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ABSTRACT 
Isotropy of the cosmic microwave background radiation highlights the horizon problem. Analysis of the 

horizon problem and its inflationary solution requires that we study the properties of the Hubble sphere and 
distinguish between the “Hubble surface” and the particle horizon. All regions in the visible universe become 
causally connected when inflation increased the distance of the particle horizon by a factor of 3. If exponential 
inflation occurs because of a phase transition at temperature ~1015 GeV, the number of ^-foldings to effect 
this threefold increase in the particle horizon distance is N ~ 60. The properties of the Hubble sphere provide 
the answer to the question: How, in a universe of age i, can regions separated by distances much greater than 
ct be causally connected? 
Subject headings: cosmology — relativity 

1. INTRODUCTION 

How can the global uniformity of the universe be explained 
when most regions now observed apparently lacked causal 
interconnection in the past? This is the horizon problem. Gen- 
erally, in decelerating homogeneous and isotropic universes 
(such as the Friedmann versions), the range of causal inter- 
action expands faster than the universe, and at zero time all 
parts of the universe were causally unconnected. 

In the flat Friedmann (Einstein-de Sitter) universe, for 
example, two galaxies of redshifts greater than 1.25 in opposite 
directions of the sky were causally unconnected at the time 
they emitted the light that we now see; each existed outside the 
particle horizon of the other, and observers in both galaxies 
were unaware of the existence of the other galaxy. Yet both 
galaxies are composed of identical atoms in similar propor- 
tions and both occupy regions that exhibit similar astronomi- 
cal structures. The remarkable isotropy of the 2.7 K cosmic 
microwave background radiation (Davies et al. 1987, Partridge 
1988, and Smoot et al. 1991) highlights the horizon problem: 
regions separated more than ~1 arcdegree were causally 
unconnected at the time when the radiation decoupled at red- 
shift zd ^ 1000. Cosmology offers two alternative solutions: the 
universe begins in a perfectly uniform state of preestablished 
harmony (made plausible by arguments such as the anthropic 
principle), or the universe evolved through an early period of 
accelerated expansion during which causal connections 
became greatly distended. The second solution is currently 
more popular in the form of the inflationary universe proposed 
by Guth in 1981. Ellis & Stoerger (1988) and Hübner & Ehlers 
(1991) have examined the horizon problem in homogeneous 
and isotropic inflationary universes and dispelled several pre- 
vious misapprehensions. 

In this paper I discuss the Hubble sphere and the observable 
universe and distinguish between the “Hubble surface” that 
bounds the Hubble sphere and the particle horizon that 
bounds the observable universe. I show that a causal explana- 
tion of the isotropy of the microwave background radiation 
requires at least a threefold enlargement in the particle horizon 
of the standard model. 

If nothing travels through space faster than light, and the 
age of the universe is t, how can regions separated by distances 
much greater than ct have causal connection? This study 

shows that the causal mechanism depends on the properties of 
the Hubble sphere. 

2. HUBBLE SPHERES 

2.1. Expanson of the Hubble Sphere 
The velocity-distance law : 

V = H x distance 

where H = R/R is the Hubble term and R(t) is the scale factor, 
follows from the Robertson-Walker metric and is the conse- 
quence of postulating time-invariant homogeneity.1 The 
Hubble sphere in an expanding (H > 0) universe, with the 
observer at the center, at time t has radius 

Lh = c/H , (1) 
and Lh ^ 1010 It-yr at the present time t0. This three- 
dimensional sphere contains all astronomical systems at the 
time of observation that, according to the velocity-distance 
law, recede from the observer at less than the velocity of light c. 
Recession inside the Hubble sphere is subluminal and outside 
is superluminal. The boundary of the Hubble sphere, the 
“ Hubble surface,” separates the subluminal inner sphere from 
the superluminal outer sphere. Light emitted toward the obser- 
ver by galaxies inside the subluminal (or Hubble) sphere 
approaches the observer, whereas light emitted toward the 
observer by galaxies in the superluminal sphere (or outside the 
Hubble sphere) recedes (Harrison 1981). 

In this representation of the Hubble sphere, spacetime is 
physically real with observable geometric and dynamic proper- 
ties in accordance with general relativity. Cosmic symmetry 
decomposes spacetime into a uniformly curved space and an 
orthogonal common (or cosmic) time. Bodies move in this 
space locally no faster than c in accordance with special rela- 
tivity, but space itself is dynamic locally and globally. Motion 
in the cosmic setting is absolute, and comoving bodies are 
stationary in a space that is itself nonstatic. 

The Hubble surface recedes at radial velocity 

dLjj/dt = c(l + q) , (2) 

1 The redshift is z = R0/R — 1, and the redshift-distance or Hubble law 
zc = H x distance, derived by Hubble from observations, follows from the 
velocity-distance law (V = cz) and is valid only for small redshifts. 
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where q = —RR/R2 is the deceleration term. The Hubble 
sphere contracts when q < —1, remains stationary when 
q = —1, and expands when q> —1. The Hubble sphere, 
despite its interesting properties and conceptual importance, 
has received scant attention in the literature. 

2.2. The Hubble Surface 
Galaxies at the Hubble surface recede at c, and the surface 

overtakes the galaxies at relative velocity cq according to equa- 
tion (2). The Hubble surface is not a cosmological horizon 
except when it becomes degenerate with the particle horizon at 
q = 1 and with the event horizon at g = — 1. 

2.2.1. Decelerating Expansion 

In decelerating universes (q > 0), the Hubble surface recedes 
faster than the galaxies and the baryonic mass of the Hubble 
sphere increases. A galaxy outside the Hubble sphere, receding 
at velocity greater than c, is overtaken in the course of time by 
the Hubble surface; the galaxy then lies inside the Hubble 
sphere and recedes at a velocity less than c. Galaxies at dis- 
tances L> Lh are later at L < LH, and their superluminal 
recession in the course of time becomes subluminal. The light 
emitted toward the observer by a galaxy outside the Hubble 
surface recedes until overtaken by the Hubble surface, and 
only then can it begin to approach the observer,. Thus most 
events are in principle observable at some time, and all deceler- 
ating universes lack event horizons unless they terminate at 
some future time. 

2.2.2. Linear Expansion 

In linearly expanding universes (q = 0), the Hubble surface 
comoves and the baryonic mass of the Hubble sphere stays 
constant. These universes lack particle and event horizons. 

2.2.3. Accelerating Expansion 

In accelerating universes (q < 0), the galaxies recede faster 
than the Hubble surface and the baryonic mass of the Hubble 
sphere decreases. (In the steady state and inflationary uni- 
verses, the continuous creation of energy with a McCrea-type 
equation of state [McCrea 1951] violates this rule.) All acceler- 
ating universes, including universes having only a limited 
period of acceleration, have the property that galaxies at dis- 
tances L < Lh are later at L> LH, and their subluminal 
recession in the course of time becomes superluminal. Light 
emitted outside the Hubble sphere and traveling through space 
toward the observer recedes and can never enter the Hubble 
sphere and approach the observer. Clearly, there are events 
that can never be observed, and such universes have event 
horizons. 

2.3. Examples 
The power-law models, in which the scale factor R(t) varies 

according to tn, with n constant, illustrate the behavior of the 
Hubble sphere. We have 

H = n/t, (3) 

« = (1 - n)/n , (4) 
and the Hubble sphere of radius LH — ct/n expands at velocity 
dLH/dt = c/n. In the matter-dominated Einstein-de Sitter uni- 
verse of n = I, we find q = the Hubble sphere expands at 
velocity 3c/2, and its surface overtakes the comoving galaxies 
at relative velocity c/2. In the radiation-dominated version of 
the Einstein-de Sitter universe of n = we find q = 1, the 
Hubble sphere expands at velocity 2c, and its surface overtakes 
all comoving regions at relative velocity c. 

61 

When the scale factor R(t) increases exponentially (H is 
constant), 

R — R0 exp H{t - i0), (5) 

as in the de Sitter, steady state, and inflationary universes, and 
q = — 1, the Hubble sphere has a constant radius. Comoving 
bodies cross the Hubble surface at velocity c, and light emitted 
toward the observer by these bodies at the instant of crossing 
remains stationary at the Hubble surface; this light reaches the 
observer in the infinite future with infinite redshift. All events 
outside the Hubble sphere can never be observed, and the 
Hubble surface acts as an event horizon. 

3. PARTICLE HORIZONS 

The subject of cosmological horizons was confusing (North 
1965) until Rindler (1956) in a classic paper distinguished 
between event and particle horizons. In this paper we comment 
on particle horizons in homogeneous and isotropic universes; 
a general discussion on horizons is given by Hawking & Ellis 
(1973). An observer’s particle horizon (a more appropriate 
name would be “world-line horizon”) divides all world lines 
into two classes at the instant of observation : those that inter- 
sect the observer’s past light cone, and those that lie outside the 
reach of the observer’s light cone, as shown in Figure 1. The 
particle horizon forms a spherical surface in space about the 
observer, enclosing the “ observable universe ” that consists of 
all world lines that in principle can be observed. The observa- 
ble universe includes not only visible regions but also regions 
made invisible by obscuration and light scattering (Sato 1968) 
and also the early universe that exists before the background 
radiation decouples (or before the background neutrinos 
decouple when they become detectable). The “visible uni- 
verse,” as distinct from the observable universe, is the region 
about the observer extending out in space and back in time to 
the primordial plasma at the decoupling redshift zd. 

3.1. Past Light Cone 
Conformal coordinates and diagrams illustrate clearly the 

properties of cosmological horizons (Penrose 1964; Centrella 
1973; Hawking & Ellis 1973; Tipler, Clarke, & Ellis 1980; 
Harrison 1981; MacCallum 1983; Ellis & Stoergert 1988). The 
conformally flat homogeneous and isotropic Robertson- 
Walker metric has the form 

ds2 = -dt2 + R2(t)[dr2 + f2(r)(d02 + sin2 0#2] , (6) 

where r, 0, </> are comoving space coordinates and /(r) = sin r, 
r, or sinh r correspond, respectively, to the curvature-constant 
values k = 1, 0, or — 1, We assume that all rays travel at the 
vacuum speed of light c and ignore dispersion, scattering, 
deflection, and absorption (Harrison 1977). Null geodesics 
(ds = 0) radiating toward and away from the observer’s world 
line at r = 0 (hence dO = 0,d(/) = 0) obey dr = dt/R (the future 
light cone) and dr = —dt/R (the past light cone). The obser- 
ver’s past light cone in conformal coordinates is 

r = r0-T, (7) 

where the zero subscript denotes the present time, and the 
lower limit of the integral 

T = J dt/R(t), (8) 

is either i = 0, say, for a universe of finite age, or i = — oo for 
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infinite age. The proper distance (R x coordinate distance) 
from the observer’s world line to the past light cone at the time 
t0 of observations is 

L(t) = Ro(t0 - t) . (9) 

3.2. Recession of the Particle Horizon 
The particle horizon lies at the world lines intersecting the 

light cone at maximum coordinate distance rP = t0, given by 
t = 0 in equation (7), and has proper distance LP = R0 rP, or 

In universes of constant q> 0, this equation has the useful 
redshift form 

L(z) = LHq-1ll-(l+z)-^. (10) 

The distance from the observer’s world line to a galaxy at the 
time it emits the light now observed is 

/(t) = R(t0 - t) , (9a) 

and this distance has a maximum value /max = cR/R (from dl/ 
dx = 0). Galaxies at /max, at the time when they emit the light 
now seen (and the Hubble term is Hmax = c//maJ, recede at the 
velocity of light. In universes of constant q, these maximum 
emission-distance galaxies have redshift 

Zma* = (1 + i)11“ - 1 , (10a) 

and all other galaxies are closer at the time they emit the 
light now seen. For g = ^, we find zmax = 1.25, and for g = 1, 
Zrnax = 1- 

In a static universe (R constant), a particle horizon exists if 
the universe originates in the finite past. In conformal coordi- 
nates, horizons in static and nonstatic universes can be treated 
similarly; hence in a nonstatic universe, a particle horizon 
exists if the universe originates in the finite past in conformal 
time2 (t = 0, say). No particle horizon exists in universes that 
originate in i-time in the infinite past. 

2 The event horizon is also easily defined in conformal time. An observer’s 
event horizon divides all events into two classes: those observed at some time, 
and those never observed. It is the terminal null geodesic on the observer’s 
world line. An event horizon exists when conformal time t has a finite upper 
bound, as in the k = 1 Friedmann and n > 1 universes; no event horizon exists 
when t extends to + oo, as in the fe = 0, — 1 Friedmann and n < 1 universes. 

"0 

Robertson-Walker universe that shows the observer’s past light cone intersec- 
ting the vertical world lines of comoving bodies. Decoupling of the cosmic 
background radiation occurs on world lines, D, D' at events d, d'. World lines 
D, D' form the boundary of O’s visible universe. The particle horizon LP(0) on 
world lines P, P' forms the boundary of O’s observable universe. World lines S, 
S' lie beyond the particle horizon and outside the observable universe. Events 
m, m' on world lines M, M' are seen in opposite directions at distance LM ; 
when these world lines are at one-third the distance to the particle horizon, 
they are causally connected at maximum distance from the observer. Thus 
bodies in opposite directions at distances greater than LP(0)/3 are causally 
unconnected. 

LP — R0 t0 . (11) 

This is the radius, measured from the observer, of the observa- 
ble universe; at its boundary (the particle horizon) the redshift 
is infinite if R = 0 at t = 0. 

The particle horizon recedes at velocity 

dLP/dt = HLP + c . (12) 

Comoving particles at the horizon recede from the observer at 
velocity HLP, and the horizon itself recedes at velocity HLP 
+ c. The general rule is that in all homogeneous and isotropic 
universes, either expanding, static, or contracting, the particle 
horizon overtakes comoving bodies at velocity c. The mass of 
the observable universe always increases; in effect, as the uni- 
verse ages, we see more of it. Only by reversing time can bodies 
move outward across the horizon and leave the observable 
universe. This is the principal difference between the particle 
horizon (which acts like a one-way membrane) and the Hubble 
surface (which acts like a two-way membrane). The not uncom- 
mon remark that inflation sweeps particles (for example, 
monopoles) beyond the horizon comes from a failure to dis- 
tinguish between the different properties of the Hubble surface 
and the particle horizon. 

3.3. General Properties of the Particle Horizon 

For universes of constant q, equations (11) and (12) become 

LP = LH/q , (13) 

dLP/dt = c(l Ftf”1). (14) 

When q <0, no particle horizon exists, and the light cone 
extends to t = — oo and intercepts all world lines in the uni- 
verse. When 0 < q < 1, the Hubble sphere lies inside the obser- 
vable universe (LH < LP) and bodies receding at velocity c at 
the Hubble surface have finite redshift. When q> 1, the obser- 
vable universe lies inside the Hubble sphere (LH > LP) and 
bodies of infinite redshift recede at velocity less than c. This 
illustrates the important fact that the cosmological and 
Doppler redshifts are distinctly different (Harrison 1981). 

For constant q, the redshift of bodies at the Hubble distance 
is 

zH = (1 - q)~llq - 1 , for 0 < 4 < 1 , (15a) 

zH = e - 1 = 1.718 , for 4 = 0 . (15b) 

For example, in the matter-dominated Einstein-de Sitter uni- 
verse oï q = equations (13)-(15) give LP = 2LH, dLP/dt = 
3c, and zH = 3; and in the radiation-dominated version of 
q = 1, they give LP = LH, dLP/dt = 2c, and zH = oo, and the 
particle horizon and Hubble surface are coincident and both 
recede at velocity 2c. 

The conformal-coordinate spacetime diagram Figure 1, 
which graphically resembles the Minkowski diagram, shows 
the cutoff nature of the particle horizon. The observer’s past 
light cone terminates at world lines P, P', of proper distance 
LP = R0 rP, at events p, p' of infinite redshift. Observed world 
lines M, M' that intersect the light cone are inside the particle 
horizon, whereas the unobserved world lines S, S' are outside 
the particle horizon. Any two world lines separated a coordi- 
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nate distance less than rP may causally interact: each may 
observe and influence the other. 

Particle horizons exist in all decelerating (big bang, Fried- 
mann, and n < 1) universes. No particle horizon exists in the 
accelerating (de Sitter steady state, and n > 1) universes of con- 
tinual accelerated expansion. A particle horizon, however, once 
created, cannot be eliminated (except in a closed universe, see 
below), and a limited period of accelerated expansion, as in the 
inflationary universe, cannot eliminate a particle horizon 
created in a preinflationary period of deceleration. 

3.4. The Horizon Problem 
The horizon problem is the following : observer O at time t0 

sees in opposite directions astronomical systems M and NT, as 
in Figure 1, and attributes their similarity to a previous history 
of causal interaction. World lines M and M', however, can 
have interacted with each other prior to observation only if 
their coordinate distances are less than rP/3. Hence, 

Lm = LP/3 , (16) 

is the maximum distance for causal connection between bodies 
observed in opposite directions, where LP is the particle 
horizon distance. Only 1/27 of the volume of the observable 
universe (if flat) contains the observer and bodies that have 
interacted with one another. 

In constant q models, the redshift for maximum LM given by 
equation (16) is 

zm = (3/2)1/9 - 1 , (17) 

and zm = 1.25 when q = %, and zm = 0.5 when q = 1. Galaxies 
in opposite directions at redshifts greater than zm have not seen 
each other at the time they emit the light we now see. The 
cosmic background radiation decouples at d, d' on world lines 
D, D', and the number of horizon distances separating d, d' is 

2(r0/Td - 1) = 2[(1 + zdf - 1] ^ 60 

for q = 0.5, showing clearly that events d, d' are causally dis- 
connected in the standard model. 

A closed universe (k = 1) has the interesting property that a 
particle horizon can contract into the antipode and the entire 
universe then becomes observable. As the particle horizon, 
recedes from the observer, it approaches and contracts on the 
antipode at r = tc. When t0 > tc, all world lines in the universe 
intersect at least once the observer’s past light cone and the 
observable universe is unbounded. 

4. INFLATION AND THE PARTICLE HORIZON 

According to the inflationary hypothesis, exponential expan- 
sion occurs in the very early universe, beginning at a grand 
unified temperature Tt ~ 1015 GeV at time ~ 10"35 s (Guth 
1981). A false-vacuum equation of state that mimics the 
properties of a large-value cosmological constant drives the 
exponential expansion : 

R = Rt exp Hin{(t - ti) . (18) 

Inflation terminates at time tf, after N e-folding periods : 

Rf = Rie\ (19) 

and a phase transition in the distended supercooled false 
vacuum creates high entropy. At present, the parameter N is 
imprecisely determined (Kolb & Turner 1990). In this dis- 
cussion the curvature k/R2 is neglected; this will not affect our 
main conclusions. 

4.1. The Particle Horizon during Inflation 
Generally, inflation of the scale factor is enormous, and 

some authors have erroneously remarked that monopoles are 
swept beyond the horizon. The monopoles are swept out of the 
Hubble sphere but always remain inside the particle horizon. 
After N e-foldings of inflation, the particle horizon lies at dis- 
tance 

LP = LH(2eN - 1), (20) 

where LH = c/Hln{ ~ 10~35 cm is the fixed radius of the 
Hubble sphere during inflation. The particle horizon recedes at 
velocity 

dLP/dt = 2ceN , (21) 

whereas comoving particles at the horizon recede at velocity 

Hin(Lp = c(2eN — 1), (22) 

which is c less than the velocity of recession of the horizon, in 
agreement with the general rule. Clearly, the particle horizon 
outspaces everything and particles, once captive in the obser- 
vable universe, never leave. A comoving particle at the horizon, 
when traced back to the commencement of inflation at LP = 
LH, lies at distance LH(2 — e~N), or 2 — e~N times the distance 
of the horizon at that time. 

4.2. Solution of the Horizon Problem 
Let Ld denote the radius of the present visible universe out 

to the decoupling redshift zd. A necessary condition that all 
particles inside the visible universe have interacted with one 
another because of inflation is 

Ld < LP(N)/3 , (23) 

where LP(N) is the distance of the particle horizon after infla- 
tion. But Ld < LP(0), wher LP(0) is the distance of the particle 
horizon when there is no inflation. Hence, a necessary and a 
sufficient condition for the solution of the horizon problem is 

LP(N) > 3LP(0), (24) 

and inflation must increase the distance of the particle horizon 
in the standard model at least threefold. This is the main con- 
clusion of our discussion. 

As an example, from equation (13) for a constant q model, 
Lp(0) = LH/q, and a period of inflation must therefore make 
LP(N) equal to or greater than 3LH/q. If q = ^ as in the 
Einstein-de Sitter universe, then LP(N) > 6LH solves the 
horizon problem. Figure 2 illustrates how inflation greatly 
increases the age of the universe in conformal time t and 
thereby extends the particle horizon. 

4.3. A Simplified Calculation 
Let the particle horizon in an inflationary universe be at 

distance 

Lp(N) = Roil, + /2 + /3), (25) 

and in the absence of inflation at distance 

LPi0) = RoU, (26) 

In these equations Ií912, and /3 are the preinflation inflation, 
and postinflation contributions, respectively, and /4 is the age 
of the universe in conformal time in the absence of inflation. 
Neglecting the curvature term, and using the conditions that R 
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and R are continuous we find 

1 tfinfV 
for a relativistic fluid (R oc i1/2); 

for inflation [R oc exp — i0)] ; and 

‘ +2Í 1 

HqRq Hjnf Rf \H0 R0 HqRqJ 

(27) 

(28) 

(29) 

for a relativistic fluid to the epoch tq of equal radiation and 
matter densities, and a nonrelativistic fluid (R oc i2/3) from tq to 
the present epoch t0. Also, in the absence of inflation, we find 

U HqRq 
+ 2{H0R0 ' (30) 

Because the ratio H0R0/HqRq = (1 + ^)-1/2 ~ 10“2 is neg- 
ligible, equations (25}-{30) yield 

LP(N)/LP(0)=l + F-1(eN-l)9 (31) 

where F has the value 

F = Hin{ Rf/H0 R0 ~ (T2
f/T0 Tq)

1/2 . (32) 

The solution to the horizon problem requires LP(N) > 3LP(0) 
according to equation (24), and therefore, from equation (31), 

e* > 2F + 1 , (33) 

Assuming a grand unified temperature 7} ~ 1015 GeV, and 
using Tq~ 104 K, we find F ~ 1026, and the horizon problem 
is solved for N > 60. 

5. DISCUSSION 

G 

Fig. 2.—A conformal coordinate spacetime diagram of an inflationary 
Robertson-Walker universe. Inflation or any form of accelerated expansion 
{shown striated) in the early universe extends the range of conformal time prior 
to decoupling and transfers the particle horizon from world lines P, P' at 
distance Lp(0) to world lines S, S' at distance Lp(iV). When world line S is at a 
distance greater than 3 times that of world line P (and S' at a distance greater 
than 3 times that of P'), and hence L¡J{N) > 3LP(0), the events p, p' that for- 
merly were at the particle horizon of the standard universe (as shown in Fig. 1) 
are causally connected in the inflationary universe. Thus L¡J{N) > 3Lp(0) is the 
sufficient condition that all events in the visible universe, such as d, d' in Fig. 1, 
are causally connected. 

outside or will soon be outside the Hubble sphere. Hence, any 
two bodies must eventually recede from each other at super- 
luminal velocity, and the ratio L/ci will then increase in time. 

How can causally connected distances of L > ci exist? The 
answer is that the universe passes through a period of acceler- 
ated expansion, and causal connections of L < ct, established 
before acceleration, expand superluminally outside the Hubble 
sphere. 

5.1. Causal Connections 
In the study of causal connections, the Hubble sphere 

bounded by the Hubble surface is as important as the observa- 
ble universe bounded by the particle horizon. The answer to 
the question, How, in a universe of age t can causally con- 
nected distances of L ci exist? draws on the properties of 
both the Hubble sphere and the observable universe. 

Let two comoving bodies be separated by a distance L suffi- 
ciently small that each lies in the observable universe of the 
other. Each body remains thereafter permanently in the other’s 
observable universe, and the ratio L/ct during expansion 
depends on the behavior of the Hubble sphere. 

In a decelerating universe, the Hubble sphere expands faster 
than the universe, and a body at distance L either is inside or 
will soon be inside the Hubble sphere. Hence, any two bodies 
must eventually recede from each other at subluminal velocity, 
and the ratio L/ct will then decrease in time. 

In an accelerating universe, the Hubble sphere expands 
slower than the universe, and a body at distance L either is 

5.2. The Horizon Problem 
A period of acelerated expansion distends all previously 

established causal connections and increases the distance to 
the particle horizon. The entire visible universe is causally 
interconnected when the acceleration occurring in the extreme 
early universe increases the particle horizon by a factor of at 
least 3. A minimum threefold increase solves the horizon 
problem. 

Some words of caution are necessary. First, although events 
p, p' in Figure 2 are causally connected, each is affected by 
events that do not affect the other. Hence, p and p' cannot 
possess identical histories, and presumably the universe must 
originate in some minimal state of homogeneity and isotropy. 
Second, satisfying the conditions for causal connectivity in a 
homogeneous and isotropic universe, as in this paper, cannot 
guarantee that homogeneity and isotropy will be achieved in a 
universe previously inhomogeneous and anisotropic. Last, 
solving the horizon problem does not solve the unity problem : 
why are the laws and constants of nature the same everywhere? 
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