tenorio-Tagle 1984; Klein, Sandford, \& Whitaker 1985; Bertoldi 1989, Bertoldi \& McKee 1990). If the molecular clouds are originally uniform, such implosion processes would not be expected; however, molecular clouds exhibit density inhomogeneities, i.e., clumps (e.g., Stutzki \& Güsten 1990). The radiation-driven implosion processes are generally expected to take place in clumps associated with H II regions, which are effectively compressed due to accretion shocks of the focusing gas introduced by their curved surfaces (e.g., Bertoldi 1989). The density increase due to the compression is followed by rapid gas cooling and diffusion of the magnetic field (Elmegreen 1988). It is likely that stars form in the postshocked clouds. Therefore, we consider the radiation-driven implosion as an important process of star formation.

In the three bright-rimmed globules, Sugitani et al. (1989) found a much larger $L_{\mathrm{IR}} / M_{\text {cloud }}$ ratio than for dark globules as one characteristic piece of evidence for the formation of more massive stars due to the radiation-driven implosions. However, the statistics are based on too small a number to establish a comprehensive understanding of star formation by such an implosion process. Star-formation frequency and efficiency and stellar mass function due to the implosions are still unknown. So, at present, improvement of the underlying observational statistics is particularly important.

In this paper, we present a catalog of bright-rimmed clouds associated with IRAS point sources in the northern hemisphere. Here, the bright-rimmed clouds include cometary globules and small clouds with curved bright rims. It is also our major aim to motivate further observations, at radio, infrared, and optical wavelengths, in order to reveal details and various physical aspects of star formation in shocked molecular gas.

2. THE SAMPLE

2.1. Surveyed Regions

Based on the Sharpless catalog (1959), a systematical search for bright-rimmed clouds in the northern hemisphere was made toward 65 H II regions with apparent extents of $\sim 60^{\prime}$ or larger. We also searched other areas where prominent bright rims are seen. The extent of $\sim 60^{\prime}$ corresponds to ~ 17 and $\sim 35 \mathrm{pc}$ at distances of 1 and 2 kpc from the sun, respectively. $\mathrm{H}_{\text {II }}$ regions of these sizes with an expansion velocity of ~ 10 $\mathrm{km} \mathrm{s}^{-1}$ should have ages of a few times $10^{6} \mathrm{yr}$, which are presumably long enough for ionization-shock fronts to cause star formation in bright-rimmed clouds.

2.2. Selection of Bright-rimmed Clouds with IRAS Sources

The Palomar Sky Survey (PSS) red prints and the IRAS Point Source Catalog were used for the survey of the brightrimmed clouds associated with $I R A S$ sources. Here, we mainly searched small bright-rimmed clouds with sizes less than several arcminutes. Our sources were selected by using overlays showing IRAS point sources for the PSS prints. Only those clouds were included which have IRAS sources surrounded by curved bright rims. We excluded the bright-rimmed clouds which have IRAS sources located just on their bright rims, because such IRAS sources possibly are not stellar objects but emissions from dust knots. The accuracy of the IRAS identification should be better than one-fourth arcminute.
Some additional criteria were imposed on the properties of the $I R A S$ flux qualities to exclude emission from diffuse dust. Only those IRAS sources were included which are detected at $25 \mu \mathrm{~m}$ as well as at least at one more band and which have point source correlation coefficients (CC) of F or better at 25 $\mu \mathrm{m}$, where IRAS point sources have CC between $87 \%-100 \%$ which are encoded as $A=100 \%, B=99 \%, \ldots, N=87 \%$ (see the explanatory supplement of the IRAS catalog). The detection at $25 \mu \mathrm{~m}$ may help to exclude normal/field stars coinciding by chance with the bright-rimmed clouds. No criterion for confusion and cirrus flag was imposed, because IRAS sources toward $\mathrm{H}_{\text {II }}$ regions generally have stronger contaminations from warm, extended emission than those in dark clouds not associated with $\mathrm{H}_{\text {II }}$ regions.

We may have missed some bright-rimmed clouds with IRAS sources in our survey. In particular, $\mathrm{H}_{\text {II }}$ regions with high surface brightness make such a survey difficult due to the saturation of the PSS prints. In fact, no bright-rimmed objects are detectable in S25 (M8) although many bright-rimmed globules are known to exist there (e.g., Osterbrock 1957). Also, rims of low brightness are not easy to detect. Third, due to the strong foreground emissions, we cannot pick up brightrimmed clouds located on the far sides of the H iI regions. Thus, our survey is limited to those objects only which are easy
to detect. Nevertheless, we believe that this work bears source importance as a first systematical survey for bright-rimmed clouds with the aim to produce further evidence for star formation induced by the radiation-driven implosions.

3. RESULTS

We selected 44 bright-rimmed clouds associated with IRAS point sources in/around 18 H II regions. Their finding charts reproduced from the Palomar Sky Survey red prints are shown in Figure 1 (plates 1-7). The position of the IRAS point source is indicated by a couple of white or black dashes. Table 1 presents the H iI regions where the bright-rimmed clouds associated with IRAS point sources were selected. The catalog of the bright-rimmed clouds is given in Table 2 and the properties of the associated IRAS sources are given in Table 3.

3.1. Bright-rimmed Clouds

The bright-rimmed clouds were classified into three types according to their rim morphology: (1) type A, moderately curved rim; (2) type B, tightly curved rim; and (3) type C, cometary rim. Their rim sizes, length (l), and width (w), are defined in Figure 2. Type A should have a length to width ratio, l / w, less than 0.5 , and type B greater than 0.5 . The range of their sizes is $0.2-3 \mathrm{pc}$ and most of them are less than 1 pc (Table 2). The average lengths and widths of these three types of rims (except for the No. 36 cloud) are, respectively, as follows: type A, 0.39 pc and 1.0 pc (25); type B, 1.0 and 1.2 pc (15); and type C, 0.58 and 0.18 pc (3), where the values in the parentheses are the sample numbers.

TABLE 1
H ii Regions where Bright-rimmed Clouds with IR $A S$ Point Sources Were Selected

H II Region	Size	d (kpc)	Ref. of d	Other Name
S49	90^{\prime}	2.2	1	M16, Ser OB1
S117	240^{\prime}	1.0	2	NGC7000
S131	170^{\prime}	0.75	3	IC1396, Cep OB2
S142	30^{\prime}	2.4	4	NGC7380, Cep OB1
S145	90^{\prime}	0.91	5	
S171	180^{\prime}	0.85	6	NGC7822, Cep OB4
S185	120^{\prime}	0.19	7	γ Cas
S190	150^{\prime}	1.9	8	IC1805
S199	120^{\prime}	1.9	8	IC1848
S236	55^{\prime}	3.4	1	IC410, Aur OB2
S249	80^{\prime}	1.6	9	
S264	390^{\prime}	0.40	10	λ Ori
S273	250^{\prime}	0.78	11	NGC2264, Mon OB1
S275	100^{\prime}	1.42	12	Rostte Nebula, NGC2244
				Mon OB2
S276	1200^{\prime}	0.40	13	Barnard's Loop, L1634
S277	120^{\prime}	0.40	14	IC434 Nebla
S281	60^{\prime}	0.46	15	Orion Nebula
S296	200^{\prime}	1.15	16	CMa OB1

[^1]

FIG. 1.-Finding charts for the bright-rimmed clouds. The charts are reproduced from the Palomar Sky Survey red prints. The position of the $I R A S$ point source associated with the bright-rimmed cloud is indicated by a couple of white or black tips. 1 mm in the charts corresponds to 0.28 except for the charts of panels $16-18$, where 1 mm corresponds to $0^{\prime} .56$.

14

16

18

15

17

19

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

38

42
40

43

44
Fig. 1-Continued

TABLE 2
Bright-Rimmed Clouds Associated with IRAS Point Sources

Cloud Number (1)	HII Region (2)	Rim Type (3)	1 (pc) (4)	$\begin{gathered} \mathrm{w} \\ (\mathrm{pc}) \\ (5) \end{gathered}$	$\alpha(1950)$ (6)	$\begin{gathered} \delta(1950) \\ (7) \end{gathered}$	IRAS Source (8)
1	S171	B	0.31	0.60	23 h 56 m 53.3 s	$67^{\circ} 06{ }^{\prime \prime} 57^{\prime \prime}$	$23568+6706$
2	(NGC7822)	A	0.46	0.86	0 h 01 m 23.0 s	68* $177^{\prime \prime} 5$	()0013+6817
3		C	0.39	0.16	0h02m47.9s	$67^{\circ} 00^{\circ} 57^{\prime \prime}$	$00027+6700$
4	S185	B	0.19	0.17	(0h56m(0).7s	$60^{\circ} 37 \% 21^{\prime \prime}$	$00560+6037$
5	S190	B	1.33	1.40	2 h 25 m 14.5 s	$61^{\circ} 20^{\prime} 10^{\prime \prime}$	02252+6120
6	(IC1805)	A	0.25	0.70	2 h 30 m 57.7 s	$60^{\circ} 34^{\prime} 41^{\prime \prime}$	$02309+6034$
7		B	2.11	3.33	$2 \mathrm{~h} 31 \mathrm{m01.7s}$	$61^{\circ} 33440^{\prime \prime}$	$02310+6133$
8		A	0.63	1.33	2 h 31 m 48.1 s	$61^{\circ} 06^{\prime} 32^{\prime \prime}$	$02318+6106$
9		A	0.21	0.67	2 h 32 m 37.3 s	$61^{\circ} 10^{\prime} 34^{\prime \prime}$	$02326+6110$
10	S199	A	0.46	1.16	2 h 44 m 23.9 s	$60^{\circ} 12^{\prime} 06^{\prime \prime}$	$02443+6012$
11	(IC1848)	A	0.53	1.05	2 h 47 m 37.4 s	59 ${ }^{\circ} 50^{\prime} 54^{\prime \prime}$	$02476+5950$
12		B	1.23	1.05	$2 \mathrm{~h} 51 \mathrm{m08.3s}$	$60^{\circ} 23^{\prime} 35^{\prime \prime}$	$02511+6023$
13		B	2.04	1.93	$2 \mathrm{~h} 57 \mathrm{m03.6s}$	$60^{\circ} 28^{\prime} 29^{\prime \prime}$	02570+6028
14		A	0.98	2.91	2 h 57 m 35.6 s	$60^{\circ} 17^{\prime} 22^{\prime \prime}$	02575+6017
15	$\begin{aligned} & \text { S236 } \\ & (\text { IC410) } \end{aligned}$	B	0.82	1.44	5 h 20 ml 3.3 s	$33^{\circ} 09^{\prime} 08^{\prime \prime}$	05202+3309
16	S276	A	0.59	1.26	$5 \mathrm{hl7m} 21.9 \mathrm{~s}$	$-5^{\circ} 55^{\prime} 05^{\prime \prime}$	05173-0555
17	S264	A	0.41	1.70	5 h 28 m 40.2 s	$12^{\circ} 03^{\prime} 13^{\prime \prime}$	$05286+1203$
18	(λ Ori)	A	0.37	1.40	5 h 41 m 45.3 s	$9^{\circ} 07^{\prime} 40^{\prime \prime}$	05417+0907
19	S277	A	0.18	0.41	$5 \mathrm{~h} 32 \mathrm{m00.4s}$	$-3^{\circ} 00^{\prime} 12^{\prime \prime}$	05320-0300
20	(IC434)	C	0.70	0.20	5 h 35 m 33.2 s	$-1^{\circ} 46^{\prime} 50^{\prime \prime}$	05355-0146
21		A	0.09	0.22	5 h 37 mll .8 s	$-3^{\circ} 38^{\prime} 46^{\prime \prime}$	05371-(0338
22	S281	B	0.62	0.37	5 h 35 m 58.5 s	$-5^{\circ} 15^{\prime} 48^{\prime \prime}$	05359-0515
23	S249	\wedge	0.74	1.77	6 h 19 m 56.5 s	$23^{\circ} 11.32^{\prime \prime}$	06199+2311
24	$\begin{aligned} & \text { S275 } \\ & \text { (NGC2244) } \end{aligned}$	B	1.02	0.58	6h32ml6.5s	$4^{\circ} 27^{\prime} 40^{\prime \prime}$	$06322+0427$
25	$\begin{aligned} & \mathrm{S} 273 \\ & \text { (NGC2264) } \end{aligned}$	B	0.65	1.22	6 h 38 ml 17.6 s	$10^{\circ} 17{ }^{\prime \prime} 54^{\prime \prime}$	$06382+1017$
26	S296	A	0.15	0.38	7h01m26.8s	$-11^{\circ} 41^{\prime} 17^{\prime \prime}$	07014-1141
27	(CMa OBl)	A	0.38	0.93	7h0lm37.9s	$-11^{\circ} 18^{\prime} 48^{\prime \prime}$	07016-1118
28		A	0.32	0.76	7 h 02 m 21.4 s	$-10^{\circ} 17^{\prime} 25^{\prime \prime}$	07023-1017
29		A	0.38	1.02	7 h 02 m 32.5 s	$-12^{\circ} 04^{\prime} 51^{\prime \prime}$	07025-1204
30	S49	B	1.63	2.64	18h15m55.)s	$-13^{\circ} 46^{\circ} 09^{\prime \prime}$	18159-1346
31	$\begin{aligned} & \mathrm{S} 117 \\ & (\mathrm{NGC} 7000) \end{aligned}$	A	0.46	1.39	20 h 48 m 57.5 s	$44^{\circ} 10{ }^{\prime \prime} 43^{\prime \prime}$	$20489+4410$
32	S131	A	0.17	0.69	21 h 30 m 52.7 s		
33	(IC1396)	A	0.14	0.30	21 h 31 m 41.1 s	$57^{\circ} 16^{\prime} 13^{\prime \prime}$	$21316+5716$
34		A	0.42	0.73	21 h 32 m 02.5 s	$57^{\circ} 50^{\prime} 06^{\prime \prime}$	$21320+5750$
35		A	0.35	1.32	21h34m35.8s	$58^{\circ} 18^{\prime} 10^{\prime \prime}$	$21345+5818$
36		(Aorc')	. .	0.97	21 h 34 m 40.1 s	$57^{\circ} 14^{\circ} 05^{\prime \prime}$	$21346+5714$
37	S131	C	0.65	0.19	21 h 38 m 53.2 s	$56^{\circ} 22^{\prime} 18^{\prime \prime}$	$21388+5622$
38	(IC1396)	B	0.76	1.11	21 h 39 ml 0.3 s	$58^{\circ} 02^{\prime} 29^{\prime \prime}$	$21391+5802$
39		B	1.01	0.60	21 h 44 m 30.8 s	$57^{\circ} 12^{\prime} 29^{\prime \prime}$	$21445+5712$
40		A	0.25	0.62	21 h 44 m 38.0 s	$56^{\circ} 55^{\circ} 05^{\prime \prime}$	$21446+5655$
41		B	0.72	0.60	21 h 44 m 52.8 s	$57^{\circ} 04^{\prime} 46^{\prime \prime}$	$21448+5704$
42		A	0.25	0.53	21 h 45 m 00.1 s	$56^{\circ} 58^{\prime} 30^{\prime \prime}$	$21450+5658$
43	$\begin{aligned} & \mathrm{S} 142 \\ & (\mathrm{NGC} 7380) \end{aligned}$	B	0.36	1.55	22 h 45 m 48.5 s	$57^{\circ} 46^{\circ} 59^{\prime \prime}$	$22458+5746$
44	S145	A	0.36	1.30	22 h 27 ml 2.2 s	$63^{\circ} 58^{\prime} 21^{\prime \prime}$	$22272+6358$ A

Col. (1).-Cloud number.
Col. (2).-H il region where the bright-rimmed cloud was selected.
Col. (3).-Morphological type of the bright rim (see § 3.1).
Cols. (4)-(5).-Length and width of the bright rim.
Cols. (6)-(7).-1950 coordinates which are quoted from the positions in the IRAS Point Source Catalog.

Col. (8).-IRAS point source associated with the bright-rimmed cloud.

TABLE 3
Properties of IRAS Point Sources

Number (1)	$\begin{aligned} & \text { IRAS Source } \\ & \text { (2) } \end{aligned}$	$12 \mu \mathrm{~m}$ (3)	$25 \mu \mathrm{~m}$ (4)	$60 \mu \mathrm{~m}$ (5)	$100 \mu \mathrm{~m}$ (6)	CC (7)	Type (8)	$\begin{gathered} L_{\mathrm{IR}} \\ \left(L_{\odot}\right) \\ (9) \end{gathered}$	$\begin{aligned} & \text { Outflow/HH } \\ & (10) \end{aligned}$	Ref. (11)
1	$23568+6706$	5.80 :	9.75	184.04	840.85	ECCA	II	750		
2	$00013+6817$	1.76	4.21	11.44	105.30L	AACG	I	(33)		
3	$00027+6700$	0.82:	1.48	19.92	73.91 L	DCA....	II	(38)		
4	(0)560+6037	1.93	2.52	43.12	74.32	BBCA	II	5.2		
5	$022.52+6120$	9.81	55.98	239.51 L	638.82 L	AAAA	III	(1100)	IC1805-west	1
6	($23.309+6034$	0.59 :	0.96	9.59 :	29.53	GCCB	II	160		
7	$02310+6133$	0.92	2.44	51.51	189.68:	GDCB	II	910	(a)	
8	$(2318+6106$	0.60	1.04	15.12 :	71.94:	DDCC	II	330		
9	$02326+6110$	0.32 :	0.69	5.81	37.48 L	FFBB	II	(61)		
10	$02443+6012$	0.71	1.02	3.44 L	102.86 L	CB...C	III	(30)		
11	()2476+5950	0.27 L	0.33	2.05	12.45	GCCB	II	53		
12	$02511+6023$	1.31	2.91	34.47	110.47	CBAA	U	580	(a)	
1.3	$02570+6028$	4.82	8.13	78.34	231.45	BBAA	II	1300	(a)	
14	$02575+6017$	19.91	211.98	767.93	1083.15	AAAA	I	9800	AFGL4029	2
15	$05202+3309$	0.51	0.95	13.41 L	62.02 L	CBEF	III	(81)		
16	05173-0555	0.25 L	3.02	27.15	61.34 :	GAAC	I	16	L1634/RNO40	1. 3
17	$05286+1203$	0.78	1.91	9.35 :	70.37	CCEF	I	19		
18	05417+0907	0.28 :	2.92	25.60	74.74	DAAB	I	18	B35	4
19	05320-0300	0.25 L	0.35	7.21 :	25.00	HCEA	II	5.3		
20	05355-0146	0.38	1.40	13.32	42.09	EBBA	I	9.8	Ori I-2	5
21	05371-(0338	0.48 :	0.84	15.10 :	69.12 L	FBDA	II	(6.3)		
22	05359-0515	1.44	1.95	18.85 :	97.56 L	CCDA	Il	(11)		
2.3	$06199+2311$	0.50	1.42	6.58	22.74 L	CAAH	I	(55)		
24	$06322+(0427$	0.37 L	0.75	10.20	73.98 L	FDB...	II	(51)		
2.5	$06.382+1017$	1.28	7.91	43.45	86.66	BAAA	I	100	$\mathrm{HH} 124^{\text {b }}$	6
26	07014-1141	0.61	1.01	11.85	23.50:	CCBE	II	57		
27	07016-1118	1.86	1.44:	32.03 :	144.62 L	FIEK	II	(110)		
28	07023-1017	1.15	1.77	50.23 :	134.25 L	CCBB	II	(170)		
29	07025-1204	0.26	1.36	10.12	33.23:	CAAA	I	64		
30	18159-1346	5.97	19.30:	169.86 L	5317.44 L	BBE...	III	(590)		
31	$20489+4410$	3.56	10.48	49.62	158.64 L	BABH	I	(160)		
32	$21308+5710$	0.68	1.18	10.23	62.94	CCDA	II	43		
33	$21316+5716$	0.99	1.36	33.46 L	73.10 L	DBBC	III	(6.4)		
34	$21.320+5750$	0.77	2.40	11.91 L	37.25 L	BAAB	III	(8.6)		
35	$21345+5818$	0.58	0.60 :	8.15 :	80.34 L	EFBF	II	(13)		
36	$21.346+5714$	0.74	1.51	28.01:	164.75:	DAAC	II	i10		
37	$21388+5622$	2.44	17.14	52.67	74.84	AAAA	I	110	GN21.38.9	7
38	$21.391+5802$	0.56 :	8.90	144.62	425.20	DAAA	I	340	IC'1396-north	5
39	$21445+5712$	3.01	11.34	34.75	86.75	AAAA	I	96	IC1396-east	1
40	$21446+5655$	0.38 :	0.63	20.42 L	41.48:	FCBA	III	(2.3)		
41	$21448+5704$	0.30 L	0.83	3.98	100.21 L	NDBC	I	(6.4)		
42	$21450+5658$	0.76	1.19	15.19	62.76:	CCBC	II	47		
43	$22458+5746$	5.83	30.31	431.31 L	384.32 L	AABF	III	(1000)		
4	$22272+6358 \mathrm{~A}$	0.25 L	18.01	378.36	726.92	JAAA	I	1000	L. 1206	5

Col. (1).-Identification number.
Col. (2).-Name of the IRAS point source.
Cols. (3)-(6).-IRAS fluxes at the four wavelengths, where "L" and ":" denote upper limit and "moderate" quality, respectively.

Col. (7).-Correlation coefficients of the IRAS point source.
CoL. (8).-Classification of the IRAS point source according to its colors (see § 3.2).
Col. (9).-Luminosity of the IRAS point source, where the parentheses denote the IRAS source with fluxes of upper limits at $60 \mu \mathrm{~m}$ and/or $100 \mu \mathrm{~m}$.

Cols. (10)-(11).-Known molecular outflow or HH object associated with the IRAS point source and its reference.
${ }^{\text {a }}$ Associated with a high-velocity CO wing (see § 3.2).
${ }^{\mathrm{b}}$ No detection of molecular outflow.
References.-(1) Fukui 1989; (2) Snell et al. 1988; (3) Cohen 1980; (4) Myers et al. 1988; (5)
Sugitani et al. 1989; (6) Walsh, Ogura, \& Reipurth 1991; (7) Duvert et al. 1990.

Bright-rimmed clouds appear to be composed of a dense head/front part and a less dense tail. Star formation should occur in the dense head part. We made a rough estimate of radii for the head part clouds based on the sizes measured above. Assuming a round shape of the head part cloud, its "radius" R was estimated as follows: (1) type A, $R=l / 2$; (2) type $\mathrm{B}, R=w / 4$; and (3) type $\mathrm{C}: R=w / 2$. All the radii estimated are $\leqslant 0.9 \mathrm{pc}$ and most of them are $\leqslant 0.5 \mathrm{pc}$ as shown in Figure 3. The ranges of types A, B, and C are 0.04-0.5, $0.04-$ 0.9 , and $0.08-0.1 \mathrm{pc}$, respectively. We note that these sizes of the bright-rimmed clouds are similar to the radii of the Bok globules (Bok \& Cordwell 1973; Bok 1977; Martin \& Barrett 1978).

The densities and masses are known for only a limited number of the bright-rimmed clouds which have been observed in molecular lines. We estimated the masses contained in the head part clouds $M_{\text {cloud }}^{\prime}$ by $M_{\text {cloud }}^{\prime}=4 / 3 \pi R^{3} m n$, where R is the radius defined above, m the hydrogen molecular weight, and n the assumed number density of $3 \times 10^{4} \mathrm{H}_{2}$ which is the average density of the three bright-rimmed globules, Ori I-2, IC1396north, and L1206, derived from the ${ }^{13} \mathrm{CO}$ observations (Sugitani et al. 1989). Because of the uncertainty in the radius determination (a few 10%), the masses $M_{\text {cloud }}^{\prime}$ are considered uncertain by a factor of a few. The range of the $M_{\text {cloud }}^{\prime}$ is $\sim 1-1900$ M_{\odot}, with most of them less than $100 M_{\odot}$. The average $M_{\text {cloud }}^{\prime}$ of the three rim types are as follows: type A: $44 M_{\odot}(25)$, type B:

Fig. 2.-Classification of the rim shape and definition of the rim size
$86 M_{\odot}$ (13, except for the two highest mass clouds), and type C: $2.6 M_{\odot}(3)$. These values are similar to those of the Bok globules (Bok \& Cordwell 1973, Bok 1977; Martin \& Barrett 1978).

3.2. Associated IRAS Point Sources

Figure 4 shows the $12 / 25 / 60 \mu \mathrm{~m}$ color-color diagram for the $44 I R A S$ sources, with the exception of eight sources not detected at $60 \mu \mathrm{~m}$. On the color-color diagram, the IRAS sources are divided into two types as in Beichman (1983). One type includes those sources with a distribution similar to that of the core sources, which are considered to be newly formed or still-forming stars embedded in their parental clouds. The other type are sources with a distribution similar to that of the hot cirrus sources, which are considered to be compact structures of the cirrus. Here we refer to the former as type I and to

Fig. 3.-Distribution of the cloud radii estimated from the rim sizes (see text), except for No. 36.

FIG. 4.- $12 / 25 / 60 \mu \mathrm{~m}$ color-color diagram of the $I R A S$ point sources. Filled circles denote the IRAS sources associated with molecular outflows. Down arrows indicate upper limits at $12 \mu \mathrm{~m}$.
the latter as type II. The numbers of type I and type II sources are 15 and 21 , respectively. With an average value of 99.6%, the correlation coefficients at $25 \mu \mathrm{~m}$ of the type I sources are good, D or better (see col. [7] of Table 3). The coefficients of the type II sources are rather good, with an average value of 97.7% at $25 \mu \mathrm{~m}$. Although the type II sources have a distribution similar to that of the hot cirrus sources on the color-color diagram, the type II sources have better correlation coefficients than the hot cirrus sources (Beichman 1983). The eight sources which are not detected at $60 \mu \mathrm{~m}$ (six of them are also not detected at $100 \mu \mathrm{~m}$) have again high correlation coefficients, an average value of 99.3% at $25 \mu \mathrm{~m}$. We refer to these eight sources as type III.
We derived the luminosities L_{IR} of the IRAS sources (Table 3), following Myers et al. (1987). To accurately examine the luminosity function of the $I R A S$ sources, we use only the 24 $I R A S$ sources whose fluxes were detected at least in the three bands centered at 25,60 , and $100 \mu \mathrm{~m}$. The distribution of the $L_{\text {IR }}$ for the 24 sources (except for source No. 36) is shown in Figure 5, which indicates that the L_{IR} ranges from 5 to $10^{4} L_{\odot}$. The type A clouds peak at $\sim 100 L_{\odot}$ in the luminosity distribution of the IRAS sources, whereas the type B clouds peak at $\sim 1000 L_{\odot}$. The logarithmic averages of the IRAS luminosities for the types A, B, and C clouds are 1.9 (13), 2.4 (8), and 1.5 (2), respectively. The average of the 24 sources is ~ 2.0, which is about two orders of magnitude larger than that of the IRAS sources associated with dark globules, ~ 0.46 (Sugitani et al. 1990) or dense cores in molecular cloud complexes, ~ 0.12 (Beichman et al. 1986).
Information on molecular outflows and HH objects associated with the $I R A S$ sources is also shown in Table 3. Not all sources have been checked for outflows. At present, nine of the 44 bright-rimmed clouds are known to have outflows asso-

FIG. 5.-Distribution of the luminosities of the IRAS point sources.
ciated with the $I R A S$ sources (Myers et al 1988; Snell et al. 1988; Sugitani et al. 1989; Fukui 1989; Duvert et al. 1990). Eight of the IRAS sources are type I, and the other is type III. The present detection rate of outflows for all the 44 IRAS sources is rather high, 20% (9/44). Recently, we searched some of the type II sources for outflows with the KOSMA 3 m telescope, and confirmed $\mathrm{CO}(\mathrm{J}=2-1)$ wing emissions associated with the clouds of sources 7,12 , and 13 .

4. DISCUSSIONS

4.1. Properties of IRAS Sources

The 44 IRAS sources selected here are considered to be good candidates for embedded young stellar objects or T Tauri stars. All the IRAS sources are located toward the regions of high visual extinction on the PSS prints, which is similar to the situation of IRAS sources associated with dark globules or cloud cores in molecular cloud complexes.

The type I sources are most likely young stellar objects embedded in molecular cloud cores. Part of the type I sources have so far been searched for molecular outflows and with a detection rate of 53% they are really young stellar objects.

The color-color plots suggest that the type II sources have warm $12 / 25 \mu \mathrm{~m}$ color indexes like the hot cirrus sources. However, the bright-rimmed clouds are located toward $\mathrm{H}_{\text {II }}$ regions
and can, therefore, be strongly contaminated by their associated and extended emission, particularly at longer wavelengths of the $I R A S$. For one $I R A S$ source in L1686, Beichman et al. (1986) mentioned that the extended emission confuses the measurement of the long-wavelength properties. It is, therefore, possible that the $25 / 60 \mu \mathrm{~m}$ color indexes become smaller than their actual values due to the excess emission at $60 \mu \mathrm{~m}$ from the $\mathrm{H}_{\text {II }}$ region. If this is the case for the type II sources, most of them should actually have spectral energy distributions similar to those of T Tauri stars. Although the IRAS sources in B335 and Cep C have 12/25/60 $\mu \mathrm{m}$ color-color indexes similar to the hot cirrus sources, they are associated with molecular outflows (Goldsmith et al. 1984; Fukui 1989). Three type II sources, i.e., sources 7, 12, and 13, may be associated with molecular outflows. Correlation coefficients of the type II sources at $25 \mu \mathrm{~m}$ are good, which may support that most of the type II sources are young stellar objects with warmer $12 / 25 \mu \mathrm{~m}$ color indexes than those of the core sources and are older than the core sources (Fukui et al. 1989).

Type III sources were not detected at $60 \mu \mathrm{~m}$. The reason for the nondetection may be similar to the case for the type II sources. One of them, IRAS $02252+6120$, is associated with an outflow (IC 1805-west; Fukui 1989) and an emission line star (Ogura 1989), although its fluxes at 60 and $100 \mu \mathrm{~m}$ represent upper limits.

4.2. Star Formation in the Bright-rimmed Clouds

Most of the IRAS sources associated with the bright-rimmed clouds have $L_{\text {IR }}$ from ~ 10 to $10^{3} L_{\odot}$ (Fig. 5). Generally the mass determination of a young stellar object is difficult, but this luminosity range may roughly correspond to intermediate masses of stars, something like $\sim 2-6 M_{\odot}$, suggesting that in-termediate-mass stars are mainly formed in the bright-rimmed clouds. The luminosity detection limit of the IRAS sources in this survey may be $\sim 10 L_{\odot}$, judging from the survey results. It is likely that we missed some quite bright-rimmed clouds associated with low-mass young stellar objects.

We have calculated normalized IRAS luminosities per unit cloud mass, $L_{\mathrm{IR}} / M_{\text {cloud }}^{\prime}$ following Sugitani et al. (1989). The result shows that the $L_{\mathrm{IR}} / M_{\text {cloud }}^{\prime}$ are between 0.1 and $10^{2} L_{\odot} /$ M_{\odot} (Fig. 6). The logarithmic averages for the 24 clouds with type A, B, and C rims (except for No. 36 cloud) are 0.49 (13), 1.0 (8), and $1.0(2)$, respectively. The logarithmic average of the 23 clouds is $\sim 0.7\left(\approx 5 L_{\odot} / M_{\odot}\right)$, which is much larger than typical values for isolated dark Bok globules, $\sim 0.1 L_{\odot} / M_{\odot}$ (Sugitani et al. 1989) and for the dense cores, $\sim 1 / 30 L_{\odot} / M_{\odot}$ ($\sim 1 L_{\odot}$: Beichman et al. 1986; $\sim 30 M_{\odot}$: Myers, Linke, \& Benson 1983). For the latter case, the cloud masses were derived from ${ }^{18} \mathrm{CO}$ observations and have a similar mass range. The assumption of constant cloud density and a radius R estimated from the l and w may be in doubt. Consequently, $L_{\text {IR }} /$ $M_{\text {cloud }}^{\prime}$ might have large errors (a factor of a few or more). Nevertheless, since the differences are very large, about two orders of magnitude, we consider that the luminosity-to-mass ratios are large in the bright-rimmed clouds. If we adopt a relationship between stellar luminosity and mass of $L \propto M^{3-4}$, the difference of about two orders of magnitude can be explained by formation of 3-4 times more massive stars in the bright-rimmed clouds.

Fig. 6.-Distribution of the luminosity to mass ratios of the brightrimmed clouds. The masses were estimated from the cloud radii assuming a constant density (see text).

4.3. Characteristics of Star Formation by Radiation-driven Implosions

The radii of the bright-rimmed clouds are mostly less than 0.5 pc . The accretion shock velocity in the bright-rimmed clouds is $\sim 10 \mathrm{~km} \mathrm{~s}^{-1}$ (Bertoldi 1989), which suggests an implosion time scale of $\leqslant 10^{5}$ yr. IRAS point sources embedded in molecular cloud cores are considered to be $\sim 10^{5}$ yr-old (e.g., Beichman et al. 1986). The average extent of these 18 H iI regions is $\sim 48 \mathrm{pc}$, and with an adopted expansion velocity of a H II region of $\sim 10 \mathrm{~km} \mathrm{~s}^{-1}$, we obtain a dynamical age of $\sim 2-$ $3 \times 10^{6} \mathrm{yr}$, which is much larger than the implosion time scale or the age of the IRAS source. One should, therefore, expect to find signs of star formation triggered by the radiation-driven implosions in the bright-rimmed clouds.
The number of the bright-rimmed clouds with IRAS sources per H II region varies from 1 to 11 in this work. The average number per $\mathrm{H}_{\text {II }}$ region is ~ 2.4, which may be a lower limit, because we picked up only the bright-rimmed clouds located on the near sides of the H II regions. This value should then be doubled, i.e., ~ 5.
We can thus roughly estimate a total number of stars formed during a lifetime of a $\mathrm{H}_{\text {II }}$ region to be ~ 100, if we assume that five stars are formed in five clouds during $10^{5} \mathrm{yr}$ and that star formation lasts steadily during $2 \times 10^{6} \mathrm{yr}$. A study of $\mathrm{H} \alpha$ emission line stars in the region of IC 1396 suggests, in accordance with our estimate, that ~ 300 emission-line stars probably associated with IC 1396 are mostly pre-main-sequence stars with masses from $1.5 M_{\odot}$ to $3 M_{\odot}$ (Kun \& Pásztor 1990).

We found the bright-rimmed clouds with IRAS sources in 18 H II regions. Ten of the 18 H II regions are within 1 kpc . This value of 10 should be increased by a factor of 1.5 , because the PSS prints cover only two-thirds of the whole sky. If 100 stars with masses of $2 M_{\odot}$ are formed during the life time of a $\mathrm{H}_{\text {II }}$ region, i.e., 1500 stars per $2 \times 10^{6} \mathrm{yr}$ within 1 kpc , and if such star formation is over the entire Galaxy, we can expect a surface star formation efficiency of $\sim 5 \times 10^{-4} M_{\odot} \mathrm{kpc}^{-2} \mathrm{yr}^{-1}$. Adopting a radius of $\sim 10 \mathrm{kpc}$ and an overall star formation efficiency for the Galaxy of $\sim 3 M_{\odot} \mathrm{yr}^{-1}$, we obtain a rate of $\sim 10^{-2} M_{\odot} \mathrm{kpc}^{-2} \mathrm{yr}^{-1}$, suggesting that $\sim 5 \%$ by mass of the stars in the Galaxy are formed through the implosion process. Stars with masses between 1.5 and $6 M_{\odot}$ have 30% of the total mass in the IMF (Miller \& Scalo 1979). If we assume that the IMF is universal in the Galaxy, this percentage of ~ 5 corresponds to $\sim 15 \%$ of the intermediate-mass stars. Most of the values used for the estimate may be lower limits and the percentage of ~ 15 should be considerably increased. Therefore, we conclude that star formation by the implosions can make a great contribution to the formation of intermediate-mass stars.

5. SUMMARY

We have surveyed small bright-rimmed clouds associated with IRAS point sources with the aim of detecting candidates of star formation induced by the radiation-driven implosions. The Palomar Sky Survey prints and IRAS Point Source Catalog were used for this survey. The surveyed regions are mainly around H if regions of Sharpless (1959) with extents of $\sim 60^{\prime}$ or larger. The main findings of this survey are as follows:

1. Forty-four bright-rimmed clouds with IRAS point sources were selected from the 18 H il regions of Table 1.
2. Nine of the 44 bright-rimmed clouds are associated with molecular outflows. Two clouds out of the 44 clouds are associated with HH objects, including one cloud with an outflow.
3. Most of the bright-rimmed clouds have small radii of $\lesssim 0.5 \mathrm{pc}$, which are similar to those of the dark globules or to the dense cores in dark cloud complexes. The clouds also appear to have a similar mass range, mostly $\leqslant 100 M_{\odot}$.
4. The associated IRAS sources have luminosities of $\sim 10-$ $10^{4} L_{\odot}$, which are on the average by about two orders of magnitude larger than those of the IRAS sources associated with the dark globules or the dense cores. The $L_{\mathrm{IR}} / M_{\text {cloud }}^{\prime}$ ratio is also larger in the bright-rimmed clouds by about two orders of magnitude. These two results suggest that intermediate-mass stars are mainly formed in the bright-rimmed clouds.
5. Stars formed through the radiation-driven implosions are expected to contribute $\sim 5 \%$ of the total stellar mass in the Galaxy. A significant number of intermediate-mass stars may be formed in bright-rimmed clouds around $\mathrm{H}_{\text {II }}$ regions.

We would particularly like to thank Gisbert Winnewisser and Juergen Stutzki for helpful comments and support. We would also like to thank Akira Mizuno for preparing photographs. This work was financially supported in part by the Grant-in-Aid for Scientific Research (A) No. 6342003 and 6242002, and the Grant-in-Aid for Specially Promoted Research No. 01065002 in the Ministry of Education, Culture, and Science of Japan, and in part by the Deutsche Forschungsgemeinschaft through SFB301.

REFERENCES

Bally, J., \& Scoville, N. Z. 1980, ApJ, 239, 121
Bedijn, P. J., Tenorio-Tagle, G. 1984, A \& A, 135, 81
Beichman, C. A. 1983, in Light on Dark Matter, ed. F. P. Israel (Dordrecht: Reidel), p. 279
Beichman, C. A., Myers, P. C., Emerson, J. P., Harris, S., Mathieu, R., Benson, P. J., \& Jennings, R. E. 1986, ApJ, 307, 337
Bertoldi, F. 1989, ApJ, 346, 735
Bertoldi, F., \& Mckee, C. F. 1990, ApJ, 354, 529
Blaauw, A., 1964, ARA\&A, 2, 213
Bok, B. J. 1977, PASP, 89, 597
Bok, B. J., \& Cordwell, C. S. 1973, in Molecules in the Galactic Environment, ed. M. A. Gordon \& L. E. Snyder (New York: Wiley-Interscience)
Bok, B. J.,-Cordwell, C. S., \& Cromwell, R. H. 1971, in Dark Nebulae, Globules, and Protostars, ed. B. T. Lynds (Tucson: University of Arizona Press), p. 33
Claria, J. J. 1974, A\&A, 37, 229
Cohen, M. 1980, ApJ, 85, 29
Crampton, D., \& Fisher, W. A. 1974, Pub. Dom. Ap. Obs., 14, No 12
Duvert, G., Cernicharo, J., Bachiller, R., \& Gómez-González, J. 1990, A\&A, 233, 190
Elmegreen, B. G. 1988, ApJ, 326, 616
Fukui, Y. 1989, in Low-Mass Star Formation and Pre-Main-Sequence Objects, ed. B. Reipurth (Garching: ESO), p. 95
Fukui, Y., Iwata, T., Takaba, H., Mizuno, A., Ogawa, H., Kawabata, K., \& Sugitani, K. 1989, Nature, 342, 171
Fukui, Y., Sugitani, K., Takaba, H., Iwata, T., Mizuno, A., Ogawa, H., \& Kawabata, K. 1986, ApJ, 311, L87
Georgelin, Y. M., \& Georgelin, Y. P. 1976, A\&A, 49, 57
Goldsmith, P. F., Snell, R. L., Hemeon-Heyer, M., \& Langer, W. D. 1984, ApJ, 286, 599
Hardie, R. H., Seyfert, C. K., \& Gulledge, I. S. 1960, ApJ, 132, 361
Humphreys, R. M. 1978, ApJS, 38, 309
IRAS Catalogs and Atlases, Explanatory Supplement. 1984, ed. C. A. Beichman, G. Neugebauer, H. J. Habing, P. E. Clegg, \& T. J. Chester (Washington, DC: US GPO)
Ishida, K. 1970, PASP, 22, 277
King, D. J. 1987, MNRAS, 226, 473

Klein, R. I., Sandford, M. T., \& Whitaker, R. W. 1980, Space Sci. Rev., 27, 275
—, 1985, in Protostars and Planets II, ed. D. C. Black \& M. S. Matthews (Tucson: University of Arizona Press), p. 340
Kun, M., \& Pásztor, L. 1990, Ap. Space Sci., 174, 13
LaRosa, T. N. 1983, ApJ, 274, 815
MacConnell, D. J. 1968, ApJS, 16, 275
Martin, R. N., \& Barrett, A. H. 1978, ApJS, 36, 1
Matthews, H. E. 1979, A\&A, 75, 345
Miller, G. E., \& Scalo, J. 1979, ApJS, 41, 513
Murdin, P., \& Penston, M. V. 1977, MNRAS, 181, 657
Myers, P. C., Fuller, G. A., Mathieu, R. D., Beichman, C. A., Benson, P. J., Schild, R. E., \& Emerson, J. P. 1987, ApJ, 319, 340
Myers, P. C., Hyer, M., Snell, R. L., \& Goldsmith, P. F. 1988, ApJ, 324, 907
Myers, P. C., Linke, R. A., \& Benson, P. J. 1983, ApJ, 264, 517
Ogura, K. 1989, private communication
Ogura, K., \& Ishida, K. 1981, PASJ, 33, 149
Olberg, M., Reipurth, B., \& Booth, R.S. 1989, in The Physics and Chemistry of Interstellar Molecular Clouds, ed. G. Winnewisser \& J. T. Armstrong (Heidelberg: Springer-Verlag), p. 120
Osterbrock, D. E. 1957, ApJ, 117, 183
Reipurth, B., 1983, A\&A, 117, 183
Reipurth, B., \& Gee, G. 1986, A\&A, 166, 148
Reynolds, R. J., \& Ogden, P. M. 1979, ApJ, 229, 942
Sandford, M. T., II, Whitaker, R. W., \& Klein, R. I. 1982, ApJ, 260, 183
——. 1984, ApJ, 282, 178
Savage, B. D., Bohlin, R. C., Drake, J. F., \& Budich, W. 1977, ApJ, 216, 291
Sharpless, S. 1959, ApJS, 4, 257
Snell, R. L., Huang, Y.-L., Dickman, R. L., \& Claussen, M. J. 1988, ApJ, 325, 853
Stutzki, J., \& Güsten, R. 1990, ApJ, 356, 513
Sugitani, K., Fukui, Y., Mizuno, A., \& Ohashi, N. 1989, ApJ, 342, L87
Turner, D. G. 1976, ApJ, 210, 65
Walsh, J. R., Ogura, K., \& Reipurth, B. 1991, in preparation

[^0]: ${ }^{1}$ On leave from Nagoya City University.

[^1]: ${ }^{\text {a }}$ Associated with prominent bright rims, although the size of $\mathrm{H}_{\text {II }}$ region is $<60^{\prime}$.

 References.-(1) Humphreys 1978; (2) Bally \& Scoville 1980; (3) Matthews 1979; (4) Georgelin \& Georgelin 1976; (5) Crampton \& Fisher 1974; (6) MacConnell 1968; (7) Savage et al. 1977; (8) Ishida 1970; (9) Hardie, Seyfert, \& Gulledge 1960; (10) Murdin \& Penston 1977; (11) Turner 1976; (12) Ogura \& Ishida 1981; (13) Reynolds \& Ogden 1979; (14) Bok, Cordwell, \& Cromwell 1971; (15) Blaauw 1964; (16) Claria 1974.

